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Summary: Panel count data arise when the number of recurrent events experienced by each subject is observed

intermittently at discrete examination times. The examination time process can be informative about the underlying

recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model

for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression

parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of

the event process. A novel estimation procedure for the regression parameters and the baseline rate function is

proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the

sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a

parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination

time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency

of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap

procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well

with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial.

Key words: Frailty; Model-based bootstrap; Poisson process; Recurrent events; Scale-change model; Squared

extrapolation method.
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Accelerated Mean Model for Panel Count Data 1

1. Introduction

Panel count data arise when recurrent events are examined periodically rather than con-5

tinuously due to cost, feasibility, or other practical considerations (Kalbfleisch and Lawless,

1985; Thall and Lachin, 1988); see Sun and Zhao (2013) for a recent review. As a result,

instead of the exact event times, only the numbers of events that occur between successive

examination times are observed. In most applications, the examination times may depend

on the underlying risk of recurrent events, leading to so-called informative examination10

times. For example, in a skin cancer chemoprevention clinical trial, many patients have

multiple recurrences of skin tumors throughout the study, but occurrences of new tumors

were observed only at clinical visits (Bailey et al., 2010). Exploratory data analyses suggested

that patients with higher tumor recurrence rates tend to have more frequent clinical visits as

they may require more medical attention (Li et al., 2011; Sun and Zhao, 2013). In another15

example, Ma and Sundaram (2016) studied the labor progression of women who had no

previous birth experience by treating each 1 cm increment of cervical dilation as a recurrent

event. During labor, vaginal examinations are performed at intermittent time points to assess

for cervical dilation, so only event counts are observed. Obviously, the timing and frequency

of examination are correlated with the dilation process; the faster the cervix dilates, the20

more frequently a woman is getting examined. Negative dependence between the recurrent

event process and the examination process may be possible in other applications. As pointed

out by many authors (e.g., Huang et al., 2006; Sun et al., 2007), statistical methods that fail

to account for such dependency can yield substantial bias and misleading inferential results.

When covariate effects are of interest, Cox-type models are commonly used. The majority25

of the earlier literature on panel count data analysis assumed uninformative examination

times, that is, the examination time process is independent of the recurrent event process

given covariates. For example, Zhang (2002), Wellner and Zhang (2007), and Lu et al. (2009)
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considered pseudo-likelihood and likelihood methods under the nonhomogenous Poisson

process assumption. They showed that both methods are robust against departure from 30

the Poisson assumption as long as the proportional rates model holds. Sun and Wei (2000)

and Hu et al. (2003) considered estimating equation approaches based on cumulative event

counts at different time points. The estimating equation approaches are computationally

more convenient but can be inefficient; improvement in efficiency is possible in certain

situations through generalized estimating equations (Hua and Zhang, 2012). 35

The need to develop statistical methods that can deal with informative examination times

has been increasing recognized. Kim (2006) fully specified both the recurrent event process

and the examination time processes with a shared gamma frailty. Authors, including Sun

et al. (2007), He et al. (2009), Zhao and Tong (2011), and Zhao et al. (2013), have extended

the methodology proposed in Sun and Wei (2000) to allow the two processes to be correlated 40

through a shared frailty with an unspecified distribution. Extending the estimation equation-

based method of Zeng and Cai (2010), Zhou et al. (2017) considered a flexible joint model of

the recurrent event process, the examination time process, and the time to a terminal event,

where the associations between processes are left unspecified. Buzkova (2010) proposed to

model the dependency of examination time process on the history of observed recurrent 45

event counts, thus permits outcome-dependent examination times; the inverse-intensity-rate-

ratio weighting technique (Buzkova and Lumley, 2007) was applied to construct unbiased

estimating equations. Naturally, the validity of the aforementioned methods rely on correct

model specifications for the examination time process and the follow-up time (or a terminal

event time), which may not be of primary interest in practice. In contrast, Huang et al. (2006) 50

and Wang et al. (2013) postulated a frailty proportional rates model for the recurrent event

process, where the distributions of the frailty and the possibly correlated examination times

are left unspecified. Their estimation procedures eliminate the nuisance frailties through a
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Accelerated Mean Model for Panel Count Data 3

conditioning technique and the resulting estimators are robust against departure from the

Poisson assumption on the event processes.55

As an alternative to the Cox-type formulation, we propose an accelerated mean model for

the recurrent event process under informative examination times. This is a new framework

compared to other attempts to go beyond the Cox-type formulation such as the semipara-

metric transformation models studied in Li et al. (2010) and Li et al. (2013), where a correct

model specification for the dependency of cumulative event count on the history of the60

examination times is required, and, more importantly, the regression parameters of the

covariates of interest can be less intuitive to interpret. Motivated by the accelerated failure

time (AFT) model for recurrent event processes (e.g., Lin et al., 1998; Xu et al., 2017), we

assume that the covariates have a time-scale-change effect on the marginal mean cumulative

function. The examination process is allowed to be informative about the recurrent event65

process through a subject-specific multiplicative frailty. The distribution of the frailty is

left unspecified because our estimation procedure eliminates the unobserved frailty via a

conditioning approach in a way similar to that of Wang et al. (2001) and Huang et al.

(2006). Unconditional on the frailty, the model allows for an unspecified association between

the recurrent event process and the examination time process. No model is needed for the70

examination time process, an appealing feature when it is not of primary interest.

We proposed a novel estimation procedure that iterates between updating the cumula-

tive baseline rate function and updating the regression parameter. The squared extrapo-

lation method (SQUAREM) of Varadhan and Roland (2008) is adopted to accelerate the

expectation-maximization type algorithm in estimating the cumulative baseline rate function75

in each iteration. To our knowledge, this is the first time it is applied to semiparametric

estimation; in our case, it increased the speed by a factor of 5 on average. The consistency

of the estimator is established under suitable regularity conditions without the Poisson
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assumption on the recurrent event process. For variance estimation, we propose a model-

based smoothed bootstrap procedure motivated by Sen and Xu (2015) to provide better 80

coverage probabilities than the standard nonparametric bootstrap procedure. The methods

are applied to the skin cancer example along with a goodness of fit assessment.

2. Semiparametric Accelerated Mean Model

2.1 Model Setup

Consider panel count data observed in a fixed time interval [0, τ ] from n independent subjects. 85

For the ith subject, let Ni(t) be the number of events over the interval [0, t], and X i be a

p×1 covariate vector. We assume the event process Ni(·) of the ith subject is only observable

at Ki discrete random time points, 0 = ti0 < ti1 < ti2 < . . . < tiKi
6 τ , where tij is

the jth examination time, j = 1, . . . , Ki. Suppose that the last examination time tiKi
is

also the follow-up time of subject i. The observed panel count data are a random sample 90

{tij, Ki, Ni(tij),X i; j = 1, . . . , Ki}, i = 1, . . . , n.

As in Xu et al. (2017), we assume that the recurrent event process Ni(·), conditioning on

a latent nonnegative frailty variable Zi and covariate X i, has the rate function

λi(t) = Ziλ0(te
X>i α)eX

>
i α, t ∈ [0, τ ], (1)

where α is a p × 1 vector of parameters and λ0(t) is an unspecified, absolutely continuous

baseline rate function. Given Zi andX i, the event process Ni(·) is assumed to be independent 95

of the number of examination time points Ki, and the examination times {ti1, . . . , tiKi
}.

This allows Ni(·) to be dependent on {ti1, . . . , tiKi
} through unobserved frailty Zi after

conditioning on X i. From Model (1), one can derive the conditional mean:

E{Ni(t) |X i, Zi} = ZiΛ0(te
X>i α), (2)

where Λ0(t) =
∫ t
0
λ0(u) du. The effect of the covariates is a scale change on the time of the
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Accelerated Mean Model for Panel Count Data 5

cumulative mean function of the underlying event process, which is why the model is referred100

to as an accelerated mean model.

In contrast to most joint modeling approaches (e.g., He et al., 2009), no Poisson-type

assumption is imposed on Ni(·). Moreover, both the distribution of Zi’s and the conditional

distribution of the examination times given Zi are left unspecified. For model identifiability,

we assume E(Zi|X i) = 1. Then, unconditional on Zi, the cumulative mean function of Ni(·)105

is E{Ni(t)|X i} = Λ0(te
X>i α), which is also of the form of an accelerated mean model. In

a two-arm clinical trial, for example, α identifies the time scale change of the cumulative

mean function in the treated group (X i = 1); the expected number of events by time t

among treated subjects equals the expected number of events by time teα in the control

group (X i = 0), with other risk factors being held the same. The accelerated mean model110

is an extension of the AFT model in the recurrent event setting. Let Uij be the time of the

jth recurrent event from subject i, it can be shown that logUij = −X>i α + εij, where the

independent error vectors (εij : j = 1, 2, . . .), i = 1, . . . , n, follow a common unspecified joint

distribution (Lin et al., 1998; Ghosh and Lin, 2003).

2.2 Point Estimation115

We first consider point estimation for the regression parameter α. For any p × 1 vector a,

consider the transformation t∗ij(a) = tije
X>i a, i = 1, . . . , n, j = 1, . . . , Ki. Let Yi = tiKi

and Y ∗i (a) = Yie
X>i a. Suppose X i is bounded as in Condition C2 of the Supplementary

Materials, define τn,a = τ supi e
X>i a and assume τn,a → τa <∞ as n→∞. Let N∗i (t,a) be

the counting process on the transformed time scale corresponding to the original underlying120

event process Ni(t). Then, unconditional on Zi the cumulative rate function of N∗i (t,a) is

E{N∗i (t,a) |X i} = E [E{N∗i (t,a) | Zi,X i} |X i] = Λ0{teX
>
i (α−a)}, t ∈ [0, τeX

>
i a]. (3)

We use the property that the cumulative rate function of N∗i (t,a) does not depend on X i

when a = α to construct a robust estimation procedure for Λ0(·).
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For subject i, let mij = Ni(tij) − Ni(tij−1) be the number of events in the time interval

(tij−1, tij] and mi = Ni(Yi) be the total number of observed events. To better illustrate our 125

idea, consider a working model for the moment where, conditioning on Zi and X i, the event

process Ni(·) is a Poisson process with intensity (1). Then mij is a Poisson random variable

with mean
∫ tij
tij−1

λi(u) du = ZiΛ0{t∗ij(α)}−ZiΛ0{t∗ij−1(α)}. Conditioning on Zi, X i, mi, and

the Ki examination times, the conditional likelihood based on the observed event count data

is 130

Lc(Φ,α) ∝
n∏
i=1

Ki∏
j=1

[
ZiΛ0{t∗ij(α)} − ZiΛ0{t∗ij−1(α)}

ZiΛ0{Y ∗i (α)}

]mij

=
n∏
i=1

Ki∏
j=1

[
Φ{t∗ij(α)} − Φ{t∗ij−1(α)}

Φ{Y ∗i (α)}

]mij

,

where Φ(t) = Λ0(t)/Λ0(τα) defines a proper distribution function on t ∈ [0, τα]. The con-

ditional working likelihood, Lc(Φ,α), eliminates the frailty variable Zi and is equivalent to

the likelihood of a set of independently interval-censored and right-truncated data. To see

this, consider a hypothetical set of independent random variables {Uijk, i = 1, . . . , n, j =

1, . . . , Ki, k = 1, . . . ,mij} whose distribution function is Φ(t). Assume that Uijk is inde- 135

pendently right truncated by Y ∗i (α) and interval censored in (t∗ij−1(α), t∗ij(α)]. Then its

contribution to the likelihood function is [Φ{t∗ij(α)} − Φ{t∗ij−1(α)}]/Φ{Y ∗i (α)}, and the

likelihood of the hypothetical data coincides with Lc(Φ,α). Thus, given α, the working

nonparametric maximum (conditional) likelihood estimator (NPMLE) of the distribution

function Φ(·) can be obtained by maximizing the conditional likelihood Lc(Φ,α), which 140

motivates the self-consistent algorithm (Turnbull, 1976) described below.

Given α, define the working NPMLE of Φ(·) by Φ̂n(α, ·). Let 0 = t(0) < t(1) < . . . < t(L) 6

τα be the ordered, distinct values of the observed examination times {t∗ij(α);Ki > 1, 1 6 i 6

n, 1 6 j 6 Ki}. For k = 1, . . . , L, define aijk = I{t(k−1) 6 t∗ij−1(α), t∗ij(α) 6 t(k)} and bik =

I{t(k)(α) 6 Y ∗i (α)}, where I(·) is the indicator function. Given the estimate Φ̂
(l)
n (α, ·) at 145

the lth iteration, the updated estimate is obtained by Φ̂
(l+1)
n (α, t) =

∑
k:t(k)6t

d
(l)
k /
∑L

k=1 d
(l)
k ,
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Accelerated Mean Model for Panel Count Data 7

where

d
(l)
k =

n∑
i=1

ki∑
j=1

mij

{
aijkp

(l)
k∑L

k=1 aijkp
(l)
k

+
(1− bik)p(l)k∑L

k=1 bikp
(l)
k

}
,

and p
(l)
k = Φ̂

(l)
n (α, t(k))−Φ̂

(l)
n (α, t(k−1)). At convergence, Λ0(τα) can be estimated by Λ̂n(α, τα) =

n−1
∑n

i=1mi/Φ̂n{α, Y ∗i (α)}, because Equation (3) implies that

E
[
miΦ{α, Y ∗i (α)}−1 |X i

]
= E[E{miΦ{α, Y ∗i (α)}−1 | Yi, Zi,X i} |X i] (4)150

= E[Λ0{α, Y ∗i (α)}Φ{α, Y ∗i (α)}−1 |X i] = Λ0(τα).

This further implies that Λ0(t) can be estimated by Λ̂n(α, t) = Φ̂n(α, t)Λ̂n(τα) from the

relationship φ(t) = λ0(t)/Λ0(τα). Since the conditional likelihood function, Lc, is free from

Zi, the estimation of Φ(·) does not require information from Zi. Even though the above

estimation method is constructed based on the working Poisson assumption, we show in155

Theorem 1 that Λ̂n(α, t) is consistent even without the Poisson assumption.

We now consider the estimation of the parameter α. It follows from Equations (3) and (4)

that when a = α,

E

(
1

n

n∑
i=1

X i

[
miΦ

−1{Y ∗i (α)} − Λ0(τα)
])

= 0.

The estimator of Λ0(τα) suggests an estimating equation for α:

Sn(a) =
1

n

n∑
i=1

X i

[
miΦ̂

−1
n {a, Y ∗i (a)} − 1

n

n∑
j=1

mjΦ̂
−1
n {a, Y ∗j (a)}

]
= 0. (5)

The solution to (5), denoted by α̂n, is our estimator of α.160

To solve (5), we use a derivative-free Barzilai–Borwein spectral method (Barzilai and

Borwein, 1988; La Cruz et al., 2006) that updates the estimate at iteration s by an increment

of the form γ
(s)
n δ

(s)
n , where γ

(s)
n is a scalar spectral steplength and δ

(s)
n is a line search direction.

The estimation algorithm for α̂ is summarized below:

Step 1 Set the initial value for α by α̂(0)
n and Φ(·) by Φ̂

(0)
n (α̂(0)

n , t(k)) = k/L.165

Step 2 Repeat Φ̂
(l+1)
n (α̂(l)

n , t) =
∑

k:t(k)6t
d
(l)
k /
∑L

k=1 d
(l)
k until convergence.
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Step 3 Update α̂(s+1)
n = α̂(s)

n + γ
(s)
n δ

(s)
n , where γ

(s)
n is the steplength and δ

(s)
n is the search direction.

Step 4 Repeat Step Step 2 and Step 3 until convergence.

The initial value α̂(0)
n can be set to zero or random. We fixed α̂(0)

n = 0 in our implementation 170

as our exploration results in negligible differences. We used the SQUAREM implemented in

Varadhan (2014) to accelerate the repetitive estimation of Φ̂n(·) at each update of α̂(s)
n

(Step 2). Upon successful convergence, we used the derivative-free Barzilai–Borwein spectral

algorithm of Varadhan and Gilbert (2009) to update α̂(s)
n (Step 3). The convergence criterion

was based on the `-2 norm with a prefixed tolerance of 0.001 in both Step 2 and Step 4. 175

The estimation procedure worked fine most of the times in our simulation study, but

numerical issues arose occasionally. This is likely to be caused by the existence of very short

follow-up time on the transformed scale Y ∗i and nonzero mi, in which case mi/Φ̂n{α, Y ∗i (α)}

would explode. We consider a heuristic adjustment that replaces mi/Φ̂n{α, Y ∗i (α)} with

(mi+0.01)/[Φ̂n{α, Y ∗i (α)}+0.01] in Equation (5) as suggested by Wang et al. (2013). With 180

the adjustments, the portion of non-converged replicates was less than 5% in smaller sample

size scenarios (n = 50); the convergence was less of an issue for larger sample size (n = 100).

2.3 Consistency Results and Resampling Methods for Inference

We have the following consistency result for α̂n and Λ̂n(α̂n, ·) with proof and necessary

regular condition provide in the Supplementary Materials. 185

Theorem 1: Given conditions C1–C4 and distance d between two functions defined in

the Supplementary Materials, α̂n → α and d{Λ̂n(α̂n, t)1(t ∈ [0, c]),Λ0(t)1(t ∈ [0, c])} → 0,

for any c < τα, almost surely as n→∞.

The convergences of Λ̂n(α̂n, ·) does not achieve the standard n1/2-convergence rate, and the

asymptotic distribution of Λ̂n(α̂n, ·) does not follow the usual Gaussian type distributions. 190
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Accelerated Mean Model for Panel Count Data 9

To illustrate the idea, first consider the ideal case when α is known. As in Section 2.2,

Φ̂n(α, ·) is based on interval censored data with examination times {t∗ij(α);Ki > 1, 1 6

i 6 n, 1 6 j 6 Ki}. In general, Φ̂n(α, t) at a fixed time t does not have n1/2-convergence

rate. For instance, in the current status data with Ki = 1, n1/3{Φ̂(α, t) − Φ(t)} d→ κC,

where κ is some constant depending on the derivative function of Φ(t), C = arg minh{Z(h)+195

h2}, and Z is a standard two-sided Brownian motion process, originating from 0. In the

general mixed case interval censoring setting, the limiting distribution of Φ̂n(α, ·) is an

open problem with limited theoretical results. Groeneboom and Wellner (1992) discussed

the asymptotic of the behavior of the NPMLE in a version of the case 2 censoring model

(Ki = 2). Moreover, Wellner (1995) studied the consistency when each subject gets exactly200

k known examination times, and van der Vaart and Wellner (2000) proved the consistency

of the maximum likelihood estimator of the mixed case interval censoring in the Hellinger

distance; see also Schick and Yu (2000) and Song (2004).

When α is unknown, the study of the asymptotic behavior of Λ̂n(α̂n, ·) and α̂n is even

more challenging. The estimation of α is coupled with the estimation of Λ(α, ·). Therefore,205

unlike the Cox-type or general transformation model (Wellner and Zhang, 2007; Zeng et al.,

2016), the limiting distribution of α̂n involves the limiting distribution and local behavior of

Λ̂n(α̂n, ·) with respect to (α, t) as well as the distribution of the frailty variable. On the other

hand, the conditional estimating equation is constructed to avoid estimating the distribution

of the frailty variable, which makes it different from the estimation of bundled parameters210

studied in Ding and Nan (2011). To the best of our knowledge, the limiting distributions of

α̂n and Λ̂n(α̂n, ·) remains an open problem.

Given the theoretical challenges, we consider making inferences about Λ0(t) and α through

a bootstrap procedure. The standard bootstrap variance estimator is reliable in problems

with standard n1/2-convergence rate, but is known to be inconsistent for NPMLE with215
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non-standard convergence rates in situations such as interval censored data (Abrevaya and

Huang, 2005; Sen et al., 2010; Sen and Xu, 2015). Since the estimation of Λ0(t) was done by

maximizing a working likelihood analogous to that in interval-censored data, the standard

bootstrap estimate of Λ̂n(α, t) may suffer from inconsistency issues even when the true value

α is known; this would further lead to inconsistent estimation in the distribution of α̂n. 220

For this reason, we propose a model-based smoothed bootstrap procedure that provides a

variance estimate with better agreement with the empirical one.

In particular, let Λ̃n(α̂n, t) be a kernel-smoothed version of Λ̂n(α̂n, t). The smoothed

bootstrap sampling procedure consists of two steps. First, a sample of the n subjects is

drawn with replacement from the original data. Second, for the ith subject in the sample, 225

we keep the number of examinations K∗i and the examination times t∗ij j = 1, . . . , K∗i , but

generate the panel counts {N∗i (t∗ij)−N∗i (t∗i,j−1); j = 1, . . . , K∗i }, from a working multinomial

distribution with size m∗i and event probabilities proportional to Λ̃n(α̂n, t
∗
ij)− Λ̃n(α̂n, t

∗
ij−1),

j = 1, . . . , K∗i . The difference from the standard bootstrap is the second step. In the standard

bootstrap sample, one subject may appear multiple times and all the appearances are the 230

same as the observed data. In the smoothed bootstrap sample, the multiple appearances of

the same subject may have different panel counts because they are independently regenerated

from the fitted model. For each bootstrap sample, we apply our estimation procedure to

obtain one draw of α̂n and Λ̂n(α̂n, t). The empirical distributions of bootstrap replicates are

then used to make inferences about α and Λ(t). In the simulation and data analysis, we 235

considered the Nadaraya-Watson kernel regression with a Gaussian kernel and bandwidth

determined by an unbiased cross-validation. More detailed specifications can be found in the

Supplementary Materials.

The consistency of the standard bootstrap procedure depends on the limiting distribution

of Λ̂n(α̂n, ·) and the consistency of α̂n. For current status data, bootstrap consistency has 240
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Accelerated Mean Model for Panel Count Data 11

been explored in Sen and Xu (2015). For panel count data, this remains a challenging

problem. In practice, the standard bootstrap procedure might be applicable for large sample

sizes, but the model-based smoothed bootstrap procedure is generally recommended.

3. Simulation Study

Simulation studies were carried out to evaluate the performance of the proposed estimators.245

Two baseline functions were considered, λ0(t) = 2 or λ0(t) = 2t, for t ∈ [0, τ ] with τ = 10. For

the ith subject, the covariates Xi1 and Xi2 were independently generated from the Bernoulli

distribution with rate 0.5 and the uniform distribution over [0, 1], respectively. The regression

parameters were set at α = (−1,−1)>. The subject-specific frailty Zi’s were generated from

either a gamma distribution with mean 1 and variance 0.5 or a uniform distribution over250

[0, 2], abbreviated by Gamma(2, 2) and Uniform(0, 2). Conditioning on Zi, the recurrent

event process was generated with inter-arrival times from either an exponential distribution

or a uniform distribution first and then thinned so that Model 1. The exponential case results

in a Poisson process on the individual level but the uniform case does not.

Depending on Zi, the examination times were generated as follows. For Zi > 1, Ki was255

generated from a discrete uniform distribution on {1, . . . , 8} and the distinct examination

times ti1, . . . , tiKi
were the order statistics of Ki independent and identically distributed

right truncated (by τ = 10) exponential random variables with rate 2; for Zi 6 1, Ki was

generated from a discrete uniform distribution on {1, . . . , 6} and ti1, . . . , tiKi
were the order

statistics of Ki independent and identically distributed uniform random variable on [0, 10].260

This design implies positive association between the underlying recurrent event process and

the examination time process; subjects with Zi > 1 have a higher event rate and tend to

be examined more frequently than subjects with Zi 6 1. On average, the number of the

recurrent events per subject ranged from 4 to 8 in all the configurations.

Three sample sizes were considered: n = 50, 100, 200. For variance estimation, the boot-265



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

12 Biometrics, 000 0000

strap sample size was set to be 200 for both the standard bootstrap and the model-based

smoothed bootstrap procedures. For each configuration, 1000 datasets were generated and

analyzed. The computation task was demanding, and the SQUAREM implementation in the

baseline hazard function estimation considerably reduced the running time; see Web Table 1

for a timing comparison for selected configurations. 270

Table 1 summarizes the results for the regression coefficient estimation based on 1000

replicates. The estimator appears to be unbiased in most scenarios. Noticeable bias (about

10%) only occurred in a couple of cases under n = 50 with event times generated from a

non-Poisson process, which quickly diminishes as the sample size increases. For all scenarios,

bootstrap standard error estimates from both procedures are reasonably close to the empir- 275

ical standard errors, suggesting that the bootstrap estimator satisfactorily approximate the

true variation for statistical inferences. For small sample (n = 50), the smoothed bootstrap

standard errors appear to be a bit closer to the empirical standard errors and consequently,

yield a coverage rate closer to the nominal level of 95% for the confidence intervals than the

standard bootstrap standard errors. As expected, sample size n = 200 results in the best 280

agreement between the bootstrap standard errors and the empirical standard errors, and

between the empirical coverage rates and the nominal level of the confidence intervals.

Figure 1 presents the estimates and the pointwise 95% confidence intervals for the baseline

cumulative rate function with n = 50. Since the baseline cumulative rate function is estimated

under the transformed time scale, the baseline cumulative rate function can only be estimated 285

between 0 and maxi(Y
∗
i ). This is reflected in Figure 1 where the average of Λ̂n(α̂, t) is almost

indistinguishable from the truth for t ∈ (0, 6), which covers the lower 98% of Y ∗i ’s. Results

with n ∈ {100, 200} were similar and not reported.

In addition to sample size, the performance of the proposed estimator might depends

on the strength and direction of the association between the underlying recurrent event 290
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and examination time processes. In the Supplementary Material, we carried out additional

simulations with different frailty distributions and examined scenarios where the recurrent

event process and the examination time process are negatively correlated. In these settings,

our estimator remains virtually unbiased, with bootstrap standard errors reasonably close

to the empirical standard errors. Although the variance increases with the variance of the295

frailty distribution as expected, the empirical coverage rates are close to the nominal level

in all scenarios. These results confirm the robustness of the proposed estimator.

4. Skin Cancer Chemoprevention Trial

In a double-blinded, placebo-controlled, randomized Phase III clinical trial (Bailey et al.,

2010) conducted at the University of Wisconsin Comprehensive Cancer Center, the primary300

objective was to determine whether the application of difluoromethylornithine (DFMO) as a

chemoprevention agent would lead to a significant reduction in the occurrence of two types

of non-melanoma skin tumor: basal cell carcinomas (BCC) and squamous cell carcinomas

(SCC). This study consisted of 290 patients with a history of skin cancer randomized into

two groups: a treatment group with oral DFMO at a daily dose of 0.5 gram/m2 and a305

placebo group. These patients were followed for 3 to 5 years depending on their entry time.

Throughout the study, patients were scheduled to be examined every six months, but the

scheduled times were followed only loosely instead of exactly. At each examination time, the

number of newly developed skin tumors of each type were counted, measured and removed.

Of the 290 patients, 143 (49.3%) patients were in the DFMO group. The majority of the310

patients were male (n = 174, 60%) and the age at enrollment ranged from 34 to 82 years

with a median of 62 years. After the initial contact, the number of additional follow-up

visits ranges from 0 to 16 with an average of 7.7. Figure 2(a) and Figure 2(b) show the

tile plots for the two types of skin tumor counts observed at each visit. Each tile represents

an examination time in days, with darker gray indicating larger count of new skin tumor315
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occurrences since the last visit. Although it is rare, a patient can develop both BCC or SCC

tumors simultaneously. The figures indicate higher incidence in BCC tumor than in SCC

tumor. The difference between the DFMO group and the placebo group appear to be small.

Table 2 summarizes the results of the data analysis based on three panel counts of skin

tumors: the combined counts of two non-melanoma skin tumor (NMSC) types, the count 320

of BCC, and the count of SCC. Four risk factors were considered as covariates: treatment

group (1 = treatment, 0 = placebo), the number of prior non-melanoma skin tumor from

diagnosis to randomization (ranges from 1 to 35, with mean 4.6), gender (1 = male, 0 =

female), and age at enrollment (1 = age > 65, 0 = otherwise). The estimated standard

errors are obtained from the two bootstrap procedures, each with 500 bootstrap replicates. 325

Gender, age and DFMO treatment did not seem to have any significant effect in reducing

the recurrence either type of skin tumor or non-melanoma skin tumor. Controlling for other

variables, the new skin tumor count was found to be significantly associated with the number

of prior skin cancers. For every additional prior skin tumor, the time to a new BCC (or

SCC) tumor development was estimated to shrink by a factor of exp (−0.155) ≈ 0.856 (or 330

exp (−0.146) ≈ 0.864). These results are consistent with those in Li et al. (2011).

Figure 3 shows the average estimate and average pointwise 95% confidence intervals for Λ(t)

for the three outcome variables. Since the transformed time is inflated by positive coefficient

estimates and large covariate values, we focus on the estimations in the time interval of

(0, 3600) days, where the right end was obtained by transforming the 98th percentile of 335

the observed follow-up time by estimated coefficients with prior tumor count at its average

and the other binary variables at zero. The two bootstrap procedures yielded very similar

confidence intervals at earlier times, but at later times, the intervals from the smoothed

bootstrap becomes noticeably narrower than those from the standard bootstrap for the
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combined non-melanoma tumor and for the squamous cell carcinomas. This may be due to340

the inconsistency of the standard bootstrap.

To check the adequacy of the proposed model on the skin cancer data described in the

main manuscript, we considered a graphical diagnosis based on Pearson type residuals of the

observed counts Ni(tij)’s conditioning on both the covariates Xi and the frailty Zi. It follows

from Equation (3) that E[miΛ
−1
0 {Y ∗i (α)} | Yi, Zi,X i] = Zi. Thus E{Ni(t) | Yi, Zi,X i}345

can be approximated by miΛ̂n(α̂n, t)/Λ̂n{α̂n, Y ∗i (α̂n)}. Under a working Poisson assump-

tion, Pearson type residuals are obtained by standardizing the residuals Ni(t) − E{Ni(t) |

Yi, Zi,X i} with conditional variance Var{Ni(t) | Yi, Zi,X i} = E{Ni(t) | Yi, Zi,X i}. Figure 4

presents the Pearson type residuals against the fitted value E{Ni(t) | Yi, Zi,X i} for the

three outcomes. The residuals are centered about zero and reveal no alarming patterns.350

The variance of the frailty was estimated as 7.8, 13.2, and 16.3 for the three outcomes,

respectively, suggesting the necessity of accounting for the subject heterogeneity beyond the

covariates; the heterogeneity level for SCC appears to be highes among the three.

5. Discussion

We considered a semiparametric accelerated mean model for panel count data under informa-355

tive examination times. The AFT-type model offers an appealing alternative to the popular

Cox-type models with covariate effects modifying the time scale of the cumulative mean

function. In contrast to existing methods, our approach requires neither the strong Poisson-

type assumption for the underlying recurrent event process nor a parametric assumption

on the distribution of the unobserved frailty. The distribution of the examination time360

process is also left unspecified, thus allowing for an arbitrary association between the two

processes. Consequently, the proposed method does not provide a direct characterization

about the dependence between the two processes. The proposed method is most useful when

the distributions of examination times and follow-up times are not of study interest.
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When the covariate effects on the examination time process are of interest, a model similar 365

to (1) may be imposed on the examination times. Specifically, let Oi(t) be the number

of examination times by time t of subject i. Under conditional independence of Ni(·) and

Oi(·) given Zi and X i, a joint scale-change model can be formulated by coupling Model (1)

with E{dOi(t) | Zi,X i} = ν(Zi)r0(te
X>i β)eX

>
i β dt, where ν is an unspecified nonnegative

function, r0(t) is an unspecified baseline rate function, and β is the regression coefficient 370

vector. With such a joint model, our approach can still be applied directly to estimate α,

while the method of Xu et al. (2017) can be used to estimate β.

Diagnosis tools for the proposed model merit further investigation. The goodness-of-fit

testing procedure for Cox-type rate function in Sun and Zhao (2013, Section 5.5.4) cannot

be easily adapted to our setting because it requires the specification for the examination 375

time process. Our graphical diagnosis based on Pearson residuals is only exploratory. A

formal test procedure may be possible based on summaries of the Pearson residuals, with

significance level assessed by bootstrap procedures. On a related issue, a general class of

models that nests both the accelerated mean model and the Cox-type model would facilitate

model selection. This class of model has been studied under noninformative censoring for 380

univariate survival data (Chen and Jewell, 2001) and recurrent event data (Sun and Su,

2008). Extension to handle informative censoring to recurrent event data and panel count

data is work in progress.

6. Supplementary Materials

Web Appendices and Tables referenced in Section 2.2, 2.3 and 3 are available with this paper 385

at the Biometrics website on Wiley Online Library. An R package spef (Chiou et al., 2017)

implementing the proposed method is available on the Comprehensive R Archive Network

(R Core Team, 2017).
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(a) Case I: Z ∼ Gamma(2,2)

0

2

4

6

8

10

12

14

16

Λ
(t)

=
2t

Gamma(2, 2)

0 1 2 3 4 5
time

(b) Case I: Z ∼ Unif(0,2)

0

2

4

6

8

10

12

14

16

Λ
(t)

=
2t

Unif(0, 2)

0 1 2 3 4 5
time

(c) Case II: Z ∼ Gamma(2,2)

0

10

20

30

40

50

Λ
(t)

=
t2

Gamma(2, 2)

0 1 2 3 4 5
time

(d) Case II: Z ∼ Unif(0,2)

0

10

20

30

40

50

Λ
(t)

=
t2

Unif(0, 2)

0 1 2 3 4 5
time
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(g) Case IV: Z ∼ Gamma(2,2)

0

10

20

30

40

50

Λ
(t)

=
t2

Gamma(2, 2)

0 1 2 3 4 5
time

(h) Case IV: Z ∼ Unif(0,2)

0

10

20

30

40

50

Λ
(t)

=
t2

Unif(0, 2)

0 1 2 3 4 5
time

Figure 1. Plots of Λ̂n(α̂, t) with pointwise 95% confidence intervals for n = 50. Cases I–IV
reflects the four combinations between the two choices of λ0(t) and whether the recurrent
event process is a Poisson counting process; Case I: λ0(t) = 2, Poisson process; Case II:
λ0(t) = 2t, Poisson process; Case III: λ0(t) = 2, non-Poisson process; Case IV: λ0(t) = 2t,
non-Poisson process ( , true curve; , empirical average; , pointwise 95% standard
bootstrap confidence intervals; , pointwise 95% smoothed bootstrap confidence intervals).
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(a) basal cell carcinomas
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Figure 2. Tile plot of the skin cancer panel count. Each tile represents an examination
time. Darker tiles represent larger numbers of tumor counts since the last visit.
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(a) non-melanoma skin tumor
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Figure 3. Plots of Λ̂n(α̂, t) for the Skin Cancer Chemoprevention Trial ( , pointwise 95%
standard bootstrap confidence intervals; , pointwise 95% smoothed bootstrap confidence
intervals).
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(a) non-melanoma skin tumor
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(b) basal cell carcinomas
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(c) squamous cell carcinomas
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Figure 4. Pearson type residual plot for the Skin Cancer Chemoprevention Trial.
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Table 1
Summary of simulation data; ESE is the empirical standard error; ASE and ASE∗ are the average standard error
based on the standard bootstrap and the smoothed bootstrap procedure, respectively; CP and CP∗ are the empirical
coverage probability (%) based on the standard bootstrap and the smoothed bootstrap procedure, respectively. Cases
I–IV reflects the four combinations between the two choices of λ0(t) and whether the recurrent event process is a

Poisson counting process; Case I: λ0(t) = 2, Poisson process; Case II: λ0(t) = 2t, Poisson process; Case III:
λ0(t) = 2, non-Poisson process; Case IV: λ0(t) = 2t, non-Poisson process.

Z ∼ Gamma(2, 2) Z ∼ Uniform(0, 2)

case α bias ESE ASE ASE* CP CP* bias ESE ASE ASE* CP CP*

n = 50
I α1 −0.009 0.315 0.309 0.314 93.6 94.2 −0.027 0.298 0.302 0.308 95.7 95.7

α2 −0.077 0.541 0.523 0.536 93.3 95.1 −0.039 0.503 0.520 0.530 95.1 95.4
II α1 −0.018 0.284 0.276 0.282 93.6 95.8 −0.031 0.259 0.259 0.268 95.4 96.4

α2 −0.083 0.492 0.470 0.482 92.2 94.1 −0.050 0.461 0.446 0.457 92.6 93.4
III α1 −0.082 0.226 0.215 0.224 91.6 93.5 −0.091 0.237 0.212 0.225 92.9 95.3

α2 −0.133 0.364 0.351 0.368 93.5 94.6 −0.105 0.390 0.358 0.376 93.7 95.0
IV α1 −0.088 0.206 0.210 0.218 93.0 95.1 −0.085 0.214 0.208 0.218 93.9 95.5

α2 −0.162 0.367 0.342 0.358 90.6 93.3 −0.133 0.355 0.344 0.358 93.5 93.9

n = 100
I α1 0.002 0.213 0.216 0.217 94.1 94.7 0.010 0.199 0.208 0.210 96.2 96.4

α2 −0.013 0.360 0.363 0.367 94.7 94.8 −0.026 0.348 0.354 0.357 95.6 96.5
II α1 0.006 0.216 0.207 0.210 93.2 92.8 0.005 0.186 0.181 0.186 94.8 95.3

α2 −0.019 0.358 0.343 0.348 93.6 93.5 −0.028 0.312 0.312 0.316 95.1 95.8
III α1 −0.048 0.154 0.151 0.154 93.1 93.9 0.018 0.152 0.161 0.158 96.0 94.1

α2 −0.068 0.259 0.251 0.254 93.2 93.1 −0.082 0.267 0.255 0.254 94.2 95.2
IV α1 −0.057 0.151 0.147 0.148 91.8 92.6 −0.064 0.156 0.147 0.149 91.7 94.8

α2 −0.086 0.257 0.241 0.243 92.7 92.5 −0.091 0.252 0.242 0.244 93.7 94.7

n = 200
I α1 −0.003 0.160 0.157 0.157 96.4 94.4 −0.003 0.145 0.150 0.143 95.9 95.7

α2 −0.010 0.275 0.265 0.263 94.7 93.6 −0.018 0.239 0.251 0.241 95.8 94.9
II α1 −0.001 0.143 0.143 0.137 95.8 95.6 0.005 0.140 0.133 0.132 95.5 95.8

α2 −0.013 0.249 0.244 0.234 95.8 94.8 0.006 0.235 0.228 0.222 95.3 95.2
III α1 −0.029 0.122 0.116 0.117 94.6 94.2 −0.010 0.113 0.117 0.109 93.3 94.2

α2 −0.031 0.190 0.188 0.186 95.2 94.4 −0.040 0.190 0.188 0.186 94.7 93.6
IV α1 −0.041 0.111 0.111 0.105 93.7 93.1 −0.035 0.114 0.112 0.111 93.4 93.8

α2 −0.069 0.180 0.178 0.173 93.0 92.6 −0.055 0.186 0.182 0.180 93.5 94.4
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Table 2
Summary of Skin Cancer Chemoprevention Trial data; BCC is basal cell carcinomas; SCC is squamous cell

carcinomas; NMSC is the non-melanoma skin cancer including both BCC and SCC; DFMO is the
difluoromethylornithine group; PE is the point estimate; SE is the standard error obtained from standard bootstrap;

SE* is the standard error obtained from smoothed bootstrap.

NMSC BCC SCC

Risk factor PE SE SE* PE SE SE* PE SE SE*

DFMO −0.003 0.149 0.216 −0.063 0.176 0.186 −0.003 0.124 0.198
Prior tumor count 0.152 0.024 0.048 0.155 0.027 0.026 0.146 0.030 0.032
Male 0.289 0.183 0.285 0.173 0.207 0.190 0.437 0.308 0.378
65 years or older 0.088 0.134 0.196 −0.226 0.196 0.179 0.595 0.339 0.405
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