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 1 

Article Type: Editorial 2 

さAloﾐe we caﾐ do so little; together we caﾐ do so ﾏuchざ - Helen Keller 3 

 4 

 5 

At its Ioヴe, the IoﾐIept of さHig dataざ iﾐ health Iaヴe eﾏHヴaIes the pヴoﾏise of Iヴeatiﾐg tヴaﾐsIeﾐdeﾐt 6 

knowledge generation systems using the power of information gathered from routine processes for all 7 

patients. By harnessing large-scale aggregation of information generated during routine healthcare 8 

delivery to the speed and-capacity of machine learning (ML) and artificial intelligence (AI) algorithms, 9 

さHig dataざ pioﾐeeヴs Helie┗e ┘e Iaﾐ ヴeduIe ヴeseaヴIh Iosts, deepeﾐ ouヴ uﾐdeヴstaﾐdiﾐg of faItoヴs affeItiﾐg 10 

patient outcomes and improve patient care.  Ability of ML and AI to identify and characterize 11 

interactions among sets of variables and cohorts of patients, much larger than humans are capable of 12 

analyzing, should deepen our understanding key factors affecting outcomes and quality of care. These 13 

are early days; with substantial amounts of foundational work needed to reach that promise. Part of 14 

that foundation includes improving standardizations for quantifying data elements and building systems 15 

to increase the volume of quality data that may be consumed by these data hungry ML and AI 16 

algorithms.  17 

 18 

By analogy, consider our love of fast, powerful and convenient cars.  Without the foundational work of 19 

constructing roads, bridges, fuel stations and other supports, connections and logistics plus 20 

development of science and engineering underlying design, the reality of driving would not be possible. 21 

A myriad of standardizations (e.g. diameter of nozzle on fuel pump at gas station, traffic laws, road 22 

design, regulatory standards) enable us to just focus on driving, without having to also grapple with 23 

endless variations in key details. These elements did not emerge quickly and fully formed from the 24 

minds of a handful of people. Instead, they evolved, gradually out of the combined trial and error 25 

iterations of communities of enthusiasts to find a common solution.  26 

 27 

Similarly making the promise of さHig dataざ a practical, routine part of our clinical reality will be an 28 

outgrowth of what we are able to do together as a community to build needed core concepts (e.g. 29 

clinically linked measures of ML/AI algorithm reliability) and standardizations (e.g. nomenclatures, 30 

ontologies, toxicity measures, disease site status/recurrence categorizations). Practice standardizations 31 

(e.g. how recurrence information is entered into a treatment note) enable our electronic systems to 32 
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make distinctions among data elements that can then be fed accurately, rapidly and in large volume to 33 

learning algorithms. In our cars, standardizations let us take for granted the ability to drive up to any gas 34 

station to fuel our travels. By contrast, lack of standardized categorizations and entry processes in our 35 

clinics, means we cannot take for granted the ability to electronically extract accurate information on 36 

treatment outcomes, treatment variables, and relevant patient host variables from available electronic 37 

health records to fuel our treatment outcomes modeling.  38 

 39 

Further, if we aspire to eventually understand global patterns of care and treatment outcomes for all 40 

cancer patients treated by our healthcare systems, as opposed to outcomes of limited patient cohorts 41 

accrued at a relatively small number of centers, then our communities and the foundational work 42 

required of them, must expand beyond the scale of a few institutions.  It requires that we move toward 43 

community science, where collaborations spanning multiple institutions, clinic sizes and national 44 

borders are recognized as key factors for success in supporting creation of practical enabling 45 

standardizations, ontologies, algorithms and processes. While this principle is recognized in clinical trials, 46 

the comparable funding, institutional and aIadeﾏiI suppoヴts foヴ the fouﾐdatioﾐal さHig dataざ effoヴts 47 

often are not. Using our analogy, it is often easier to get support for designing a futuristic car than for 48 

constructing roads and bridges.  49 

 50 

One recent example of community science is the AﾏeヴiIaﾐ AssoIiatioﾐ of Ph┞siIists iﾐ MediIiﾐe’s 51 

(AAPM’s) Task Group 263 (TG-263) on Radiation Oncology Nomenclature.[1] This task group worked 52 

with a large and diverse group of 57 physicians, physicists, industry representatives and others, drawn 53 

from large clinics and small, academic and non-academic centers, the AAPM, the American Society of 54 

Therapeutic Radiation Oncology (ASTRO), European Society for Radiation Oncology (ESTRO), NRG and 55 

IHE-RO and other stakeholder groups. The Task Group created and piloted a proposed set of 56 

nomenclature standardization recommendations designed to improve the ability to electronically 57 

extract and use large data sets of dosimetric data to suppoヴt さHig dataざ effoヴts. For example, when 58 

analyzing the history of treatment plans at an institution one often finds dozens of character 59 

combinations that are used to represent each organ at risk (e.g. left optic nerve). Once the 60 

nomenclature is in place, with just one recommended naming for each structure, it is possible to 61 

automate accurate, routine extraction of large volumes of dosimetric data on treatment planning 62 

structures for analysis. An important lesson from that effort was the vital role that professional societies 63 

play in supporting and endorsing these efforts.  64 
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 65 

This special issue of Medical Physics is another example of a community effort to bring the promise of 66 

さHig dataざ Iloseヴ to ヴealit┞. The first Practical Big Data Workshop (PBDW), held at the University of 67 

Michigan in Ann Arbor in 2017, was an effort to promote coalescing the nascent community of builders 68 

aﾐd useヴs of さHig dataざ s┞steﾏs foヴ IaﾐIeヴ Iaヴe.  Shared recognition of a common set of challenges and 69 

need for consensus solutions gave rise to a set of papers to share these perspectives with the larger 70 

community.  71 

 72 

As healthcare builds slowly toward a reality where さbig dataざ and analytics become more routine 73 

elements of clinical practice, there are significant implications for the training and credentialing of 74 

healthcare professionals. A lesson from the PBDW is that physicians, physicists and others must blend 75 

their Radiation Oncology domain knowledge with skill sets from other domains (e.g. informatics, 76 

application development, machine learning, ethics, genomics, radiomics, etc.). New combinations of skill 77 

sets, e.g. physician-ethicists, physician-informaticists, physicist-data scientists, and physicist-database 78 

designers, played vital roles at the meeting in identifying challenges, formulating solutions and 79 

effectively communicating these challenges and solutions to the wider community.   80 

 81 

Realizing the pヴoﾏise of さHig dataざ iﾐ health Iaヴe will be most effectively approached if we work 82 

together as communities transcending boundaries that now separate institutions, professional 83 

identities, and differently structured clinical service lines. Embracing both the need for expanding the 84 

range of skill sets outside our traditional health care training curricula and the importance of building 85 

networks of collaborators will enable us to build the strong foundation needed for knowledge 86 

generating systems to emerge. 87 

 88 

The papers in this special issue span a wide range of subject areas encountered in meeting specific 89 

challenges, solutions and collaborative efforts which are part of reaching the poteﾐtial of さHig dataざ in 90 

radiation oncology.    91 

 92 

In さTヴeatﾏeﾐt Data aﾐd TeIhﾐiIal PヴoIess Challeﾐges foヴ PヴaItiIal Big Data Effoヴts iﾐ Radiatioﾐ 93 

OﾐIolog┞ざ, Mayo et al address several factors affecting many key data elements. [2] These include: need 94 

for process and system changes to improve quality and availability of key data elements and 95 

relationships, access and extraction issues for obtaining data from various source systems used in 96 
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patient treatment, selection considerations for database technologies, review and comparison of clinical 97 

data repositories, specific recommendations for workflows and standardizations, examination of next 98 

steps needed to improve data availability. In addition, the appendix of this manuscript details a 99 

translational research ontology that specifies core data elements and relationships important to a broad 100 

range of patient quality improvement and translational research efforts.  Their recommendations for 101 

improving clinical process include: more complete and consistent utilization of diagnosis and staging 102 

tools in radiation oncology information systems, implementation of TG-263 standardizations for 103 

nomenclature, routine creation of as treated plan sums in treatment planning systems that reflect all 104 

dose delivered in the treatment course and standardized entry of patient reported outcomes and 105 

provider reported toxicities into the electronic record.  106 

 107 

Matuszak et al focus on the efforts and challenges for aggregation of outcomes information in their 108 

manuscript, さPeヴfoヴﾏaﾐIe/OutIoﾏes Data aﾐd Ph┞siIiaﾐ PヴoIess Challeﾐges foヴ PヴaItiIal Big Data 109 

Efforts in Radiation Oncologyざ. [3] Buildiﾐg fヴoﾏ a detailed e┝aﾏiﾐatioﾐ of the さHig dataざ pヴojeIts of 8 110 

groups, they examine common issues affecting data availability, access, and quality. They provide 111 

specific recommendations for improvements through standardized workflows and discuss need for 112 

multi-institutional consensus based standards for classifying recurrence categorizations.   113 

 114 

Iﾐ さGenomics, Bio specimens and other Biological Data: Current status and future directions 115 

ざ H┞ Rosenstein et al, challenges for the use of genomic and bio-specimen data are examined. [4] 116 

Acquisition and storage of this key data element is currently the exception. They examine state large 117 

scale research efforts to using this data element, challenges for access and extraction, issues for 118 

collection and curation and provide specific recommendations for standardizations aimed at reducing 119 

barriers to more wide spread, routine use of this data to support modeling patient outcomes. 120 

Recommendations include developing a standardized nomenclature to reduce variability in collecting 121 

genomics and bio-specimen data, developing standardizations in through multi-institutional and vendor 122 

collaborations to improve interoperability, increasing the frequency of multi-institutional data pooling, 123 

and harmonizing approaches for encapsulating this information in the EHR. 124 

 125 

MaIkie et al deal ┘ith Ihalleﾐges foヴ さHig data さiﾐ  aggregation of imaging information, radiomics 126 

ﾏeasuヴes aﾐd aﾐal┞sis of ケuaﾐtitati┗e iﾏages to fiﾐd Hioﾏaヴkeヴs of disease iﾐ さOppoヴtuﾐities aﾐd 127 

Challenges to Utilizatioﾐ of Quaﾐtitati┗e Iﾏagiﾐg: Repoヴt of the AAPM PヴaItiIal Big Data Woヴkshopざ.[5]  128 
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They address challenges in information curation that stand as obstacles to medicine transforming itself 129 

iﾐto a さkﾐo┘ledge-Hasedざ disIipliﾐe, Iaヴefull┞ ヴefeヴeﾐIiﾐg iﾏpaIts on clinical trials and NCI funded 130 

imaging consortia. Highlights from their recommendations include need: for Radiology practices 131 

embrace the needs of Oncology for more detailed quantitative imaging features, to include more 132 

quantitative measurement data in images, to improve standardized radiology and oncology workflows, 133 

to add more quantitative information on image features as part of routine practice, to improve 134 

quantitative imaging reproducibility, accuracy and curation, and to examine approaches to regulation of 135 

imaging biomarkers  136 

 137 

Iﾐ さMaIhiﾐe Leaヴﾐiﾐg aﾐd Modeliﾐg: Data, Validatioﾐ, CoﾏﾏuﾐiIatioﾐ Challeﾐgesざ, El Naケa at el 138 

highlight the potential of ML and AI for clinical advancement, while also addressing pitfalls when 139 

applying these powerful analytic tools.[6] They discuss common issues requiring careful consideration 140 

including proper use of analysis metrics, sufficient volume and quality of data in training sets, parsimony 141 

and generalizability of models, quality assurance and clinical interpretability of results.  142 

Recommendations include, establishing standardized clinically relevant objective criteria for evaluating 143 

ML results, constructing publically available benchmark data sets to validate and cross check models, 144 

using resampling techniques to estimate model performance, and benchmarking changes in predictive 145 

performance of ML models using new biomarkers against with comparison to standard clinical factors.  146 

 147 

The move to construction of learning health systems requires careful consideration of ethical obligations 148 

to patients, construction of informed consent and addressing inconsistencies and variable 149 

interpretations of the regulatory environment. Spector-Bagdady and Jagsi provided much need guidance 150 

and perspective for addressing these Ihalleﾐges iﾐ さBig Data, EthiIs, aﾐd Regulatioﾐs: IﾏpliIatioﾐs foヴ 151 

Consent in the Learning Health Systemざ. [7] 152 

 153 

Traverso et al discuss their extensive experience with multi-iﾐstitutioﾐal data shaヴiﾐg pヴaItiIes iﾐ さThe 154 

Radiation Oncology Ontology (ROO): publishing linked data in radiation oncology using Semantic Web 155 

and Ontology techniquesざ. [8] Use of staﾐdaヴdizatioﾐs aﾐd desigﾐ of sIalaHle さHig dataざ s┞steﾏs aヴe 156 

important principles for making data sets Findable, Accessible, Interoperable and Reusable (FAIR). They 157 

discuss their use of the ROO with semantic web technologies to meet these goals.  158 

 159 
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United States based clinicians and researchers may be unfamiliar with the extensive efforts in Canada to 160 

improve the landscape for さbig dataざ, as part of improving safety and practice quality initiatives. In 161 

さIﾏpヴo┗iﾐg Patieﾐt OutIoﾏes aﾐd Radiotheヴap┞ “┞steﾏs: A Paﾐ-Canadian Approach to Patient Reported 162 

OutIoﾏe Useざ, Caissie et al provide a review of these efforts. [9] Among them, the Canadian Partnership 163 

for Radiation Therapy (CPQR) combines the work of several groups including Association of Radiation 164 

Oncology (CARO), Canadian Organization of Medical Physicists (COMP), and the Canadian Association of 165 

Medical Radiation Technologists (CAMRT). The work of CPQR in promulgating standardizations (e.g. TG-166 

263) and key quality indicators is discussed. In addition, their innovative work developing standardized 167 

approaches to administration and use of patient reported outcomes (PROs) across Canada is presented.   168 

 169 

Iﾐ さPヴaItiIal data IolleItioﾐ aﾐd e┝tヴaItioﾐ foヴ Big Data appliIatioﾐs iﾐ ヴadiotheヴap┞ざ, MINutt et al 170 

discuss their experience with overcoming practical challenges to capture of high quality treatment and 171 

outcomes data.  Detailed examinations of factors affecting: clinician assessments, PROs, bio-specimen, 172 

imaging, treatment and symptom management are discussed.  They review approaches to technology 173 

and clinical implementation they have used to address these challenges.  174 

 175 

Iﾐ さPerspectives on potential research benefits from big data efforts in Radiation Oncologyざ, Vikram 176 

discusses several themes that frequently emerge in research efforts that may be positively affected by 177 

these さHig dataざ effoヴts. [11] “peIifiI Ihalleﾐges faIiﾐg ヴadiatioﾐ oﾐIolog┞ aﾐd aヴeas that さHig dataざ 178 

researchers should try to address are discussed.  179 

 180 

Wei et al e┝aﾏiﾐe the iﾏpaIt of さHig dataざ effoヴts aﾐd suppoヴtiﾐg staﾐdaヴdizatioﾐs oﾐ IliﾐiIal tヴials iﾐ 181 

さIﾏpleﾏeﾐtation and enforcement of the standardization for radiotherapy with protocol guidelines, 182 

liHヴaヴies aﾐd soft┘aヴe s┞steﾏs assuヴe the IliﾐiIal tヴial data ケualit┞ざ. [12] They share their in-depth 183 

perspective on implementation details of management tools in the several network groups of the 184 

National Clinical Trials Network (NCTN). From this perspective they underscore the significant overlap of 185 

standardization recommendations highlighted throughout this special issue with NCTN objectives.  186 

 187 

We hope that you will find the manuscripts in this special issue helpful in your personal journey and 188 

entry into this growing community of practical big data in health care.   189 

 190 
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