1	Supporting Information for
2 3	NO _x -related Increases of Biogenic Secondary Aerosols (bSOA) in Summertime Southeastern U.S.
4 5 7 8 9 10 11 12 13	 Jun Liu¹, Lynn M. Russell^{1*}, Giulia Ruggeri², Satoshi Takahama², Megan S. Claflin³, Paul J. Ziemann³, Havala O. T. Pye⁴, Benjamin N. Murphy⁴, Lu Xu⁵, Nga L. Ng^{6,7}, Karena A. McKinney⁸, Sri Hapsari Budisulistiorini⁹, Timothy. H. Bertram¹⁰, Athanasios Nenes⁵ and Jason D. Surratt¹¹ ¹Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093; ²ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland ³Department of Chemistry and Biochemistry and at the Cooperative Institute for Research
14 15 16 17 18 19 20	 ¹In Environmental Sciences at the University of Colorado at Boulder, Boulder, Colorado, USA ⁴National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA ⁵School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA ⁶School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, G
21 22 23 24	 GA, USA ⁷Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA ⁸School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
25 26 27 28 29 30 31	⁹ Earth Observatory of Singapore, Nanyang Technological University, Singapore ¹⁰ Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA ¹¹ Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
32 33	*To whom correspondence should be addressed (lmrussell@ucsd.edu).
34 35 36 37 38 39 40	 Contents of this file Text S1 to S3 Figures S1 to S10 Tables S1 to S6

41 **Text S1.**

42 Figure S1 shows the time series of AMS OM and organic functional group

- 43 concentrations. The correlations of AMS and ACSM OM to FTIR OM are moderate to
- 44 strong (r=0.68~0.80) at CTR and LRK (Figure S2). Emissions by county were available
- 45 from Nation Emission Inventory (NEI). Both counties have vehicles as the most abundant
- 46 source of NO_x . Figure S3 shows time series of FTIR PMF factors with nighttime marked
- 47 on the figure. Figure S4 and Figure S5 show a consistent CCN pattern at both sites.
- 48 Figure S6 shows BC and CO are likely largely driven by precipitation and transport that
- result in multi-day events that overwhelm the local diurnal cycles. The rose plot (Figure
 S7) suggests that NO, at CTR was mostly from the north. The closest freeway is ~30 km
- 50 S7) suggests that NO_x at CTR was mostly from the north. The closest freeway is \sim 30 km north of the CTR site, consistent with the emission inventory of large vehicle emissions.
- Figure S8 shows the correlation of AMS OM to O_3 and NO_4 at LRK and CTR. AMS and
- ACSM PMF factors at CTR and LRK are compared in Table S1. Time series correlations
- 54 of FTIR PMF factors to tracers are shown in Table S2. The chamber generated bSOA
- 55 FTIR spectra are compared with ambient biogenic factor spectra in Table S3. The
- 56 threshold effect of NO_x on bSOA formation is shown in Table S4 and sensitivity analysis
- 57 is shown in Table S5.
- 58

59 Text S2. FTIR PMF operation and factor selection

60 Factorization was applied to the baselined IR spectra from FTIR for both PM₁ and PM_{2.5}

- samples at LRK and at CTR. Six factor spaces (1~6) were analyzed. Fpeak values were explored from -2 to 2 at 0.5 increments. Seeds of 1, 10 and 100 were used for each Fpeak and factor to examine the robustness of each solution. Figure S9 and Figure S10 and Table S6 show that the properties of the solutions are generally robust. The change of solutions with rotation values is small in all solutions. Q/Qexpected decreases smoothly when factor number increases in solutions with more than 3 factors (Table S6). The Q/Qexpected of PM₁ is lower than PM_{2.5}, which is consistent with the higher time
- resolution of the PM_1 samples, making PM_1 the stronger solution. The $PM_{2.5}$ solution is similar to that of PM_1 , so only the PM_1 PMF solutions at LRK are reported here.
- 69 similar to that of PM_1 , so only the PM_1 PMF solutions at LRK are reported here. 70 Two factors that contain a large amount of ammonium were identified from the PMF in
- the 2-factor space (Figure S9 and Figure S10). Those two factors are produced in almost
- all solutions with different factor numbers and rotations. However, with only these two
- factors, ~20% of the OM cannot be explained and is categorized as residual. A third
- factor with higher hydroxyl and carbonyl group is identified from the 3-factor solution
- and accounts for $\sim 20\%$ of the total OM. The 3-factor solution reduces the residual to less
- than 15%. The time series of the factors are independent, with the highest correlation
- coefficient of 0.72 in the 3-factor solution. Degenerate spectra appear in solutions with 4
- or more factors. Two pairs of factors at LRK and one pair at CTR have similar cosine
- similarity (>0.80) in the 4-factor solutions.

80 Text S3. Group of model species in CMAQ model

- 81 The CMAQ model simulations are used here to show the regional uniformity of bSOA
- 82 [Murphy et al., 2017; Pye et al., 2015; Pye et al., 2017]. CMAQ predictions for summer

- 83 2013 have been evaluated regionally with measurements from the SEARCH network,
- 84 IMPROVE network, CSN network, and CASTNET for species including OA, nitrate
- 85 (nitric acid + aerosol nitrate), sulfate, ammonium, NOx, VOCs, oxidants, and other
- atmospheric constituents [Pye et al., 2015; Pye et al., 2017]. The names of CMAQ model
- 87 species are in Table S7 and can be found in the supplement of two recent CMAQ model
- papers [*Pye et al.*, 2015; *Pye et al.*, 2017]. The nitrate radical related species are
- 89 ISOPNN, MTNO3 (gas phase), AISOPNN and AMTNO3 (aerosol phase). The chemistry
- 90 processes were introduced in the introduction of main text. ASQT (sesquiterpene species)
- 91 is not included since it's small (0.05 μ g m⁻³). The species from CMAQ model were
- simplified in Figure 6, and the simplified groups are defined in Table S7.
- 93
- 94
- 95

96 97	Figure Captions
98 99	Figure S1. Time series of AMS OM and FTIR functional group concentrations at (a) LRK and (b) CTR. Times when there was precipitation are marked on the plot.
100 101 102 103	Figure S2. Scatter plots of (a) AMS OM with FTIR OM at CTR (R=0.68, slope=1.33) and (b) AMS OM (R=0.80, slope=1.07) and ACSM OM (R=0.80, slope=1.26) with FTIR OM at LRK.
104 105 106	Figure S3. Time series of FTIR PMF factor OM at (a) LRK and (b) CTR.
107 108 109	Figure S4. Scatter plot of CCN/CN and number mean diameters at both sites for supersaturations of 0.1%, 0.2%, and 0.5%.
110 111 112 113	Figure S5. Scatter plot for CCN/CN ratio at both sites (r=0.22 and Slope=0.35 at 0.20% supersaturation; r=0.26 and Slope=0.47 at 0.37% supersaturation; r=0.37 Slope=0.45 at 0.58% supersaturation at LRK and 0.54% supersaturation at CTR).
113 114 115 116	Figure S6. Time series of black carbon concentration and carbon monoxide mixing ratio at CTR and LRK.
117 118	Figure S7. Wind rose plot of NO_x concentration at LRK and CTR.
119 120 121	Figure S8. Scatter plots of AMS OM at CTR with (a) O_3 with r=0.42 and (b) NO_x with r=0.22, respectively. Scatter plots of AMS OM at LRK with (a) O_3 with r=0.61 and (b) NO_x with r=0.08.
123 124 125	Figure S8. Time series of black carbon concentration and carbon monoxide mixing ratio at CTR and LRK.
125 126 127	Figure S9. FTIR PMF factors for solutions with 2 to 5 factors and Fpeak values of -2 to 2 at LRK.
128 129 130 131 132	Figure S10. FTIR PMF factors for solutions with 2 to 5 factors and Fpeak values of -2 to 2 at CTR.
132 133 134 135	
130 137 138 139	
140	

141 **Table Captions**

- 142 Table S1. Cosine similarity of AMS PMF factors at CTR and LRK. Numbers in bold are143 the highest numbers in each column (if above 0.7).
- 144
- **Table S2.** Time series correlation coefficients of FTIR PMF factors with tracers.
- 146 Numbers in bold are the highest numbers in each column (if above 0.4).147
- 148 **Table S3.** Cosine similarity of FTIR biogenic factors and chamber isoprene and α -149 pinene bSOA. Ammonium absorption was removed.
- 150

Table S4. Correlation coefficients of NO_x to AMS and FTIR OM and factors for low152 NO_x (<0.5 ppb) and high NO_x (>1 ppb) regimes.

153

Table S5. The slope and correlation coefficients from the linear regression of OM

155 concentration with NO_x mixing ratio as well as the normalized standard deviation of OM 156 concentrations for in the high NO_x regime.

- 157
- **Table S6**. Properties of FTIR PMF factor solution evaluation at LRK and CTR.
- 159
- 160 **Table S7**. Nomenclature of the bSOA categories from the CMAQ model.
- 161 162

Figure S2.

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Figure S8.

Look Rock

Centreville

Tables			
	Table S1.		
Cosine Similarity	LRK-Factor82	LRK-Factor44	LRK-Factor91
CTR-Isoprene-OA	0.99	0.78	0.65
CTR-MO-OOA	0.81	0.98	0.35
CTR-LO-OOA	0.95	0.84	0.66
CTR-BBOA	0.95	0.87	0.55
ACSM LRK-IEPOXOA	0.80	0.82	0.36
ACSM LRK-LVOOA	0.67	0.84	0.49
ACSM LRK-91fac	0.82	0.80	0.66
Correlation of Time Series	LRK-Factor82	LRK-Factor44	LRK-Factor91
ACSM LRK-IEPOXOA	0.93	0.43	0.51
ACSM LRK-LVOOA	0.59	0.87	0.71
ACSM LRK-91fac	0.51	0.74	0.87

1	Table S2.						
		LRK			CTR		
Correlation Coefficient (R)	FFC	BOA	MOA	FFC	BOA	MOA	
SO_2	0.15	0.12	-0.01	0.26	0.01	0.11	
NOx	0.1	-0.02	0.07	0.1	0.41	0.12	
NO_y	0.4	0.34	0.28	0.23	0.54	0.25	
CO	0.53	0.45	0.46	0.28	0.71	0.38	
O_3	0.32	0.51	0.36	0.27	0.22	0.19	
BC	0.51	0.55	0.43	0.23	0.62	0.28	
Ca	0.64	0.31	0.06	0.31	0.06	0.28	
Fe	0.32	0	-0.25	0.32	0.01	0.28	
Mn	0.37	0.09	-0.37	0.41	0.16	0.31	
MVK/MACR	0.28	0.66	0.36	_	_	_	
SO_4	0.64	0.45	0.65	0.31	0.28	0.38	
NO ₃	0.25	0.44	0.37	0.09	0.51	0.29	
$ m NH_4$	0.59	0.44	0.62	0.35	0.34	0.43	
CTR- Isoprene-OA/ LRK- Factor82	0.43	0.56	0.58	0.41	0.34	0.47	
CTR-MO- OOA/LRK- Factor44	0.47	0.76	0.45	0.33	0.51	0.25	
LRK- Factor91	0.25	0.73	0.28	-	-	-	
/CTR-LO- OOA	-	-	-	0.04	0.61	0.16	

2 p<0.05 when R>0.35.

	Evneriment	Ambient BOA Factors+					
Cosine Similarity	Conditions	Hyytiala/	CTR	CTR	LRK	LRK	
	Conditions	Whistler	pm_1	pm _{2.5}	pm_1	pm _{2.5}	
α - Pinene + NO ₃	RH=50%;	0 2 9 / 0 4 9	0.38	0.44	0.61	0.57	
seeded*	UV light off	0.38/0.48				0.37	
α - Pinene + O ₃	RH=0; UV	0 9/0 95	0.02	0.96	0.01	0.0	
unseeded	light off	0.8/0.83	0.85	0.80	0.91	0.9	
« Dinana OII	RH=50%;						
α - Plitetie + OH	UV light: 30	0.84/0.87	0.85	0.85	0.88	0.88	
and NO_X unseeded	min at 50%						
	RH=0; UV						
Isoprene + OH and	light: 40	0 88/0 0	0.80	0.89	0.07	0.88	
NO _x unseeded	min at	0.88/0.9	0.89		0.87	0.88	
	100%						
$I_{\text{sopropo}} \perp O \Pi$ and	RH=50%;						
NO soodod*	UV light: 30	0.52/0.61	0.53	0.58	0.74	0.70	
INO _X Secucu'	min at 50%						

Table S3.

*Seeded with neutral $(NH_4)_2SO_4$ and ammonium removed from spectra +Ammonium removed from spectra.

	Table S4.		
Correlation Coefficient	Low NOx (<0.5 ppb)	High NOx (>1 ppb)	
CTR-LO-OOA/CTR-BOA	0.18/0.13	0.36/0.69	
LRK-Factor91/LRK-BOA	0.16/0.15	0.83/NA*	
CTR-MO-OOA/CTR-FFC	-0.22/0.00	-0.26/0.37	
LRK-Factor44/LRK-FFC	0.23/0.01	0.45/NA*	
CTR-Isoprene-OA/CTR-MOA	-0.11/0.04	0.25/0.23	
LRK-Factor82/LRK-MOA	0.10/0.09	0.12/NA*	
CTR-AMS OM/CTR-FTIR OM	0.03/0.06	0.14/0.58	
LRK-AMS OM/LRK-FTIR OM	0.00/0.08	-0.36/NA*	
*NA indicates that there were too			

*NA indicates that there were too few measurements for a comparison, namely less than 6

AMS or 2 FTIR measurements.

Table S5.								
Thre	eshold	0.7	0.8	0.9	1	1.1	1.2	1.3
	Normailized SD	0.51	0.48	0.48	0.49	0.49	0.49	0.49
AMS LOOOA	Slope	0.53	0.45	0.48	0.53	0.52	0.50	0.46
	R	0.36	0.32	0.35	0.36	0.36	0.33	0.30
	Normailized SD	0.81	0.78	0.78	0.76	0.69	0.66	0.65
FTIR BOA	Slope	0.37	0.42	0.88	0.98	1.06	1.01	1.03
	R	0.27	0.30	0.61	0.69	0.58	0.54	0.52

		Table S6			
Factor Number Criteria	2	3	4	5	6
Q/Q _{exp}	2.35/1.33	0.95/0.57	0.62/0.42	0.54/0.36	0.48/0.34
Absolute residual	20.6/18.3%	14.7/13.0%	13.9/11.7%	13.4/10.9%	12.9%/10.1%
Temporal correlation factor strength (r>0.8)	None/None	None/None	None/None	None/None	1 pair/None
Similarity of factor spectra (r>0.8)	None/None	None/None	2 /1 pair(s)	4/2 pairs	4/3 pairs
Factors with less than 6% OM	None/None	None/None	None/None	1/1	1/2

* Values at LRK/ CTR

	Table S7						
Category				Average Concentration (CTR/LRK) μg m ⁻³	CMAQ model species		
	NO selected	Monoterpene		0.3/0.1	AMTNO3		
	NOx related	Isoprene		<0.1/<0.1	AISOPNN		
	Not related to NOx		Dry	0.5/0.5	AISO1+AISO2+ AOLGB*(AISO1+AISO2)/(ATRP1+ATRP2+ASQT+AISO1J+AISO2)		
bSOA		Isoprene ated to Dx	IEPOX	0.6/0.7	AIETET+AIEOS+AIDIM		
			MAE, HMML	<0.1/<0.1	AIMGA+AIMOS		
		Monoter	pene	0.4/0.2	ATRP1+ATRP2+ AOLGB*(ATRP1+ATRP2)/(ATRP1+ATRP2+ASQT+AISO1J+AISO2)		
Anthropogenic OA	Anthropogenic			1.1/1.3	Benzene OA+ toluene OA+ xylene OA + PCSOA+POA+OPOA.		