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The quasi-DC compressions of the Earth’s dayside magnetic field by ram-pressure fluctuations 

in the solar wind are characterized by using multiple GOES spacecraft in geosynchronous orbit, 

multiple Los Alamos spacecraft in geosynchronous orbit, global MHD simulations, and ACE and 

WIND solar-wind measurements. Owing to the inward-outward advection of plasma as the 

dayside magnetic field is compressed, magnetic field compressions experienced by the plasma in 

the dayside magnetosphere are greater than the magnetic-field compressions measured by a 

spacecraft. Theoretical calculations indicate that the plasma compression can be a factor of 2 

higher than the observed magnetic-field compression. The solar-wind ram-pressure changes 

causing the quasi-DC magnetospheric compressions are mostly owed to rapid changes in the 

solar-wind number density associated with the crossing of plasma boundaries; an Earth crossing 

of a plasma boundary produces a sudden change in the dayside magnetic-field strength 

accompanied by a sudden inward or outward motion of the plasma in the dayside magnetosphere. 

Superposed epoch analysis of high-speed-stream-driven storms was used to explore solar-wind 

compressions and stormtime geosynchronous magnetic-field compressions, which are of 

particular interest for the possible contribution to the energization of the outer electron radiation 

belt. The occurrence distributions of dayside magnetic-field compressions, solar-wind ram-

pressure changes, and dayside radial plasma-flow velocities were investigated: all three 

quantities approximately obey power-law statistics for large values. The approximate power-law 

indices for the distributions of magnetic compressions and ram-pressure changes were both -3. 
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1. Introduction 

 Changes in the ram pressure of the solar wind result in changes in the amount of 

compression of the dayside magnetosphere: these are manifested in the magnetosphere as 

changes in the magnetic-field strength and as radial motions. In this report quasi-DC 

compressions of the magnetosphere at timescales longer than Pc5 ULF periods will be studied. 

These compressions may be important for the magnetic pumping of the outer electron radiation 

belt during high-speed-stream-driven storms. 

 It is well known that there is a connection between the time-integrated amplitude of 

magnetospheric ULF oscillations and the intensity of the flux of radiation-belt electrons in the 

outer magnetosphere [e.g. Rostoker et al., 1998; Mathie and Mann, 2000; Friedel et al., 2002; 

Nakamura et al., 2002; Kozyreva et al., 2007; Romanova and Pilipenko, 2009; Borovsky and 

Denton, 2014]. The amplitudes of ULF fluctuations in the magnetosphere are related to the solar-

wind velocity [Singer et al., 1977; Mathie and Mann, 2001; Romanova et al., 2007; Kozyreva et 

al., 2007], to the solar-wind density [Menk et al., 2003; Takahashi and Ukhorskiy, 2008; Viall et 

al., 2009], and to the IMF Bz [Romanova et al., 2007] and magnetospheric ULF oscillations are 

observed to be anomalously intense during high-speed-stream-driven storms [Takahashi and 

Ukhorskiy, 2008; Borovsky and Denton, 2010a]. The ULF waves are interpreted as cavity modes 

of the Earth’s magnetosphere [Kivelson and Southwood, 1985; Walker, 1998]. Much of the 

magnetospheric ULF wave power is believed to be driven by the solar wind (a) via variations in 

the ram pressure [Kepko et al., 2002; Eriksson et al., 2006; Motoba et al., 2007; Kessel, 2008; 

Viall et al., 2009; Berube et al., 2014], (b) via Kelvin-Helmholtz instabilities [Mann et al., 1999; 

Claudepierre et al., 2008], or (c) via bow-shock or magnetosheath processes [Eastwood et al., 

2011; Hartinger et al., 2013; Regi et al., 2014]. Magnetospheric ULF waves can also arise from 

kinetic instabilities driven by magnetospheric particles [Hughes et al., 1978; Ozeke and Mann, 

2008]. 

 Here we are interested in characterizing compressional magnetospheric perturbations at 

frequencies below the cavity modes of the magnetosphere for input to magnetic-pumping 

calculations for energetic particles traversing the dayside magnetosphere. Magnetic pumping is 
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an interplay between compression-decompression cycles and pitch-angle scattering [Alfven, 

1950; Spitzer and Witten, 1953; Schluter, 1957; Alfven and Falthammar, 1963], wherein the 

pitch-angle scattering in a magnetosphere acts as a catalyst to enable the compression-

decompression cycles to energize magnetospheric particles [Alfven, 1959; Goertz, 1978; 

Borovsky et al., 1981; Mu, 1993; Liu and Rostoker, 1995; Rostoker et al., 1998; Liu et al., 1999; 

Dmitriev et al., 2001]. Magnetic pumping is most effective when the pitch-angle scattering 

timescales and the compression-decompression timescales are similar [Berger et al., 1958; Murty 

and Varma, 1958; Borovsky et al., 1981; Borovsky, 1986]. For radiation-belt electrons in the 

dayside magnetosphere during high-speed-stream-driven geomagnetic storms, pitch-angle 

scattering is believed to be produced by whistler-mode chorus outside of the plasmasphere 

[Glauert and Horne, 2005; Thorne et al., 2005; Shprits et al., 2007] and by electromagnetic ion-

cyclotron waves [Kovalevskiy, 1980,1981; Jordanova et al., 2006; Thorne et al., 2006; 

Spasojevic and Fuselier, 2009] and whistler-mode hiss [Chan and Holzer, 1976; Hayakawa et al., 

1986; Summers et al., 2008] inside the plasmaspheric drainage plume and the plasmasphere. (In 

the high-mass-density warm plasma cloak [Chappell et al., 2008], which appears throughout the 

dayside magnetosphere commencing on day 2 of a high-speed-stream-driven storm [Borovsky et 

al., 2013], other plasma wavemodes might become important). Since pitch-angle-scattering 

timescales for the radiation belt in the dayside magnetosphere are longer than ULF periods 

[Borovsky et al., 2014], compression-decompression cycles that are longer than ULF periods are 

more effective at pumping. Transit timescales for radiation-belt electrons across the dayside 

magnetosphere limit the duration of the compressive timescales of interest for pumping. Here, 

10-minute changes in the magnetic-field strength in the dayside magnetosphere will be studied; 

these 10-minute changes correspond to ~20-mintue cycles of compression-decompression. 

 This report will relate observations of lower-than-ULF-frequency magnetic-field 

compressions in the dayside magnetosphere at geosynchronous orbit to observations of radial 

plasma motions in the dayside magnetosphere. The ram-pressure fluctuations will be caused 

dominantly by solar-wind density fluctuations rather than solar-wind speed fluctuations. It is 

argued that the observed magnetic-field-strength fluctuations in the dayside magnetosphere must 
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be related to radial motions of the magnetic flux surface: the magnitude of those motions are 

estimated theoretically and then those estimates are compared with observed cold-plasma radial 

flow velocities measured at geosynchronous orbit. The influence of the IMF clock angle on the 

reaction of the Earth’s magnetosphere to solar-wind ram pressure changes [cf. Wing and Sibeck, 

1997; Wang et al., 2007; Li et al., 2013] will not be considered. Superposed-epoch averaging 

during high-speed-stream-driven storms will be used. 

 This report is organized as follows. In Section 2 the mathematical relations between 

changes in the solar-wind ram pressure, changes in the dayside magnetic-field strength, and 

radial plasma motions in the dayside magnetosphere are explored; simulations of the reaction of 

the magnetosphere to the solar wind using the LFM global MHD code are utilized. In Section 3 

stormtime observations of the dayside magnetic field, of dayside plasma flows, and of the solar 

wind are explored. Statistical values of the dayside magnetic-field compressions, the solar-wind 

ram-pressure changes, and the dayside-magnetosphere radial flow velocities are examined in 

Section 4. The results are summarized in Section 5. Section 6 contains a discussion about the 

difficulty of characterizing magnetic-field compressions and the associated plasma compressions 

in the nightside magnetosphere. 
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2. Dayside-Magnetosphere Expectations for Solar-Wind Ram-Pressure Fluctuations 

 In general, the dayside magnetosphere is compressed by the solar wind into a state where 

the local magnetic-field strength is greater than the dipole field value ME/r3, where ME is the 

dipole moment of the Earth. Note, however, that the dayside field strength in the magnetosphere 

can be below the dipole field strength (a) during intervals when the Mach number of the solar 

wind is low (cf. Fig. 19 of Borovsky et al. [2009]) or (b) when the cross-polar-cap current is 

strong while the ram pressure of the solar wind is weak (cf. Figs. 7 and 8 of Borovsky et al. 

[2013]). 

 A ballpark estimate of the magnetic-field strength along the Sun-Earth line in the dayside 

magnetosphere can be obtained with the use of an “image dipole” magnetic-field model [Schield, 

1969]: an image dipole is placed at a distance of 2rm upstream of the Earth, where rm is the 

magnetopause standoff distance along the Sun-Earth line. Thus, the field strength is 

approximated as 

  B(r)  =  MEr-3  +  ME(2rm - r)-3 ,     (1) 

which is valid for r ≤ rm. In expression (1) ME is the Earth’s dipole moment, ME = 7.8×1022 Am2 

= 3.05×104 nT RE
3 [Olson and Amit, 2006]). At the magnetopause (r = rm) the field strength is 

  Bm  =  B(rm)  =  2MErm
-3 ,      (2) 

which is twice the dipole field strength MErm
-3. Pressure balance at the magnetopause with the 

ram pressure Pram of the solar wind B2/8π = Pram yields, with the use of expression (2), the 

magnetopause standoff distance 

  rm  =  (ME
2/2πPram)1/6 .       (3) 

Using expression (3), the magnetopause standoff distance in units of Earth radii (RE) is plotted as 

a function of Pram as the green curve in Figure 1. Using expression (3) for rm in expression (1) 

yields 

  B(r)  =  MEr-3  +  ME[2(ME
2/2πPram)1/6 - r]-3     (4) 

 for the magnetic-field strength at local noon in the magnetosphere. For geosynchronous orbit (r 

= 6.6 RE) expression (4) for the magnetic-field strength local noon Bgeo is plotted as a function of 
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the solar-wind ram pressure Pram as the blue solid curve in Figure 1. For comparison the fit to 

magnetic-field-strength measurements at geosynchronous orbit local noon during high-speed-

stream-driven storms (eq. (2) of Borovsky and Denton [2010a]) 

  Bgeo  =  106  +  6.3 Pram       (5) 

 (where Bgeo is in nT and Pram is in nPa) is plotted as the purple dashed curve. As can be seen, the 

data fit of expression (5) (purple) is well described by the image-dipole expression (4) (blue). 

 The first derivative ∂Bgeo/∂Pram of the image-dipole-model magnetic field (expression (4)) 

at geosynchronous orbit is plotted as a function of Pram as the red curve in Figure 1. The red 

curve provides an estimate of how much change ∆Bgeo in the magnetic-field strength Bgeo at 

geosynchronous orbit noon is expected for a change ∆Pram in the solar-wind ram pressure Pram. 

For typical values of the solar-wind ram pressure (Pram ~ 2 nPa), the expected change in Bgeo is 

about 6 nT for a 1 nPa change in Pram. This is also about the value that would be given by taking 

the first derivative ∂Bgeo/∂Pram of expression (5), which is 

  ∂Bgeo/∂Pram  =  6.3 nT/nPa ,      (6) 

 or 6.3 nT for a 1 nPa change in ram pressure. Examples in the literature (e.g. Fig. 3a of Kepko 

and Spence [2003], Fig. 5a. of Borodkova et al. [2006], and Fig. 5 of Borodkova et al. [2008]) 

yield similar values for changes in the geosynchronous magnetic-field strength on the dayside for 

changes in the solar-wind ram pressure. 

 For the magnetic-field strength in the dayside magnetosphere to increase and decrease in 

response to changes in the solar-wind ram pressure, there must be a radial flow of flux inward 

and outward in the dayside magnetosphere. The image-dipole magnetic-field model will provide 

an estimate of the radial movement of flux, and hence an estimate of radial flow velocities in the 

dayside magnetosphere. This is depicted in Figure 2 for a case where the ram pressure changes 

from 1 nPa (blue) to 2 nPa (red) and, according to expression (3), the magnetopause moves 

inward from 10.66 RE (blue) to 9.50 RE (red). As the magnetic flux moves radially inward and 

outward, the integral ∫ B(r) 2πr dr must be conserved integrated from the surface of the Earth r = 

1 RE outward to the radius rmax that represents a radially moving flux surface. In Figure 2 the flux 
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surface at geosynchronous orbit when the ram pressure is 1 nPa is drawn as the vertical blue 

curve at r = 6.6 RE. Integrating 2πr times the blue curve in Figure 2 from r = 1 RE to r = 6.6 RE 

yields a value Io for the integral. Integrating 2πr times the red curve in Figure 2 from r = 1 RE to 

a value rmax where the integral equals Io yields a value of rmax = 6.50 RE. Thus the flux surface at 

geosynchronous orbit moves from r = 6.6 RE to r = 6.50 RE when the ram pressure of the solar 

wind changes from 1 nPa to 2 nPa. Using expression (4) in the integral, the displacement of a 

flux surface at geosynchronous orbit (r = 6.6 RE) is calculated for changes in the solar-wind ram 

pressure by numerically integrating expression (4) before and after the change in Pram and 

calculating the change in rmax. In Figure 3 the change ∆r in rmax near geosynchronous orbit for a 1 

nT change in the geosynchronous magnetic-field strength ∆Bgeo is plotted as a function of the 

magnetic-field strength Bgeo at geosynchronous orbit. For Bgeo = 110 nT to Bgeo = 200 nT the 

curve in Figure 3 is well fit by the expression 

  ∆r/∆Bgeo  =  -115 Bgeo
-1.85 ,      (7) 

where ∆r is in units of RE and ∆Bgeo and Bgeo are both in units of nT. For a ∆Bgeo that is positive, 

∆r is negative (Earthward). As can be seen, for a wide range in strengths of the dayside field at 

geosynchronous orbit (110 - 170 nT) the amount of radial displacement ∆r for a change in the 

field strength ∆Bgeo is in the range of 0.01 RE to 0.02 RE for a 1 nT change in ∆Bgeo. Thus, the 

value  

  ∆r  ~  -(0.015 RE/nT ) ∆Bgeo       (8) 

can be used as a rule of thumb, with the value being somewhat larger when the field is weaker 

and the value being somewhat less when the field is stronger. 

 In the dayside magnetosphere the magnetic flux (and the plasma) moves radially inward 

and outward as the field strength increases and decreases. The plasma moves radially inward or 

outward by an E×B drift because there is an azimuthal induction electric field accompanying 

∂B/∂t; it is the local curl (shear) of this induction electric field that also changes the energies of 

plasma particles to enforce the conservation of their first adiabatic invariants [Borovsky and 

Hansen, 1991]. The radial displacement for a given change in field strength is given by 
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expression (8). The radial velocity of the flow of flux (and plasma) can be obtained by dividing 

both sides of expression (8) by ∆t, the timescale of the magnetic-field change in the 

magnetosphere. With vr = ∆r/∆t and ∂Bgeo/∂t = ∆Bgeo/∆t, this yields 

  vr  ~  -(0.015 RE/nT ) ∂Bgeo/∂t  =  -(95 km/nT ) ∂Bgeo/∂t     (9)  

for the radial velocity at geosynchronous orbit. Expression (9) yields an expected radial velocity 

vr ~ -95 km/s ∂Bgeo/∂t when ∂Bgeo/∂t is measured in units of nT/s or vr ~ -1.6 km/s ∂Bgeo/∂t when 

∂Bgeo/∂t is measured in units of nT/min. Τests of expression (9) using global MHD simulations 

(this section) and spacecraft measurements (Section 3.3) indicate that the image-dipole model 

underestimates the radial velocity vr for displacement of the flux surface for a given observed 

change ∂Bgeo/∂t and hence may underestimate the radial displacement ∆r of the flux surface for a 

given change ∆Bgeo. 

 Expression (9) can be used to obtain an expression for the geosynchronous-orbit radial 

velocity vr as a function of the rate of change ∂Pram/∂t of the solar-wind ram pressure by writing 

∂Bgeo/∂t as (∂Bgeo/∂Pram)(∂Pram/∂t) in expression (9), which yields 

 vr  =  - (95 km/nT) (∂Bgeo/∂Pram)(∂Pram/∂t)  =  - (599 km/nPa) ∂Pram/∂t , (10) 

where expression (6) was utilized to replace ∂Bgeo/∂Pram. Here, ∂Pram/∂t is the time rate of change 

of Pram at the magnetopause. Note that the temporal profiles of rapid changes in the solar wind 

will be altered by advection through the magnetosheath, which time delays all temporal features 

by a few minutes [Borovsky, 2012a] and has the feature hitting different parts of the 

magnetopause at different times, effectively broadening the temporal profile. 

 To demonstrate this radial flow in the dayside magnetosphere (Figure 4), a global MHD 

simulation of the solar-wind-driven magnetosphere is performed with the LFM (CMIT LFM-

MIX) simulation code [Lyon et al., 2004; Merkin and Lyon, 2010] at the Community 

Coordinated Modeling Center [Rastatter et al., 2012]. Under purely northward IMF, an increase-

then-decrease density step in the solar wind is run past the Earth without changing the solar-wind 

speed (400 km/s). After 55 minutes of density nsw = 5 cm-3, the solar-wind density is suddenly 

switched to nsw = 7.5 cm-3, and then 20 minutes later it is switched back to nsw = 5 cm-3. The ram 
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pressure associated with this increase-decrease density step moving at 400 km/s goes from Pram = 

1.34 nPa to Pram = 2.00 nPa and then back to Pram = 1.34 nPa. In the two panels of Figure 4 the 

magnetic-field strength Bgeo in the LFM simulation at geosynchronous-orbit local noon (top 

panel) and at geosynchronous-orbit 15 LT (bottom panel) is plotted (blue, left axis) as a function 

of time; at the same locations in the LFM simulation the GSM X component of the plasma flow 

velocity vx geo (green, right axis) and the GSM Y component of the plasma flow velocity vy geo 

(red, right axis) are also plotted as functions of time. As can be seen in the top panel, at about t = 

55 min the magnetic-field strength at geosynchronous orbit local noon rises and this rise in field 

strength is accompanied by a negative vx geo (Earthward) flow; twenty minutes later the field 

strength Bgeo drops and this drop is accompanied by a positive (sunward) flow. Note the temporal 

ringing in the flow velocities with a period of about 40 s; this ringing may be caused by Alfven-

wave transients in the very-low-density (n ~ 0.07 cm-3) dayside magnetosphere of the simulation 

[John Lyon, private communication 2015]. In this simulation the flow velocities at 

geosynchronous orbit associated with the change in magnetic-field strength are about 20 km/s. In 

the bottom panel of Figure 4 the Earthward then sunward flows are still seen 3 hours away from 

local noon, although less intense. Note that the temporal behavior of the system is not fully 

resolved in the data output of the LFM simulation: but the radial flow velocities captured in the 

1-min-resolution outputs were greater than 20 km/s at geosynchronous orbit. 

 Expression (9) can be applied to connect the change in the magnetic-field strength at 

geosynchronous orbit to the radial flow velocity in the top panel of Figure 4. During the negative 

velocity pulse at t ≈ 55 the magnetic-field rate of change is ∂Bgeo/∂t = 5.5 nT/min = 8.7×10-2 

nT/s; using this value in expression (9) yields a prediction vr = - 8.7 km/s.  This predicted 

velocity is a factor of 2 lower than the observed peak plasma flow velocity in the simulation. 

During the positive velocity pulse at t ≈ 78 in the top panel of Figure 4 the magnetic-field 

strength decreases at a rate ∂Bgeo/∂t = -4.1 nT/min = - 6.8×10-2 nT/s; using this value in 

expression (9) yields a prediction vr = +6.5 km/s. This predicted velocity is again about a factor 

of 2 lower than the observed peak flow velocity. This test may indicate that the image-dipole 
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model (expression (9)) underestimates the radial displacement of the flux surface for a given 

observed change ∂Bgeo/∂t. 

 As the magnetic-field strength at geosynchronous orbit increases and decreases, the flux 

surface at geosynchronous orbit moves radially inward and outward with a radial displacement 

given approximately by expression (8). This is shown in Figure 2 for a positive change ∆Bgeo in 

the magnetic-field strength at geosynchronous orbit. In Figure 2 when the magnetic-field 

strength at geosynchronous orbit increases the plasma that was at geosynchronous orbit moves 

inward to a new location with a new magnetic-field strength; the change in the field strength 

∆Bflux experienced by the plasma that moves with the flux surface will be larger than the change 

in the field strength ∆Bgeo measured by a spacecraft that remains at geosynchronous orbit. By 

computationally tracking the motion of the flux surface in the image-dipole model, the ratio of 

magnetic-field-strength change ∆Bflux of plasma moving with the flux surface in the vicinity of 

geosynchronous orbit to the magnetic-field-strength change ∆Bgeo at geosynchronous orbit is 

calculated and plotted in black as a function of the geosynchronous field strength Bgeo in Figure 5. 

For Bgeo = 110 nT to Bgeo = 200 nT the curve in Figure 5 is well fit by the stretched-exponential 

function 

  ∆Bflux/∆Bgeo  =  0.96  +  20 exp(-[Bgeo/33.3]0.92)    (11) 

where Bgeo is in units of nT. Expression (11) is plotted as the red dashed curve in Figure 5. As 

can be seen, for a mildly compressed dipole (Bgeo ~ 110 nT) the field-strength change of the 

plasma is about twice the field-strength change at geosynchronous orbit and for a more-strongly 

compressed dipole (Bgeo ~ 135 nT) the field-strength change of the plasma is about 1.5 times the 

field-strength change at geosynchronous orbit. Of course the magnetospheric plasma is 

compressed when the field is compressed [e.g. Chen, 1974]: wherever there is a ∂B/∂t, there is a 

nonzero curl of the electric field which produces an E×B drift with a nonzero divergence which 

compresses the plasma. Confirming the prediction of expression (11) by measuring the amount 

of compression of the plasma in the magnetosphere is in general not possible, since the parcels of 

plasma move radially as they are compressed. Analysis (not done here) of the evolution of 
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plasma and magnetic-field strength with a radial alignment of two or more spacecraft along the 

Sun-Earth line in the magnetosphere could provide an observed quantification of the amount of 

plasma compression. 
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3. Storm-Time Observations of Magnetic Compressions, Radial Flow Velocities, and the 

Solar Wind 

 

3.1. Data Methods 

 To measure the magnetic-field strength at geosynchronous orbit in the dayside 

magnetosphere, vector magnetic-field measurements from the fluxgate magnetometers on the 

GOES spacecraft [Dunham et al., 1996; Singer et al., 1996] from the years 1995-2005 are used 

with 1-min time resolution. This data set involves 5 GOES satellites (GOES-8 - GOES-12). For 

the spacecraft GOES-8, the magnetic-field measurements are corrected by subtracting 7.22 nT 

from the z-component magnetic field following the recommendations of Tsyganenko et al. 

[2003]. The GOES magnetic-field data is cleaned to eliminate magnetosheath intervals using the 

methodology of Borovsky and Denton [2010a]; this methodology eliminates data when the 

measured magnetic field is southward, since magnetopause-crossing intervals at geosynchronous 

orbit are rare when the IMF is northward [Suvorova et al., 2005]. 

 To measure the ram pressure of the solar wind at Earth, proton measurements of the 

solar-wind plasma from the SWEPAM instrument [McComas et al., 1998] on ACE are used with 

64-s time resolution. For a higher-time-resolution look at the ram pressure of the solar wind, 3-s 

measurements from WIND 3DP [Lin et al., 1995] will be used. 

 To measure radial flow velocities at geosynchronous orbit in the dayside magnetosphere, 

cold-ion moments from the multisatellite MPA data set [Bame et al., 1993; Thomsen et al., 1999] 

from Los Alamos National Laboratory spacecraft are used. The flow measurements from MPA 

are only utilized if the cold-plasma number density is above 5 cm-3. 

 For the superposed-epoch averaging a collection of 70 high-speed-stream-driven storms 

is used. This list of 70 storms comes from a list of 93 high-speed-stream-driven storms that were 

used in previous studies [Denton and Borovsky, 2012; Borovsky and Denton, 2010a,b, 2011], 

with 23 storms eliminated from the list of 93. The majority of the 23 were eliminated owing to 

the presence of ejecta in the solar wind during the pre-storm and storm intervals, as determined 

using the new 4-plasma solar-wind-categorization scheme of Xu and Borovsky [2015] which 
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identifies ejecta plasma as having an anomalously low proton temperature and/or an anomalously 

high Alfven speed. A substantial amount of ejecta during a storm interval will change the 

classification of a storm from a high-speed-stream-driven storm to a hybrid storm. A few of the 

23 storms were eliminated owing to the storm being particularly weak or short lived. The zero 

epoch (trigger) for the superposed averaging is chosen to be the onset of storm levels of 

magnetospheric convection for each storm event, taken to be the time at which the MBI index 

crosses the value 60.7o, which is approximately equivalent to the value of the Kp index being 4+. 

MBI is an index created from measurements of the location of the low-latitude edge of the 

diffuse auroral precipitation as determined by DMSP-satellite overflights, mathematically shifted 

to local midnight [Gussenhoven et al., 1983]. The storm onset times were determined to about 

30-minute accuracy using MBI.  

 

3.2. The Magnetic Field at Geosynchronous Orbit during Storms 

 In Figure 6 two examples of the global magnetic-field-strength perturbations of the 

dayside magnetosphere during high-speed-stream-driven storms are shown. In both panels of 

Figure 6 the dayside magnetic-field strength Bgeo at geosynchronous orbit as measured by GOES 

12 (blue) and GOES 10 (red) are plotted as functions of time when each spacecraft is between 6 

LT and 18 LT. The ram pressure of the solar wind Pram = mpnswvsw
2 as measured by ACE 

upstream of the Earth is also plotted (green), delayed by a time 230 RE / vsw. The top panel of 

Figure 6 is from a high-speed-stream-driven storm in 2004 and the bottom panel is from a high-

speed-stream-driven storm in 2005. The local times of the two GOES spacecraft are indicated by 

the colored numbers next to the GOES curves in Figure 6. When the GOES spacecraft are in the 

vicinity of local noon the response of Bgeo to Pram can be clearly seen in Figure 6, with both 

spacecraft (which are separated by 4 hours of local time) responding. Near the dawn and dusk 

regions of geosynchronous orbit the magnetic-field strength is not responding as clearly to the 

solar-wind ram pressure, rather the field strength in these regions is determined to a large degree 

by magnetospheric plasma properties and by magnetospheric currents. Note in Figure 6 the 

temporal behaviors of Bgeo that differ on the two spacecraft and that differ from the solar-wind 
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ram pressure: on the dayside there can be substantial magnetic-field-strength perturbations at 

geosynchronous orbit that are localized and that are not related to upstream solar-wind ram-

pressure perturbations. Short-timescale localized perturbations could be owed to bow-shock 

kinetic processes such as hot flow anomalies [Sibeck et al., 1999; Eastwood et al., 2008; 

Fillingim et al., 2011; Safrankova et al., 2012], downstream pressure pulses [Lin et al., 1996; 

Archer et al., 2012], and foreshock bubbles [Sibeck et al., 2008; Omidi et al., 2010; Hartinger et 

al., 2013]. The origins of the longer-timescale perturbations that are not associated with the solar 

wind are not known: they could be caused by plasma diamagnetic effects or by temporally 

changing magnetospheric currents. 

 Note in Figure 6 that the ram-pressure changes in the solar wind tend to be sudden. This 

is because the changes in the ram pressure mpnswvsw
2 tend to be caused by changes in the solar-

wind density nsw associated with different parcels of plasma and the plasma boundaries in the 

solar wind are fairly thin. Some examples of this are shown in Figure 7, where several plasma 

boundaries in the slow solar wind are shown for 90 minutes of 3-s-resolution solar-wind 

measurements by the WIND spacecraft. The plasma boundaries are marked with the red dashed 

vertical lines; these boundaries are clearly seen in the measurements of the plasma density nsw 

(black points with purple curve, left axis) by the WIND 3DP instrument and in the measurements 

of the magnetic-field strength Bsw (blue curve, right axis) by the WIND MAG instrument 

[Lepping et al., 1995]. Each of these boundaries has a thickness on the order of 10-s in the 

spacecraft frame; these plasma boundaries are typically about 4000-km thick, much larger than 

proton gyroradii (~50 km) and ion-inertial lengths (~100 km) in the solar wind. The green curve 

(left axis) in Figure 7 is the ram pressure of the solar wind Pram measured at 3-s time resolution. 

As can be seen, sudden jumps in the ram pressure (green curve) are associated with the plasma 

boundaries and the jumps occur in about 10 s. 

 The duration of a ram-pressure perturbation is the duration of a plasma parcel (time 

between plasma boundaries). These plasma-parcel durations have been statistically studied: as 

can be seen in Fig. 3 of Borovsky [2012b] there is an abundance of parcels with durations on the 

order of 10 min. 
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 To characterize the compressions of the magnetic field in the dayside magnetosphere at 

geosynchronous orbit, 10-minute changes in the 1-min resolution measurements of the magnetic-

field strength are examined. This change ∆B10 is defined as ∆B10(t) = |Bgeo(t+5min)-Bgeo(t-5min)|, 

where Bgeo is the magnetic-field strength Bgeo = (Bx
2+By

2+Bz
2)1/2. 

 In Figure 8 the superposed-epoch average of ∆B10 is plotted for the dayside 

magnetosphere. In the top panel of Figure 8 the superposed average of the solar-wind speed vsw 

is plotted for the 70 storms and in the middle panel the Kp index for the 70 storms is plotted. The 

bottom panel plots ∆B10 at geosynchronous orbit. Measurements of ∆B10 that are taken by a 

GOES spacecraft are only used in Figure 8 when the spacecraft is in the local-time 8 LT to 16 

LT at geosynchronous orbit. Note that the GOES spacecraft are operated in pairs (GOES-East 

and GOES-West) and that coverage with two GOES spacecraft is sparse when there is a 

restriction on local time. Hence, superposed-epoch averages of the GOES dayside data will be 

noisy since only 54 of the 70 storms have GOES data coverage. As can be seen in Figure 8, the 

superposed average of ∆B10 is increased substantially during the first day of a high-speed-

stream-driven storm and relaxes back to normal values thereafter. Early in the storms the mean 

values of ∆B10 are ~ 3 nT, later in the storms the mean values of ∆B10 are ~ 2 nT. 

 The temporal profile of the superposed average of the amplitude ∆B10 of the quasi-DC 

compressive perturbations differs from the temporal profile of the superposed average of the 

ULF indices, which are measures mainly of non-compressive magnetic fluctuations in the 

magnetosphere with Fourier periods of 143 s - 500 s [Kozyreva et al., 2007; Romanova et al., 

2007]. For the 70 high-speed-stream-driven storms, the superposed-epoch average of the two 

ULF indices Sgrd (blue, measured on the ground) and Sgeod (red, measured in geosynchronous 

orbit) are plotted in Figure 9. The “detrended” (subscript “d”) ULF indices are used (using the 

detrending method of Borovsky and Denton [2014]); since the ULF indices S represent the 

logarithm of the spectral power the quantities 10S are plotted. As can be seen, both indices rise in 

magnitude at the onset of storms and both slowly decline in intensity through the several-day-

long storms [see also Kozyreva and Kleimenova, 2008]. Note that the decline of the ground-
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based ULF index Sgrd is significantly slower than the decline of the geosynchronous-based ULF 

index Sgeod: the two indices are different and respond differently to the solar wind [Borovsky and 

Denton, 2014]. The temporal profiles of the ULF indices (Figure 9) resemble the temporal 

profiles of the Kp index (Figure 8): indeed the correlation coefficients between each of the ULF 

indices and Kp are very high, higher than the correlation coefficients between each other (see Fig. 

1 and Table 3 of Borovsky and Denton [2014]). These correlation coefficients can be written 

rcorr(Sgrd,Kp) = +0.74, rcorr(Sgeod,Kp) = +0.76, and rcorr(Sgrd,Sgeod) = +0.66. 

 The temporal profile of the superposed average of the amplitude ∆B10 of the lower-

frequency compressive perturbations also differs from the temporal profile of the superposed 

average ∆B1 of higher-frequency compressive perturbations. In Fig. 24 of Borovsky and Denton 

[2010a] the superposed-epoch average of the 1-min changes ∆B1 in Bgeo on the dayside at 

geosynchronous orbit is plotted. The amplitude of ∆B1 rises early in the high-speed-stream-

driven storms and then persists at elevated values throughout the several-day-long storm periods. 
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3.3. Radial (Compressional) Flow Velocities at Geosynchronous Orbit 

 Radial flow velocities can be measured in the dayside magnetosphere at geosynchronous 

orbit in response to changes in the ram pressure of the solar wind: inward radial flow when the 

solar wind ram pressure increases and outward radial flow when the solar wind ram pressure 

decreases. These flow velocities are measured with the MPA instruments, but only when there 

are sufficient amounts of cold plasma present to calculate the flow velocity from the shift of the 

cold-ion distribution function. The flow measurements can only be made with MPA when a 

spacecraft is inside the plasmasphere. In the dayside magnetosphere that restricts the flow 

measurements to quiet geomagnetic conditions when the outer plasmasphere refills to beyond 

geosynchronous orbit, or to plasmaspheric drainage plumes during active times. However, the 

flow velocities within drainage plumes are temporally irregular [Borovsky and Denton, 2008] 

(owing perhaps to ULF waves during active times or to turbulence in the flow of the plumes) so 

matching measured flow velocities within plumes to changes in the ram pressure of the solar 

wind is very difficult. 

 In the top panel of Figure 10 an isolated ram-pressure change in the solar wind during 

very quiet geomagnetic conditions is examined at a time when two geosynchronous spacecraft 

are in the plasmasphere near local noon. The two green curves (right axis) are the number 

density nsw and ram pressure Pram of the solar wind as measured by the SWEPAM instrument on 

the ACE spacecraft upstream of the Earth. The dark red and purple curves (right axis) are the 

ONMI2 estimates of the solar wind density nsw and ram pressure Pram at Earth [King and 

Papitashvili, 2005], obtained by advecting the ACE solar-wind measurements to the nose of the 

bow shock. The timing of the pressure change Pram reaching Earth is best obtained from the 

OMNI2 curves; the temporal profile of the pressure change is best obtained by examining the 

ACE curves. The red and blue curves (left axis) are measurements of the radial plasma flow 

velocity obtained by two geosynchronous spacecraft (1990-095 and LANL-01A) carrying the 

MPA plasma instruments. Both spacecraft are in the high-density plasmasphere this day as they 

traverse the dayside magnetosphere. When the ram-pressure change reaches Earth at 13:07 UT, 

the two spacecraft are straddling local noon. In the example of the top panel, inward radial 
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velocities of ~20 km/s are obtained for a ram pressure increase of ~3.6 nPa. Note that in the 64-s 

time-resolution ACE data of Figure 10 the thickness of the density change and ram-pressure 

change in the solar wind is not resolved. In Figure 10 the velocity measurements by MPA are 

also unresolved. The MPA instrument has a time resolution of 86 s and is measuring cold-ion 

flows during 10.15 s of that 86 s [cf. Bame et al., 1993]: hence the MPA measurements are 

snapshots of the cold ions produced once every 86 s. 

 A second example of radial flows in the magnetosphere associated with ram-pressure 

changes in the solar wind is examined in the bottom panel of Figure 10. Again, two 

geosynchronous spacecraft are in the dayside plasmasphere straddling local noon when the ram-

pressure perturbation hits Earth. The temporal profile, a decrease and then increase, of the ram 

pressure can be seen in the green ACE curves (right axis) at 23:28 UT on October 21, 2005 in the 

bottom panel. In the dark-red and purple curves (right axis) the perturbation is seen to hit the 

Earth at about 0:35 UT on October 22, 2005. The geosynchronous spacecraft 1994-084 (red 

curve, left axis) clearly sees an outward (positive) then inward (negative) radial flow associated 

with the solar-wind pressure decrease then increase. The spacecraft LANL-97A (blue curve, left 

axis) picks up only the inward radial flow. It could be that the outward flow persisted for less 

than 86 s and the timing of the 10.15-s measurement of cold ions within the 86-s window of 

MPA was off. 

 To a limited extent, expressions (9) can be applied to the radial velocities measured in the 

plasmasphere in comparison with ∂Bgeo/∂t values. Applying expression (9) is limited by the fact 

that the spacecraft that carry the MPA detectors do not carry magnetic-field instruments, and in 

general GOES geosynchronous spacecraft are not proximate to the MPA spacecraft. For the May 

2005 event in the top panel of Figure 10 the GOES 12 spacecraft was at 8 LT while 1990-095 

was at 10.6 LT. GOES 12 saw ∂Bgeo/∂t = +3.35 nT/min = +5.6×10-2 nT/s; using this in 

expression (9) yields vr = - 5.3 km/s. This value of vr is lower than the peak value -15 km/s seen 

at 10.6 LT, but the measured ∂Bgeo/∂t at 8 LT was probably weaker than the actual value of 

∂Bgeo/∂t at 10.6 LT. For the October 2005 event in the bottom panel of Figure 10 the GOES 10 
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spacecraft was at 15.5 LT while 1994-084 was at 13.5 LT. GOES 10 saw ∂Bgeo/∂t = -5.9 nT/min 

= -9.8×10-2 nT/s; using this in expression (9) yields vr = +9.3 km/s. This value 9.3 km/s is 

smaller than the peak value of 24 km/s measured by MPA, but the measured ∂Bgeo/∂t at 15.5 LT 

was probably less than the actual value of ∂Bgeo/∂t at 13.5 LT. The underestimate of vr by 

expression (9) may also indicate that the image-dipole model underestimates the displacement of 

flux surfaces for a given change the magnetic-field strength. 

 Expression (10) can also be applied to the radial velocities measured in the plasmasphere 

in comparison with ∂Pram/∂t values in the solar wind. For the May 2005 event in the top panel of 

figure 10 the ACE spacecraft sees a ram-pressure increase of 4.05 nPa in 64 s: this pressure 

change probably occurred in a timescale less than the 64-s resolution of ACE, but spreading of 

the pressure profile as it is advected though the magnetosheath probably broadens the time 

derivative.  A change of 4.05 nPa in 64 s is ∂Pram/∂t = + 6.3×10-2 nPa/s; using this value in 

expression (10) yields vr = - 38 km/s. The measured peak velocity from the MPA measurements 

are -20 km/s at 13.6 LT and -15 km/s at 10.6 LT. For the October 2005 event in the bottom panel 

of Figure 10 the ACE spacecraft sees a decrease of the ram pressure by 9.4 nPa in 7 intervals of 

64 s. That is ∂Pram/∂t = - 2.0×10-2 nPa/s; using this value in expression (10) yields vr = +12 km/s. 

The measured peak value of the velocity measured by MPA is +24 km/s at 13.5 LT, with no flow 

picked up by MPA at 10.2 LT. The underestimate of vr by expression (10) may also indicate that 

the image-dipole model underestimates the displacement of flux surfaces for a given change the 

solar-wind ram pressure. 

 In Figure 11 the radial and azimuthal velocities at geosynchronous orbit are examined for 

a forward interplanetary shock hitting the Earth when three geosynchronous spacecraft are in the 

plasmasphere in the dayside magnetosphere. In the top panel of Figure 11 the ram pressure Pram 

of the solar wind is plotted as a function of time as measured by the 3DP plasma instrument on 

WIND (blue points) and as measured by the SWEPAM instrument on ACE (green curve); the 

upstream WIND measurements are time shifted by 51 minutes and the upstream ACE 

measurements are time shifted by 42 minutes.. The shock is represented here by the sudden 
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temporal increase in Pram. The other three panels of Figure 11 are plots of the flow velocity 

measured with the MPA instrument onboard the three geosynchronous spacecraft within the 

dayside plasmasphere: 1990-095 was at 8.0 LT when the shock hit, LANL-02A was at 10.6 LT, 

and LANL-01A was at 15.2 LT. The red curves are the radial velocity (positive being a flow 

radially away from the Earth and negative being a flow radially toward the Earth) and the blue 

curves are the azimuthal velocity (positive being Eastward in the direction of corotation and 

negative being westward opposite to the corotation). On all three spacecraft the radial velocities 

commenced with an inward flow of on the order of 20 km/s. Note the ringing of both the radial 

and the azimuthal flows in Figure 11: ringing periods ranging from 340 s to 520 s are seen 

(considerably slower periods than in the low-density magnetosphere of the simulations in Figure 

4). 

 In Figure 12, for five forward interplanetary shocks hitting the Earth when there are MPA 

instruments in geosynchronous orbit inside the dayside plasmasphere, the inward radial 

velocities -vr measured by the MPA instruments are plotted as a function of the ram-pressure 

change ∆Pram across the interplanetary shocks. The Pearson linear correlation coefficient rcorr 

between -vr and ∆Pram is rcorr = +0.76 for the data of Figure 12. A major-axis linear-regression fit 

[Pearson, 1901; Smith, 2009] (also known as a “Gaussian fit” [Borovsky et al., 1998] or a “total 

least squares fit” [Golub and Van Loan, 1980]), to the data is plotted as the green dashed line, 

which is 

  vr  =  -4.3 ∆Pram  -  5.4 ,       (12) 

where vr is in km/s and ∆Pram is in nPa. The value vr ~ 20 km/s for ∆Pram ~ 3.6 nPa obtained in 

the top panel of Figure 10 approximately fits expression (12). 

 

3.4. Ram-Pressure Fluctuations in the Solar Wind during Storms 

 To characterize the fluctuations of the ram pressure Pram of the solar wind, 10-minute 

changes in the 64-s resolution measurements of the ram pressure from ACE are calculated. This 

change ∆Pram10 is defined as ∆Pram10(t) = |Pram(t+5min)-Pram(t-5min)|, where Pram = mpnswvsw
2. The 
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70 storms utilized in this study are from the years 1993-2005; 29 of those storms are in the years 

1998-2005. In Figure 13 the superposed-epoch average of ∆Pram10 is plotted in green for the 

fraction (29 of 70) of the high-speed-stream-driven storms that overlap the years 1998-present of 

the ACE data set. The superposed average of ∆Pram10 becomes very elevated at the onset of the 

high-speed-stream-driven storms and declines steadily during the first two days of the storms. 

Afterward, ∆Pram10 is at typical levels (the mean value of ∆Pram10 in the ACE data set is 0.28 nPa). 

In red and in blue the superposed average of ∆Pram10 is plotted for a set of helmet-streamer high-

speed-stream-driven storms and for a set of pseudostreamer high-speed-stream-driven storms: 

these two collections of storms are described in Borovsky and Denton [2013]. Note in Figure 13 

that ∆Pram10 tends to be greater in helmet-streamer storms (red) than in pseudostreamer storms 

(blue). Helmet-streamer storms are preceded by intervals of sector-reversal-region plasma [Xu 

and Borovsky, 2015], which is characterized by strong density fluctuations. The coronal-hole 

plasma of the high-speed stream later in the storms is also on average of lower speed for 

pseudostreamers than it is for helmet streamers and it has weaker values of ∆Pram10. 

 The quantity ∆Pram10 is strongly correlated with the ram pressure of the solar wind Pram, 

with a Pearson linear correlation coefficient rcorr = +0.551 in the ACE data set. Hence, ∆Pram10 

tends to be large when Pram is large. In Figure 13 the superposed average of Pram is plotted in gray, 

multiplied by 0.13 to approximately match the amplitude of ∆Pram10. As can be seen by 

comparing the green and gray curves, the temporal profiles of ∆Pram10 and Pram are very similar in 

the stormtime superposed averages. 

 For the two years 2004 and 2005, Figure 14 ∆Pram10 is plotted as a function of ∆nsw10 = 

|nsw(t+5min)-nsw(t-5min)| in the top panel and as a function of ∆vsw10 = |vsw(t+5min)-vsw(t-5min)| 

in the bottom panel. Linear-regression fits are plotted in red in both panels and a major-axis 

linear-regression fit is plotted in blue in the top panel. The Pearson linear correlation coefficients 

are noted in each panel. ∆Pram10 is highly correlated with ∆nsw10 with a Pearson linear correlation 

coefficient rcorr = +0.848 in the ACE data set. On the contrary, ∆Pram10 is only weakly correlated 

with ∆vsw10 with rcorr = +0.185. Hence, changes in the solar-wind ram pressure are dominantly 
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associated with changes in the solar-wind number density and much-more weakly associated 

with changes in the solar-wind speed. 

 

This article is protected by copyright. All rights reserved.



 23 

4. Amplitude Statistics of the Magnetic-Field Compressions, the Ram-Pressure Changes, 

and the Radial Flow Velocities 

 In Figure 15 the magnitudes of the changes ∆B in the magnetic-field strength Bgeo of the 

dayside magnetosphere are explored for time intervals δt different from 10 minutes. Using the 

GOES magnetic-field data set for 1998-2005 restricted to local times from 11 LT to 13 LT, the 

mean value of ∆Bδt taken at a time interval δt defined as ∆Bδt(t) = |Bgeo(t+δt)-Bgeo(t-δt)| is plotted 

as a function of δt. In Figure 15 the ∆Bδt values are normalized to ∆B10. As seen in the plot, ∆Bδt 

increases for values of δt that are larger than 10 minutes, but not by much. ∆Bδt decreases 

strongly as δt  → 1 min. The ratio ∆Bδt/∆B10 as a function of δt is well fit by the logarithmic 

function 0.33 + 0.69[log10(δt)]3/2 that is plotted as the red dashed curve in Figure 15, which is 

valid for 1 min ≤ δt ≤ 30 min. The curve 0.33 + 0.69[log10(δt)]3/2  also fits the normalized change 

∆Bδt/Bmag in comparison with ∆B10/Bmag. 

 In Figure 16 the size distributions of ∆B10 values, ∆Pram10 values, and |vr| values are 

examined. In the top panel the occurrence distribution of ∆B10 values in the 1998-2005 GOES 

geosynchronous magnetic-field data set for local times between 11 LT and 13 LT is plotted in 

black. Variable-size binning was used for the various ranges of ∆B10 values, so the units of the 

distribution function are arbitrary. The red dashed curve plotted in the top panel of Figure 16 is a 

∆B10
-3 power law. As can be seen by the approximate agreement between the plotted points and 

the red-dashed curve, larger values of ∆B10 in the dayside magnetosphere approximately obey 

power-law statistics. The largest values of ∆B10 in the top panel can be identified with 

interplanetary shocks reaching the Earth. 

 In the middle panel of Figure 16 the occurrence distribution of ∆Pram10 in the solar wind is 

plotted. The ∆Pram10 distribution was obtained from ACE SWEPAM 64-s measurements of the 

solar wind in the years 2003 and 2004. The red dashed curve in the second panel is a ∆Pram10
-3 

power law. As was the case for the ∆B10 values in the dayside magnetosphere in the top panel, 

the occurrence distribution of ∆Pram10 values in the solar wind approximately obeys power law 
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statistics for large values. Note that the two power laws that fit the large values of ∆B10 and of 

∆Pram10 both have exponents -3. Most of the largest values of ∆Pram10 in the middle panel are 

identified with interplanetary shocks; a few are identified with sudden density changes in the 

solar wind. 

 In the bottom panel of Figure 16 the occurrence distribution of radial velocities at 

geosynchronous orbit in the dayside magnetosphere is plotted. The |vr| values were obtained 

from multi-satellite MPA measurements at geosynchronous orbit in the local time range between 

11 LT and 13 LT in the years 1990 to 2007. The |vr| values used to construct the distribution 

function in the bottom panel came from times when the MPA spacecraft were in the filled 

plasmasphere during intervals of low Kp. The red dashed curve in the bottom panel of Figure 16 

is a |vr|-6 power law. As were the cases for the distributions of ∆B10 and ∆Pram10 values in the top 

two panels of Figure 16, for large values the radial flow velocities |vr| in the dayside 

magnetosphere approximately obey power law statistics. Note that the approximate power law 

indices of ∆B10 and ∆Pram10 are similar, but the index for |vr| differs significantly. The reason why 

the distribution of velocities |vr| has a different form from the distribution of pressure changes is 

not known. One possibility is that the flow velocity associated with ∆Pram10 has a duration that is 

considerably less than 10 minutes. For example, if the velocity only lasted 1 min then a single 

large value of ∆Pram10 would be associated with 9 small values of velocity and one large value of 

velocity. There would be fractionally less values of high velocity than of high ∆Pram10, hence the 

high-velocity tail of the distribution would be weaker than that of ∆Pram10. 
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5. Summary 

 For magnetic pumping calculations, the quasi-DC compressions of the Earth’s dayside 

magnetic field by density fluctuations in the solar wind have been characterized. Magnetic field 

measurements at geosynchronous orbit, plasma flow measurements at geosynchronous orbit, and 

global MHD simulations were used in conjunction with solar-wind plasma measurements. 

 As the field strength in the dayside magnetosphere changes, there is a radial displacement 

of flux surfaces and a radial advection of plasma. Calculating the radial displacement of flux 

surfaces in an image-dipole model, it is predicted that the magnetic compression of parcels of 

plasma in the dayside magnetosphere is bigger than the change in magnetic-field strength 

observed onboard a spacecraft. The image-dipole model predicts that plasma compression can be 

a factor of 2 higher than the measured magnetic-field compression. This plasma-compression 

prediction is not confirmed with spacecraft measurements owing to the radial motion of the 

plasma parcels as they are compressed, however tests of the predicted radial velocity for the 

image-dipole model find that the model underpredicts the plasma radial velocities and hence 

probably underpredicts the amount of plasma compression 

 Examination of the solar wind demonstrated that the ram-pressure changes causing the 

quasi-DC magnetospheric compressions are mostly owed to changes in the solar-wind number 

density being advected past the Earth. Rapid changes in the solar-wind number density 

associated with the crossing of plasma boundaries produce rapid changes in the solar-wind ram 

pressure; an Earth crossing of a plasma boundary produces a sudden change in the dayside 

magnetic-field strength accompanied by a sudden inward or outward motion of the plasma in the 

dayside magnetosphere. 

 Superposed epoch analysis triggered on the temporal onsets of high-speed-stream-driven 

storms was used to explore solar-wind compressions and geosynchronous magnetic-field 

compressions during high-speed-stream-driven storms, which are of particular interest for the 

energization of the outer electron radiation belt. Mean values of the 10-minute changes ∆B10 of 

the geosynchronous dayside field strength are ∆B10 ~ 3 nT early in storms and are ∆B10 ~ 2 nT 

later in storms. 
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 The occurrence distributions of (a) 10-minute changes in the geosynchronous dayside 

magnetic-field strength ∆B10, (b) 10-minute changes in the solar-wind ram pressure ∆Pram10, and 

(c) instantaneous geosynchronous dayside radial flow velocities |vr| were examined. All three 

distributions approximately obey power-law statistics for large values. In particular the 

approximate power-law indices for the distributions of ∆B10 and ∆Pram10 values are both -3. The 

power-law index for the |vr| distribution is closer to -6. 
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6. Discussion: Nightside Compressions 

 This report characterized the temporal compressions of the dayside magnetosphere at 

geosynchronous orbit. On the dayside of the relative magnitude of the compressions 

∆Bmag10/Bmag are a few per cent to 10’s of percent and the plasma motions associated with the 

dayside compressions are discernible radial displacements inward or outward as the magnetic-

field strength Bmag increases or decreases. 

 Temporal compressions of the nightside magnetosphere are not so easily characterized 

from the spacecraft data. In Figure 17 the magnetic-field strength Bmag measured by two GOES 

spacecraft in geosynchronous orbit is plotted for 7 days as a high-speed-stream-driven 

geomagnetic storm commences. The Kp index is plotted in the top panel. Day 284 is at the end 

of a “calm before the storm” with the storm commencing towards the end of Day 285. The storm 

is ongoing from Day 286 to beyond the end of the plot. The second panel of Figure 17 plots the 

measured magnetic-field strength Bmag, with GOES-10 plotted in red and GOES-12 plotted in 

blue. The local maximum of Bmag once a day occurs when each spacecraft is on the dayside and 

the local minimum of Bmag that occurs each day occurs when each spacecraft is on the nightside. 

In the third panel of Figure 17 the 10-minute change ∆Bmag10 in the magnetic field strength, 

normalized to the magnetic field strength Bmag, is plotted for GOES-10. The localized peaks in 

∆Bmag10/Bmag occur when GOES-10 is on the nightside. Note that these nightside values of 

∆Bmag10/Bmag approach unity. In the fourth panel of Figure 17 the solar-wind ram pressure Pram is 

plotted as a function of time. Comparing the second and fourth panels one can see that the 

changes in the magnitude of the magnetic field are related to the solar-wind ram pressure when 

the GOES spacecraft is on the dayside, but such a relationship is not clear when the GOES 

spacecraft is on the night side. 

 The magnetic-field-strength changes at geosynchronous orbit in the nightside 

magnetosphere may be caused by temporally changing magnetospheric currents, or by moving 

magnetospheric currents, or by plasma diamagnetism, or by other causes. In the nightside 

magnetosphere at geosynchronous orbit the plasma motions associated with the temporal 
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changes in the magnetic-field strength, and hence the plasma compressions, would be difficult to 

characterize and quantify. 
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Figure 1. For an image dipole, a number of quantities along the Sun-Earth line are plotted as a 
function of the solar-wind ram pressure. 
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Figure 2. For an image dipole the magnetic-field strength along the Sun-Earth line is plotted for 
two values of the solar-wind ram pressure. The movement of the magnetopause is shown as well 
as the movement of a flux surface at geosynchronous orbit. 
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Figure 3. For an image dipole, the radial displacement of a geosynchronous flux surface (in RE) 
for a 1-nT change in the field strength at geosynchronous orbit is plotted as a function of the field 
strength at geosynchronous orbit. 
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Figure 4. For a solar-wind-density increase then decrease, the magnetic-field strength at 
geosynchronous orbit is plotted in blue (left axis) and the vx and vy (GSM coordinates) plasma 
flow velocity components at geosynchronous are plotted in green and red (right axis). The top 
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panel is for local noon and the bottom panel is for 15 LT. (CCMC LFM simulation runs 
Joe_Borovsky_111014_2b and Joe_Borovsky_111014_2b) 
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Figure 5. For an image dipole, the ratio of the change in magnetic-field strength at a flux surface 
moving from geosynchronous orbit to the change in magnetic-field strength at geosynchronous 
orbit is plotted as a function of the field strength at geosynchronous orbit. 
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Figure 6. For single crossings of the dayside magnetosphere by GOES 10 (red) and GOES 12 
(blue) the magnetic-field strength at geosynchronous orbit (right axis) is plotted as a function of 
time. The ram pressure of the solar wind as measured by ACE is plotted in green (left axis), time 
shifted to Earth by the solar-wind speed. The top panel is for March 9-10, 2004 and the bottom 
panel is for April 12-13, 2005. 
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Figure 7. Using WIND 3DP measurements, several proton-density boundaries in the solar wind 
are denoted by vertical red dashed lines. The purple curve is a 30-s running average of the proton 
number density nsw (left axis) with the black points being 3-s resolution measurements of nsw. 
The green curve is the 3-s resolution measurement of the solar wind ram pressure Pram (left axis). 
The blue curve is the 3-s resolution of the solar-wind magnetic-field strength Bsw (right axis) 
measured by WIND MAG. 
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Figure 8. For 70 high-speed-stream-driven geomagnetic storms, superposed-epoch averages of 
the solar-wind speed (top panel), Kp index (middle panel), and 10-minute change in the 
geosynchronous magnetic-field strength ∆B10 are plotted as a function of time with the zero 
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epoch being the onset of the storms. The ∆B10 values averaged are from magnetic-field 
measurements by the GOES spacecraft between 9 LT and 16 LT. 

This article is protected by copyright. All rights reserved.



 47 

 
Figure 9. For 70 high-speed-stream-driven geomagnetic storms, superposed-epoch averages of 
the ground-based ULF index Sgrd (blue) and the geosynchronous ULF index Sgeod are plotted. 
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Figure 10. The radial plasma-flow velocities vr as measured by MPA on two spacecraft in 
geosynchronous orbit are plotted (red and blue) as a function of time (left axis). The solar-wind 
density nsw and ram pressure Pram measured by ACE upstream and advected by OMNI2 are 
plotted (right axis). The top panel is for a solar-wind density increase and the bottom panel is for 
a solar-wind density decrease then increase. 
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Figure 11. For a forward interplanetary shock hitting the Earth on July 22, 2004, the radial and 
azimuthal plasma flow velocities at geosynchronous orbit as measured by MPA on three 
spacecraft are plotted as a function of time. The top panel is the solar-wind ram pressure (time 
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shifted to Earth) as measured by ACE (green) and WIND (blue). The second, third, and fourth 
panels are the plasma flow velocities as measured on the satellites 1990-095, LANL-02A, and 
LANL-01A respectively. The second and third panels are pre-noon and the fourth panel is post-
noon.
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Figure 12. For 5 forward interplanetary shocks hitting the Earth, the measured radial flow 
velocities vr at geosynchronous orbit in the dayside magnetosphere are plotted as a function of 
the increase in solar-wind ram pressure Pram across the shocks. Pram was measured by WIND 3DP 
and vr was measured by MPA on multiple spacecraft. 
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Figure 13. For 29 of the 70 high-speed-stream-driven storms in the collection, the superposed-
epoch average of the 10-minute changes ∆Pram10 in the solar-wind ram pressure Pram is plotted in 
green. For the same storms 0.13 times the superposed average of Pram is plotted in gray. For a 
collection of helmet-streamer high-speed-stream storms the superposed average of ∆Pram10 is 
plotted in red and for a collection of pseudostreamer high-speed-stream storms the superposed 
average of ∆Pram10 is plotted in blue. 
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Figure 14. For the 64-s resolution ACE measurements in 2004 and 2005, the 10-min change 
∆Pram10 in the solar-wind ram pressure is plotted as a function of the 10-min change in the solar-
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wind number density in the top panel and as a function of the 10-min change in the solar-wind 
speed in the bottom panel. 
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Figure 15. Calculating the change ∆Bδt in the geosynchronous magnetic field strength near local 
noon over a timescale δt, the ratio of ∆Bδt to the 10-minute change ∆B10 is plotted as a function 
of δt. The values used are the mean values for the multisatellite GOES data set in the years 1998-
2005. 
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Figure 16. The occurrence distributions are plotted for the 10-minute change ∆B10 in the dayside 
magnetic-field strength at geosynchronous orbit (top panel), the 10-minute change ∆Pram10 of the 
solar wind ram pressure (middle panel), and the radial flow velocity vr in the dayside 
magnetosphere at geosynchronous orbit. In all three panels the red dashed curve is a power law. 
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Figure 17. For 7 days in 2003 where geomagnetic activity goes from quiet to a high-speed-
stream-driven storm, the magnetic-field strength at geosynchronous orbit is examined. In the top 
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panel the Kp index is plotted as a function of time, in the second panel the magnetic-field 
strength as measured by GOES 10 (red) and GOES 12 (blue) are plotted, in the third panel the 
10-minute change in the geosynchronous field strength measured by GOES 10 is plotted, and in 
the bottom panel the solar-wind ram pressure as measured by ACE (black) and WIND (gray) is 
plotted. 
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