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Summary. Panel count data arise when the number of recurrent events experienced by each subject is observed intermit-
tently at discrete examination times. The examination time process can be informative about the underlying recurrent event
process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event
process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal
interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation proce-
dure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast
to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assump-
tion for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty.
Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the
two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a
model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance
estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention
trial.
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1. Introduction
Panel count data arise when recurrent events are examined
periodically rather than continuously due to cost, feasibility,
or other practical considerations (Kalbfleisch and Lawless,
1985; Thall and Lachin, 1988), see Sun and Zhao (2013)
for a recent review. As a result, instead of the exact event
times, only the numbers of events that occur between suc-
cessive examination times are observed. In most applications,
the examination times may depend on the underlying risk
of recurrent events, leading to so-called informative exami-
nation times. For example, in a skin cancer chemoprevention
clinical trial, many patients have multiple recurrences of skin
tumors throughout the study, but occurrences of new tumors
were observed only at clinical visits (Bailey et al., 2010).
Exploratory data analyses suggested that patients with higher
tumor recurrence rates tend to have more frequent clinical vis-
its as they may require more medical attention (Li et al., 2011;
Sun and Zhao, 2013). In another example, Ma and Sundaram
(2016) studied the labor progression of women who had no
previous birth experience by treating each 1 cm increment of
cervical dilation as a recurrent event. During labor, vaginal
examinations are performed at intermittent time points to
assess for cervical dilation, so only event counts are observed.
Obviously, the timing and frequency of examination are cor-
related with the dilation process; the faster the cervix dilates,

the more frequently a woman is getting examined. Nega-
tive dependence between the recurrent event process and the
examination process may be possible in other applications.
As pointed out by many authors (e.g., Huang et al., 2006;
Sun et al., 2007), statistical methods that fail to account for
such dependency can yield substantial bias and misleading
inferential results.

When covariate effects are of interest, Cox-type models
are commonly used. The majority of the earlier litera-
ture on panel count data analysis assumed uninformative
examination times, that is, the examination time pro-
cess is independent of the recurrent event process given
covariates. For example, Zhang (2002), Wellner and Zhang
(2007), and Lu et al. (2009) considered pseudo-likelihood
and likelihood methods under the nonhomogeneous Pois-
son process assumption. They showed that both methods
are robust against departure from the Poisson assumption
as long as the proportional rates model holds. Sun and
Wei (2000) and Hu et al. (2003) considered estimating
equation approaches based on cumulative event counts at
different time points. The estimating equation approaches
are computationally more convenient but can be inefficient;
improvement in efficiency is possible in certain situations
through generalized estimating equations (Hua and Zhang,
2012).
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The need to develop statistical methods that can deal
with informative examination times has been increasing rec-
ognized. Kim (2006) fully specified both the recurrent event
process and the examination time processes with a shared
gamma frailty. Authors, including Sun et al. (2007), He et al.
(2009), Zhao and Tong (2011), and Zhao et al. (2013), have
extended the methodology proposed in Sun and Wei (2000)
to allow the two processes to be correlated through a shared
frailty with an unspecified distribution. Extending the esti-
mation equation-based method of Zeng and Cai (2010), Zhou
et al. (2017) considered a flexible joint model of the recur-
rent event process, the examination time process, and the
time to a terminal event, where the associations between pro-
cesses are left unspecified. Buzkova (2010) proposed to model
the dependency of examination time process on the history
of observed recurrent event counts, thus permits outcome-
dependent examination times; the inverse-intensity-rate-ratio
weighting technique (Buzkova and Lumley, 2007) was applied
to construct unbiased estimating equations. Naturally, the
validity of the aforementioned methods rely on correct model
specifications for the examination time process and the follow-
up time (or a terminal event time), which may not be of
primary interest in practice. In contrast, Huang et al. (2006)
and Wang et al. (2013) postulated a frailty proportional rates
model for the recurrent event process, where the distributions
of the frailty and the possibly correlated examination times
are left unspecified. Their estimation procedures eliminate the
nuisance frailties through a conditioning technique and the
resulting estimators are robust against departure from the
Poisson assumption on the event processes.

As an alternative to the Cox-type formulation, we propose
an accelerated mean model for the recurrent event process
under informative examination times. This is a new frame-
work compared to other attempts to go beyond the Cox-type
formulation such as the semiparametric transformation mod-
els studied in Li et al. (2010) and Li et al. (2013), where
a correct model specification for the dependency of cumu-
lative event count on the history of the examination times
is required, and more importantly, the regression parame-
ters of the covariates of interest can be less intuitive to
interpret. Motivated by the accelerated failure time (AFT)
model for recurrent event processes (e.g., Lin et al., 1998; Xu
et al., 2017), we assume that the covariates have a time-scale-
change effect on the marginal mean cumulative function. The
examination process is allowed to be informative about the
recurrent event process through a subject-specific multiplica-
tive frailty. The distribution of the frailty is left unspecified
because our estimation procedure eliminates the unobserved
frailty via a conditioning approach in a way similar to that
of Wang et al. (2001) and Huang et al. (2006). Uncondi-
tional on the frailty, the model allows for an unspecified
association between the recurrent event process and the exam-
ination time process. No model is needed for the examination
time process, an appealing feature when it is not of primary
interest.

We proposed a novel estimation procedure that iterates
between updating the cumulative baseline rate function and
updating the regression parameter. The squared extrapola-
tion method (SQUAREM) of Varadhan and Roland (2008)
is adopted to accelerate the expectation-maximization type

algorithm in estimating the cumulative baseline rate func-
tion in each iteration. To our knowledge, this is the first time
it is applied to semiparametric estimation; in our case, it
increased the speed by a factor of 5 on average. The consis-
tency of the estimator is established under suitable regularity
conditions without the Poisson assumption on the recurrent
event process. For variance estimation, we propose a model-
based smoothed bootstrap procedure motivated by Sen and
Xu (2015) to provide better coverage probabilities than the
standard nonparametric bootstrap procedure. The methods
are applied to the skin cancer example along with a goodness
of fit assessment.

2. Semiparametric Accelerated Mean Model

2.1. Model Setup

Consider panel count data observed in a fixed time interval
[0, τ] from n independent subjects. For the ith subject, let
Ni(t) be the number of events over the interval [0, t], and
Xi be a p × 1 covariate vector. We assume the event process
Ni(·) of the ith subject is only observable at Ki discrete ran-
dom time points, 0 = ti0 < ti1 < ti2 < . . . < tiKi

≤ τ, where tij
is the jth examination time, j = 1, . . . , Ki. Suppose that the
last examination time tiKi

is also the follow-up time of sub-
ject i. The observed panel count data are a random sample
{tij, Ki, Ni(tij), Xi; j = 1, . . . , Ki}, i = 1, . . . , n.

As in Xu et al. (2017), we assume that the recurrent event
process Ni(·), conditioning on a latent nonnegative frailty vari-
able Zi and covariate Xi, has the rate function

λi(t) = Ziλ0(te
X�

i
α)eX�

i
α, t ∈ [0, τ], (1)

where α is a p × 1 vector of parameters and λ0(t) is an unspec-
ified, absolutely continuous baseline rate function. Given Zi

and Xi, the event process Ni(·) is assumed to be independent
of the number of examination time points Ki, and the exam-
ination times {ti1, . . . , tiKi

}. This allows Ni(·) to be dependent
on {ti1, . . . , tiKi

} through unobserved frailty Zi after condition-
ing on Xi. From Model (1), one can derive the conditional
mean:

E{Ni(t) | Xi, Zi} = Zi�0(te
X�

i
α), (2)

where �0(t) = ∫ t

0
λ0(u) du. The effect of the covariates is a

scale change on the time of the cumulative mean function
of the underlying event process, which is why the model is
referred to as an accelerated mean model.

In contrast to most joint modeling approaches (e.g., He
et al., 2009), no Poisson-type assumption is imposed on Ni(·).
Moreover, both the distribution of Zi’s and the conditional
distribution of the examination times given Zi are left unspec-
ified. For model identifiability, we assume E(Zi|Xi) = 1. Then,
unconditional on Zi, the cumulative mean function of Ni(·) is

E{Ni(t)|Xi} = �0(te
X�

i
α), which is also of the form of an accel-

erated mean model. In a two-arm clinical trial, for example, α

identifies the time scale change of the cumulative mean func-
tion in the treated group (Xi = 1); the expected number of
events by time t among treated subjects equals the expected
number of events by time teα in the control group (Xi = 0),
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with other risk factors being held the same. The accelerated
mean model is an extension of the AFT model in the recurrent
event setting. Let Uij be the time of the jth recurrent event
from subject i, it can be shown that log Uij = −X�

i α + εij,

where the independent error vectors (εij : j = 1, 2, . . .), i =
1, . . . , n, follow a common unspecified joint distribution (Lin
et al., 1998; Ghosh and Lin, 2003).

2.2. Point Estimation

We first consider point estimation for the regression param-
eter α. For any p × 1 vector a, consider the transformation

t∗ij(a) = tije
X�

i
a, i = 1, . . . , n, j = 1, . . . , Ki. Let Yi = tiKi

and

Y ∗
i (a) = Yie

X�
i

a. Suppose Xi is bounded as in Condition C2

of the Supplementary Materials, define τn,a = τ supi e
X�

i
a and

assume τn,a → τa < ∞ as n → ∞. Let N∗
i (t, a) be the counting

process on the transformed time scale corresponding to the
original underlying event process Ni(t). Then, unconditional
on Zi the cumulative rate function of N∗

i (t, a) is

E{N∗
i (t, a) | Xi} = E [E{N∗

i (t, a) | Zi, Xi} | Xi]

= �0{teX�
i
(α−a)}, t ∈ [0, τeX�

i
a]. (3)

We use the property that the cumulative rate function of
N∗

i (t, a) does not depend on Xi when a = α to construct a
robust estimation procedure for �0(·).

For subject i, let mij = Ni(tij) − Ni(tij−1) be the number of
events in the time interval (tij−1, tij] and mi = Ni(Yi) be the
total number of observed events. To better illustrate our idea,
consider a working model for the moment where, conditioning
on Zi and Xi, the event process Ni(·) is a Poisson process with
intensity (1). Then mij is a Poisson random variable with mean∫ tij

tij−1
λi(u) du = Zi�0{t∗ij(α)} − Zi�0{t∗ij−1(α)}. Conditioning on

Zi, Xi, mi, and the Ki examination times, the conditional
likelihood based on the observed event count data is

Lc(�, α) ∝
n∏

i=1

Ki∏
j=1

[
Zi�0{t∗ij(α)} − Zi�0{t∗ij−1(α)}

Zi�0{Y ∗
i (α)}

]mij

=
n∏

i=1

Ki∏
j=1

[
�{t∗ij(α)} − �{t∗ij−1(α)}

�{Y ∗
i (α)}

]mij

,

where �(t) = �0(t)/�0(τα) defines a proper distribution
function on t ∈ [0, τα]. The conditional working likelihood,
Lc(�, α), eliminates the frailty variable Zi and is equivalent
to the likelihood of a set of independently interval-censored
and right-truncated data. To see this, consider a hypotheti-
cal set of independent random variables {Uijk, i = 1, . . . , n, j =
1, . . . , Ki, k = 1, . . . , mij} whose distribution function is �(t).
Assume that Uijk is independently right truncated by Y ∗

i (α)
and interval censored in (t∗ij−1(α), t∗ij(α)]. Then its contribution
to the likelihood function is [�{t∗ij(α)} − �{t∗ij−1(α)}]/�{Y ∗

i (α)},
and the likelihood of the hypothetical data coincides with
Lc(�, α). Thus, given α, the working nonparametric max-
imum (conditional) likelihood estimator (NPMLE) of the
distribution function �(·) can be obtained by maximizing
the conditional likelihood Lc(�, α), which motivates the self-
consistent algorithm (Turnbull, 1976) described below.

Given α, define the working NPMLE of �(·) by �̂n(α, ·).
Let 0 = t(0) < t(1) < . . . < t(L) ≤ τα be the ordered, distinct
values of the observed examination times {t∗ij(α);Ki > 1, 1 ≤
i ≤ n, 1 ≤ j ≤ Ki}. For k = 1, . . . , L, define aijk = I{t(k−1) ≤
t∗ij−1(α), t∗ij(α) ≤ t(k)} and bik = I{t(k)(α) ≤ Y ∗

i (α)}, where I(·) is

the indicator function. Given the estimate �̂
(l)
n (α, ·) at the lth

iteration, the updated estimate is obtained by �̂
(l+1)
n (α, t) =∑

k:t(k)≤t
d

(l)
k /

∑L

k=1
d

(l)
k , where

d
(l)
k =

n∑
i=1

ki∑
j=1

mij

{
aijkp

(l)
k∑L

k=1
aijkp

(l)
k

+ (1 − bik)p
(l)
k∑L

k=1
bikp

(l)
k

}
,

and p
(l)
k = �̂

(l)
n (α, t(k)) − �̂

(l)
n (α, t(k−1)). At convergence, �0(τα)

can be estimated by �̂n(α, τα) = n−1
∑n

i=1
mi/�̂n{α, Y ∗

i (α)},
because equation (3) implies that

E
[
mi�{α, Y ∗

i (α)}−1 |Xi

]=E[E{mi�{α, Y ∗
i (α)}−1 | Yi, Zi, Xi} | Xi]

= E[�0{α, Y ∗
i (α)}�{α, Y ∗

i (α)}−1 | Xi]

= �0(τα). (4)

This further implies that �0(t) can be estimated by �̂n(α, t) =
�̂n(α, t)�̂n(τα) from the relationship φ(t) = λ0(t)/�0(τα).
Since the conditional likelihood function, Lc, is free from
Zi, the estimation of �(·) does not require information from
Zi. Even though the above estimation method is constructed
based on the working Poisson assumption, we show in The-
orem 1 that �̂n(α, t) is consistent even without the Poisson
assumption.

We now consider the estimation of the parameter α. It
follows from equations (3) and (4) that when a = α,

E

(
1

n

n∑
i=1

Xi

[
mi�

−1{Y ∗
i (α)} − �0(τα)

]) = 0.

The estimator of �0(τα) suggests an estimating equation for
α:

Sn(a)= 1

n

n∑
i=1

Xi

[
mi�̂

−1
n {a, Y ∗

i (a)}− 1

n

n∑
j=1

mj�̂
−1
n {a, Y ∗

j (a)}
]

= 0

.(5)

The solution to (5), denoted by α̂n, is our estimator of α.
To solve (5), we use a derivative-free Barzilai–Borwein spec-

tral method (Barzilai and Borwein, 1988; La Cruz et al., 2006)
that updates the estimate at iteration s by an increment of

the form γ
(s)
n δ

(s)
n , where γ

(s)
n is a scalar spectral steplength and

δ
(s)
n is a line search direction.
The estimation algorithm for α̂ is summarized below:

Step 1 Set the initial value for α by α̂
(0)
n and �(·) by

�̂
(0)
n (α̂

(0)
n , t(k)) = k/L.

Step 2 Repeat �̂
(l+1)
n (α̂

(l)
n , t) = ∑

k:t(k)≤t
d

(l)
k /

∑L

k=1
d

(l)
k until

convergence.
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Step 3 Update α̂
(s+1)
n = α̂

(s)
n + γ

(s)
n δ

(s)
n , where γ

(s)
n is the

steplength and δ
(s)
n is the search direction.

Step 4 Repeat Steps 2 and 3 until convergence.

The initial value α̂
(0)
n can be set to zero or random. We fixed

α̂
(0)
n = 0 in our implementation as our exploration results in

negligible differences. We used the SQUAREM implemented
in Varadhan (2014) to accelerate the repetitive estimation of

�̂n(·) at each update of α̂
(s)
n (Step 2). Upon successful conver-

gence, we used the derivative-free Barzilai–Borwein spectral

algorithm of Varadhan and Gilbert (2009) to update α̂
(s)
n

(Step 3). The convergence criterion was based on the �-2 norm
with a prefixed tolerance of 0.001 in both Steps 2 and 4.

The estimation procedure worked fine most of the times
in our simulation study, but numerical issues arose occasion-
ally. This is likely to be caused by the existence of very short
follow-up time on the transformed scale Y ∗

i and nonzero mi,

in which case mi/�̂n{α, Y ∗
i (α)} would explode. We consider

a heuristic adjustment that replaces mi/�̂n{α, Y ∗
i (α)} with

(mi + 0.01)/[�̂n{α, Y ∗
i (α)} + 0.01] in equation (5) as suggested

by Wang et al. (2013). With the adjustments, the portion of
non-converged replicates was less than 5% in smaller sample
size scenarios (n = 50); the convergence was less of an issue
for larger sample size (n = 100).

2.3. Consistency Results and Resampling Methods for
Inference

We have the following consistency result for α̂n and �̂n(α̂n, ·)
with proof and necessary regular condition provide in the
Supplementary Materials.

Theorem 1. Given conditions C1–C4 and distance d

between two functions defined in the Supplementary Materials,
α̂n → α and d{�̂n(α̂n, t)1(t ∈ [0, c]), �0(t)1(t ∈ [0, c])} → 0, for
any c < τα, almost surely as n → ∞.

The convergences of �̂n(α̂n, ·) does not achieve the stan-
dard n1/2-convergence rate, and the asymptotic distribution
of �̂n(α̂n, ·) does not follow the usual Gaussian type distribu-
tions. To illustrate the idea, first consider the ideal case when
α is known. As in Section 2.2, �̂n(α, ·) is based on interval
censored data with examination times {t∗ij(α);Ki > 1, 1 ≤ i ≤
n, 1 ≤ j ≤ Ki}. In general, �̂n(α, t) at a fixed time t does not
have n1/2-convergence rate. For instance, in the current sta-

tus data with Ki = 1, n1/3{�̂(α, t) − �(t)} d→ κC, where κ is
some constant depending on the derivative function of �(t),
C = arg minh{Z(h) + h2}, and Z is a standard two-sided Brow-
nian motion process, originating from 0. In the general mixed
case interval censoring setting, the limiting distribution of
�̂n(α, ·) is an open problem with limited theoretical results.
Groeneboom and Wellner (1992) discussed the asymptotic of
the behavior of the NPMLE in a version of the case 2 cen-
soring model (Ki = 2). Moreover, Wellner (1995) studied the
consistency when each subject gets exactly k known exami-
nation times, and van der Vaart and Wellner (2000) proved
the consistency of the maximum likelihood estimator of the
mixed case interval censoring in the Hellinger distance; see
also Schick and Yu (2000) and Song (2004).

When α is unknown, the study of the asymptotic behavior
of �̂n(α̂n, ·) and α̂n is even more challenging. The estimation of
α is coupled with the estimation of �(α, ·). Therefore, unlike
the Cox-type or general transformation model (Wellner and
Zhang, 2007; Zeng et al., 2016), the limiting distribution of
α̂n involves the limiting distribution and local behavior of
�̂n(α̂n, ·) with respect to (α, t) as well as the distribution of the
frailty variable. On the other hand, the conditional estimating
equation is constructed to avoid estimating the distribution of
the frailty variable, which makes it different from the estima-
tion of bundled parameters studied in Ding and Nan (2011).
To the best of our knowledge, the limiting distributions of α̂n

and �̂n(α̂n, ·) remains an open problem.
Given the theoretical challenges, we consider making infer-

ences about �0(t) and α through a bootstrap procedure. The
standard bootstrap variance estimator is reliable in prob-
lems with standard n1/2-convergence rate, but is known to be
inconsistent for NPMLE with non-standard convergence rates
in situations such as interval censored data (Abrevaya and
Huang, 2005; Sen et al., 2010; Sen and Xu, 2015). Since the
estimation of �0(t) was done by maximizing a working likeli-
hood analogous to that in interval-censored data, the standard
bootstrap estimate of �̂n(α, t) may suffer from inconsistency
issues even when the true value α is known; this would fur-
ther lead to inconsistent estimation in the distribution of α̂n.
For this reason, we propose a model-based smoothed boot-
strap procedure that provides a variance estimate with better
agreement with the empirical one.

In particular, let �̃n(α̂n, t) be a kernel-smoothed version

of �̂n(α̂n, t). The smoothed bootstrap sampling procedure
consists of two steps. First, a sample of the n subjects is
drawn with replacement from the original data. Second, for
the ith subject in the sample, we keep the number of exam-
inations K∗

i and the examination times t∗ij j = 1, . . . , K∗
i , but

generate the panel counts {N∗
i (t

∗
ij) − N∗

i (t
∗
i,j−1); j = 1, . . . , K∗

i },
from a working multinomial distribution with size m∗

i and

event probabilities proportional to �̃n(α̂n, t
∗
ij) − �̃n(α̂n, t

∗
ij−1),

j = 1, . . . , K∗
i . The difference from the standard bootstrap is

the second step. In the standard bootstrap sample, one sub-
ject may appear multiple times and all the appearances are
the same as the observed data. In the smoothed bootstrap
sample, the multiple appearances of the same subject may
have different panel counts because they are independently
regenerated from the fitted model. For each bootstrap sam-
ple, we apply our estimation procedure to obtain one draw
of α̂n and �̂n(α̂n, t). The empirical distributions of bootstrap
replicates are then used to make inferences about α and
�(t). In the simulation and data analysis, we considered the
Nadaraya–Watson kernel regression with a Gaussian kernel
and bandwidth determined by an unbiased cross-validation.
More detailed specifications can be found in the Supplemen-
tary Materials.

The consistency of the standard bootstrap procedure
depends on the limiting distribution of �̂n(α̂n, ·) and the con-
sistency of α̂n. For current status data, bootstrap consistency
has been explored in Sen and Xu (2015). For panel count data,
this remains a challenging problem. In practice, the stan-
dard bootstrap procedure might be applicable for large sample
sizes, but the model-based smoothed bootstrap procedure is
generally recommended.
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3. Simulation Study

Simulation studies were carried out to evaluate the perfor-
mance of the proposed estimators. Two baseline functions
were considered, λ0(t) = 2 or λ0(t) = 2t, for t ∈ [0, τ] with τ =
10. For the ith subject, the covariates Xi1 and Xi2 were inde-
pendently generated from the Bernoulli distribution with rate
0.5 and the uniform distribution over [0, 1], respectively. The
regression parameters were set at α = (−1, −1)�. The subject-
specific frailty Zi’s were generated from either a gamma distri-
bution with mean 1 and variance 0.5 or a uniform distribution
over [0, 2], abbreviated by Gamma(2, 2) and Uniform(0, 2).
Conditioning on Zi, the recurrent event process was generated
with inter-arrival times from either an exponential distribu-
tion or a uniform distribution first and then thinned so that
Model 1. The exponential case results in a Poisson process on
the individual level but the uniform case does not.

Depending on Zi, the examination times were generated as
follows. For Zi > 1, Ki was generated from a discrete uniform
distribution on {1, . . . , 8} and the distinct examination times

ti1, . . . , tiKi
were the order statistics of Ki independent and

identically distributed right truncated (by τ = 10) exponential
random variables with rate 2; for Zi ≤ 1, Ki was gener-
ated from a discrete uniform distribution on {1, . . . , 6} and
ti1, . . . , tiKi

were the order statistics of Ki independent and
identically distributed uniform random variable on [0, 10].
This design implies positive association between the underly-
ing recurrent event process and the examination time process;
subjects with Zi > 1 have a higher event rate and tend to be
examined more frequently than subjects with Zi ≤ 1. On aver-
age, the number of the recurrent events per subject ranged
from 4 to 8 in all the configurations.

Three sample sizes were considered: n = 50, 100, 200. For
variance estimation, the bootstrap sample size was set to be
200 for both the standard bootstrap and the model-based
smoothed bootstrap procedures. For each configuration, 1000
datasets were generated and analyzed. The computation task
was demanding, and the SQUAREM implementation in the
baseline hazard function estimation considerably reduced the

Table 1
Summary of simulation data; ESE is the empirical standard error; ASE and ASE∗ are the average standard error based on
the standard bootstrap and the smoothed bootstrap procedure, respectively; CP and CP∗ are the empirical coverage probability

(%) based on the standard bootstrap and the smoothed bootstrap procedure, respectively. Cases I–IV reflects the four
combinations between the two choices of λ0(t) and whether the recurrent event process is a Poisson counting process; Case I:

λ0(t) = 2, Poisson process; Case II: λ0(t) = 2t, Poisson process; Case III: λ0(t) = 2, non-Poisson process; Case IV:
λ0(t) = 2t, non-Poisson process.

Z ∼ Gamma(2, 2) Z ∼ Uniform(0, 2)

Case α Bias ESE ASE ASE* CP CP* Bias ESE ASE ASE* CP CP*

n = 50

I α1 −0.009 0.315 0.309 0.314 93.6 94.2 −0.027 0.298 0.302 0.308 95.7 95.7
α2 −0.077 0.541 0.523 0.536 93.3 95.1 −0.039 0.503 0.520 0.530 95.1 95.4

II α1 −0.018 0.284 0.276 0.282 93.6 95.8 −0.031 0.259 0.259 0.268 95.4 96.4
α2 −0.083 0.492 0.470 0.482 92.2 94.1 −0.050 0.461 0.446 0.457 92.6 93.4

III α1 −0.082 0.226 0.215 0.224 91.6 93.5 −0.091 0.237 0.212 0.225 92.9 95.3
α2 −0.133 0.364 0.351 0.368 93.5 94.6 −0.105 0.390 0.358 0.376 93.7 95.0

IV α1 −0.088 0.206 0.210 0.218 93.0 95.1 −0.085 0.214 0.208 0.218 93.9 95.5
α2 −0.162 0.367 0.342 0.358 90.6 93.3 −0.133 0.355 0.344 0.358 93.5 93.9

n = 100

I α1 0.002 0.213 0.216 0.217 94.1 94.7 0.010 0.199 0.208 0.210 96.2 96.4
α2 −0.013 0.360 0.363 0.367 94.7 94.8 −0.026 0.348 0.354 0.357 95.6 96.5

II α1 0.006 0.216 0.207 0.210 93.2 92.8 0.005 0.186 0.181 0.186 94.8 95.3
α2 −0.019 0.358 0.343 0.348 93.6 93.5 −0.028 0.312 0.312 0.316 95.1 95.8

III α1 −0.048 0.154 0.151 0.154 93.1 93.9 0.018 0.152 0.161 0.158 96.0 94.1
α2 −0.068 0.259 0.251 0.254 93.2 93.1 −0.082 0.267 0.255 0.254 94.2 95.2

IV α1 −0.057 0.151 0.147 0.148 91.8 92.6 −0.064 0.156 0.147 0.149 91.7 94.8
α2 −0.086 0.257 0.241 0.243 92.7 92.5 −0.091 0.252 0.242 0.244 93.7 94.7

n = 200

I α1 −0.003 0.160 0.157 0.157 96.4 94.4 −0.003 0.145 0.150 0.143 95.9 95.7
α2 −0.010 0.275 0.265 0.263 94.7 93.6 −0.018 0.239 0.251 0.241 95.8 94.9

II α1 −0.001 0.143 0.143 0.137 95.8 95.6 0.005 0.140 0.133 0.132 95.5 95.8
α2 −0.013 0.249 0.244 0.234 95.8 94.8 0.006 0.235 0.228 0.222 95.3 95.2

III α1 −0.029 0.122 0.116 0.117 94.6 94.2 −0.010 0.113 0.117 0.109 93.3 94.2
α2 −0.031 0.190 0.188 0.186 95.2 94.4 −0.040 0.190 0.188 0.186 94.7 93.6

IV α1 −0.041 0.111 0.111 0.105 93.7 93.1 −0.035 0.114 0.112 0.111 93.4 93.8
α2 −0.069 0.180 0.178 0.173 93.0 92.6 −0.055 0.186 0.182 0.180 93.5 94.4
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running time; see Web Table S1 for a timing comparison for
selected configurations.

Table 1 summarizes the results for the regression coefficient
estimation based on 1000 replicates. The estimator appears to
be unbiased in most scenarios. Noticeable bias (about 10%)
only occurred in a couple of cases under n = 50 with event
times generated from a non-Poisson process, which quickly
diminishes as the sample size increases. For all scenarios,
bootstrap standard error estimates from both procedures are
reasonably close to the empirical standard errors, suggest-
ing that the bootstrap estimator satisfactorily approximate
the true variation for statistical inferences. For small sample
(n = 50), the smoothed bootstrap standard errors appear to
be a bit closer to the empirical standard errors and conse-
quently, yield a coverage rate closer to the nominal level of
95% for the confidence intervals than the standard bootstrap
standard errors. As expected, sample size n = 200 results in
the best agreement between the bootstrap standard errors and
the empirical standard errors, and between the empirical cov-
erage rates and the nominal level of the confidence intervals.

Figure 1 presents the estimates and the pointwise 95%
confidence intervals for the baseline cumulative rate func-
tion with n = 50. Since the baseline cumulative rate function
is estimated under the transformed time scale, the baseline
cumulative rate function can only be estimated between 0
and maxi(Y

∗
i ). This is reflected in Figure 1 where the aver-

age of �̂n(α̂, t) is almost indistinguishable from the truth for
t ∈ (0, 6), which covers the lower 98% of Y ∗

i ’s. Results with
n ∈ {100, 200} were similar and not reported.

In addition to sample size, the performance of the pro-
posed estimator might depends on the strength and direction
of the association between the underlying recurrent event and
examination time processes. In the Supplementary Material,
we carried out additional simulations with different frailty dis-
tributions and examined scenarios where the recurrent event
process and the examination time process are negatively cor-
related. In these settings, our estimator remains virtually
unbiased, with bootstrap standard errors reasonably close to
the empirical standard errors. Although the variance increases
with the variance of the frailty distribution as expected, the
empirical coverage rates are close to the nominal level in all
scenarios. These results confirm the robustness of the pro-
posed estimator.

4. Skin Cancer Chemoprevention Trial

In a double-blinded, placebo-controlled, randomized Phase III
clinical trial (Bailey et al., 2010) conducted at the Univer-
sity of Wisconsin Comprehensive Cancer Center, the primary
objective was to determine whether the application of diflu-
oromethylornithine (DFMO) as a chemoprevention agent
would lead to a significant reduction in the occurrence of
two types of non-melanoma skin tumor: basal cell carcino-
mas (BCC) and squamous cell carcinomas (SCC). This study
consisted of 290 patients with a history of skin cancer ran-
domized into two groups: a treatment group with oral DFMO
at a daily dose of 0.5 gram/m2 and a placebo group. These
patients were followed for 3–5 years depending on their entry
time. Throughout the study, patients were scheduled to be
examined every six months, but the scheduled times were

followed only loosely instead of exactly. At each examination
time, the number of newly developed skin tumors of each type
were counted, measured and removed.

Of the 290 patients, 143 (49.3%) patients were in the
DFMO group. The majority of the patients were male (n =
174, 60%) and the age at enrollment ranged from 34 to 82
years with a median of 62 years. After the initial contact,
the number of additional follow-up visits ranges from 0 to 16
with an average of 7.7. Figure 2a and b show the tile plots
for the two types of skin tumor counts observed at each visit.
Each tile represents an examination time in days, with darker
gray indicating larger count of new skin tumor occurrences
since the last visit. Although it is rare, a patient can develop
both BCC or SCC tumors simultaneously. The figures indi-
cate higher incidence in BCC tumor than in SCC tumor. The
difference between the DFMO group and the placebo group
appear to be small.

Table 2 summarizes the results of the data analysis based
on three panel counts of skin tumors: the combined counts of
two non-melanoma skin tumor (NMSC) types, the count of
BCC, and the count of SCC. Four risk factors were considered
as covariates: treatment group (1 = treatment, 0 = placebo),
the number of prior non-melanoma skin tumor from diagnosis
to randomization (ranges from 1 to 35, with mean 4.6), gender
(1 = male, 0 = female), and age at enrollment (1 = age ≥ 65,
0 = otherwise). The estimated standard errors are obtained
from the two bootstrap procedures, each with 500 bootstrap
replicates. Gender, age and DFMO treatment did not seem
to have any significant effect in reducing the recurrence either
type of skin tumor or non-melanoma skin tumor. Controlling
for other variables, the new skin tumor count was found to
be significantly associated with the number of prior skin can-
cers. For every additional prior skin tumor, the time to a new
BCC (or SCC) tumor development was estimated to shrink
by a factor of exp (−0.155) ≈ 0.856 (or exp (−0.146) ≈ 0.864).
These results are consistent with those in Li et al. (2011).

Figure 3 shows the average estimate and average point-
wise 95% confidence intervals for �(t) for the three outcome
variables. Since the transformed time is inflated by positive
coefficient estimates and large covariate values, we focus on
the estimations in the time interval of (0, 3600) days, where
the right end was obtained by transforming the 98th per-
centile of the observed follow-up time by estimated coefficients
with prior tumor count at its average and the other binary
variables at zero. The two bootstrap procedures yielded very
similar confidence intervals at earlier times, but at later times,
the intervals from the smoothed bootstrap becomes notice-
ably narrower than those from the standard bootstrap for the
combined non-melanoma tumor and for the squamous cell car-
cinomas. This may be due to the inconsistency of the standard
bootstrap.

To check the adequacy of the proposed model on the
skin cancer data described in the main manuscript, we
considered a graphical diagnosis based on Pearson type resid-
uals of the observed counts Ni(tij)’s conditioning on both
the covariates Xi and the frailty Zi. It follows from equa-
tion (3) that E[mi�

−1
0 {Y ∗

i (α)} | Yi, Zi, Xi] = Zi. Thus E{Ni(t) |
Yi, Zi, Xi} can be approximated by mi�̂n(α̂n, t)/�̂n{α̂n, Y

∗
i (α̂n)}.

Under a working Poisson assumption, Pearson type residuals
are obtained by standardizing the residuals Ni(t) − E{Ni(t) |
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Figure 1. Plots of �̂n(α̂, t) with pointwise 95% confidence intervals for n = 50. Cases I–IV reflects the four combinations
between the two choices of λ0(t) and whether the recurrent event process is a Poisson counting process; Case I: λ0(t) = 2,
Poisson process; Case II: λ0(t) = 2t, Poisson process; Case III: λ0(t) = 2, non-Poisson process; Case IV: λ0(t) = 2t, non-Poisson
process (—, true curve; - - - , empirical average; ·····, pointwise 95% standard bootstrap confidence intervals; -·-·-·, pointwise
95% smoothed bootstrap confidence intervals).

Figure 2. Tile plot of the skin cancer panel count. Each tile represents an examination time. Darker tiles represent larger
numbers of tumor counts since the last visit.
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Table 2
Summary of Skin Cancer Chemoprevention Trial data; BCC is basal cell carcinomas; SCC is squamous cell carcinomas;

NMSC is the non-melanoma skin cancer including both BCC and SCC; DFMO is the difluoromethylornithine group; PE is
the point estimate; SE is the standard error obtained from standard bootstrap; SE* is the standard error obtained from

smoothed bootstrap.

NMSC BCC SCC

Risk factor PE SE SE* PE SE SE* PE SE SE*

DFMO −0.003 0.149 0.216 −0.063 0.176 0.186 −0.003 0.124 0.198
Prior tumor count 0.152 0.024 0.048 0.155 0.027 0.026 0.146 0.030 0.032
Male 0.289 0.183 0.285 0.173 0.207 0.190 0.437 0.308 0.378
65 years or older 0.088 0.134 0.196 −0.226 0.196 0.179 0.595 0.339 0.405

Yi, Zi, Xi} with conditional variance Var{Ni(t) | Yi, Zi, Xi} =
E{Ni(t) | Yi, Zi, Xi}. Figure 4 presents the Pearson type resid-
uals against the fitted value E{Ni(t) | Yi, Zi, Xi} for the three
outcomes. The residuals are centered about zero and reveal no
alarming patterns. The variance of the frailty was estimated
as 7.8, 13.2, and 16.3 for the three outcomes, respectively,
suggesting the necessity of accounting for the subject hetero-
geneity beyond the covariates; the heterogeneity level for SCC
appears to be highes among the three.

5. Discussion

We considered a semiparametric accelerated mean model for
panel count data under informative examination times. The
AFT-type model offers an appealing alternative to the pop-
ular Cox-type models with covariate effects modifying the
time scale of the cumulative mean function. In contrast to
existing methods, our approach requires neither the strong
Poisson-type assumption for the underlying recurrent event
process nor a parametric assumption on the distribution of
the unobserved frailty. The distribution of the examination
time process is also left unspecified, thus allowing for an arbi-
trary association between the two processes. Consequently,
the proposed method does not provide a direct characteriza-
tion about the dependence between the two processes. The
proposed method is most useful when the distributions of

examination times and follow-up times are not of study inter-
est.

When the covariate effects on the examination time pro-
cess are of interest, a model similar to (1) may be imposed on
the examination times. Specifically, let Oi(t) be the number
of examination times by time t of subject i. Under condi-
tional independence of Ni(·) and Oi(·) given Zi and Xi, a joint
scale-change model can be formulated by coupling Model (1)

with E{dOi(t) | Zi, Xi} = ν(Zi)r0(te
X�

i
β)eX�

i
β dt, where ν is an

unspecified nonnegative function, r0(t) is an unspecified base-
line rate function, and β is the regression coefficient vector.
With such a joint model, our approach can still be applied
directly to estimate α, while the method of Xu et al. (2017)
can be used to estimate β.

Diagnosis tools for the proposed model merit further inves-
tigation. The goodness-of-fit testing procedure for Cox-type
rate function in Sun and Zhao (2013,Section 5.5.4) cannot be
easily adapted to our setting because it requires the specifica-
tion for the examination time process. Our graphical diagnosis
based on Pearson residuals is only exploratory. A formal test
procedure may be possible based on summaries of the Pearson
residuals, with significance level assessed by bootstrap pro-
cedures. On a related issue, a general class of models that
nests both the accelerated mean model and the Cox-type
model would facilitate model selection. This class of model has
been studied under non-informative censoring for univariate

Figure 3. Plots of �̂n(α̂, t) for the Skin Cancer Chemoprevention Trial (- - -, pointwise 95% standard bootstrap confidence
intervals; ·····, pointwise 95% smoothed bootstrap confidence intervals).
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Figure 4. Pearson type residual plot for the Skin Cancer Chemoprevention Trial.

survival data (Chen and Jewell, 2001) and recurrent event
data (Sun and Su, 2008). Extension to handle informative
censoring to recurrent event data and panel count data is
work in progress.

6. Supplementary Materials

Web Appendices and Tables referenced in Section 2.2, 2.3,
and 3 are available with this article at the Biometrics website
on Wiley Online Library. An R package spef (Chiou et al.,
2017) implementing the proposed method is available on the
Comprehensive R Archive Network (R, 2007).
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