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New Findings:  

1. What is the central question of this study?  

Can phenotypic traits associated with low response to one mode of training be extrapolated to 

other exercise-inducible phenotypes? The present study investigated whether the low 

responder rats to endurance training are also low responders for resistance training.  

2. What is the main finding and its importance?  

By resistance training, high responder rats to aerobic exercise training (HRT) improved more 

maximal strength compared to the low responder rats (LRT). However, greater gains in 

strength in HRT was not accompanied with muscle hypertrophy suggesting that these 

responses observed could be mainly of neural origin.   
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ABSTRACT 

The purpose of this study was to determine whether rats selectively bred for low and high 

response to aerobic exercise training cosegregate for differences in muscle adaptations to 

ladder climb resistance training. Five high responder (HRT) and five low responder (LRT) 

rats completed the resistance training while six HRT and six LRT rats served as sedentary 

controls. Before and after the 6-week intervention, body composition was determined by 

DXA. Before tissue harvesting, right triceps surae muscles were loaded by electrical 

stimulation. Muscle fiber cross-sectional areas, nuclei per cell, phosphorylation status of 

selected signaling proteins of mTOR and Smad pathways, and muscle protein, DNA, and 

RNA concentrations were determined for the right gastrocnemius muscle. Daily protein 

synthesis rate was determined by deuterium oxide (D2O) method from the left quadriceps 

femoris muscle. Tissue weights of leg and arm muscles were measured. In response to 

resistance training, maximal carrying capacity was greater in HRT (~3.3 times per body 

mass) than LRT (~2.5 times body mass), indicating greater improvements of strength in 

HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT 

was not observed. Furthermore, noteworthy changes within the experimental groups or 

differences between groups were not observed in the present measures. Lack of hypertrophic 

muscular adaptations despite considerable increases in muscular strength suggest that 

adaptations to the present ladder climb training in HRT and LRT rats were largely induced by 

neural adaptations.  



 

 

4 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

1. INTRODUCTION 

Resistance training (RES) is widely recommended as a part of physical activity guidelines for 

the improvement of functional capacity and cognitive function, and for the management and 

prevention of several chronic degenerative diseases (Steele et al. 2017). Compared to 

humans, animal RES models permit specific control of environmental conditions while 

nutritional intakes can be regulated and monitored. Animal studies enable harvesting of 

several tissue types as well as experimental manipulations, such as pharmacological 

interventions, that are not possible to implement with humans (Cholewa et al. 2014). Thus, an 

animal model of RES that closely resembles characteristics of physical activity for humans is 

of utmost importance. 

Various experimental models have been utilized in rats aiming to mimic human responses to 

RES (Lowe & Alway 2002). One of those models is weighted ladder climbing in which rats 

climb a vertical ladder (~80° incline) with progressively increased weights affixed to the base 

of the tail over the course of several weeks of RES. With ladder climbing RES, the loading 

parameters such as volume, intensity and frequency can be planned and RES adaptation in 

climbing performance can be determined by assessing the maximal load the rats can carry. 

Furthermore, to avoid extra stress, there is no need for external motivators such as food 

reward or negative reinforcements (e.g. electric shock or food deprivation) to execute the 

climbing task (Hornberger & Farrar 2004; Strickland & Smith 2016).  

Considerable inter-individual differences in the responsiveness to aerobic training have been 

observed in highly standardized training programs in humans (Bouchard & Rankinen 2001) 

and in animals (Koch et al. 2013). Similarly, large inter-individual variability has been 

observed in muscle strength and size gains by chronic RES in humans (Ahtiainen et al. 2016; 
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Hubal et al. 2005). While individuality in responses to RES is acknowledged, investigating 

determinants of this phenomena is gaining widespread popularity (Bamman et al. 2007; 

Davidsen et al. 2011; Mobley et al. 2018; Ogasawara et al. 2016; Petrella et a., 2013). 

However, whether the individual responsiveness to aerobic training and RES are similar 

between each other is currently largely unknown. We recently utilized ladder-climbing RES 

with rats selectively bred for high (HRT, high-response trainer) and low (LRT, low-response 

trainer) response to aerobic exercise training (Nokia et al. 2016) and observed a greater 

increase in strength (i.e. the maximal amount of weight the rats were able to carried) in the 

HRT compared to LRT rats. Based on that observation, we hypothesized that HRT would 

demonstrate larger skeletal muscle adaptations to ladder climbing RES compared to LRT 

rats. 

 

2. MATERIALS AND METHODS 

Ethical Approval 

All the experimental procedures were implemented in accordance with the directive 

2010/63/EU of the European Parliament and approved by the National Animal Experiment 

Board, Finland (Permit number ESAVI-2010-07989/Ym-23). This work complies with the 

animal ethics checklist outlined by Experimental Physiology. Animals received humane care 

and every attempt was made to reduce animal suffering and discomfort. At the end of the 

experiments, animals were quickly euthanized with a rising concentration of CO2, and killed 

by cardiac puncture.  

Animals 
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The animals used in the study were adult male LRT (n=12) and HRT (n=12) rats, 

representing the 18th generation of these rat lines developed by selective breeding (Koch et 

al. 2013). Upon arrival at the University of Jyväskylä, the rats were allowed to acclimate for 

4–5 weeks. After this, when the rats were ~6 months old, they were tested for their response 

to aerobic exercise training. All rats were subjected to an 8-week exercise regimen, during 

which they were trained on a motorized treadmill three times a week as previously described 

(Koch et al. 2013). Maximal running capacity was tested before and after the training period 

to determine the phenotype for response to aerobic training. Following the aerobic training 

period, the rats were randomly divided to resistance training (HRT-RES, n=6; LRT-RES, 

n=6) or sedentary (HRT-CONT, n=6; LRT-CONT, n=6) control groups. One month after 

completion of the aerobic exercise training, the RES group was subjected to 6-week 

resistance training while the CONT groups were not subjected to any physical exercise and 

spent the entire time in their home cage (Tecniplast 1354, Italy; size: 595mm× 380mm× 200 

mm).  

All animals were single housed and had free access to tap water and standard pelleted rodent 

food (R36; Lantmännen, Kimstad, Sweden). Room temperature and humidity were 

maintained at 21 ± 2°C and 50 ± 10%, respectively. Body mass and chow consumption was 

monitored weekly. During the entire resistance training intervention, the average daily chow 

consumption normalized to body mass was significantly greater (p < 0.05) in LRT-CONT 

(0.0505 (0.0038) g/g) compared to HRT-RES (0.0412 (0.0043) g/g). The rats were 

maintained on a 12 h–12 h light–dark cycle, with lights on at 08.00 h. All procedures were 

conducted during the light portion of the cycle. 

Resistance training 
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The 6-week resistance training (RES) protocol was a modification of previous study by 

Hornberger & Farrar (2004). The HRT and LRT rats of RES group were familiarized with a 

custom-made vertical ladder (height × width: 90 cm × 15 cm, 2 cm separation between steps, 

85 degrees incline) on three occasions during the first week. On the first day, the rats climbed 

without an extra load. On the next 2 days, a load pouch containing lead weights 

corresponding to <50% of the rat’s body weight was fixed to the proximal part of the tail with 

double-sided tape and a Velcro strap. One rat in LRT and one in HRT group refused to climb 

acceptably during the familiarization and were excluded from the study. Next, the rats (LRT, 

n=5; HRT, n=5) began a progressive RES three times a week (Monday, Wednesday and 

Friday). The first load was 75% of the body weight of a rat and thereafter the load was 

increased in 30 g increments for each climb until the rat could no longer reach the top of the 

ladder. The highest load the rat successfully carried to the top of the ladder was considered as 

the maximal carrying capacity for that session. Subsequent training sessions consisted of nine 

trials. During the first three climbs, 50, 75 and 90% of the previous maximal load was used. 

Then the load was increased by 30 g until a new maximal load was reached. Three trials were 

then attempted with this new maximal load. Between the climbing trials, the rats were 

allowed to rest for 90 s in an open chamber (length × width × height: 30 cm × 15 cm × 11 

cm) located at the top of the ladder. Note that the rats were not punished or rewarded to 

motivate them to climb; only occasionally a gentle push to the backside of the rat was applied 

to start the climb. 

We found that with very high loads rats mostly refused to climb from the bottom of the 

ladder and started to climb down to the floor. Therefore, the rats were placed to the higher 

position on the ladder whereof the rats started to climb to the top due to their inquisitive 

nature. Thus, the actual climbing height was approximately 60 cm and the rats performed 
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approximately 5-6 repetitive muscle actions per limb in one climb before reaching the top of 

the ladder. Due to voluntary nature of the present training method, rats refused to exercise 

once or twice out of 18 sessions during the 6-week RES period. 

Body composition 

Whole-body DXA scans (LUNAR Prodigy, GE Medical systems, WI, U.S.) were performed 

before and after the RES intervention. The rats were anesthetized in an induction chamber 

with 3-4% isoflurane (Isoba vet., Intervet/Shering-Plough, Uxbridge, UK). Anesthetized rats 

were placed on the centerline of scanning bed in the prone position. Throughout the 

measurement, anesthesia was maintained by a gas inhalation through a facemask 

continuously supplied with 1-2% isoflurane. The facemask was connected to open-circuit gas 

anesthesia equipment (Harvard Apparatus with MSS-Vaporizer, Kent, UK). Before the 

measurements, calibration of DXA scanning equipment was done according to the 

manufacturer’s guidelines. The small-animal mode of the enCORE software (GE Healthcare, 

v. 14.10.022) was used to obtain fat and lean mass content in total body. Moreover, lean mass 

of the right leg was determined by manually adjusting cut positions for region of interest 

(ROI) within the area encompassing the thigh and shank muscles. 

Acute loading by muscle stimulation procedure 

To induce equal loading to muscle tissue for each rat in HRT-RES and LRT-RES, muscle 

twitches were elicited through electrical stimulation of triceps surae muscle complex 3 - 4 

days following the last RES session. The measurement setup was modified from the protocol 

designed by Torvinen et al. (2012) that stimulates specifically the gastrocnemius muscle. The 

rats were anesthetized (as in DXA measurements), and placed in a custom-built dynamometer 
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designed for non-invasive functional investigation of the right triceps surae muscle. The 

dynamometer allowed isometric and dynamic measurements in which range and rate of 

movement can be adjusted. The dynamometer had a built-in strain-gauge sensor and two 

transcutaneous electrodes to elicit and measure twitch responses under isometric or dynamic 

conditions. The right lower hindlimb was shaved and conductive electrolyte gel was applied 

at the area of attachment of electrodes. The foot was positioned and fixed on the pedal and 

isometric force was measured at 90 degrees of knee and ankle angle.  

Isometric maximal twitch (i.e. recruitment curve) was elicited through double twitch (DT) 

technique (electrical stimulation length 1ms, interval 10ms) with a rest period between trials 

of 30-45s. Intensity was increased with 1mA steps until maximal DT intensity was reached. 

The force signal from the strain-gauge sensor was amplified, converted to digital signals by a 

32-bit analog to digital converter (Power 1401, CED Ltd., Cambridge, U.K.), and processed 

using dedicated software (Signal software, CED Ltd.). Maximal torque and maximal rate of 

torque development were analyzed. The dynamic stimulation trial was utilized with 30% of 

maximal DT intensity by the single twitch technique (stimulus length 1ms with 100Hz) with 

60 - 120 degrees of ankle angle movement. Stimulation was applied 20s continuously per set 

of 10 repetitions (eccentric 1s - concentric 1s). Three sets were performed with 1min rest 

period between each set. Force and movement of the footpad (angle) were analyzed 

throughout the stimulation period. Isometric maximal twitch (1ms stimulus, 100Hz for 1s) 

was applied immediately after each set of dynamic contractions to examine acute fatigue. 

Following the entire loading protocol, maximal isometric torque decreased to 24 ± 6 % and 

25 ± 8 %, and maximal rate of torque development decreased to 36 ± 16 % and 31 ± 16 % 

from the pre-loading level in HRT-RES and LRT-RES, respectively, with no statistically 

significant differences between the groups. Immediately after the stimulation test, the rats 
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were anesthetized by exposure to CO2, the thoracic cavity was opened, and death was verified 

by cardiac puncture in the right ventricle. 

Blood count  

Blood samples were collected into K-EDTA tubes via cardiac puncture at necropsy. The 

blood samples were immediately analyzed using an automated KoneLab device (Thermo 

Scientific, Vantaa, Finland) for the content of white blood cells (WBC), content of red blood 

cells (RBC), concentration of hemoglobin (HGB), hematocrit (HCT), mean red cell volume 

(MCV), mean cell hemoglobin content (MCH), content of platelets (PLT), relative content of 

lymphocytes (LYMPH), absolute and relative content of the mixture of monocytes, basophils, 

and eosinophils (MXD), absolute and relative content of neutrophils (NEUT), and red cell 

distribution width (RDW_CV). 

Muscle tissue Processing 

At necropsy, selected hind limb (gastrocnemius, soleus, plantaris, flexor hallucis longus, 

extensor digitorum longus and quadriceps femoris) and forelimb (triceps, biceps) muscles 

were immediately removed, weighed, and frozen in liquid nitrogen. The muscle weights are 

reported as average weights of the left and right side. For immunohistochemistry, the 

proximal part of right gastrocnemius muscle was mounted in an O.C.T. embedding medium 

(Tissue Tek, Sakura Finetek Europe) with vertical orientation of muscle fibers and snap-

frozen in isopentane cooled with liquid nitrogen. The remaining part of gastrocnemius and 

the other muscle samples were snap-frozen in liquid nitrogen and stored at -80 °C for further 

analysis. 

Muscle immunohistochemistry  
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Cross-sections (8 μm) were cut on a cryostat microtome (Leica CM3000, Leica Biosystems, 

Nussloch GmbH, Germany) at -24°C. Cross-sections were immunohistochemically stained 

with dystrophin antibody (1:660, ab15277, rabbit polyclonal, Abcam, Cambridge, UK or 

1:200, NCL-DYS2, mouse monoclonal, Novocastra, Leica Biosystems, Nussloch, Germany) 

for visualization of borders of muscle fibers, combined with slow myosin heavy chain 

antibody for counting the type 1 fiber proportion (1:100, BA-F8, mouse monoclonal, 

Developmental Studies Hybridoma Bank). 

All dilutions were made in PBS. Sections were washed for 5 minutes in PBS, permeabilized 

in 0.2% Triton X-100 (Sigma-Aldrich, St. Louis, Missouri, USA) for 10 minutes, blocked 

with 5% goat serum (Gibco, Thermo Fisher Scientific Inc.) for 30 minutes at room 

temperature and incubated overnight with primary antibody dilution in 1% goat serum at 4 

C°. After washing the slides for 10 minutes in PBS the sections were incubated for 60 

minutes in dark with Alexa Fluor® 488 or 555 goat anti—mouse IgG and goat anti-rabbit 

IgG secondary antibody (Molecular Probes, Thermo Fisher Scientific Inc.) diluted 1:233 in 

1% PBS at room temperature. After washing the fluorochrome-stained sections for 10 

minutes in PBS, the slides were mounted and nuclei were stained with ProLong® Diamond 

Antifade Mountant with DAPI mounting medium (P36971, Life Technologies).  

Sections were color imaged with an UPlanFI 10x/0.30 objective, mounted on an Olympus 

BX-50 fluorescent microscope (Olympus, Japan), using a ColoView III camera and AnalySIS 

software (Soft Imaging Systems GmbH, Germany). The average fiber number in randomly 

selected fields of high quality was 1284 ± 634 fibers per section. Fiber size, distribution of 

Type I and Type II fibers, and a number of nuclei per fiber were analyzed using ImageJ (U.S. 

National Institutes of Health, Bethesda, MD, USA) (NIH) and Matlab (The MathWorks, Inc., 
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Natick, Massachusetts, US). Since only 0.52 % of all the fibers were identified as Type I, the 

results are presented as Type I and II fibers combined. One sample of HRT-RES group was 

excluded from the analyses due to low sample quality. 

Western immunoblot analyses 

The part (~50 mg) of the lateral portion of the right gastrocnemius muscle was hand-

homogenized in ice-cold buffer with proper inhibitors: 20 mM HEPES (pH 7.4), 1 mM 

EDTA, 5 mM EGTA, 10 mM MgCl2, 100 mM b-glycerophosphate, 1 mM Na3VO4, 2 mM 

DTT, 1 % Triton X-100, 0.2 % sodium deoxycholate, 30 mg/mL leupeptin, 30 mg/mL 

aprotinin, 60 mg/mL PMSF, and 1 % phosphatase inhibitor cocktail (P 2850; Sigma, St 

Louis, Missouri, USA). Total protein content was determined using the bicinchoninic acid 

protein assay (Pierce Biotechnology, Rockford, IL) with KoneLab device (Thermo Scientific, 

Vantaa, Finland). 

Muscle homogenates containing 50 μg of protein were solubilized in Laemmli sample buffer 

and heated at 95°C to denature proteins. Proteins were separated by SDS-Page using 4–20% 

Criterion gradient gels (Bio-Rad Laboratories, Richmond, CA) and transferred to 

nitrocellulose membranes. The uniformity of the protein loading was confirmed by staining 

the membrane with Ponceau S. After blocking (Odyssey Blocking Buffer (PBS), LI-COR 

Biosciences, Lincoln, NE, USA), the membranes were probed overnight at 4°C with 

following primary antibodies (Rabbit IgG) to determinate differences in phosphorylation 

status between HRT-RES and LRT-RES: mTOR (Ser2448), AS160 (Thr642), PKCζ/λ 

(Thr410/403), p70S6K (Thr389), AMPKα (Thr172), Akt1 (Ser473), Smad3 (Ser423/425), 

Smad2 (Ser245/250/255), p38 MAPK (Thr180/Tyr182), p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204), S6 Ribosomal Protein (Ser240/244), 4E-BP1 (Thr37/46), SAPK/JNK 
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(Thr183/Tyr185), PLD1 (Thr147), FAK (Tyr576/577) and CaMKII (Thr286) (all diluted at a 

ratio 1:1000). Also α-Tubulin (Mouse IgG) was analyzed as a loading control (1:3000 

dilution). Odyssey anti-rabbit IRDye 800CW and anti-mouse IRDye 680RD (LI-COR 

Biosciences, Lincoln, NE, USA) were used as secondary antibodies (1:15000 dilution). The 

blots were scanned and quantified by using Odyssey CLX Infrared Imager of Li-COR and 

manufacturer's software. If re-probing was needed, the membranes were incubated for 10 min 

in 0.2MNaOH at RT, washed with TBS and re-probed with appropriate antibodies. 

Immunoblots of PLD1 (Thr147) and FAK (Tyr576/577) were too faint to be analyzed. All 

samples and results were normalized to α-Tubulin and Ponceau S. All antibodies were 

purchased from Cell Signaling Technology (Danvers, MA, USA). 

Muscle fractionation and determination of protein bound alanine enrichment  

Myofibrillar, sarcoplasmic, collagen and mitochondrial protein synthesis rates were measured 

from the left quadriceps muscle by deuterium oxide (D2O) method (Brook et al. 2017). From 

the control rats, five HRT-CONT and four LRT-CONT were included to the experiment. At 

the start of the RES experiment, the rats were provided with 7.2ml/kg D2O (i.g.). Thereafter, 

animals were provided with free access to drinking water enriched with 2% (v/v) of D2O 

throughout the RES period. Muscle myofibrillar, collagen, sarcoplasmic and mitochondrial 

proteins were extracted by homogenizing ~50 mg of muscle in ice-cold homogenization 

buffer pH7.5 (Tris-HCL 50mM, EDTA 1mM, EGTA 1mM, β-glycerophosphate 10mM, NaF 

50mM) containing a protease inhibitor tablet (Roche) and sodium orthavanadate 0.5mM, 

rotated for 10 min. The supernatant containing sarcoplasmic proteins was collected after 

centrifugation at 13,000 g for 5 min. After washing, the remaining pellet was dounce 

homogenized in mitochondrial extraction buffer (MOPS 20mM, KCl 110mM and EGTA 
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1mM) and centrifuged at 1000 g for 5 min to pellet myofibrillar and collagen fractions. The 

supernatant containing mitochondria was removed and pelleted by centrifugation at 17,000 g. 

Myofibrillar proteins were extracted from myofibrillar and collagen fractions by solubilizing 

in 0.3M NaOH and separated from the insoluble collagen by centrifugation, with myofibrillar 

proteins precipitated using 1 M perchloric acid (PCA). Myofibrillar, collagen, mitochondrial 

and sarcoplasmic protein-bound AA were released using acid hydrolysis by incubating in 

0.1M HCl in Dowex H+ resin slurry overnight before being washed and eluted from the resin 

with 2M NH4OH and evaporated to dryness. Resulting AA were derivatized to their N-

methoxycarbonyl methyl esters and alanine enrichment determined by gas chromatography 

tandem mass spectrometry (TSQ 8000 Thermo Finnigan, Thermo Scientific, Hemel 

Hempstead, UK) alongside a standard curve of known DL-Alanine-2,3,3,3-d4 enrichment to 

validate measurement accuracy of the machine.  

Body water enrichment and determination of fractional synthetic rate  

Body water enrichment was determined from blood samples collected at necropsy and used 

to represent the average enrichment throughout. 100 µl of plasma was incubated with 2 µl of 

10 M NaOH and 1 µl of acetone for 24 h at room temperature. Following incubation, the 

acetone was extracted into 200 µl of n-heptane, and 0.5 µl of the heptane phase was injected 

into the GC-MS/MS for analysis. A standard curve of known D2O enrichment was run 

alongside the samples for calculation of enrichment. Fractional synthetic rate (FSR) was 

calculated from the incorporation of deuterium-labeled alanine into protein, using the 

enrichment of body water [corrected for the mean number of deuterium moieties incorporated 

per alanine (3.7)] as the surrogate precursor labeling. The equation used was  
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where APEala equals deuterium enrichment of protein-bound alanine, APEp indicates mean 

precursor enrichment over the time period, and t is time. 

Skeletal muscle protein, DNA, and RNA concentrations 

To determine muscle protein, DNA, and RNA concentrations (i.e. translational 

efficiency/capacity), ∼15 mg of the medial portion of the right gastrocnemius muscle tissue 

of HRT-RES and LRT-RES was pulverized in liquid nitrogen and homogenized in 1ml 0.2 M 

PCA. After centrifugation at 4
o
C at 11,000 rpm for 8 min to form a pellet and washing with 

1ml 0.2M PCA (washing repeated twice), the pellet was resuspended in 800µl 0.3M NaOH, 

and incubated at 37°C for 2 x 20 min to dissolve the pellet. The samples were gently vortexed 

before, in between and after the incubations. Total protein concentration was analyzed as 

described above (see western immunoblot analyses). Thereafter, proteins were precipitated 

with 400µl 1M PCA before centrifugation at 4°C at 5’000 rpm for 5 min. Next, 300µl 0.2M 

PCA was added to supernatant of each sample and centrifuged at 4°C at 5’000 rpm for 5 min 

before removal of the supernatant for quantification of RNA by NanoDrop Lite 

Spectrophotometer (Thermo Scientific). The remaining pellet was resuspended in 1ml 2M 

PCA and incubated at 70°C for 1 h before centrifugation at 4°C at 5’000 rpm for 5 min. Next, 

300µl 2M PCA was added to supernatant of each sample and centrifuged at 4°C at 5’000 rpm 

for 5 min before removal of the supernatant for quantification of DNA by NanoDrop Lite 

Spectrophotometer (Thermo Scientific). 
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Muscle Fibre Contractility 

Female HRT (n = 6) and LRT (n = 6) rats of 13
th

 generation were previously used to study 

the contractility of permeabilized muscle fibres following 8-week of phenotyping aerobic 

training (i.e. age of ~8-months) as previously described (Mendias et al. 2011; Mendias et al. 

2015). Briefly, bundles of fibres that were approximately 5 mm in length and 0.5 mm in 

diameter were dissected from the deep aspect of the tibialis anterior muscle. Bundles were 

then placed in skinning solution for 30 min to permeabilize sarcolemmal membranes, and 

then in storage solution for 16 h at 4°C. Bundles were then stored at -80°C. On the day of 

fibre contractility testing, bundles were thawed on ice, and individual fibres were plucked 

from bundles using fine mirror-finished forceps. Fibres were then placed in a chamber 

containing relaxing solution and secured at one end to a servomotor (Aurora Scientific) and 

the other end to a force transducer (Aurora Scientific) using two ties of 10-0 monofilament 

nylon suture at each fibre end. The length of the fibre was adjusted to obtain a sarcomere 

length of 2.5µm, as assessed with a laser diffraction measurement system. The average fibre 

CSA was calculated assuming an elliptical cross-section, with diameters measured at five 

positions along the fibre from high-magnification images at two different views (top and 

side). Maximum fibre isometric force (Fo) was elicited by submerging the fibre in a solution 

containing a super-physiological concentration of calcium. Specific force of fibres (sFo) was 

determined by dividing Fo by fibre CSA. Fibres were categorized as fast or slow by 

examining their force response to rapid, constant-velocity shortening contraction. Ten fast 

fibres were tested from each tibialis anterior muscle from both groups.  

Statistics 

Statistical analyses were carried out using IBM SPSS Statistics version 24 software (SPSS 
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Inc., Chicago, IL, USA). The non-parametric tests were used since each experimental group 

consisted of a low number of rats. For pairwise comparisons, a Mann-Whitney U Test was 

used to evaluate differences between the groups and a Wilcoxon Signed-Ranks Test was used 

to evaluate changes within the groups. A Friedman Test was applied for repeated measures 

within the groups and a Kruskal-Wallis H Test for comparisons between the multiple groups. 

Post hoc analysis was conducted with a Bonferroni correction. The Spearman's rank 

correlation coefficient was utilized to examine associations between the variables. p ≤ 0.05 

was considered as statistically significant. The data are expressed as mean and standard 

deviation (SD). 

 

3. RESULTS 

Before the RES intervention, the adaptive response in running capacity to 8-week aerobic 

training period was 7 (5) % (Z=-2.023, p=0.043) in the LRT-RES (n=5) while in the HRT-

RES (n=5) the response of 30 (16) % (Z=-2.023, p=0.043) was significantly greater (U=0.0, 

p=0.009).  

Following the 6-week RES intervention, the maximal extra weight carried up during a single 

climb was significantly greater in HRT compared to LRT (U=1.0, p=0.016); the maximal 

carried load normalized to the total body mass of the animal was 3.27 (0.43) in HRT and 2.49 

(0.25) in LRT (Figure 1).  

Insert Figure 1 here 

Selected observations of RES intervention: Determined by DXA, total body fat increased in 

all groups except in HRT-RES during the intervention (Table 1). The Pre-values or changes 



 

 

18 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

during the intervention in the total body fat mass, total body lean mass or leg lean mass did 

not differ between the groups. When data of HRT-RES and LRT-RES were combined and 

compared with the combined data of HRT-CONT and LRT-CONT, changes during the RES 

period in the total body lean mass determined by DXA were greater in sedentary controls 

than resistance trained rats (U=98.0, p=0.011). Following the intervention, soleus muscle wet 

tissue weight related to body weight was smaller in HRT-RES than in HRT-CONT 

(X
2
(3)=8.134, p=0.049) (Table 2). Other statistically significant and relevant associations, 

changes within the experimental groups or differences between the groups were not observed 

in body composition, blood analyses (Table 3), skeletal muscle protein, DNA or RNA 

concentrations, immunohistochemical and immunoblot analyses (Table 4) or protein 

synthesis investigated in this study. 

Insert Tables 1 - 4 here 

Insert Figure 2 here beside the table 2 

For permeabilized muscle fibre contractility experiments, there was no difference in fibre 

CSA (6776 ± 860 vs. 7303 ± 1038 µm
2
, U=12.0, p=0.394), Fo (0.75 ± 0.11 vs. 0.77 ± 0.07 

mN, U=14.0, p=0.589), or sFo (111.0 ± 14.1 vs. 106.8 ± 17.4 kPa, U=23.0, p=0.485) in HRT 

and LRT rats, respectively.  

 

4. DISCUSSION 

In the present study, ladder climbing resistance training induced only minimal physiological 

responses in male HRT and LRT rats in comparison with their non-trained counterparts, 

whether compared by groups separately or by HRT and LRT groups combined. While 
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muscular strength (i.e. load carrying capacity) in both HRT and LRT ladder climbing groups 

improved remarkably, morphological adaptations in skeletal muscles were absent.  

An open scientific question is whether phenotypic traits associated with responsiveness to 

one mode of training can be extrapolated to other exercise-inducible phenotypes (i.e. intra-

individual variability). The present HRT/LRT rat model has been developed by divergent 

artificial selective breeding for low and high adaptation response to aerobic exercise training 

in a genetically heterogeneous stock of rats. The underlying theory is that a set of modifier 

genes, which cause the variation in adaptation capacity and other phenotypic endpoints (such 

as cardiac output or oxygen utilization within exercising skeletal muscle), will segregate with 

adaptation for oxidative capacity in the LRT and HRT rats (Koch et al. 2013).  

Interestingly, significant difference occurred between HRT and LRT in RES-induced strength 

gains in the present study. This finding suggest that individual responsiveness to aerobic and 

resistance exercise training are somewhat similar, at least with regards to running capacity 

and strength gains, respectively. In previous observations, single muscle fibre contractility in 

vitro did not differ between HRT and LRT rats indicating that other factors than intrinsic 

muscle fibre contractile characteristics explain the training adaptations. However, no 

differences were observed between the trained HRT and LRT rats in any muscular or 

systemic level variable measured in this study.  

In previous studies using a ladder-climbing model for resistance training (unconditioned male 

or female Sprague Dawley, Wistar or Fisher 344 rats of different ages), the muscle 

hypertrophy has been observed in some studies in muscle weight (~11-23%) (Duncan et al. 

1998; Gil & Kim 2015; Harris et al. 2010; Hornberger & Farrar 2004; Jung et al. 2015; Lee 

et al. 2004; Lee et al. 2016; Luciano et al. 2017; Molanouri Shamsi et al. 2016) or muscle 
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fiber CSA (~20-88%) (Begue et al. 2013; Cassilhas et al. 2012; Jung et al. 2015; Peixinho-

Pena et al. 2012; Prestes et al. 2012) but in some studies hypertrophy has been absent (de 

Sousa Neto et al. 2017; Deschenes et al. 2000; Deschenes et al.  2015; Kim et al. 2012; 

Neves et al. 2016; Safarzade & Talebi-Garakani 2014; Souza et al. 2014) when compared to 

non-training controls. The high variation between the studies in loading protocols and 

examined skeletal muscles prevents conclusions of muscle-specific dose-response 

relationship to RES. Nevertheless, it could be speculated that ladder climbing RES in rats 

requires relatively high training volume, and consequently lower intensity (i.e. extra carrying 

load), in order to induce statistically significant morphological changes in most of the trained 

muscles.  

In the present study, we focused on resistance training responses especially in 

m.gastrocnemius since it was electrically stimulated before collecting the skeletal muscle 

samples and it is a commonly studied muscle for endurance training adaptations. Because we 

examined in detail only few selected skeletal muscles, the training responses in other muscles 

cannot be verified. However, when considering the findings of the previous studies and the 

present experiment, muscle size responses may explain only marginally strength gains in 

ladder climbing RES model. Thus, neural responses (i.e. motor learning) may be important 

mechanism in training adaptations. We have previously studied adult hippocampal 

neurogenesis (AHN) with the present rats and, unlike in aerobic training, we found no effect 

of RES on AHN (Nokia et al. 2016). Therefore, ladder climbing RES seem to include other 

adaptations in central nervous system than AHN.  

The ladder climbing RES model with rats, or mice, has several strengths. The training is 

relatively stress free to animals and allows precise monitoring of the loading parameters (i.e. 
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external load, number of climbs, climbing distance and duration, and recovery periods) and 

records of performance throughout the intervention. However, there are also some limitations 

that should be taken into consideration. The climbing consist of mainly concentric muscle 

actions and the lacking of eccentric component may hinder muscle hypertrophy. The 

climbing training can be considered a whole body workout but muscle mass gains appears to 

be typically modest and localized only in a few loaded muscles. Therefore, adaptations in 

body composition will be minor and e.g. investigations of health benefits of training in 

systemic level may be challenging, as also indicated by the data of the present study. 

Nevertheless, the ladder climbing RES model, when carried out with the present loading 

protocol, is applicable to induce great maximal strength adaptations while hypertrophy is 

minor or non-existing. Thus, the present RES model allows studying gains in muscle function 

(i.e. strength) without significant hypertrophic response in skeletal muscles.  

Although the present HRT rats got stronger by the RES, drawing conclusions of the present 

findings to the physical training outcomes in humans should be done with caution. Changes 

in strength following RES may be induced by both morphological adaptations in skeletal 

muscles and neural factors (Balshaw et al. 2017). The mechanisms underpinning individual 

variation in neural responses to RES are largely unknown but some physiological factors 

have been identified to be associated with individual RES-induced changes in skeletal muscle 

size in humans, such as ribosome biogenesis (Mobley et al. 2018; Stec et al. 2016), activity 

of growth and remodelling related genes (Bamman et al. 2007; Davidsen et al. 2011; 

Thalacker-Mercer et al. 2013), satellite cell activity (Petrella et al. 2008), and activation of 

signaling pathways regulating protein synthesis (Mayhew et al. 2011; Mitchell et al. 2013). 

Although not verified by research, it is likely that these factors are specific to RES-induced 

skeletal muscle adaptations while aerobic training adaptations might be driven predominantly 
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by other determinants, such as cardiorespiratory function. Thus, it could be suggested that 

skeletal muscle adaptations associated with responsiveness to one mode of training may not 

be entirely extrapolated to other exercise modes but further research in this area is warranted.  

In conclusion, HRT rats were capable to carry heavier loads in ladder climbing when 

compared to LRT rats, which is in line with their responsiveness to aerobic training. 

However, muscular adaptations did not differ between the HRT and LRT rats in the present 

study indicating that other factors than studied here, for example neural system adaptations, 

may explain their divergent adaptations of muscular strength to the present RES.   
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Table 1. Body mass and total body fat and lean mass and right leg lean mass determined by 

DXA before and after the 6-week ladder climbing resistance training (RES) or control (CONT) 

period in high (HRT) and low (LRT) responder rats to aerobic exercise training. Values are 

expressed as mean (SD). * Statistically significant (p≤0.05) change from the Pre-measurement 

within the group.  

  HRT-RES LRT-RES HRT-CONT LRT-CONT P-value 

Body mass (g) Pre 382.8 (28.8) 407.2 (48.7) 378.5 (38.3) 386.5 (39.1) 0.658 

 Post 376.6 (33.0) 394.0 (39.5) 410.5 (40.6) 419.7 (43.1)  

Fat mass (g) Pre 71.6 (21.7) 66.2 (12.9) 67.5 (18.7) 67.7 (8.0) 0.941 

 Post 90.2 (33.0) 81.6 (16.5)* 93.3 (20.2)* 96.5 (17.3)*  

Lean mass (g) Pre 281.4 (37.7) 298.0 (43.5) 272.2 (32.9) 281.7 (35.8) 0.690 

 Post 248.4 (29.5) 271.4 (22.4) 278.0 (29.3) 284.5 (50.1)  

Leg lean mass (g) Pre 25.2 (4.3) 24.0 (2.8) 22.2 (3.3) 24.2 (2.8) 0.721 

 Post 22.8 (5.1) 23.2 (2.3) 22.8 (3.7) 24.7 (4.5)  
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Table 2. Muscle wet tissue weight related to body weight (mean of right and left side), type I and 

II cross-sectional areas (CSA), nuclei per cell, and muscle protein, DNA and RNA 

concentrations in right gastrocnemius muscle, and fractional synthetic rate of muscle proteins in 

left quadriceps muscle following 6-week ladder climbing resistance training (RES) or control 

(CONT) period in high (HRT) and low (LRT) responder rats to aerobic exercise training. 

Values are expressed as mean (SD). * Statistically significant (p≤0.05) difference compared to 

the HRT-RES group. 

   HRT-RES LRT-RES HRT-CONT LRT-CONT P-value 

Muscle wet tissue weight (mg/g)     

 Gastrocnemius 4.39 (0.45) 4.82 (0.71) 5.03 (0.56) 4.96 (0.70) 0.426 

 Soleus  0.34 (0.03) 0.42 (0.04) 0.40 (0.05) 0.44 (0.07)* 0.043 

 Plantaris  0.94 (0.11) 1.02 (0.12) 0.98 (0.11) 0.97 (0.14) 0.666 

 FHL  1.37 (0.19) 1.49 (0.14) 1.51 (0.25) 1.46 (0.18) 0.694 

 MQF  7.74 (0.78) 8.20 (0.75) 8.61 (0.98) 8.78 (1.16) 0.239 

 EDL  0.42 (0.02) 0.46 (0.06) 0.45 (0.05) 0.45 (0.06) 0.606 

 Triceps  3.53 (0.39) 4.09 (0.25) 4.20 (0.49) 4.01 (0.61) 0.117 

 Biceps  0.66 (0.05) 0.68 (0.08) 0.69 (0.11) 0.64 (0.11) 0.810 

Muscle fiber characteristics     

 Type I & II CSA (µm
2
) 4427 (494) 3988 (594) 4536 (519) 4045 (982) 0.254 

 Nuclei per cell 3.0 (0.9) 3.0 (0.5) 3.2 (0.7) 4.2 (1.6) 0.491 

Muscle protein synthesis rate (%/day)     

 Myofibrillar 2.6 (0.4) 2.6 (0.3) 2.7 (0.9) 3.2 (0.7) 0.556 

 Sarcoplasmic 3.8 (0.5) 3.5 (0.3) 3.4 (0.8) 3.5 (1.1) 0.540 

 Mitochondrial 3.1 (0.6) 2.8 (0.5) 2.7 (0.8) 2.9 (0.5) 0.927 

 Collagen  1.1 (0.4) 1.1 (0.7) 1.1 (0.5) 1.1 (0.7) 0,996 

Muscle protein, DNA, and RNA concentrations    

 Protein (µg/mg) 217.0 (38.2) 177.7 (38.3)   0.175 

 RNA (µg/mg) 1.53 (0.39) 1.45 (0.32)   0.602 

 DNA (µg/mg) 2.08 (0.30) 2.00 (0.33)   0.602 

FHL, flexor hallucis longus; MQF, quadriceps femoris; EDL, extensor digitorum longus; 

CSA, cross-sectional area   
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Table 3. Hematological values (Mean, SD) following 6-week ladder climbing resistance training 

(RES) or control (CONT) period in high (HRT) and low (LRT) responder rats to aerobic 

exercise training  

 HRT-RES LRT-RES HRT-CONT LRT-CONT P-value 

WBC (x 10
9
/l) 8.8 (2.2) 6.5 (1.0) 12.2 (1.4) * 9.5 (1.0) 0.005 

RBC (x 10
12

/l) 9.4 (0.3) 9.2 (0.6) 9.4 (0.3) 9.2 (0.6) 0.801 

HGB (g/l) 156.3 (5.0) 152.6 (9.6) 154.4 (2.1) 154.2 (4.7) 0.586 

HCT (%) 51.3 (2.2) 50.4 (3.4) 51.0 (1.0) 50.8 (2.2) 0.745 

MCV (fl) 54.8 (1.3) 54.6 (0.5) 54.0 (1.4) 55.8 (1.5) 0.188 

MCH (pg) 16.7 (0.2) 16.6 (0.1) 16.4 (0.6) 16.9 (0.7) 0.567 

PLT (x 10
9
/l) 673.8 (187.0) 829.0 (40.5) 761.6 (63.9) 774.6 (92.8) 0.286 

LYMPH (%) 79.9 (9.4) 73.4 (6.6) 85.0 (5.9) 70.7 (12.2) 0.084 

LYMPH (x 10
9
/l) 7.1 (2.1) 4.8 (1.0) 10.3 (0.8) * 6.8 (1.7) 0.005 

RDW_SD (fl) 30.9 (0.9) 31.1 (0.8) 31.9 (2.0) 31.7 (2.0) 0.967 

RDW_CV (%) 16.7 (1.4) 16.8 (1.2) 17.9 (2.0) 16.6 (1.2) 0.595 

WBC, white blood cell count; RBC, red blood cell count; HGB, concentration of hemoglobin; HCT, 

hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; PLT, content of 

platelets; LYMPH, content of lymphocytes; RDW, red cell distribution width. Content of the mixture 

of monocytes, basophils, and eosinophils (MXD), and content of neutrophils (NEUT) were below the 

limit of detection.  

* Significantly greater compared to LRT-RES. 
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Table 4. Phosphorylation levels (Mean, SD) of selected signaling proteins in electrically 

stimulated m.gastrocnemius muscle following 6-week ladder climbing resistance training (RES) 

or control (CONT) period in high (HRT) and low (LRT) responder rats to aerobic exercise 

training 

Signaling protein phosphorylation (au) HRT-RES LRT-RES P-value 

Akt1 (Ser473) 3.75 (1.91) 1.79 (1.48) 0.151 

mTOR (Ser2448) 4.86 (1.14) 7.46 (4.86) 1.000 

p70S6K (Thr389) 6.22 (2.33) 6.76 (4.81) 0.421 

S6 Ribosomal Protein (Ser240/244) 1.26 (0.62) 1.33 (1.32) 0.421 

4E-BP1 (Thr37/46) 7.37 (4.76) 36.80 (23.22) 0.841 

p44/42 MAPK (Erk 1/2) (Thr202/Tyr204) 7.82 (4.87) 12.13 (7.31) 0.151 

p38 MAPK (Thr180/Tyr182) 2.06 (1.23) 2.18 (1.03) 0.421 

AMPKα (Thr172) 9.17 (3.03) 9.75 (3.61) 0.690 

CaMKII (Thr286) 4.16 (2.73) 4.48 (1.77) 0.841 

PKCζ/λ (Thr410/403) 1.75 (0.97) 3.88 (2.15) 0.151 

AS160 (Thr642) 9.41 (36.49) 34.67 (28.53) 0.056 

SAPK/JNK (Thr183/Tyr185) 2.36 (0.83) 2.07 (0.39) 0.841 

Smad2 (Ser245/250/255) 3.32 (1.80) 2.08 (1.23) 0.690 

Smad3 (Ser423/425) 1.04 (0.78) 1.29 (0.40) 0.548 

Akt, AKT8 virus oncogene cellular homolog; mTOR, mechanistic target of rapamycin; S6K, 

Ribosomal protein S6 kinase; 4E-BP, eIF4E binding protein; MAPK, mitogen-activated protein 

kinase; AMPK, AMP-activated protein kinase; CaMK, Calcium/calmodulin-dependent kinase; 

PKCζ/λ, atypical protein kinase C zeta/lambda; AS160, Akt substrate of 160 kDa; SAPK/JNK, stress-

activated protein kinase/Jun N-terminal kinase; Smad, contraction of Sma and Mad. Phosphorylation 

status of Phospholipase D1 (PLD1 Thr147) and Focal adhesion kinase (FAK Tyr576/577) were below 

the limits of detection. 
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FIGURE TEXTS 

Figure 1. Maximal carrying capacity (solid lines) and body mass (dotted lines) per training 

session. Values are expressed as mean (SD). Black lines, high responders to aerobic training 

(HRT, n=5); Grey lines, low responders to aerobic training (LRT, n=5). * Statistically 

significant (p≤0.05) differences between the groups. 
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Figure 2. The representative image of immunohistological analyses of muscle fiber cross-

sectional areas. All fibers presented in the image are type II fibers. Scale bar measures 100 

µm. HRT, high responders to aerobic training; LRT, low responders to aerobic training; RES, 

resistance trained rats; CONT, non-trained controls. 

 


