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1. Smoothing method used in simulation and data analysis

Throughout the paper, we use Λ̃n(a, ·) to denote a smoothed version of Λ̂n(a, ·). In general,

Λ̃n(a, ·) could be obtained from conventional smoothing techniques such as the smoothing

splines or kernel regression. Within each smoothing approach, different tuning parameters

yield a large number of possibilities. In the main article, Λ̂n(a, ·) is estimated at the or-

dered, distinct values of the observed examination times, t = t(0), t(1), . . . , t(L). We computed

the smoothed value of Λ̂n(a, ·), at the t(i)’s using the Nadaraya–Watson kernel regression

(Nadaraya, 1964; Watson, 1964), which has the form:

Λ̃n(a, t) =

∑L
i=1Kh(t, t(i))Λ̂n(a, t)∑L

i=1Kh(t, t(i))
,

where Kh(s, t) = exp {−(s− t)2/2h2} is the Gaussian kernel and h is the bandwidth parame-

ter. The Nadaraya–Watson kernel regression is readily available via ksmooth function in R (R

Core Team, 2017). We specified the bandwidth parameter via an unbiased cross-validation

(Bowman, 1984), which is a cross-validation method minimizing the integrated squared error

defined by ∫ ∞
0

{Λ̃n(a, t)− Λ̂n(a, t)} dt.

The unbiased cross-validation is available via ucv function of R package MASS (Venables and

Ripley, 2002).

2. Additional Simulation Specifications

2.1 Timing results

The proposed estimation procedure requires iteration between estimating the cumulative

baseline rate function and estimating the regression parameters. We compared the computing

time for the proposed estimation procedure with and without the SQUAREM accelera-

tion in estimating the cumulative baseline rate function. In the former case, the standard

expectation-maximization (EM) algorithm was carried out in the estimation of the cumu-
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lative baseline rate function. In all scenarios, we used `-2 norm convergence criteria with a

prefixed tolerance of 0.001 in estimation.

Table 1 displays the computing time (in seconds) required to obtain the estimate of

regression parameters using a Linux machine with 8 cores Intel i7-6700 CPU at 3.40 GHz

and 16GB memory. The point estimates from both procedures are very close (point estimates

using EM are not reported), but the procedure with the SQUAREM is much faster in all

scenarios considered. In particular, the SQUAREM procedure yields a computing time 5.3

times faster than the EM procedure under Poisson scenario with n = 100, Z ∼ Gamma(2, 2)

and λ0(t) = 2. As the sample size doubles, the computing times do not double linearly

for both procedures. However, of the two procedures, the EM procedure suffers more from

sample size increases. Thus, we expect the SQUAREM procedure to be even more beneficial

with larger sample sizes. For these reasons, we used the SQUAREM procedure for the rest

of the simulation study.

[Table 1 about here.]

2.2 Association between recurrent event and examination time processes

To have a better understanding of the effect of strength and direction of the association

between the underlying recurrent event and examination time processes, we carried out

additional simulation studies with different specifications. Since the primary objective is to

investigate the robustness of the proposed method against different frailty distributions, we

only report results with n = 100.

To investigate the impact of the association strength, we generated Zi from whether a

Gamma(0.5, 0.5) or a Normal(1, 0.22) while holding other variable specifications the same.

These settings yield similar observed recurrent events per subject but the latter scenario

yield a higher examination frequency. The association between the underlying recurrent event

and examination time processes remains positive under these settings. Each of these frailty
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distributions has mean 1 as required by the identifiability assumption but the variances are

different allowing comparisons across scenarios. The results are presented at Table 2. In all

scenarios, the proposed estimate continues to be virtually unbiased. Both bootstrap estimates

are reasonably close to the empirical standard error. The magnitude of standard error

increases with the variance of Zi; the standard error is the smallest when Zi ∼Normal(0, 0.22)

and the largest when Zi ∼ Gamma(0.5, 0.5). Most importantly, the coverage probability

remains satisfactory, with the proposed smoothed bootstrap estimate closer to the 95%

nominal level. These results suggest that the strength of the association between the recurrent

event and the examination times influence the variability of the proposed estimate but does

not influence the consistency.

We next investigate the impact of the direction of association. In particular, we reverse the

generation of Ki to generate the simulated data, so the recurrent event process and the exam-

ination time process are negatively associated. More specifically, holding all specifications the

same, we generated Ki from a discrete uniform distribution on {1, . . . , 6} when Zi > 1 and

a discrete uniform distribution on {1, . . . , 8} when Zi 6 1. With this modification, subjects

with Zi 6 1 have higher event rate and tend to be examined more frequently than subjects

with Zi > 1. We considered all four frailty distributions aforementioned; Gamma(2, 2),

Uniform(0, 2), Gamma(0.5, 0.5), and Normal(1, 0.22). The results are summarized in Table 3.

As in the case of the positive association, the proposed methods perform reasonably well

with small bias, close agreement between the bootstrap estimates and justifiable coverage

probability. These observations suggest that the proposed estimator is fairly robust against

the direction of association between the underlying recurrent event and examination time

processes.

[Table 2 about here.]

[Table 3 about here.]
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3. Proof of Consistency Result for Λ̂n(a, ·) of Λ(a, ·)

To establish the consistency results, we first introduce a proper metric on the class of

functions defined by Fτ = {Λ : [0, τα]→ [0,∞); Λ is nondecreasing and Λ(0) = 0}. Consider

a subject with observed data {tj, K,Ni(tj), X; j = 1, . . . , K}, mj = Ni(tj) − Ni(tj−1) and

Y = Ni(tK), for Λ1,Λ2 ∈ Fτ , we define d(Λ1,Λ2) =
∫
| Λ1(t) − Λ2(t) |2 dv(t), where v is

a measure defined by v(B) = E[E{
∑K

j=1 I(tj ∈ B) | K}] for B ∈ Bτ with Bτ being the

Borel sets in [0, τ ]. We write d(Λ1,Λ2) = E[E{
∑K

j=1 | Λ1(tj)−Λ2(tj) |2| K}] and assume the

following regularity conditions.

C1 There exists an integer k0 <∞ such that pr(K 6 k0) = 1 and pr(K > 1) > 0.

C2 The distribution of X has bounded support and the baseline cumulative rate function Λ0(·)

is bounded and positive on [0, C] for any C > 0.

C3 The random variable M0 =
∑K

j=1mj logmj has bounded expectation.

C4 Variable Y has positive continuous density (positive probability mass) at τ .

The consistency of the estimator Λ̂n(a, ·) of Λ(a, ·) follows a similar argument as the proofs

in Wellner and Zhang (2000, Theorem 4.2) and in Huang et al. (2006, Theorem 1). We first

consider the nonparametric distribution estimator Φ̂n(a, ·) for any a in a neighborhood of

the true parameter α. Let D = {t1, . . . , tK , K, Y ;m1, . . . ,mK ,m} be a subject’s observa-

tion vector and the working log-likelihood function q(F,a, D) =
∑K

j=1mj log[F{t∗j(a)} −

F{t∗j−1(a)}]−m logF{Y ∗(a)}. Further define

Pn(F,a) = n−1
∑n

i=1
q(F,a, Di) and pr(F,a) = E{q(F,a, D)}.

For a fixed a, let Φ(a, ·) be the maximizer (with respect to F ) of pr(F,a) with the form

E
(∑K

j=1

[
Φ{t∗j(α)} − Φ{t∗j−1(α)}

]
log[F{t∗j(a)} − F{t∗j−1(a)}]− Φ{Y ∗(α)} logF{Y ∗(a)}

)
.

Note that estimated distribution function Φ̂n(a, ·) is a step function. Since for any k

and positive vectors of (x1, . . . , xk) and (a1, . . . , ak), the function g(x) =
∑k

j=1 aj log(xj) −
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(
∑k

j=1 aj) log(
∑k

j=1 xj) has the maximum
∑k

j=1 aj log(aj) − (
∑k

j=1 aj) log(
∑k

j=1 aj) when

xj = caj for any j and some positive constant c. Therefore, we have an upper envelope

for the set of functions Q = [q{Φ(a, ·), D}; Φ(a, ·) ∈ Fτa ] as M0 =
∑

jmj logmj. It then

follows from the one-sided Glivenko–Cantelli Theorem that lim supn→∞ supF∈Fτa
(P−pr)F 6

0 almost surely. The Helly’s selection theorem gives that for any sequence of Φ̂n(a, ·),

there exists a subsequence (indexed by n′) converging to a limit function Φ∗(a, ·). Thus,

lim supn′→∞ P{Φ̂n′(a, ·),a} 6 pr{Φ∗(a, ·),a}. Note that Φ̂n(a, ·) is the maximizer of P(F,a),

which implies that P{Φ̂n(a, ·),a} > P{Φ(a, ·),a}. The law of large number further implies

that lim infn→∞ P{Φ̂n(a, ·),a} > pr{Φ(a, ·),a}. The above argument then gives

0 > pr{Φ(a, ·),a} − pr{Φ∗(a, ·),a}

= E

[∑
j

mj log
Φ{a, t∗j(a)} − Φ{a, t∗j−1(a)}

Φ∗{a, t∗j(a)} − Φ∗{a, t∗j−1(a)}
−m log

Φ{a, Y ∗(a)}
Φ∗{a, Y ∗(a)}

]
> 0.

Therefore, we know that for some constant b, d{Φ̂n(a, ·), bΦ(a, ·)} → 0 almost surely and

uniformly in a; and furthermore d{Λ̂n(a, ·),Λ(a, ·)} → 0. The consistency of α̂n is obtained

by solving the estimating function (5) of the main manuscript due to the fact that the

estimating function Sn goes to 0 almost surely at α while not 0 when a 6= α. This further

implies that Λ̂n(α̂, ·) is consistent.
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Table 1
Summary of timing required for point estimation. Timing is recorded in seconds and averaged from 100 replicates.

n = 50 n = 100

Z ∼ Gamma(2, 2) Z ∼ Uniform(0, 2) Z ∼ Gamma(2, 2) Z ∼ Uniform(0, 2)

λ0(t) EM SQUAREM EM SQUAREM EM SQUAREM EM SQUAREM

Poisson 2 98 20 117 23 523 96 670 130
2t 53 17 64 22 457 135 644 184

non- 2 131 30 73 14 489 95 816 155
Poisson 2t 52 23 53 28 393 134 550 117
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Table 2
Summary of the additional simulation data with positive association between the recurrent event process and the

examination time process; ESE is the empirical standard error; ASE and ASE∗ are the average standard error based
on the standard bootstrap and the smoothed bootstrap procedure, respectively; CP and CP∗ are the empirical coverage

probability (%) based on the standard bootstrap and the smoothed bootstrap procedure, respectively. Cases I–IV
reflects the four combinations between the two choices of λ0(t) and whether the recurrent event process is a Poisson

counting process; Case I: λ0(t) = 2, Poisson process; Case II: λ0(t) = 2t, Poisson process; Case III: λ0(t) = 2,
non-Poisson process; Case IV: λ0(t) = 2t, non-Poisson process.

Z ∼ Gamma(0.5, 0.5) Z ∼ Normal(1, 0.22)

case α bias ESE ASE ASE* CP CP* bias ESE ASE ASE* CP CP*

I α1 0.014 0.333 0.341 0.348 96.3 96.8 0.007 0.168 0.166 0.170 94.6 95.5
α2 0.057 0.595 0.567 0.614 94.7 95.9 0.065 0.299 0.251 0.306 91.3 95.3

II α1 −0.059 0.213 0.218 0.214 95.3 95.3 −0.048 0.131 0.128 0.134 93.8 95.6
α2 −0.064 0.372 0.348 0.372 92.9 95.0 −0.064 0.211 0.194 0.228 92.1 95.6

III α1 0.007 0.329 0.322 0.345 94.9 95.5 −0.002 0.146 0.139 0.148 95.3 95.1
α2 0.072 0.581 0.530 0.591 93.6 95.4 0.030 0.279 0.224 0.286 90.6 95.6

IV α1 −0.041 0.221 0.219 0.232 94.7 95.8 −0.060 0.119 0.111 0.127 92.1 96.1
α2 −0.056 0.382 0.355 0.410 92.1 95.6 −0.086 0.192 0.184 0.202 92.1 95.6
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Table 3
Summary of simulation data with negative association between the recurrent event and examination time process;

ESE is the empirical standard error; ASE and ASE∗ are the average standard error based on the standard bootstrap
and the smoothed bootstrap procedure, respectively; CP and CP∗ are the empirical coverage probability (%) based on
the standard bootstrap and the smoothed bootstrap procedure, respectively. Cases I–IV reflects the four combinations

between the two choices of λ0(t) and whether the recurrent event process is a Poisson counting process; Case I:
λ0(t) = 2, Poisson process; Case II: λ0(t) = 2t, Poisson process; Case III: λ0(t) = 2, non-Poisson process; Case IV:

λ0(t) = 2t, non-Poisson process.

case α bias ESE ASE ASE* CP CP* bias ESE ASE ASE* CP CP*

Z ∼ Gamma(2, 2) Z ∼ Uniform(0, 2)
I α1 −0.012 0.210 0.205 0.216 95.6 95.7 −0.004 0.185 0.184 0.192 95.7 96.2

α2 0.002 0.355 0.348 0.361 94.4 95.4 −0.002 0.316 0.314 0.320 95.3 95.4
II α1 −0.031 0.136 0.136 0.145 95.8 96.3 −0.032 0.124 0.121 0.127 94.8 95.8

α2 −0.048 0.232 0.226 0.245 94.6 96.0 −0.054 0.216 0.204 0.221 95.2 96.0
III α1 −0.013 0.198 0.189 0.206 94.6 95.9 −0.024 0.159 0.164 0.166 95.6 95.6

α2 −0.029 0.359 0.329 0.373 93.2 96.0 −0.038 0.307 0.288 0.312 94.5 96.1
IV α1 −0.041 0.132 0.129 0.141 94.5 96.1 −0.044 0.117 0.114 0.125 94.3 95.8

α2 −0.061 0.229 0.221 0.236 94.9 96.3 −0.054 0.194 0.195 0.209 94.7 96.4

Z ∼ Gamma(0.5, 0.5) Z ∼ Normal(1, 0.22)
I α1 −0.004 0.323 0.335 0.333 95.5 95.7 −0.006 0.157 0.162 0.164 95.6 95.6

α2 0.046 0.592 0.543 0.615 94.1 96.0 0.043 0.307 0.286 0.323 93.2 96.0
II α1 −0.014 0.186 0.202 0.209 95.5 95.7 −0.046 0.114 0.123 0.128 95.4 95.3

α2 −0.035 0.333 0.337 0.335 95.5 95.2 −0.058 0.216 0.181 0.220 92.9 95.6
III α1 0.004 0.318 0.324 0.328 95.7 95.1 −0.017 0.131 0.143 0.141 95.8 95.4

α2 0.045 0.564 0.535 0.571 95.1 95.8 0.042 0.270 0.253 0.280 92.6 96.4
IV α1 −0.032 0.186 0.199 0.205 96.0 95.9 −0.037 0.116 0.111 0.121 92.8 95.6

α2 −0.059 0.326 0.334 0.332 95.4 95.1 −0.056 0.184 0.173 0.191 93.8 96.0
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