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Abstract 

This study aimed to identify biomarkers of major depressive disorder (MDD), by relating 

neuroimage-derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), 

or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity 

of psychic depression, motivation, anxiety, psychosis and sleep disturbance) were also used as 

outcomes.  A multi-site, multimodal imaging (diffusion MRI, dMRI, and structural MRI, sMRI) 

cohort (52 controls and 147 MDD patients) and several modeling techniques- penalized logistic 

regression (PLR), random forest (RF) and support vector machine (SVM)- were used. An 

additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally 

performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2±1.69% accuracy 

(ordinal) and r =0.36 correlation coefficient (p-value<0.001, continuous).  Using SVM, R2 values 

for prediction of any MDD factors were <10%.  Binary classification in the external dataset 

resulted in 87.95% sensitivity and 32.00% specificity.  Though observed classification rates are 

too low for clinical utility, four image-based features contributed to accuracy across all models 

and analyses- two dMRI-based measures (average fractional anisotropy in the right cuneus and 

left insula) and two sMRI-based measures (asymmetry in the volume of the pars triangularis and 

the cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of 

classification and predictive results found here reflects current equivocal findings and sheds 
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light on challenges of using these modalities for MDD biomarker identification.  Further, this 

study suggests a paradigm (e.g. multiple classifier evaluation with external validation) for future 

studies to avoid non-generalizable results. 

 

Keywords: Major Depressive Disorder (MDD), Magnetic Resonance Imaging (MRI), diffusion 

MRI, structural MRI, Support Vector Machine (SVM) 

 

Introduction 

Major depressive disorder (MDD) is a common and debilitating disease. Characterized 

by recurrent feelings of sadness, hopelessness and inability to feel pleasure, 16.6% of the US 

population (Kessler, Berglund, et al., 2005) and 350 million people worldwide (Kessler, Chiu, 

Demler, Merikangas, & Walters, 2005; World Health Organization, 2012) suffer from MDD, up to 

15% of whom will eventually die by suicide (Palucha & Pilc, 2007).  Further, MDD is a growing 

problem.  Originally predicted by World Health Organization (WHO) to be the second leading 

cause of disability worldwide by 2020 (Murray & Lopez, 1996), MDD fulfilled this prediction in 

2013 (Global Burden of Disease Study 2013 Collaborators, 2015). 

Due to the worldwide impact of MDD, it is important to gain a greater understanding of 

the illness.  Despite decades of inquiry, however, there are currently no objective MDD 

biomarkers (Mossner et al., 2007).  A biomarker is a characteristic that can be objectively 

measured and used as an indicator of either normal or pathogenic processes (Singh & Rose, 

2009).  As pointed out by Peterson et al, a biomarker for MDD could aid in diagnosis, the search 

for genetic and environmental causes, predicting course, identifying those at increased risk and 
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developing the next generation of treatments (Peterson & Weissman, 2011).  As such, a 

biomarker could help reduce the morbidity and mortality of MDD, as it has in other areas of 

medicine (e.g. breast cancer, macular degeneration and myocardial infarction) (Gonzalez de 

Castro, Clarke, Al-Lazikani, & Workman, 2013; Mihaly et al., 2013; Newman et al., 2012; 

Ziegler, Koch, Krockenberger, & Grosshennig, 2012). Neuroimaging techniques, such as 

structural and diffusion-weighted magnetic resonance imaging (MRI) may be able to provide 

such a biomarker for MDD, and numerous studies have evaluated this possibility (Aizenstein, 

Khalaf, Walker, & Andreescu, 2014; M. L. Phillips, 2012).  

From structural MRI, both regional volumes and cortical thickness (i.e., the distance 

between the gray matter/white matter surface and the pial surface) can be estimated.  When 

comparing depressed subjects to healthy volunteers, some studies report widespread 

volumetric differences in cortical gray matter regions (Grieve, Korgaonkar, Koslow, Gordon, & 

Williams, 2013; Guo et al., 2014; Takahashi et al., 2010; van Tol et al., 2010) such as smaller 

gyri of the caudal middle frontal and medial orbitofrontal cortices (Han et al., 2014; Qiu, Huang, 

et al., 2014), and smaller volume in subcortical regions, such as the amygdala and 

hippocampus (Amico et al., 2011; Eker & Gonul, 2010; Huang et al., 2013; Jaworska, 

MacMaster, Yang, et al., 2014; Kupfer, Frank, & Phillips, 2012; Whittle et al., 2014) in MDD 

patients.  Smaller volumes of the hippocampus, basal ganglia, orbitofrontal cortex and prefrontal 

cortex are also frequently observed in MDD patients (Lorenzetti, Allen, Fornito, & Yucel, 2009).  

However, findings remain highly variable in terms of which brain regions show abnormalities 

and the degree to which they are affected across studies (Han et al., 2014; Shizukuishi, Abe, & 

Aoki, 2013).  Similarly, decreased (Mackin et al., 2013; Peterson et al., 2009; Tu et al., 2012), 

This article is protected by copyright. All rights reserved.



Yang, Page 5 

increased (Qiu, Lui, et al., 2014; Reynolds et al., 2014) or bidirectional (Fallucca et al., 2011; 

Peterson et al., 2009; Tu et al., 2012) differences in cortical thickness have been reported in 

MDD.  Regions found to have cortical thinning in the largest study to date (~1,900 adult MDD 

subjects), such as the medial orbitofrontal cortex (although with effect sizes likely too small for 

clinical meaning)(Schmaal et al., 2016), have been previously reported to be thicker (Qiu, Lui, et 

al., 2014) or the same (Perlman et al., 2017) in other studies of depressed individuals.   

Diffusion MRI (dMRI) is used to evaluate orientation and diffusion characteristics of white 

matter and, by inference, white matter microstructure (Murphy & Frodl, 2011).  Fractional 

anisotropy (FA), is a common measure used in dMRI to determine integrity of white matter 

fibers by estimating the direction of movement of water molecules (Liao et al., 2013; Murphy & 

Frodl, 2011).  Characteristics of healthy white matter include parallel organization of white 

matter fibers and myelination, which leads to restricted movement of water lateral to the 

direction of fiber tracts and more movement along the tract, generally resulting in higher 

estimates of FA.  FA values range from zero (isotropic diffusion) to one (anisotropic diffusion) 

(Delorenzo et al., 2013).  

dMRI and FA measures have been used to study white matter microstructure 

abnormalities in mood disorders (Henderson et al., 2013; Korgaonkar et al., 2011; Olvet et al., 

2014; Peng et al., 2013).  A 2009 meta-analysis of dMRI studies reported that, in 21 of the 27 

studies examined, subjects with mood disorders had lower FA in frontal and temporal lobes 

(Sexton, Mackay, & Ebmeier, 2009).  Another meta-analysis documented similar findings, in 

which patients with MDD showed reduced FA values in the white matter of bilateral frontal and 

right occipital areas (Liao et al., 2013).  Similar to the volumetric/thickness analyses, however, 
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although a trend of reduced FA in MDD has been noted in literature (Murphy & Frodl, 2011; 

Shizukuishi et al., 2013), not all studies detect these differences.  Increased and decreased FA 

values in the corpus callosum, parietal and frontal lobes (Aghajani et al., 2014; Osoba et al., 

2013) or no significant differences between groups (Abe et al., 2010; Kieseppa et al., 2010; 

Olvet et al., 2016; Ugwu, Amico, Carballedo, Fagan, & Frodl, 2015) have been reported.  

Beyond the first level analyses of volume, cortical thickness or FA differences in MDD, of 

even greater uncertainty are the laterality effects of depression which are still not well 

characterized (Amico et al., 2011; Jaworska, MacMaster, Yang, et al., 2014) as some studies 

have found more robust structural deficits in the right compared to the left cerebral hemispheres 

(Mackin et al., 2013; Peterson et al., 2009; Qiu, Huang, et al., 2014) and vice versa (Bijanki, 

Hodis, Brumm, Harlynn, & McCormick, 2014; Treadway et al., 2015) related to MDD severity 

(Jaworska, MacMaster, Gaxiola, et al., 2014; Jaworska, MacMaster, Yang, et al., 2014). 

Disagreement in MDD-related neurobiological findings within any one modality 

potentially reflects the variability in depression itself (Joober, 2013) and suggests that multiple 

modalities of imaging and clinical assessment may be required to uncover disease biology (M. 

L. Phillips, 2012).  Multimodal imaging potentially reveals crucial variations that could only be 

partially visible in a single modality and therefore could potentially unify conflicting findings (Sui, 

Huster, Yu, Segall, & Calhoun, 2013).  Further, multimodal features used to achieve the most 

accurate classification (between depressed and control subjects) or prediction of outcome (such 

as depression severity) can provide biological insight into the differences between diagnostic 

groups. Therefore, in the present study, we used both structural and diffusion MRI to classify 

This article is protected by copyright. All rights reserved.



Yang, Page 7 

depressed subjects versus controls on an individual level and to predict other outcomes such as 

overall depression severity or severity of specific depression symptoms/factors.   

The challenge in such studies is in analyzing the large volume of data, as each modality 

can produce hundreds (regional) to hundreds of thousands (voxel) of variables, yet the number 

of subjects is often limited.  To handle these challenges, machine-learning techniques have 

been applied.  A recent systematic review highlighted 19 MRI-based studies of classification in 

MDD (Arbabshirani, Plis, Sui, & Calhoun, 2016).  Though classification accuracies of the 19 

studies ranged from 54.6% (Serpa et al., 2014) to 90.3% (Mwangi, Ebmeier, Matthews, & 

Steele, 2012), none of the selected discriminating features have been replicated or translated 

into clinical practice.  There may be a few reasons for this.  One is due to relatively small 

sample sizes.  Only two studies included 40 or more depressed subjects, the maximum number 

of depressed subjects was 57 and 12 studies included 30 MDD subjects or fewer (Arbabshirani 

et al., 2016).  This is a significant issue, as accuracy decreases with decreasing sample size, 

and is considered the most critical factor (Arbabshirani et al., 2016).  Another issue is feature 

selection bias.  This occurs when the features with the highest discrimination were both 

extracted from, and used for, classification within the same dataset.  This leads to overly inflated 

accuracy estimates (Arbabshirani et al., 2016).  Furthermore, “overfitting” is more likely to occur 

with complex models, particularly if the process of both training and testing is repeated multiple 

times, with varying model parameters (Arbabshirani et al., 2016).  Cross-validation can 

compensate for this by providing relatively robust estimate of prediction performance.  However, 

most studies used only leave-one-out cross validation, which may not always lead to consistent 
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model estimates (Shao, 1993).  Replication in a separate subject sample is a more robust way 

of ruling out effects of overfitting. 

In addition to the above concerns, only one MDD study from this meta-analysis 

combined data from multiple modalities (task-based functional MRI [fMRI], resting state fMRI 

and diffusion MRI).  That study involved participants with late life depression (LLD) compared to 

elderly controls and predicted LLD diagnosis and treatment response with accuracies of 87.27% 

and 89.47% respectively, suggesting the benefits of multimodal imaging (Patel et al., 2015).  

Though they did not assess classification accuracy, three additional studies have incorporated 

multimodal brain imaging techniques to explore depression pathophysiology, focusing on 

uncovering group-level differences (K. Choi, Craddock, R.C., Holtzheimer, P.E., Yang, Z., Hu, 

X., Mayberg, H., 2008; Matthews et al., 2011; Sexton et al., 2012).  Our study is therefore 

unique in that it involves the combination of two MR imaging modalities, a focus on MDD 

(diagnosis and factors) classification and one of the largest cohorts (n = 307) reported to date.  

Critically, our study uses separate cohorts for training and validation, in which only a single set 

of parameters (identified as optimal from the training) was applied to the validation set.  The 

advantage of this approach is that it avoids the potential bias of within-sample cross-validation. 

As the purpose of the classification is to identify components of the structural and diffusion MRI 

that may serve as biomarkers of MDD, we evaluated two potential classification schemes: (1) 

MDD vs controls and (2) severe MDD vs mild MDD vs controls.  We also examined the ability of 

structural and diffusion MRI to predict depression severity (continuous measure).   Finally, to 

reduce the heterogeneity within groups, we examined the ability of structural and diffusion MRI 

to predict the severity of factors of depression derived from a factor analysis of the 24-item 
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Hamilton Depression Scale, which are continuous measures. The analysis predicting factors 

was performed because clinical management may require deconstructing MDD into multiple 

dimensions, or symptom clusters (Hamilton, 1960).  Individual factors comprise different 

combinations of partially orthogonal symptoms.  These factors may have different risk factors 

(Fried, Nesse, Zivin, Guille, & Sen, 2014) and may associate with different neurobiological 

anomalies on structural and diffusion MRI. Therefore, we examined whether we could obtain 

higher sensitivity for relating neurobiology to components of clinical presentation versus the 

entire syndrome. 

By identifying structural and diffusion MRI-based measures that contribute the most to 

each classification/predictive model, this study thus aims to bridge the gap between 

neuroscience and behavior, in order to enhance current understanding of the pathophysiological 

mechanisms of major depression. 

 

Materials and Methods 

Subjects  

All participating individuals provided informed consent for the study, following explanation of the 

experimental procedures of the study.  This study was approved by the Institutional Review 

Board (IRB) of each institution.  The study was performed in compliance with the Code of Ethics 

of the World Medical Association (Declaration of Helsinki) and the standards established by 

each institution’s IRB and each investigator’s granting agency. 
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Data for 217 participants (training set: 25 Healthy Controls, 114 MDD; validation set: 12 Healthy 

Controls, 66 MDD) in this analysis were acquired from the Establishing Moderators and 

Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study (U01 MH092250, 

http://embarc.utsouthwestern.edu/). Details on the EMBARC study design and randomization 

are reported by Trivedi et al (Trivedi et al., 2016).  EMBARC dMRI and sMRI samples have 

been used in previous publications including: dMRI- (Olvet et al., 2016) or sMRI- (Perlman et al., 

2017) only examinations of MDD versus controls and a dMRI-only study of anxious depression 

versus non-anxious depressed groups (Delaparte et al., 2017).  These single modality studies 

showed no group differences, motivating the interest in the present multimodal examination. 

To ensure that the MDD sample was representative and as large as possible, data for an 

additional 90 participants (training set: 27 Healthy Controls, 33 MDD; validation set: 13 Healthy 

Controls, 17 MDD) were drawn from ten neuroimaging and depression-related studies 

conducted at the New York State Psychiatric Institute/Columbia University Medical Center, from 

10/2007 through 10/2011.  The dMRI data from 20 of these subjects was previously reported in 

an analysis of suicide attempters (Olvet et al., 2014) and impaired attention in MDD (Rizk et al., 

2017). 

To maximize generalizability, all cohorts were represented in both the training and 

validation sets. 

 

Across all eleven protocols, subjects were between the ages of 18 and 65 years old and had the 

capacity to provide informed consent.  MDD common inclusion criteria were DSM-IV MDD 

diagnosis, determined via the Structured Clinical Interview for the DSM (SCID), and in a current 
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depressive episode. Common exclusion criteria for all subjects were current pregnancy, lifetime 

history of psychosis or bipolar disorder, meeting DSM-IV criteria for substance dependence in 

the past 6 months or substance abuse in the past 2 months, unstable psychiatric or general 

medical conditions that may require hospitalization or contraindicate study medication, clinically 

significant laboratory abnormalities, history of epilepsy or condition requiring an anticonvulsant, 

protocol excluded medications (including but not limited to antipsychotics, and mood stabilizers), 

or significant risk of suicide. Common exclusion criteria for controls also included any other Axis 

I disorders.  All subjects were free of antidepressant medication for at least 21 days at the time 

of scanning. 

All image analyses were performed by a single image analysis lab within a standardized 

processing pipeline. All technicians were blinded to subject diagnoses. 

 

Image Acquisition: Structural MRI (sMRI) 

Details on the EMBARC study’s scanning and processing protocols are reported by Iscan et al 

(Iscan et al., 2015). In brief, T1 anatomical images were acquired with 3T scanners across 5 

sites: University of Texas Southwestern Medical Center (TX: Philips Achieva, 8-channel head 

coil), University of Michigan (UM: Phillips Ingenia, 15-channel), Massachusetts General Hospital 

(MGH: Siemens TrioTim, 12-channel), Columbia University Medical Center (CU: GE Signa HDx, 

8-channel & GE Discovery MR750, 8-channel), and Stony Brook University Medical Center 

(SBU: Siemens TrioTim, 12-channel).  MPRAGE sequences were used for T1 acquisition at TX, 

UM, MGH, and SBU, while an IR-FSPGR sequence was used at CU. The following MR 

sequence parameters were maintained across the 4 sites: TR: 5.9-8.2ms, TE: 2.4-4.6ms, Flip 
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Angle: 8-12°, Acquisition Matrix: 256x256 or 256x243, Acceleration Factor: 2, Sagittal Slices: 

174-78, and Voxel Dimensions: 1mm3 isotropic. Structural MRIs from the other protocols were 

all acquired on a 3T GE Signa HDx scanner, using comparable acquisition parameters. 

 

Image Processing: Structural MRI (sMRI) 

Region-wise cortical thickness was computed on a Linux-based computing cluster for 68 

Desikan-Killiany (DK) atlas regions (Desikan et al., 2006) with FreeSurfer 5.3’s cortical 

reconstruction pipeline (http://surfer.nmr.mgh.harvard.edu/). The pipeline’s subroutines have 

been described in previous publications, but in brief, the processing steps include skull-stripping 

(Segonne et al., 2004), Talairach transformation, subcortical grey/white matter segmentation 

(Fischl et al., 2002), intensity normalization (Sled, Zijdenbos, & Evans, 1998), grey/white matter 

tessellation, topology correction (Fischl, Liu, & Dale, 2001; Segonne, Pacheco, & Fischl, 2007) 

and intensity gradient based surface deformation to generate grey/white and grey/cerebrospinal 

fluid surface models (Dale, Fischl, & Sereno, 1999; Fischl et al., 2001; Segonne et al., 2007). 

The resulting surface models were then inflated and registered to a spherical surface atlas, 

allowing parcellation of cortical regions of interest and estimation of regional volumes (Fischl, 

Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Fischl et al., 2004). Finally, 

regional cortical thicknesses were computed by taking the mean of the white-pial distance at all 

vertices within each parcellated region (Fischl & Dale, 2000). The surface models (used to 

calculate cortical thickness) then underwent an empirical, systematic inspection process (see 

(Iscan et al., 2015) for details). In short, a trained technician carefully inspected 2D sections of 

the pial and white surface models, overlaid on the T1w image, for fidelity to visible tissue class 
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boundaries. Cases where inaccurate tissue delineation persisted for ≥6 consecutive coronal and 

axial slices were deemed inaccurate and thus disqualified from further analyses.  

 

Image Acquisition: Diffusion Weighted MRI (dMRI) 

In the EMBARC sample, diffusion images were acquired using a single-shot EPI (echo planar 

imaging) sequence. Scan parameters were as follows: TR=8310-9500 ms, TE=95-96.3 ms, flip 

angle 90°, slice thickness=2.5 mm, FOV=240x240 mm2, voxel dimensions 2.5 mm×2.5 mm×2.5 

mm or 1.9 mm×1.9 mm×2.5 mm, acquisition matrix=96 x 96, b value = 1000 s/mm2, and 64 

collinear directions with 1 or 5 non-weighted images. Diffusion images in the other protocols 

were acquired with comparable parameters. However, 25 collinear directions, voxel dimensions 

of 2.5 mm×2.5 mm×2.5 mm, and an FOV of 256×256 mm2 were used. 

 

Image Processing: Diffusion Weighted MRI 

Each dMRI image was run through a series of quality assurance tests for common artifacts, 

including ghost, ring, slice-wise intensity, venetian blind, and gradient-wise motion artifacts (Liu 

et al., 2010). Diffusion images were then corrected for distortion induced by gradient coils and 

simple head motion using the eddy current correction routine within FSL (FMRIB Software 

Library, http://www.fmrib.ox.ac.uk/fsl/). FSL’s Brain Extraction Tool (BET) removed non-brain 

tissue from the image. Following this, Camino 

(http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php) was used to estimate FA 

by computing the least-squares-fit diffusion tensor with non-linear optimization using a 
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Levenburg-Marquardt algorithm, constrained to be positive by fitting its Cholesky decomposition 

(Alexander & Barker, 2005; Jones & Basser, 2004). 

The dMRI images were coregistered to the cropped T1 images using Advanced 

Normalization Tools (ANTS; http://www.picsl.upenn.edu/ANTS/) and the inverse transformation 

was applied to the Freesurfer-derived cortical map in order to place the regions of interest into 

dMRI space for analysis. Finally, mean FA values in white matter were computed for each 

region.  A trained technician manually inspected each aspect of the dMRI analysis including 

level of artifact (based on the cutoffs defined in Liu et al), distortion correction, coregistration 

and FA histogram. 

 

Data Preparation Statistics 

In the EMBARC sample, of the 193 MDD subjects in the training set, 178 (92%) unique baseline 

MRI sessions possessed both dMRI and sMRI acquisitions, 121 of these 178 sessions (68%) 

passed Freesurfer surface validation, and 114 of the 121 (94%) passed dMRI validation. Of the 93 

MDD subjects in EMBARC’s validation set, 82 (88%) unique baseline MRI sessions possessed 

both dMRI and sMRI acquisitions, 66 of these 82 (80%) passed Freesurfer surface validation, 

and all remaining 66 passed dMRI validation. Of EMBARC’s 40 healthy control (HC) scans, 

93% passed validation.  Two-thirds of the all scans were used for the training dataset.  Ninety 

(88%) of the 102 qualifying scans from the other 10 protocols passed sMRI and dMRI validation. 

Similar to the EMBARC sample, two-thirds of the validated MDD and HC scans from the other 

protocols were randomized to the training dataset.   
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Features 

Since the biological underpinnings of MDD are unknown, a large number of potential features 

were examined.  For each subject, 225 features were included: age at evaluation, sex, 

handedness, 145 sMRI-based and 77 dMRI-based features.  

 

sMRI features included:  

(1) bilateral gray matter volume of 34 Desikan-Killiany (DK, (Desikan et al., 2006)) and 11 

subcortical Center for Morphometric Analysis (CMA, (Fischl et al., 2004)) regions (68 + 22 = 90 

features),  

(2) volumes of brainstem, CSF and subdivided corpus callosum (7 features),  

(3) whole-brain measures: bilateral mean thickness and whole-brain volume (2 + 1= 3 features) 

to supplement the regional measures in (1), and:  

(4) the asymmetry index ( 𝐿−𝑅
𝐿+𝑅

× 100), where L is the measure on the left and R is the measure 

on the right, was designed to gauge the magnitude and direction of morphological asymmetry 

(Cherbuin, Reglade-Meslin, Kumar, Sachdev, & Anstey, 2010), and was computed for the 

bilateral CMA and DK regions above (45 features).  

 

dMRI features included: the average FA in white-matter segmentations of the 34 bilateral DK 

regions (68 features), 5 corpus callosum regions (5 features), and the bilaterally divided 

cerebrum and cerebellum (4 features).  

 

Outcome Measures 
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Discrete measure: We evaluated two potential classification schemes: (1) MDD vs controls and 

(2) severe MDD vs mild MDD vs control.  68 patients had severe depression with a Hamilton 

Depression Rating Scale (HAMD) 17 item total score >19. Subjects’ characteristics and HAMD 

scores for training and validation datasets are listed in Tables 1 and 2.   

 

Continuous measure: This included depression severity (HAMD total score) and factors.  Each 

factor is a sum of the products of the factor’s HAMD items and corresponding loading values. 

The loading values were obtained from a previous factor analysis of the HAMD, which was 

optimized for self-report measures with potentially correlated factors by using polychoric 

correlation (PCC) and a non-orthogonal rotation (Milak et al., 2005).  Factor scores for the 

training and validation datasets are shown in Tables 1 and 2. 

 

Factor 1: Psychic Depression, including HAMD items 1-3, 8, 22-24, signifying depressed mood, 

guilt, suicidality, retardation, helplessness, hopelessness and worthlessness;  

Factor 2: Loss of Motivated Behavior, including HAMD items 7, 12, 14, 16, involves work and 

activities, somatic and genital symptoms and weight loss;  

Factor 3: Psychosis, including HAMD items 17, 19-21, evaluates lack of insight, 

depersonalization, derealization, paranoia, obsessive and compulsive behavior.  (This factor 

was not evaluated because the majority of subjects had scores of 0.);   

Factor 4: Anxiety, including HAMD items 9-11, 15, involving agitation, hypochondrias, psychic or 

somatic anxiety); and  

Factor 5: Sleep Disturbance, including items 4-6, relating to insomnia. 
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Table 1: Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores 
by severity index for the training samples.  p-values were based on ANOVA comparing severe 
MDD, mild MDD and HC.   For those variables that had significant differences among three 
groups, all pair-wise comparisons were still significant except that there was no significant age 
difference between mild MDD and HC.  MDD: Major Depressive Disorder; HC: Healthy Controls 

Variable MDD 
(N=147) 

Severe MDD 
(N=68) 

Mild MDD 
(N=79) 

Healthy 
Control (N=52) 

p-
values* 

p-value 
for 

Severe 
vs Mild 

p-value 
for 

Severe 
vs HC 

p-value 
for Mild 
vs HC 

Male 53 (36.05%) 30 (44.12%) 23 (29.11%) 21 (40.38%) 0.1473    
Age (years) 36.78±12.94 40.83±12.31 33.29±12.51 32.48±12.15 0.0002 0.0003 0.0003 0.7113 
Left 
handedness 11 (7.48%) 7 (10.29%) 4 (5.06%) 1 (1.92%) 

0.4204    Right 
handedness 127 (86.39%) 57 (83.82%) 70 (88.61%) 48 (92.31%) 

HAMD 18.83±4.63 22.84±2.80 15.38±2.71 1.04±1.45 <.0001 <.0001 <.0001 <.0001 
Factor 1 
Psychic 
Depression 
(max=16.04) 

6.63±1.97 7.40±1.94 5.97±1.75 0.15±0.57 <.0001 <.0001 <.0001 <.0001 

Factor 2 
Motivation 
(max=5.84) 

2.36±1.20 3.05±1.12 1.76±0.91 0.05±0.19 <.0001 <.0001 <.0001 <.0001 

Factor 3 
Psychosis 
(max=7.2) 

0.44±0.60 0.52±0.67 0.36±0.53 0.00±0.00 0.1046    

Factor 4 
Anxiety 
(max=10.24) 

2.62±1.25 3.14±1.18 2.17±1.13 0.27±0.40 <.0001 <.0001 <.0001 <.0001 

Factor 5 
Sleep 
(max=4.32) 

2.11±1.41 2.93±1.21 1.40±1.17 0.12±0.32 <.0001 <.0001 <.0001 <.0001 

 
Table 2: Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores 
by severity index for the validation samples.  p-values were based on ANOVA comparing severe 
MDD, mild MDD and HC.   For those variables that had significant differences among three 
groups, all pair-wise comparisons were still significant except that there was no significant age 
difference between mild MDD and HC.  MDD: Major Depressive Disorder; HC: Healthy Controls 

Variable MDD 
(N=83) 

Severe MDD 
(N=32) 

Mild MDD 
(N=51) 

Healthy 
Control (N=25) 

p-
values* 

p-value 
for 

Severe 
vs Mild 

p-value 
for 

Severe 
vs HC 

p-value 
for Mild 
vs HC 

Male 32 (38.55%) 10 (31.25%) 28 (54.9%) 12 (48%) 0.3944 - - - 
Age (years) 35.66±12.44 34.94±12.48 36.12±12.52 33.72±13.43 0.7484 - - - 

Left 
handedness 10 (12.05%) 2 (6.25%) 8 (15.69%) 2 (8%) 0.0624 - - - 
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Right 
handedness 69 (83.13%) 26 (81.25%) 43 (84.31%) 22 (88%) 

HAMD 18.76±4.50 23.59±2.38 15.73±2.30 1.28±2.01 <.0001 <.0001 <.0001 <.0001 
Factor 1 
Psychic 

Depression 
(max=11.05) 

6.70±1.82 7.47±1.72 6.21±1.73 0.18±0.35 <.0001 0.0004 <.0001 <.0001 

Factor 2 
Motivation 
(max=5.84) 

2.35±1.13 3.16±1.08 1.85±0.83 0.02±0.10 <.0001 <.0001 <.0001 <.0001 

Factor 3 
Psychosis 

(max=2.18) 
0.30±0.50 0.37±0.50 0.25±0.50 0.00±0.00 0.3138 - - - 

Factor 4 
Anxiety 

(max=6.32) 
2.49±1.21 3.35±1.23 1.95±0.83 0.31±0.45 <.0001 <.0001 <.0001 <.0001 

Factor 5 
Sleep 

(max=4.32) 
2.24±1.28 2.99±1.00 1.77±1.21 0.25±0.63 <.0001 <.0001 <.0001 0.0001 

 

The predictive modeling systems  

With the separate dataset available to validate model findings, we took an exhaustive approach 

in applying predictive models to the training data.  Figure 1 illustrates the workflow of the 

predictive modeling system. It starts with data preprocessing, followed by feature selection, 

predictive modeling and variable importance ranking evaluation blocks, which in turn provide 

additional information for better feature selection. Validation was performed on the final 

classifier built on the training dataset.  

Figure_1 

Figure 1: The general workflow of the predictive modeling system, which starts with data 

preprocessing, followed by feature selection, predictive modeling and variable importance 

ranking evaluation blocks, which in turn provide additional information for better feature 

selection.  Validation was performed on the final classifier built on the training dataset. 
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Initial feature selection was based on between-feature correlation after applying 

centering and scaling to all features. Highly correlated image features that had an average 

correlation coefficient with the rest of the features >0.7 were eliminated here. Fifty-six features 

were removed in this step: 36 sMRI measures and 20 dMRI measures. Another initial feature 

selection performed was based on having a well-conditioned matrix of pairwise correlation 

coefficients among all features. A matrix is considered to be ill-conditioned if the 2-norm 

condition number (the ratio of its smallest to the largest eigenvalue) is smaller than a tolerance 

value (2e-15). Jollifee’s method (Jolliffe, 2002) was used to select a subset of features that have 

a well-conditioned correlation coefficient matrix. Using this method, 27 additional features were 

removed: 23 sMRI measures, and 4 dMRI measures.  

After initial feature selection, different predictive models were built to predict binary 

outcomes: MDD vs HC and ordinal outcomes: HC, mild MDD and severe MDD. These included 

commonly used approaches such as the penalized logistic regression (PLR) model with elastic 

net penalty, random forest (RF) and support vector machine (SVM) with linear or nonlinear 

kernels such as cubic polynomial and radial basis function kernels. Extensions of these three 

classifiers for ordinal classification were used for predicting ordinal outcomes: under the PLR 

framework, cumulative logit model, adjacent category model, backward continuation ratio model 

and forward continuation ratio model were used; under the SVM framework, results from binary 

classifiers were aggregated using three different decoding methods – robust tree decoding, 

maximum vote decoding for the “one-against-all” scheme and most frequent vote decoding 

using the “one-against-one” scheme. Predictive models for predicting continuous HAMD and 
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factor scores among MDD patients included penalized linear regression with elastic net penalty, 

random forest and support vector regression.  

All predictive models were built using R 3.3.1 (R Core Team, 2015).  Prediction 

performance of binary classifiers was measured by area under the receiver operating curve 

(AUC), misclassification rate, sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV). Prediction performance of ordinal classifiers was measured by 

percentage correctly classified (PCC) and the rank correlations between the predicted class and 

true class such as Spearman’s 𝜌𝜌, Kendall’s 𝜏𝜏, Goodman-Kruskal Γ, and Cohen’s 𝜅𝜅. Prediction 

performance of models for continuous scores was measured by root mean squared error 

(RMSE) and R2. All tuning parameters of these predictive models were chosen based on 10 

repeated 5-fold cross validation in the training dataset.   

Variable importance ranking was based on the predictive models that had the highest 

average AUCs, highest average PCC, or smallest average RMSE after 10-repeated 5-fold cross 

validation. For predictive models using PLR framework, the features in the final model were 

ranked by their absolute coefficient estimates: the larger the absolute value of the estimated 

coefficient, the greater the contribution this feature provided to the final prediction.  For 

predictive models using the SVM framework, the contribution of each feature was reflected 

through its nonzero weights. For predictive models using RF, the variable importance rankings 

were based on the Gini impurity index (Breiman, 2001).  All top ranked features from these 

predictive models were used in the final predictive models.   

 

Validation 
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Calibration is an essential aspect of external validation (Steyerberg et al., 2010).  Calibration in 

the large was used to determine whether the mean predicted probability of MDD is equal to the 

mean observed MDD rate in the validation data set (Van Calster et al., 2016).  The ideal value is 

zero difference between predicted and observed probabilities. The assessment of the overall 

predictive effect was graphically evaluated in a calibration plot and used for estimation of a 

calibration slope.  A calibration plot displays the relationship between predicted MDD risk (x-

axis) and observed true group label (MDD=1, HC=0, y-axis) by fitting a flexible nonlinear 

calibration curve using a nonparametric regression method called loess, the local regression 

using polynomials (Austin & Steyerberg, 2014).  The estimation of the calibration slope b, is by 

fitting the following model: logit�P(Y = 1)� = a + b × logit(p�), where a is the model intercept, and 

p� is the predicted risk.  Therefore, the calibration slope summarizes the relationship between the 

predicted risks and the observed true labels. For example, using this validation, a calibration 

slope less than 1 reflects an overestimation of MDD risk, and vice versa for a calibration slope 

greater than 1 (Van Calster et al., 2016). 

 

 

Results 

After an initial round of model building for predicting different outcomes, features were 

ranked accordingly. The final predictive models for each type of outcome contained 39 features 

that were top ranked. Table A1 has a complete list of these 39 features: 16 sMRI measures, 21 

dMRI measures, sex and age.  

 

This article is protected by copyright. All rights reserved.



Yang, Page 22 

Binary classification for predicting MDD vs HC 

The best binary classifiers in PLR, SVM and RF for predicting MDD had AUC ranges from 0.69 

to 0.74 with accuracy rates ranging from 73.45% to 75.05% (Table 3). The classifier using SVM 

with a radial basis function kernel had the best AUC of 0.74±0.02. Table 4 lists a combination of 

all of the top 10 ranked features from each of the three binary classifiers. The mean FA in the 

left medial orbitofrontal cortex and right cuneus contributed highly to predicting MDD in this 

analysis.  

To evaluate the influence of the feature selection on algorithm output, an independent 

classification method was also applied to predict MDD vs. healthy control.  Half of training data 

patients were randomly selected to tune the algorithm and the rest were used as to evaluate the 

results.  Due to the imbalance of the classes, the training set was downsampled while all the 

validation data were used.  No feature selection was used.  RF and classification trees were 

built for classification. The fact that splitting variables (the most predictive variables for RF) used 

in these two tree-based classification were among the features selected for predictive model 

building confirms the robustness of our feature selection strategies.  

 

Table 3: Predictive accuracy of binary classification. Mean±SD were based on 10 sets of 
average performance measures from repeated 5-fold cross validation using 39 features.  MDD: 
Major Depressive Disorder; HC: Healthy Controls; PLR: penalized logistic regression model with 
elastic net penalty, SVM: support vector machine, RF: random forest 

Outcomes Area Under the Curve (AUC) Accuracy Rate 
PLR SVM  RF PLR SVM RF 

MDD vs HC 0.73 ± 0.03 0.74 ± 0.02 0.69 ± 0.02 73.45% ± 
1.57% 

74.00% ± 
1.32% 

75.05% ± 
1.17% 

 

Table 4:  Combination of the top 10 important features from each classifier for binary 
classification using penalized logistic regression (PLR) model with elastic net penalty, random 
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forest (RF) and support vector machine (SVM).  Numbers in the parentheses are the average 
rank from 10 repeated 5-fold cross-validation. Average Rank refers to the mean rank across the 
three algorithms. 

Measure Region 
Rank in 

PLR 
classifier 

Rank in 
SVM 

classifier 

Rank in 
RF 

classifier 
Average 

Rank 

Mean FA (dMRI) Left Medial Orbitofrontal 1(2.52) 1(1.30) 1(1.12) 1 
Mean FA (dMRI) Right Cuneus 2(15.82) 2(2.82) 2(3.40) 2 

Gray Matter Volume 
(sMRI) Inferior Temporal 6(47.88) 4(6.16) 3(6.56) 4.33 

Mean FA (dMRI) Left Middle Temporal 8(49.66) 7(11.74) 4(7.16) 6.33 
Mean FA (dMRI) Left Lateral Orbitofrontal 5(44.62) 5(6.54) 10(13.22) 6.67 

Gray Matter Volume 
(sMRI) Left Pars Orbitalis 11(62.82) 3(4.58) 8(9.66) 7.33 

Mean FA (dMRI) Right Entorhinal 3(31.18) 6(9.30) 22(20.78) 10.33 
Gray Matter Volume 
Asymmetry (sMRI) Cuneus 10(61.40) 8(11.94) 14(16.54) 10.67 

Mean FA (dMRI) Left Lateral Occipital 4(44.62) 10(12.50) 20(20.06) 11.33 
Gray Matter Volume 
Asymmetry (sMRI) Pars Triangularis 7(49.54) 11(13.06) 19(19.54) 12.33 

Mean FA (dMRI) Left Banks of the Superior Temporal 
Sulcus 9(57.12) 24(25.66) 6(8.72) 13 

Mean FA (dMRI) Right Rostral Anterior Cingulate 13(68.08) 19(21.68) 9(10.36) 13.67 
Mean FA (dMRI) Right Fusiform 22(81.58) 23(25.22) 5(8.00) 16.67 

Volume Asymmetry 
(sMRI) Cerebellum 18(74.02) 9(12.08) 26(25.12) 17.67 

Mean FA (dMRI) Left Insula 39(141.30) 22(24.02) 7(8.80) 22.67 
 

 

Ordinal classification for severity index: severe MDD, mild MDD and HC  

Different ordinal classifiers under the SVM and PLR framework in addition to RF were 

constructed to predict severe MDD, mild MDD and HC. The predictive performance of the best 

classifiers using SVM, PLR and RF is summarized in Table 5. The highest average PCC from 

10 repeated 5-fold cross-validation, 52.2%, was from an SVM classifier assigning subjects to 

each class using most frequent vote based on pairwise SVM classifiers. A combination of all of 
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the top 10 ranked features from these ordinal classifiers is listed in Table 6.  Mean FA in the left 

medial orbitofrontal cortex and right cuneus again contributed highly in placing subjects into 

correct subcategories in each of three ordinal classifiers.     

 Table 5: Predictive accuracy of ordinal classification. Mean±SD were based on 10 sets of 
average performance measures from repeated 5-fold cross validation using 39 features.   

Model 
Percentage 

Correctly Classified 
(PCC) 

Spearman’s 
rho 

Kendall’s 
tau 

Goodman-
Kruskal’s 
gamma 

Cohen’s 
Kappa 

SVM with 
most frequent 
class based 
on pairwise 

classification 

52.20 ± 1.69% 0.3591 ± 
0.0378 

0.3267 ± 
0.0340 

0.4828 ± 
0.0474 

0.3468 ± 
0.0394 

PLR with 
forward 

continuation 
47.05 ± 2.87% 0.3736 ± 

0.0320 
0.3359 ± 
0.0305 

0.5062 ± 
0.0473 

0.3674 ± 
0.0339 

Random forest 47.80 ± 3.04% 0.2935 ± 
0.0492 

0.2687 ± 
0.0451 

0.4213 ± 
0.0638 

0.1313 ± 
0.0253 

 

Table 6:  Combination of the top 10 ranked features from the best ordinal classifiers using SVM, 
RF and PLR.  Numbers in the parentheses are the average rank from 10 repeated 5-fold cross-
validation.  Average Rank refers to the mean rank across the three algorithms.  MDD: Major 
Depressive Disorder; HC: Healthy Controls; PLR: penalized logistic regression model with 
elastic net penalty, SVM: support vector machine, RF: random forest 

Measure Region 
Rank in 

SVM 
classifier 

Rank in RF 
classifier 

Rank in 
PLR 

classifier 
Average 

Rank 

Mean FA (dMRI) Left Medial 
Orbitofrontal 1(10.54) 2(4.08) 2(5.06) 1.67 

Mean FA (dMRI) Right Cuneus 5(13.82) 3(8.94) 6(7.74) 4.67 

Mean FA (dMRI) Left Lateral 
Orbitofrontal 3(12.42) 6(12.05) 12(14.89) 7 

Gray Matter Volume 
Asymmetry (sMRI) Pericalcarine 4(13.76) 22(22.61) 1(4.87) 9 

Gray Matter Volume 
Asymmetry (sMRI) Precentral 8(14.34) 5(11.94) 19(19.13) 10.67 

Mean FA (dMRI) Right Rostral Anterior 
Cingulate 7(14.32) 20(22.42) 7(8.21) 11.33 

Mean FA (dMRI) Right Lingual 9(15.56) 7(13.00) 20(19.31) 12 
Gray Matter Volume 
Asymmetry (sMRI) Pars Triangularis 11(16.60) 21(22.45) 4(6.90) 12 

Gray Matter Volume Left Pars Orbitalis 21(21.02) 15(21.58) 3(5.32) 13 
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Measure Region 
Rank in 

SVM 
classifier 

Rank in RF 
classifier 

Rank in 
PLR 

classifier 
Average 

Rank 
(sMRI) 

Mean FA (dMRI) Right Entorhinal 19(20.50) 18(21.94) 5(7.08) 14 
Gray Matter Volume 

(sMRI) Inferior Temporal 10(16.28) 14(20.59) 21(21.43) 15 

Gray Matter Volume 
(sMRI) 

Right Pars 
Triangularis 6(14.06) 23(22.85) 17(18.18) 15.33 

Mean FA (dMRI) Left Insula 12(16.60) 10(17.77) 28(26.43) 16.67 
Age Age 16(17.64) 1(3.64) 33(29.42) 16.67 

Mean FA (dMRI) Right Caudal Anterior 
Cingulate 2(10.98) 36(24.98) 16(17.18) 18 

Gray Matter Volume 
Asymmetry (sMRI) Lingual 14(17.40) 33(24.57) 9(12.00) 18.67 

Mean FA (dMRI) Left Lateral Occipital 23(21.24) 24(22.95) 10(12.66) 19 
Cortical Thickness 

(sMRI) 
Left Hemisphere 

(Average) 15(17.62) 9(14.11) 38(32.09) 20.67 

Gray Matter Volume 
(sMRI) Right Choroid Plexus 20(20.92) 8(13.52) 35(29.91) 21 

Volume Asymmetry 
(sMRI) Cerebellum 28(23.04) 28(23.73) 8(11.77) 21.33 

Cortical Thickness Right Hemisphere 
(Average) 34(24.64) 4(9.55) 36(30.32) 24.67 

 

Prediction of Hamilton scores among Patients with MDD  

When using PLR, SVM and RF to build predictive models for HAMD total score and its 

factor scores, SVM using a radial basis function kernel had the best predictive performance for 

HAMD score, Factor 1 and 4; RF had the best predictive performance for factor 5; PLR had the 

best performance for Factor 2 (Table 7).  Permutation tests applied to these best models for 

predicting each continuous outcome suggested that the corresponding RMSEs were not 

significantly below chance levels, except for Factor 2 and Factor 5.  Frequently top-ranked 

variables in predicting all 5 continuous scores can be found in Table 8. Two variables that 

contribute highly in predicting all five different continuous scores are mean FA in the right 

cuneus and the volume of the right choroid plexus.  
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Table 7: Performance of predicting Hamilton Depression Rating Scale (HAMD) total score and 
its factor scores in Major Depressive Disorder. Mean±SD were based on 10 sets of average 
performance measures from repeated 5-fold cross validation using 39 features.  PLR: penalized 
logistic regression model with elastic net penalty, SVM: support vector machine, RF: random 
forest; RMSE: root mean squared error  

Variable RMSE 𝐑𝟐 
PLR SVM RF PLR SVM RF 

HAMD Score 4.6019 ± 
0.0851 

4.3408 ± 
0.0628 

4.5138 ± 
0.0793 

0.0516 ± 
0.0219 

0.1301 ± 
0.0274 

0.0632 ± 
0.0237 

Factor 1: 
Psychic 

Depression 

2.0498 ± 
0.0381 

1.9742 ± 
0.0140 

2.0226 ± 
0.0393 

0.0261 ± 
0.0096 

0.0334 ± 
0.0100 

0.0302 ± 
0.0173 

 

Factor 2: 
Motivation 

 

1.1802 ± 
0.0245 

1.1904 ± 
0.0138 

1.2130 ± 
0.0189 

0.0662 ± 
0.0265 

0.0349 ± 
0.0198 

0.0224 ± 
0.0150 

Factor 4: 
Anxiety  

1.2812 ± 
0.0202 

1.2328 ± 
0.0095 

1.2933 ± 
0.0199 

0.0286 ± 
0.0262 

0.0374 ± 
0.0233 

0.0358 ± 
0.0170 

Factor 5: 
Sleep  

1.4344 ± 
0.0204 

1.3926 ± 
0.0141 

1.3649 ± 
0.0157 

0.0299 ± 
0.0098 

0.0502 ± 
0.0115 

0.0856 ± 
0.0227 

 
Table 8: Frequently top-ranked variables in predicting HAMD total score and its factor scores 
(F1-F5) in Major Depressive Disorder; 1 means the feature is top ranked in predicting one type 
of score while 0 means it is not.  

Measure 

 

 
Region HAM

D F1 F2 F4 F5 
Total count of 
appearance in 

top ranked 
features 

Mean FA (dMRI) Right Cuneus 1 1 1 1 1 5 
Gray Matter Volume 

(sMRI) 
Right Choroid 

Plexus 1 1 1 1 1 5 

Gray Matter Volume 
Asymmetry (sMRI) 

Lingual 1 1 1 0 1 4 

Gray Matter Volume 
Asymmetry (sMRI) 

Pericalcarine 1 1 1 1 0 4 

Gray Matter Volume 
(sMRI) 

Right Frontal Pole 1 1 1 1 0 4 

Mean FA (dMRI) Left Inferior 
Parietal 1 1 1 1 0 4 

Mean FA (dMRI) Left Transverse 
Temporal 1 0 1 1 1 4 

Volume Asymmetry 
(sMRI) 

Cerebellum 1 1 0 1 1 4 

Gray Matter Volume 
Asymmetry (sMRI) 

Cuneus 1 1 1 0 0 3 

Gray Matter Volume 
Asymmetry (sMRI) 

Pars Triangularis 1 0 1 0 1 3 
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Gray Matter Volume 
Asymmetry (sMRI) 

Precentral 1 0 1 1 0 3 

Cortical Thickness 
(sMRI) 

Left Hemisphere 
(Average) 1 0 0 1 1 3 

Mean FA (dMRI) Left Insula 1 1 0 1 0 3 

Mean FA (dMRI) Left Pars 
Triangularis 1 1 0 0 1 3 

Mean FA (dMRI) Left Precuneus 1 1 0 0 1 3 
 

Comparisons across Models  

Among all top ranked features from predictive models built for all outcomes here, four common 

elements contributed to model accuracy, as indicated in the center area of Figure 2.  These 

include mean FA in the right cuneus and left insula and asymmetry in the volume of the pars 

triangularis and cerebellum.  

As an additional check of the importance of these four features, the above models were 

re-run with the inclusion of all features (i.e., without doing any feature selection).  Without 

feature selection, these four common features remained highly ranked in one or more of the 

analyses: mean FA in the right cuneus (binary: rank=1; ordinal: 2; continuous outcomes: 2), 

mean FA in the left insula (binary: 47; ordinal: 7; continuous: 3); volume asymmetry in the pars 

triangularis (binary: 38; ordinal: 16; continuous: 4); and volume asymmetry in the cerebellum 

(binary: 37; ordinal: 81; continuous: 4). 

As mentioned in the feature reduction step, highly correlated features were removed.  

Only one feature removed in this stage was highly correlated to any of the four common 

features.  This was grey matter volume of the left ventral diencephalon (Pearson’s correlation 

coefficient = 0.8520 with mean FA in the left insula).  
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Figure_2 

Figure 2: Venn diagram for the number of top ranked variables for all predictive models based 
on training data set (Predictive model for continuous Hamilton Depression Rating Scale 
[HAMD17] scores was based on MDD patients only). MDD: Major Depressive Disorder; HC: 
Healthy Controls 
  

 

External Validation on predicting MDD vs HC 

Because of the low performance of both ordinal classification and predictive modeling, external 

validation analysis was only performed on the binary classifier for MDD vs HC. A patient was 

classified as having MDD if her/his predicted probability of having MDD was greater than 50%. 

The prediction performance for three predictive models (as in Table 3) are summarized in 

Tables 9 and 10. The binary classifier based on RF had the highest accuracy rate of 78.7% and 

the highest AUC value of 0.6733, but similar to other two classifiers, the specificity was very low. 

(This result supports the criticism about RF on imbalanced datasets (Dudoit & Fridlyand, 2003).)  

The calibration plot of this binary classifier actually suggests that it consistently underestimates 

the probability of MDD and hence even though this method has a better discrimination index 

(AUC=0.6733, 95% CI: 0.5508 – 0.7957), the calibration in the large is worse than SVM or PLR 

(Figure 3).  

 

Table 9: Confusion matrices of binary classifiers on validation dataset.   

Model Validation 
outcomes 

true 
Healthy 
Controls 

true  
Major Depressive 

Disorder  
Penalized HC 6  11 
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Model Validation 
outcomes 

true 
Healthy 
Controls 

true  
Major Depressive 

Disorder  
Logistic 

Regression MDD 19 72 

Support 
Vector 

Machine  

HC 8 10 

MDD 17 73 

Random 
Forest 

HC 4 2 

MDD 21 81 
 

Table 10: Other performance metrics and their 95% confidence intervals for binary classifiers on 
the validation dataset.  PLR: Penalized Logistic Regression; SVM: Support Vector Machine; RF: 
Random Forest; AUC: Area under the Curve 

Model AUC Accuracy (%) Sensitivity 
(%) 

Specificity 
(%) 

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

PLR 0.5846(0.4523-
0.7169) 

72.22(62.78-
80.41) 

86.75(77.52-
93.19) 

24.00(9.36-
45.13) 

79.12(69.33-
86.94) 

35.29(14.21-
61.67) 

SVM  0.639(0.5085-
0.7696) 

75(65.75-
0.82.83) 

87.95(78.96-
94.07) 

32.00(14.95-
53.5) 

81.11(71.49-
88.59) 

44.44(21.53-
69.24) 

RF 0.6733(0.5508-
0.7957) 78.7(69.78-86) 97.59(91.57-

99.71) 
16.00(4.54-

36.08) 
79.41(70.27-

86.78) 
66.67(22.28-

95.67) 
 

 
Figure_3 

Figure 3: Calibration plot for predicting diagnosis based on three methods and 39 features. 
Calibration in the large quantifies the difference between mean predicted probability of having 
Major Depressive Disorder (MDD) and observed proportion of MDD patients. The closer to 0, 
the better the calibration is. The calibration slope different from 1 suggests that the overall 
predictive performance of 39 features was different from that observed in the validation data. A 
calibration slope less than 1 reflects an overestimation of MDD risk, and vice versa for a 
calibration slope greater than 1 (Van Calster et al., 2016). The c-statistic is identical to the AUC 
values and its confidence intervals are in Table 10. Spikes at the bottom of the graph indicate 
the probability distribution for those with MDD and Healthy Controls (HC). Triangles indicate 
quintiles of subjects according to predicted probability with 95% confidence intervals for the 
observed proportions of patients with MDD. For example, the fact that for PLR and SVM, the 
spikes mostly appear near 0.9, and the triangles are near the right hand side, is consistent with 
the calibration slope less than 1, i.e., overestimating MDD risk. 
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Discussion 

Major Depressive Disorder is a prevalent disease with a growing global impact. Although 

numerous imaging studies have uncovered neurobiological differences associated with MDD, 

clinically translatable markers have yet to be identified. This may be due to limited sample sizes 

used in previous studies, leading to overfitting of data, and not using a separate replication 

sample, resulting in inconsistency of results across studies. To overcome these previous 

limitations, the current study involved an exploration in 199 subjects, using a multi-site design 

and validation of findings in a separate cohort of 108 subjects. 

 

Modeling/Methodology 

To represent a generalizable sample, image-derived data in this study were acquired 

from 8 sites with 7 different MRI scanners. Because systematic differences in image-derived 

measures across scanners have been reported (Iscan et al., 2015; Madan, 2017), adjusting for 

site/scanner differences was considered. Two ways of adjusting for these differences were 

explored (data not shown): 1) using linear regression to estimate the site/scanner differences 

after controlling for age, sex and handedness and then normalizing each imaging feature to the 

reference site/scanner with the most samples; 2) using quantile normalization. In most cases, 

adjusting for site/scanner within this study did not improve predictive performance, and in a few 

cases, this adjustment reduced predictive performance (data not shown). Further, top ranked 

features were similar among models with and without adjusting for these differences. Therefore, 
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with the intention of generalizing our predictive models, no site/scanner adjustment was 

implemented in the current study.  

In this study, multiple classification techniques were applied to a training set of 199 

subjects (52 HC, 147 MDD) with two different imaging modalities (dMRI and sMRI). Regional 

grey matter (volume, asymmetry and thickness from sMRI) and white matter (fractional 

anisotropy from dMRI) measures comprised 222 features. In addition to these image-based 

features, sex, age at diagnosis and handedness were used as predictors of clinical status. We 

did not include clinical factors such as length of illness or number of depressive episodes in our 

prediction analysis.  Though doing so could potentially improve prediction accuracy, there are 

challenges in accurately assessing these variables (Kruijshaar et al., 2005; Patten, 2003; 

Takayanagi et al., 2014; Wells & Horwood, 2004), and the focus of this work was to relate 

objective measures of brain biology to depression outcomes.  Further, potential correlations 

between these variables and depression measures (Kessler et al., 2007) could confound 

biological interpretations.   

We did not restrict the dataset to a priori regions due to a lack of consensus on MDD 

neurobiology. The large number of initial features, however, required data reduction prior to 

analysis. Therefore, highly correlated features and those with ill-conditioned pairwise matrices 

(matrices where one input has a large effect on the outcome) were removed to reduce 

dimensionality.  

An iterative procedure was then used for final feature selection, with 39 out of 225 

features chosen for building the final predictive models (see Table A1 in Appendix). This 

procedure involved applying the three classifiers discussed below to the binary, ordinal and 
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continuous outcomes, ranking the variables in terms of prediction, and then compiling the top 10 

features across the three classifiers for each analysis. This resulted in 37 top image-based 

features in addition to age and sex. To determine whether feature selection is sensitive to 

choice of data reduction procedure, we also performed the MDD/control and continuous 

prediction without feature selection and obtained similar results.  Further, a recently proposed 

variable selection algorithm, stability selection, was also applied (data not shown) (Hofner, 

Boccuto, & Goker, 2015; Hofner & Hothorn, 2017; Meinshausen & Bühlmann, 2010; Shah & 

Samworth, 2013).  All features except one selected by this method for different outcomes fall 

within 39 features in Table A1.  Iterative sure independence screening methods, in which 

variable selection is integrated into the model building process, were also applied (Fan, Feng, & 

Song, 2011; Fan & Li, 2001; Fan, Samworth, & Wu, 2009; Tibshirani, 1996; Zhang, 2010). 

However, the predictive performance did not improve and hence the related results were not 

reported. Nonetheless, a combination of the top 10 important features ranked by these methods 

were similar to those reported in Tables 4, 6 and 8.  These results provide confidence that the 

results were not sensitive to the use, or choice of, feature selection technique. 

The three classifiers applied were PLR, RF and SVM. Each model has differing 

strengths. For example, SVM has advantages when dealing with binary class data whereas RF 

is advantageous for multi-class data with outliers (Hastie, Tibshirani, & Friedman, 2001).  

Penalized logistic regression has also been shown to handle outliers better than the SVM 

(Hastie et al., 2001).  The No Free Lunch (NFL) theory asserts that there is no one optimal 

classifier across different data sets (Wolpert & Macready, 1997).  Therefore, the optimal 
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modeling strategy may be data dependent. For this reason, three of the most popular and 

effective modeling techniques were applied. 

         

Model Results 

        For binary classification (MDD/HC), all three models had similar accuracy, with 

misclassification rates of ~26%. In the validation set, results were poor, with a mean 87.95% 

sensitivity but only 32% specificity.  Note that, in the validation analysis, a subject was predicted 

as having MDD if her/his predicted probability of having MDD was greater than 50%. Raising 

this threshold did not improve results (data not shown).  The low specificity results from false 

classification of the majority of healthy controls as depressed subjects.  Due to the limited 

number of misclassified MDD patients, it becomes challenging to determine patient or site 

characteristics associated with the misclassification.   

The low specificity may have been an effect of the imbalance in subject numbers 

between the two classes: ~74% of the sample were MDD patients. Literature in the machine 

learning field has recognized the influence of imbalanced data on the performance of most 

traditional machine learning methods (Sun, Wong, & Kamel, 2009).  The most popular approach 

to handle class imbalance is the synthetic minority oversampling technique (SMOTE), which 

oversamples by introducing new, non-replicated minority class examples using the nearest 

neighbors of these cases (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  The SMOTE 

resampling technique was used, but did not improve the performance of predicting MDD or 

severe MDD (data not shown).   In the binary classification of MDD/healthy control, the 

specificity increased to 0.3-0.49 for different predictive models but at the expense of decreasing 

This article is protected by copyright. All rights reserved.



Yang, Page 34 

sensitivity from 0.95-0.99 to 0.51-0.74. The overall accuracy decreased as well as AUC values.  

Similarly, in a classification of severe MDD (i.e., 131 non-severe vs 68 severe subjects), the 

sensitivity increased from ~0.3 to ~0.6 but at the expense of a specificity drop from ~0.8 to ~0.6, 

as well as a decrease in accuracy and AUC values.  Therefore, it is unlikely that this finding is a 

result of the imbalance, and results without using any resampling technique are presented 

here.   

The relatively high misclassification rate in the binary classification analysis may be a 

result of treating all depressed patients as a single group. Depression is a heterogeneous 

disease.  In fact, there are nearly 1,500 combinations of symptoms that meet DSM criteria for a 

depression diagnosis and MDD patients may share only a single symptom (Ostergaard, Jensen, 

& Bech, 2011).  Such heterogeneity may arise from differing neurobiological underpinnings 

(Joober, 2013). To reduce the heterogeneity, therefore, the same models used in the binary 

classification were also used to determine whether neurobiology can be used to stratify 

individuals based on levels of depression severity (control vs mild MDD vs severe MDD). 

However, the best predictor model was SVM with a percentage correctly classified (PCC) close 

to chance (52.20 ± 1.69%). Despite the lack of predictive success, the top ranked regions 

overlapped with those of the binary analysis, providing some confidence in the importance of 

these regions as classifiers. Specifically, 11 of the 15 top ranked binary features (Table 4) are 

top ranked features in the ordinal (control vs mild MDD vs severe MDD) analysis (Table 6, 21 

top features). Further, the top two predictive features across all models were the same as the 

binary analysis - mean FA in the left medial orbitofrontal cortex and the right cuneus, with 

average ranks of 1.67 and 4.67, respectively. 
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To examine whether finer resolution of depression severity is needed in order to relate 

severity to neurobiology, we also examined prediction of a continuous severity measure (HAMD 

total score). However, the highest correlation between combinations of high-ranking features 

and HAMD scores explained only 13% of the variance.   

Although the above analyses increase in resolution (from binary classification, to three 

groups, to a continuous measure), they still rely on aggregate measures of depression severity, 

which does not overcome the issue of depression heterogeneity.  We therefore sought to also 

examine clusters of correlated symptoms, using our previously published factor analysis of the 

HAMD.  This is in line with NIMH’s Research Domain Criteria (RDoC (Insel & Cuthbert, 2009)), 

which provides a neuroscience-based approach to classifying psychopathology using an 

expanding set of domains relating to different functions (e.g., “anxiety” or “arousal”). These 

factors included psychic depression, motivation, anxiety, and sleep (excluding psychosis).  

However, the finer resolution of symptoms did not result in improved model accuracy, as the R2 

value of the prediction was less than 0.14 in all cases. 

Despite the disparate nature of the symptom categories, many of the same features 

were implicated in predicting each of the factors (Table 8), as well as overall severity (as 

assessed by the HAMD).  This suggests that, despite the low accuracy of any individual model, 

which would prevent clinical translation, examining aggregate model results provides insight into 

the neurobiological underpinnings of MDD.  36.6% (11 features) were implicated across binary 

and severity prediction and 4 features were implicated across all measurements (Figure 2), 

although rankings for each feature differed across classifiers. These four features consisted of 
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two dMRI-based measures (average FA in the right cuneus and left insula) and two sMRI-based 

measures (asymmetry in the volume of the pars triangularis and the cerebellum). 

The cuneus is a region in the occipital lobe containing the primary visual cortex and is 

associated with the processing of visual cues (Parker, Zalusky, & Kirbas, 2014).  White matter 

tracts through the cuneus connect the precuneus to the parietal lobe (Parker et al., 2014).  The 

precuneus has been shown to be a critical component of the default mode network (DMN) 

(Cunningham, Tomasi, & Volkow, 2017; Fransson & Marrelec, 2008; Klaassens et al., 2017; 

Utevsky, Smith, & Huettel, 2014), the network of brain regions implicated in self-referential 

thought and activated in the absence of a specific task.  MDD has been associated with an 

inability to downregulate the DMN (Sheline et al., 2009), which might be associated with 

maladaptive rumination and difficulties disengaging from negative cues.  As such, connectivity 

from the precuneus (through the cuneus) may be altered in MDD.  Further, the orbitofrontal 

cortex receives information regarding visual cues indirectly from the primary visual areas (Rolls, 

2004a). The orbitofrontal cortex, which was an important feature in the ordinal analysis, is 

implicated in both reward processing and the integration of sensory and emotional information 

(Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Kringelbach & Rolls, 2004; Price & 

Drevets, 2010; Rolls, 2004b). Obitofrontal-cuneus structural connectivity, which may affect 

cuneus FA, may therefore be altered in MDD. Although the group-wise FA differences in the 

cuneus were not significant (HC FA: 0.37±0.03, MDD FA: 0.36±0.04, p-value = 0.35), these FA 

measures contributed to overall classification.  Potentially relating to these dMRI-based findings, 

cuneus volumetric asymmetry was a significant predictor in both the binary and continuous 

analysis.  Examining the data revealed that the right cuneus volume was 3.2±11.9% larger than 
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left cuneus volume in the controls and 5.5±11.9% larger than the left cuneus volume in the MDD 

cohort. This may reflect right-sided hyperactivity in MDD (Briceno et al., 2013) or right 

hemisphere selective involvement in processing negative emotion and negative self-referential 

thinking, in conjunction with left hemisphere hypoactivity and bias for positive stimuli and 

pleasure (Hecht, 2010). 

Unlike the cuneus, group-level differences in FA were observable in the left insula at a 

trend level (HC FA: 0.49±0.04, MDD FA: 0.48±0.03, p-value = 0.07), although the average 

difference was too small to be clinically meaningful.    The insula is involved in integrating 

sensory interoception signals, cognition and motivation (Namkung, Kim, & Sawa, 2017).  As 

such, insula dysfunction (including structural and functional abnormalities) has been implicated 

in MDD (Namkung et al., 2017).  The insula also has extensive connections to the DMN, and 

differences in connectivity between the insula and the DMN network as well as the amygdala 

may result in pathological inward focus in MDD (Sliz & Hayley, 2012).  Further, the right and left 

anterior insula may respond to differing stimuli, with the left being activated by prominent 

sensory input and emotional feelings (Sliz & Hayley, 2012). 

Consistent with the lateral findings in the cuneus, the right pars triangularis (also referred 

to as BA45) volume was 12.0±15.2% larger than left pars triangularis volume in the controls and 

15.2±16.0% larger than the left pars triangularis volume in the MDD cohort.  Reflecting this, the 

average pars triangularis laterality measure was negative in both cohorts (HC laterality: -

7.1±8.2, MDD laterality: -9.0±9.2, p-value = 0.18).  The pars triangularis is part of the inferior 

frontal gyrus and, along with BA44, is considered part of Broca’s area, in which language 

processing occurs (Ardila, Bernal, & Rosselli, 2016).  Interestingly, a recent meta-analysis using 
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activation likelihood estimation (ALE) on 28 studies including 403 participants determined that 

the functional connectivity network of the inferior temporal gyrus (another critical language area) 

in healthy controls consists of the left prefrontal cortex (including BA45), the left insula, bilateral 

precuneus, cerebellum and occipital areas (as well as the left temporal lobe) (Ardila, Bernal, & 

Rosselli, 2015).  As such, this language network includes all four top predictors in this work. 

Dysfunction in this network may be one reason why depression is associated with slower 

speech and an increase in pausing (Maser, 1987).  Further, changes in verbal fluency appear to 

be a hallmark of the disease (Lim et al., 2013).  

Consistent with the lateral findings in the cuneus and pars triangularis, though to a lesser 

magnitude, the right cerebellum volume was 1.1±3.1% larger than left cerebellum volume in the 

controls and 2.3±4.4% larger than the left cerebellum volume in the MDD cohort.  Reflecting 

this, the average cerebellum laterality measure was negative in both cohorts (HC laterality: -

0.6±1.6, MDD laterality: -1.2±2.3, p-value = 0.06).  The role of the cerebellum in psychiatric 

disorders continues to be elucidated (Baldacara, Borgio, Lacerda, & Jackowski, 2008; J. R. 

Phillips, Hewedi, Eissa, & Moustafa, 2015; Shakiba, 2014).  In MDD, cerebellar volume may be 

reduced, activity may be increased and connectivity with cortical brain regions disrupted (J. R. 

Phillips et al., 2015). 

The above suggest that these features (mean FA in the right cuneus and left insula, 

asymmetry in the volume of the pars triangularis and cerebellum) may play a significant role in 

MDD, and should be examined in future studies.  Also, importantly, the significance of these 

features is not immediately apparent from examining them in isolation (i.e. examining group 

differences).  This emphasizes the need for techniques examining multiple features in parallel.  
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As the pathophysiology of MDD continues to be studied, more insight can be gained into the 

specific roles of these features, and importantly, the laterality effect, which is not often 

addressed, may be uncovered. 

 

Limitations 

Although we evaluate one of the largest MDD sMRI and dMRI imaging cohorts, across 

geographically diverse imaging centers, our inclusion/exclusion criteria may prevent these 

findings from representing all MDD patients, particularly those with comorbities or on 

medication, who were excluded from the current study.  Further, there are numerous other 

measures that may be extracted from sMRI and dMRI modalities that were not examined in this 

study, and may yield more clinically significant results.  Additionally, the choice of brain atlas for 

the regional analysis can impact model results.  There are available atlases with finer 

parcellations than the Desikan-Killiany atlas used in this work.  Those would increase the 

number of model variables (and therefore complexity) but also would allow detection of smaller 

regional effects that may be subsumed by large regional averages.  To balance these concerns, 

future work could involve finer parcellations of the four regions implicated in this study.  Finally, 

MDD is a heterogeneous disease.  Though our analysis of depression factors attempts to 

account for this, there still may be multiple biological pathways resulting in the same symptom 

manifestation, which would confound study results.  And, as these factors were derived from a 

previous study, they may not be universally applicable to all populations.  For example, using 

Cronbach’s alpha and Loevinger’s coefficient of homogeneity (Olsen, Jensen, Noerholm, 
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Martiny, & Bech, 2003) confirmed good internal reliability of the HAMD and factors 1 and 5, with 

safely acceptable reliability of factor 2 and just acceptable reliability of factor 4.  

 

Conclusion 

        From this study, we can draw several important conclusions. 1) Despite our use of 

multiple models with differing advantages, a large training dataset, and a separate validation 

analysis, the final overall model performance was too low for clinical application. 2) Although 

four features (mean FA in the right cuneus and left insula, asymmetry in the volume of the pars 

triangularis and cerebellum) were implicated across all analyses, low classification and 

prediction accuracy using these features indicates that they cannot represent the entire 

pathophysiology of MDD. However, they may be relevant for future investigations of MDD 

neurobiology. 3) It has already been suggested that dMRI-based measures cannot be used to 

distinguish MDD in large samples (K. S. Choi et al., 2014) and this could be one reason for the 

equivocal results to date. In agreement with lack of previous consensus among sMRI and dMRI 

findings in MDD, the results of our powerful, comprehensive approach suggest that the sMRI 

and dMRI features used here may not provide a usable marker for diagnostic classification or 

prediction of depression severity on their own.  

 To improve predictive power, future work would involve utilizing these study 

characteristics (large cohort, multimodality features, robust methods, external validation) to 

combine the four sMRI and dMRI measures implicated across all analyses with other potential 

neurobiomarkers such as those derived from PET and/or EEG, or other behavioral measures. 

Such an approach could bring us closer to the first clinically relevant biomarker of MDD.   
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Appendix 
Table A1: List of the 39 features used in predictive modeling 

Category Variable 
Demographics 
 

Sex 
Age 

Gray Matter Volume Asymmetry of Various 
Cortical Regions (sMRI) 
 

Pars Triangularis 
Pericalcarine 
Precentral 
Transverse Temporal 
Cuneus 
Lingual 
Paracentral 
Cerebellum 

Gray Matter Volume of Various Cortical Regions 
(sMRI) 
 

Left Inferior Temporal 
Pars Orbitalis 
Frontal Pole 
Pars Triangularis 

Gray Matter Volume of Various Subcortical 
Regions (sMRI) Right Choroid Plexus 

Volume (sMRI) Brainstem 
Mean Thickness of the Entire Hemispheres 
(sMRI) 

Left Mean Thickness 
Right Mean Thickness 

Mean Fractional Anisotropy of Various Regions 
(dMRI) 
 

Anterior Corpus Callosum 
Left Banks of the Superior Temporal 
Sulcus 
Left Inferior Parietal 
Left Insula 
Left Lateral Occipital 
Left Lateral Orbitofrontal 
Left Medial Orbitofrontal 
Left Middle Temporal 
Left Pars Triangularis 
Left Precuneus 
Left Transverse Temporal 
Left Cerebellum 
Right Banks of the Superior Temporal 
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Category Variable 
Sulcus 
Right Caudal Anterior Cingulate 
Right Cuneus 
Left Entorhinal 
Right Fusiform 
Right Lateral Orbitofrontal 
Right Lingual 
Right Parahippocampal 
Right Rostral Anterior Cingulate 

 
 
 

Figure_A1 

 
Figure A1: Bar plot for the 5-fold cross-validated performances for each task. MDD: Major 
Depressive Disorder; PLR: penalized logistic regression model with elastic net penalty, SVM: 
support vector machine, RF: random forest; AUC: area under the curve; PCC: percentage 
correctly classified; RMSE: root mean squared error 
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Figure Legends 
 
 
Figure 1: The general workflow of the predictive modeling system, which starts with data 

preprocessing, followed by feature selection, predictive modeling and variable importance 

ranking evaluation blocks, which in turn provide additional information for better feature 

selection.  Validation was performed on the final classifier built on the training dataset.  

 

Figure 2: Venn diagram for the number of top ranked variables for all predictive models based 

on training data set (Predictive model for continuous Hamilton Depression Rating Scale 

[HAMD17] scores was based on MDD patients only). MDD: Major Depressive Disorder; HC: 

Healthy Controls 

 

Figure 3: Calibration plot for predicting diagnosis based on three methods and 39 features. 

Calibration in the large quantifies the difference between mean predicted probability of having 

Major Depressive Disorder (MDD) and observed proportion of MDD patients. The closer to 0, 

the better the calibration is.  The calibration slope different from 1 suggests that the overall 

predictive performance of 39 features was different from that observed in the validation data.  A 

calibration slope less than 1 reflects an overestimation of MDD risk, and vice versa for a 

calibration slope greater than 1 (Van Calster et al., 2016). The c-statistic is identical to the AUC 

values and its confidence intervals are in Table 10. Spikes at the bottom of the graph indicate 

the probability distribution for those with MDD and Healthy Controls (HC). Triangles indicate 

quintiles of subjects according to predicted probability with 95% confidence intervals for the 

observed proportions of patients with MDD. For example, the fact that for PLR and SVM, the 
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spikes mostly appear near 0.9, and the triangles are near the right hand side, is consistent with 

the calibration slope less than 1, i.e., overestimating MDD risk. 

 

Figure A1: Bar plot for the 5-fold cross-validated performances for each task. MDD: Major 

Depressive Disorder; PLR: penalized logistic regression model with elastic net penalty, SVM: 

support vector machine, RF: random forest; AUC: area under the curve; PCC: percentage 

correctly classified; RMSE: root mean squared error 
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