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RATIONAL SOLUTIONS OF THE PAINLEVÉ-III EQUATION

THOMAS BOTHNER, PETER D. MILLER, AND YUE SHENG

ABSTRACT. All of the six Painlevé equations except the first have families of rational solutions, which are frequently important
in applications. The third Painlevé equation in generic form depends on two parameters m and n, and it has rational solutions
if and only if at least one of the parameters is an integer. We use known algebraic representations of the solutions to study
numerically how the distributions of poles and zeros behave as n ∈ ℤ increases and how the patterns vary with m ∈ ℂ. This
study suggests that it is reasonable to consider the rational solutions in the limit of large n ∈ ℤ with m ∈ ℂ being an auxiliary
parameter. To analyze the rational solutions in this limit, algebraic techniques need to be supplemented by analytical ones, and
the main new contribution of this paper is to develop a Riemann-Hilbert representation of the rational solutions of Painlevé-
III that is amenable to asymptotic analysis. Assuming further that m is a half-integer, we derive from the Riemann-Hilbert
representation a finite dimensional Hankel system for the rational solution in which n ∈ ℤ appears as an explicit parameter.

1. INTRODUCTION

This paper is the first in a series concerned with the large degree asymptotic analysis of rational solutions un(x;m) to
the generic Painlevé-III equation parametrized by n ∈ ℤ andm ∈ ℂ. The six Painlevé equations are best known for their
transcendental solutions, and indeed their general solutions are frequently referred to as Painlevé transcendents. These
transcendental solutions are modern special functions that have appeared in numerous applications, most famously in
similarity solutions of nonlinear partial differential equations and in integrable probability. However, all of the Painlevé
equations except the first are actually families of ordinary differential equations indexed by complex parameters, and
it is well-known that if the parameters take on certain special values, then the Painlevé equation admits particular
solutions that are either finitely constructed from elementary special functions or rational functions.

For example, the Painlevé-II equation u′′ = 2u3 + xu + m has a complex parameter m, and it is elementary that if
m = 0 then the equation admits the trivial rational solution u(x) ≡ 0. With this solution in hand for m = 0, one can
apply the Bäcklund transformation

u(x)↦ û(x) ∶= −u(x) − 2m + 1
2u(x)2 + 2u′(x) + x

taking a solution of the equation with parameter m into another solution of the same equation but with parameter
m↦ m̂ ∶= m+1. The Bäcklund transformation obviously preserves rationality and with its help one quickly obtains a
rational solution of the Painlevé-II equation for each integer value of m. It turns out that the integral values of m are the
only ones for which the equation admits a rational solution, and for each m ∈ ℤ there is exactly one rational solution,
denoted um(x), m ∈ ℤ. Motivated by applications, the family of functions {um(⋅)}m∈ℤ has recently been studied from
the analytic perspective, i.e., from the point of view of asymptotic analysis in the limit of large integer m [2, 4, 5, 18].

1.1. The Painlevé-III equation, its symmetries and its rational solutions. The generic Painlevé-III equation

d2u
dx2

= 1
u

( du
dx

)2
− 1
x
du
dx

+
4Θ0u2 + 4(1 − Θ∞)

x
+ 4u3 − 4

u
, (1.1)

Date: May 12, 2018.
2010 Mathematics Subject Classification. Primary 34M55; Secondary 34M35, 34E05.
Key words and phrases. Painlevé-III equation, rational solutions, isomonodromy method, Riemann-Hilbert problem, large degree asymptotics.

1

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting,
typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please
cite this article as doi: 10.1111/sapm.12220

https://doi.org/10.1111/sapm.12220
https://doi.org/10.1111/sapm.12220


A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

is the simplest of the Painlevé equations having a fixed singular point (x = 0), and it involves two1 distinct complex
parameters Θ0 and Θ∞. As we shall see, both of these features introduce new phenomena into the behavior of even the
most elementary, rational solutions.

In order to study the rational solutions of (1.1), it will be convenient to represent the constant parameters Θ0 and
Θ∞ in the form

Θ0 = n + m and Θ∞ = m − n + 1. (1.2)
Equation (1.1) has many symmetries, including the following elementary ones:

∙ Inversion: if u(x) satisfies (1.1)–(1.2), then u(x)↦ I[u](x) ∶= 1∕u(x) satisfies (1.1) with modified parameters
I ∶ Θ0 ↦ Θ∞ −1 = m− n and I ∶ Θ∞ ↦ Θ0 +1 = m+ n+1 (corresponding to changing the sign of n while
holding m fixed). The mapping I ∶ (u(x),Θ0,Θ∞)↦ (1∕u(x),Θ∞ − 1,Θ0 + 1) is an involution.

∙ Rotation: if u(x) satisfies (1.1)–(1.2), then u(⋅) ↦ R[u](x) ∶= −iu(−ix) satisfies (1.1) with modified parame-
ters R ∶ Θ0 ↦ Θ0 = n + m and R ∶ Θ∞ ↦ 2 − Θ∞ = n − m + 1 (corresponding to swapping m and n). The
mapping R ∶ (u(x),Θ0,Θ∞) ↦ (−iu(−ix),Θ0, 2 − Θ∞) is the generator of a cyclic symmetry group of order
4. Note that R2 fixes the parameters (Θ0,Θ∞) in (1.1) but maps the solution u(x) to its odd reflection −u(−x).

A nontrivial symmetry is the following Bäcklund transformation u(x)↦ û(x), which was discovered by Gromak [13]:

û(x) ∶=
xu′(x) + 2xu(x)2 + 2x − 2(1 − Θ∞)u(x) − u(x)
u(x) ⋅ (xu′(x) + 2xu(x)2 + 2x + 2Θ0u(x) + u(x))

(1.3)

solves (1.1) for modified parameters Θ0 ↦ Θ̂0 ∶= Θ0 +1 = (n+1)+m and Θ∞ ↦ Θ̂∞ ∶= Θ∞ −1 = m− (n+1)+ 1,
which amounts to incrementing n for fixed m.

Proposition 1. Suppose now that (1.1) has a solution u(x) that is rational. Then either m ∈ ℤ or n ∈ ℤ or both.

Proof. Indeed, assuming u(x) = axp + O(xp−1) as x → ∞ for p ∈ ℤ and a ≠ 0, from (1.1) we obtain a dominant
balance only for p = 0, yielding (from the last two terms on the right-hand side) a4 = 1. Continuing the Laurent
expansion to the next order by writing u(x) = a + bx−1 + O(x−2) as x → ∞ with a4 = 1, the calculation of b only
brings in the remaining terms in (1.1) that are not proportional to derivatives of u, and we find b = a2(Θ∞−1)∕4−Θ0∕4.
Therefore, the sum of all finite residues of the assumed rational solution u(x)must equal b as well. If x = 0 is a pole of
u(x), then a similar dominant balance argument involving the terms u′′(x), u′(x)2∕u(x), u′(x)∕x, u(x)2∕x, and 4u(x)3
shows that it must be a simple pole of residue −Θ0. Finally, if x0 ≠ 0 is a pole of u(x), then it must be a simple pole and
a dominant balance involving u′′(x), u′(x)2∕u(x), and 4u(x)3 shows that the residue is either 12 or − 12 . Letting k ∈ ℤ
denote the difference between the number of nonzero poles of u(x) with residues 12 and −

1
2 , we therefore arrive at the

identities
1
2
k ∓ 1

4
(Θ∞ − 1) +

1
4
Θ0 =

{

Θ0, if x = 0 is a pole of u
0, if x = 0 is not a pole of u,

(1.4)

where a2 = ±1. Using (1.2) then shows that, if x = 0 is not a pole of u, then a2 = 1 implies n = k ∈ ℤ, while
a2 = −1 implies m = −k ∈ ℤ. On the other hand, if x = 0 is a pole of u, then by inversion symmetry I[u](x) = 1∕u(x)
is a rational solution of (1.1) analytic at the origin and corresponding to the modified parameters I ∶ Θ0 ↦ m − n
and I ∶ Θ∞ ↦ m + n + 1. Applying (1.4) to I[u] with parameters replaced by their modified values then yields the
same conclusion as in the case that u is analytic at the origin, namely that n = k ∈ ℤ if a2 = 1 and m = −k ∈ ℤ if
a2 = −1. �

This argument shows that each rational solution of (1.1) tends to one of four nonzero limits, ±1 or ±i, as x → ∞
and hence cannot be an odd function of x. Furthermore, it follows from odd reflection symmetry R2 ∶ u(x)↦ −u(−x)
that for given parameters (1.2) with m ∈ ℤ or n ∈ ℤ, the rational solutions come in distinct pairs permuted by odd
reflection.

1In the most general form of the Painlevé-III equation one replaces the terms 4u3 − 4u−1 on the right-hand side by u3 + �u−1 for arbitrary
parameters (, �) ∈ ℂ2. Under the generic assumption that � ≠ 0, a suitable rescaling of the dependent and independent variables results in the
form (1.1). There are two singular reductions: one in which either  = 0 or � = 0 but not both, which can be reduced by scaling to a one-parameter
family of equations (or in the more special case that either Θ0 or 1 − Θ∞ vanishes to an equation whose general solution is known in closed form),
and one in which  = � = 0, which can be reduced by scaling to a unique form if Θ0(1 − Θ∞) ≠ 0. See [22, §32.2.2] and [12, Section 2.2].
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It turns out that if m ∈ ℤ or n ∈ ℤ there indeed exists a rational solution of (1.1)–(1.2). If only one of m and n is
integral, then there are exactly two rational solutions, while if both are integral there are exactly four rational solutions.
The existence and precise number of the rational solutions can be established by iterated Bäcklund transformations
once the cases of m = 0 or n = 0 are analyzed.

Suppose2 n = 0 and m ∉ ℤ. Then it is obvious that (1.1)–(1.2) has at least the two distinct rational (equilibrium)
solutions u(x) = ±1. It is easy to see that there are no other rational solutions in this case. Indeed, if we consider the
rational solutions that tend to ±1 as x→∞ and take n = 0 in (1.1)–(1.2), a simple dominant balance argument shows
that these solutions satisfy u(x) = ±1 +O(x−p) as x→ ∞ for every positive integer p and hence as u(x) is rational the
error terms vanish identically so the exact solutions u(x) = ±1 are the only ones recovered. On the other hand, if we
consider the rational solutions that tend to ±i as x → ∞ and take n = 0 in (1.4) we find that for some k ∈ ℤ we have
m = k if x = 0 is a pole of u and m = −k otherwise, both of which contradict the assumption that m ∉ ℤ. Similarly
if m = 0 and n ∉ ℤ, then (1.1)–(1.2) has the pair u(x) = ±i as its only rational solutions (this also follows directly
using the rotation symmetry generator R). Finally if m = n = 0 there are precisely four rational solutions: u(x) = ±1
and u(x) = ±i. In Section 5.3 we use these facts to determine the precise number of rational solutions of (1.1) for
non-integral m.

The rational solutions of (1.1) have been known at least since the paper of Gromak [13]. The paper [20] is an
exhaustive survey of special solutions of the Painlevé-III equation that describes the effect of iterating transformations
such as (1.3), including cataloguing the exact numbers of poles and zeros of the iterates. This paper also includes
complete references on applications of the Painlevé-III equation accurate to the date of publication. Since rational
functions are naturally presented as ratios of polynomials, it is compelling to ask whether the polynomials themselves
have a simple recurrence formula like (1.3). Such a result was first found for the Painlevé-II equation by Yablonskii
[26] and Vorob’ev [24], and since then many algebraic representations of these polynomials have been discovered. For
the Painlevé-III equation, a representation of rational solutions in terms of special polynomials was first obtained by
Umemura [23, Section 9]. Clarkson further developed Umemura’s scheme; in [7] a sequence of functions is defined
by setting

s−1(x;m) ≡ s0(x;m) ≡ 1 (1.5)
and then using the recurrence relation

sn+1(x;m) ∶=
(4x + 2m + 1) sn(x;m)2 − sn(x;m)s′n(x;m) − x

(

sn(x;m)s′′n (x;m) − s
′
n(x;m)

2)

2sn−1(x;m)
, n ∈ ℤ≥0. (1.6)

It turns out that the denominator is always a factor of the numerator, so the functions {sn(x;m)}∞n=0 are all polynomials
in x. Note that comparing with the notation of [7, 8], we have � = m + 1

2 , z = 2x, � = 2(1 − Θ∞), and � = 2Θ0. The
result of the scheme is the following.

Proposition 2 (Umemura [23], Clarkson [7], Clarkson, Law, and Lin [8]). The result of applying the Bäcklund trans-
formation (1.3) n times to the seed solution u(x) ≡ 1 is the function

u(x) = un(x;m) ∶=
sn(x;m − 1)sn−1(x;m)
sn(x;m)sn−1(x;m − 1)

, n ∈ ℤ≥0, (1.7)

defined in terms of polynomials {sn(x;m)}∞n=0 determined by (1.5)–(1.6). Furthermore, un(x;m) is the unique rational
solution of (1.1) for parameters (1.2) for which un(x;m)→ 1 as x→∞.

The family of rational solutions un(x;m) can be extended to negative integral values of n through the inversion
symmetry I :

u−n(x;m) ∶= Iun(x;m) =
1

un(x;m)
, n ∈ ℤ≥0. (1.8)

It obviously holds that u−n(x;m) → 1 as x → ∞, so the family captures every rational solution of the Painlevé-III
equation (1.1) that tends to 1 as x → ∞. It is clearly sufficient to study the family for integers n ≥ 0. Without loss of

2Taking n = 0 in (1.1)–(1.2) yields the so-called sine-Gordon reduction: writing u(x) = e−i'(x) and setting n = 0 in (1.1)–(1.2) gives

d2'
dx2

+ 1
x
d'
dx

= 8m
x
sin(') + 8 sin(2').
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generality we may also restrict attention to values of m in the closed right half-plane: Re(m) ≥ 0; indeed, composing
inversion I with two rotations,

un(x; −m) = R◦I◦Run(x;m) =
1

un(−x;m)
. (1.9)

Moreover, unless m ∈ ℤ, studying the family {un(x;m)} of rational solutions tending to 1 as x → ∞ captures all
rational solutions of (1.1) because R2un(x;m) = −un(−x;m) is the rational solution of exactly the same Painlevé-III
equation (1.1) tending to −1 as x → ∞, and if m ∉ ℤ this yields two and hence all rational solutions. If both n and m
are integers, we may access the rotation symmetry generator R to finally exhaust all rational solutions of (1.1).

Remark 1. It has been proven by Clarkson, Law, and Lin [8, Theorem 4.6] that if m + 1
2 ∈ ℤ, then for n > |m + 1

2 |,
sn has

1
2n(n+ 1) roots, sn vanishes to order

1
2 (n− |m+ 1

2 |)(n− |m+ 1
2 |+ 1) at the origin, and all remaining roots are

simple and nonzero. This shows that when m is a half-integer and n is large, sn has a root of order O(n2) at the origin
and merely O(n) simple nonzero roots. This result implies that when m = 1

2 ,
3
2 ,
5
2 ,… , un(x;m) has a simple zero at the

origin, while when m = − 12 ,−
3
2 ,−

5
2 ,… , un(x;m) has a simple pole at the origin.

1.2. Riemann-Hilbert problem formulation and main result. The purpose of this paper is to take the first steps
toward understanding the family {un(x;m)}∞n=0 of rational solutions of the Painlevé-III equation (1.1) from the per-
spective of mathematical analysis, a goal which essentially addresses the question of how un(x;m) behaves when n is
large and how the result depends on (x, m) ∈ ℂ2. In Section 2 we present the results of several plots of poles and zeros
of un(x;m) set in the context of a formal scaling analysis of the Painlevé-III equation in the limit of large (integral) n.
These results suggest numerous remarkable phenomena that can occur in this limit, but whose proofs would require
other methods. The issue at hand is that the methods described above for constructing the rational function un(x;m) all
involve some sort of iteration, producing formulæ that generally become more complicated as n increases. The recur-
rence (1.6) is preferable to iteration of the Bäcklund transformation (1.3) in the sense that it takes advantage of explicit
factorization of the numerator and denominator polynomials in the rational function un(x;m), but it is a recurrence
nonetheless. Kajiwara and Masuda [17] found a way to express (essentially) the polynomial sn(x;m) in closed form
via Wronskian determinants of polynomials obtained from an elementary generating function. However, unlike certain
determinantal representations of Hankel type appearing in the theory of the rational solutions of the Painlevé-II [2] and
(for the “generalized Hermite” rational solutions) Painlevé-IV [6] equations, the determinants of Kajiwara and Masuda
do not appear to be amenable to asymptotic analysis in the limit of large n (in which the size of the determinant grows
without bound). The lack of an analytically tractable formula for un(x;m) is the main problem that we address and
solve in this paper. After a review of the isomonodromy theory of the Painlevé-III equation in Section 3, in Sections 4
and 5 we construct a Riemann-Hilbert representation of the function un(x;m) that can be used [3] to successfully ana-
lyze the rational solution for large n. To formulate this problem here in the introduction, given a nonzero x ∈ ℂ with
−� < Arg(x) < �, let L = L∞⬔ ∪L

0
⬔ ∪L

∞
⬕ ∪L

0
⬕ be a contour in the complex �-plane consisting of four arcs with the

following properties. There is an intersection point p such that:
∙ L∞⬔ originates from � = ∞ in such a direction that ix� is negative real and terminates at � = p, L0⬔ begins at
� = p and terminates at � = 0 in a direction such that −ix�−1 is negative real, and the net increment of the
argument of � along L∞⬔ ∪ L0⬔ is

Δarg(⬔) = 2Arg(x) − 2�sgn(Im(x)). (1.10)

∙ L∞⬕ originates from � = ∞ in such a direction that −ix� is negative real and terminates at � = p, L0⬕ begins
at � = p and terminates at � = 0 in a direction such that ix�−1 is negative real, and the net increment of the
argument of � along L∞⬕ ∪ L0⬕ is

Δarg(⬕) = 2Arg(x). (1.11)
∙ The arcs L∞⬔, L0⬔, L∞⬕, and L0⬕ do not otherwise intersect.

See Figure 14 below for an illustration. Consider now the following problem.

Riemann-Hilbert Problem 1. Given parameters m ∈ ℂ and n ∈ ℤ as well as x ∈ ℂ⧵ {0} with −� < Arg(x) < �, let
L denote an x-dependent contour as above, and seek a 2 × 2 matrix function Y(�) = Y(n)(�; x, m) with the following
properties:

4



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

(1) Analyticity: Y(�) is analytic in � in the domain � ∈ ℂ ⧵ L. It takes continuous boundary values on L ⧵ {0}
from each maximal domain of analyticity.

(2) Jump conditions: The boundary values Y±(�) are related on each arc of L by the following formulæ:

Y+(�) = Y−(�)
⎡

⎢

⎢

⎢

⎣

1 −

√

2��−(m+1)⬕

Γ( 12 − m)
�neix(�−�

−1)

0 1

⎤

⎥

⎥

⎥

⎦

, � ∈ L0⬔ (1.12)

Y+(�) = Y−(�)
⎡

⎢

⎢

⎢

⎣

1

√

2��−(m+1)⬕

Γ( 12 − m)
�neix(�−�

−1)

0 1

⎤

⎥

⎥

⎥

⎦

, � ∈ L∞⬔ (1.13)

Y+(�) = Y−(�)
⎡

⎢

⎢

⎢

⎣

1 0
√

2�(�(m+1)∕2⬕ )+(�
(m+1)∕2
⬕ )−

Γ( 12 + m)
�−ne−ix(�−�

−1) 1

⎤

⎥

⎥

⎥

⎦

, � ∈ L∞⬕ (1.14)

Y+(�) = Y−(�)
⎡

⎢

⎢

⎢

⎣

−e2�im 0
√

2�(�(m+1)∕2⬕ )+(�
(m+1)∕2
⬕ )−

Γ( 12 + m)
�−ne−ix(�−�

−1) −e−2�im

⎤

⎥

⎥

⎥

⎦

, � ∈ L0⬕. (1.15)

(3) Asymptotics: Y(�) → I as � → ∞. Also, the matrix function Y(�)�−(Θ0+Θ∞)�3∕2⬕ = Y(�)�
−(m+12 )�3
⬕ has a

well-defined limit as �→ 0 (the same limit from each side of L).

Here, �p⬕ is notation for a certain well-defined (see Section 4.2 below) branch of the power function with its branch
cut on the contour L0⬕ ∪ L∞⬕, �3 ∶= diag[1,−1] denotes a standard Pauli spin matrix, and subscripts +/− refer to
boundary values taken on the indicated contour from the left/right. We introduce the expansions

Y(�) = I + Y∞1 (x)�
−1 + O(�−2), �→∞; Y∞1 (x) =

[

Y∞1,jk(x)
]2
j,k=1 (1.16)

and

Y(�)�
−(m+12 )�3
⬕ = Y00(x) + O(�), �→ 0; Y00(x) =

[

Y 00,jk(x)
]2
j,k=1. (1.17)

Note that the matrix coefficients Y∞1 (x) and Y
0
0(x) depend parametrically on both n and m, as well as x. Then we have

the following result.

Theorem 1. The rational solution un(x;m) of the Painlevé-III equation (1.1) with parameters m and n ∈ ℤ defined
in Proposition 2 and extended to negative integral n by inversion I is given equivalently in terms of the solution
Y(n)(�; x, m) of Riemann-Hilbert Problem 1 by

un(x;m) =
−iY∞1,12(x)

Y 00,11(x)Y
0
0,12(x)

(1.18)

where we have suppressed the parametric dependence on n ∈ ℤ and m ∈ ℂ on the right-hand side.

The proof of this theoremwill be completed at the end of Section 5. Finally, in Section 6 we study how the Riemann-
Hilbert representation degenerates when m ∈ ℤ + 1

2 .

2. NUMERICAL OBSERVATIONS AND FORMAL SCALING THEORY

2.1. Scaling analysis. Eliminating Θ0 and Θ∞ in favor of m and n by (1.2), the Painlevé-III equation (1.1) becomes

d2u
dx2

= 1
u

( du
dx

)2
− 1
x
du
dx

+
4(n + m)u2 + 4(n − m)

x
+ 4u3 − 4

u
. (2.1)
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Considering m fixed and n large, we introduce a new independent variable by the scaling x = ny, and then to further
zoom in on the neighborhood of a particular point y0 we set y = y0 +w∕n. A simple calculation then shows that if we
set p(w) ∶= −iu(x) = −iu(ny0 +w), (2.1) becomes

d2p
dw2

= 1
p

(

dp
dw

)2
+ 4i
y0
(p2 − 1) − 4p3 + 4

p
+ O(n−1)

where the final term combines several others all of which are proportional to n−1. Neglecting this formally small
term and replacing p with the symbol ṗ indicating a formal approximation yields an autonomous nonlinear equation
parametrized by y0 ∈ ℂ ⧵ {0}:

d2ṗ
dw2

= 1
ṗ

(

dṗ
dw

)2
+ 4i
y0
(ṗ2 − 1) − 4ṗ3 + 4

ṗ
. (2.2)

This model equation admits a first integral: multiply (2.2) through by ṗ′∕ṗ2 (′ = d∕dw) and rearrange to obtain

ṗ′ṗ′′

ṗ2
−
(ṗ′)3

ṗ3
= 4

[

i
y0
(1 − ṗ−2) − ṗ + ṗ−3

]

ṗ′

which is easily integrated to yield

(ṗ′)2

2ṗ2
= 4

[

i
y0
(ṗ + ṗ−1) − 1

2
ṗ2 − 1

2
ṗ−2

]

+ 8C
y20
,

where C is a constant of integration. Therefore,
(

dṗ
dw

)2
= 16
y20
P (ṗ; y0, C), P (ṗ; y0, C) ∶= −

y20
4
ṗ4 +

iy0
2
ṗ3 + Cṗ2 +

iy0
2
ṗ −

y20
4
. (2.3)

Suppose that y0 and C are such that the quartic P (ṗ; y0, C) has a double root ṗ = p0; eliminating C between the
equations P (p0; y0, C) = 0 and P ′(p0; y0, C) = 0 shows that p0 is a solution of the quartic equation

y0p
4
0 − ip

3
0 + ip0 − y0 = 0. (2.4)

Obviously, p20 − 1 is a factor of the left-hand side: y0p
4
0 − ip

3
0 + ip0 − y0 = (p

2
0 − 1)(y0(p

2
0 + 1) − ip0), so there are four

possibilities for double roots of P (ṗ; y0, C), namely:

p0 = 1, p0 = −1, p0 = p+0 (y0) ∶=
i
2y0

− i
√

1
4y20

+ 1, p0 = p−0 (y0) ∶=
i
2y0

+ i
√

1
4y20

+ 1. (2.5)

Note that since the quartic equation (2.4) is the same equation as arises upon setting ṗ = p0 and neglecting derivatives
of ṗ in (2.2), the four values (2.5) are precisely the equilibrium solutions of the differential equation (2.2). The corre-
sponding values of C are then obtained explicitly from the equation P ′(p0; y0, C) = 0, which is linear in C (and the
coefficient of C is nonzero in each case):

C = −
iy0
4p0

−
3iy0
4
p0 +

y20
2
p20. (2.6)

Thus, whenever C is given by (2.6) and p0 is a root of the quartic equation (2.4) (equivalently, an equilibrium solution
of (2.2)),

P (ṗ; y0, C) = −
y20
4
(ṗ − p0)2(ṗ2 + bṗ + c), where b ∶= 2p0 −

2i
y0
, c ∶= 1

p20
.

For each fixed (y0, C) pair, the root locus of P (ṗ; y0, C) is invariant under ṗ ↦ 1∕ṗ. Since ±1 are individually fixed by
this involution while the other two possible double roots listed in (2.5) are permuted by this involution, we see that if
there exists a double root distinct from 1 or −1, then there are two distinct double roots and hence P (ṗ; y0, C) factors
as a perfect square of a quadratic with distinct roots. If one of the points ±1 is a double root, then either all four roots
coincide, the two remaining roots coalesce at ∓1, or the two remaining roots are distinct simple roots that are permuted
by the involution.
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2.2. Experiments and conjectures. To begin to assess the validity of predictions following from the above formal
large-n scaling arguments, we may try to examine a finite number of the functions un(x;m), say for n = 0, 1, 2,… , N ,
and plot their poles and zeros in x. Since according to Proposition 2, un(x;m)→ 1 as x→∞ and un(x;m) is rational in
xwith simple poles and zeros only, such plots actually convey complete information. In practice, it is substantially more
efficient for large n to implement the polynomial recurrence scheme of Umemura/Clarkson than to directly iterate the
Bäcklund transformation (1.3). Therefore, we symbolically compute a sufficient number of the polynomials sn, which
have coefficients rational in m. Then by using rational values3 for the real and imaginary parts of m, we may apply
theMathematica4 routine NSolve with the option WorkingPrecision->30 to obtain accurate approximations of the
roots. We then plot separately the roots of the four polynomial factors in the representation (1.7). As long as the roots
of the factors are simple and distinct, no information is lost in making such a plot; this is known to be the case [7, 8]
unlessm ∈ ℤ+ 1

2 , in which case for large enough n there is a common root of high order at the origin in all four factors,
leading to a high degree of cancellation. We restrict our numerical calculations of poles and zeros to nonnegative values
of n and to Re(m) ≥ 0 without loss of generality, compare (1.8) and (1.9).

Since the scaling formalism is based at first on the scaling x = ny, it is useful to initially view the plots of poles/zeros
of un(x;m) in the y-plane. Figures 1–4 study the convergence properties of the pole/zero patterns in the y-plane as n
increases for several values of m ∈ ℂ. The key feature evident in the plots of Figures 1, 2, and 3 is that while there
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FIGURE 1. Poles of un(x;m) (red dots, filled for the roots of sn(x;m) and unfilled for the roots of
sn−1(x;m − 1)) and zeros of un(x;m) (blue dots, filled for the roots of sn(x;m − 1) and unfilled for
the roots of sn−1(x;m)) rendered in the y = x∕n-plane for m = 0. Left: n = 5, center: n = 10, right:
n = 20. The black curves are independent of n andm and form the boundaries of two half-eye-shaped
regions known to contain the poles and zeros of un(x;m) for large n [3].

is some variability with the value of m ∈ ℂ, as n increases the region of the y-plane that contains the poles and zeros
of un(ny;m) appears to stabilize to an eye-shaped domain E that is independent of both n and m. Figure 4 shows a
similar convergence study, here for a half-integral value ofm. While the poles and zeros seem to move toward the same
eye-shaped domain E as n increases, the distribution of poles and zeros within E appears to be completely different
than in Figures 1–3, with poles and zeros concentrating only along one “eyebrow” of the eye E.

Taken together, these figures suggest that un(ny;m)may have a well-defined limit as n→ ∞ as long as y is restricted
to the exterior of E. We are led to formulate the following conjecture.

Conjecture 1. Assume that y lies outside of a certain eye-shaped bounded domain E ⊂ ℂ. Then
lim
n→∞

un(ny;m) = ip+0 (y), (2.7)

where p+0 (y) is defined by (2.5) in which the square root refers to the principal branch.

This conjecture asserts that for y outside of E, the quartic P (ṗ; y, C) has a distinct pair of double roots at ṗ = p±0 (y),
and that the equilibrium ṗ = p+0 (y) (we are identifying ywith the constant y0) is the relevant solution of the autonomous

3We observed that if the real or imaginary part of m is irrational then NSolve performs poorly for moderately large n.
4We used Mathematica version 11.
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FIGURE 2. As in Figure 1 but for m = 1.
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FIGURE 3. As in Figure 1 but for m = 4
5 i.
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FIGURE 4. As in Figure 1 but for m = 1
2 . Here we know from [8] that the apparent pole near the

origin in the plots is an artifact of our method of plotting separately the roots of the polynomial factors
in (1.7); in fact un(x;

1
2 ) has a simple zero at x = 0.

model differential equation (2.2). Note that ip+0 (y) is independent of the second parameterm, and ip+0 (y)→ 1 as y→ ∞,
which is consistent with the fact that for each fixed n, un(x;m)→ 1 as x→ ∞. A suitably precise version of Conjecture 1
is proven in [3] using the Riemann-Hilbert representation of un(x;m) presented in Theorem 1 formulated in Section 1.2;
part of the proof is to correctly specify the domain E and characterize its boundary )E as branches of a certain zero
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locus in the complex y-plane. Indeed, the black curves shown in Figures 1–4 are fully described in [3]; in particular
the top and bottom corners of the domain E lie at the points y = ± 12 i.

The asymptotic pattern of poles and zeros of un(x;m) is qualitatively similar to that shown in Figure 4 whenever
m ∈ ℤ + 1

2 , but different details emerge as m is increased through half-integers as illustrated in Figure 5. From these
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FIGURE 5. As in Figure 4 but for n = 20 and m = 1
2 (left), m =

3
2 (center), and m =

5
2 (right).

plots we may formulate a second conjecture.

Conjecture 2. Suppose that m = 1
2 + k, k ∈ ℤ≥0. Then as n → ∞, the poles and zeros of un(ny, m) accumulate

near the left boundary arc of the domain E in the y-plane. In more detail, the poles and zeros are arranged along
4k + 2 non-intersecting arcs roughly parallel to and o(1) distance from the left boundary arc of E. The outermost
curve contains n poles of un(ny;m) coming from roots of sn(ny;m) and moving inwards the next curve contains n − 1
zeros of un(ny;m) coming from roots of sn−1(ny;m). If k > 0 there are then k families of four nested curves each; the
jth family lies to the outside of the j + 1st and consists of (in order from outside to inside, j = 1,… , k):

∙ A curve containing n − j + 1 zeros of un(ny;m) coming from roots of sn(ny;m − 1).
∙ A curve containing n − j poles of un(ny;m) coming from roots of sn−1(ny;m − 1).
∙ A curve containing n − j poles of un(ny;m) coming from roots of sn(ny;m).
∙ A curve containing n − j − 1 zeros of un(ny;m) coming from roots of sn−1(ny;m).

A suitably precise form of Conjecture 2 is proven in [3] using classical steepest descent analysis for certain Hankel
systems with Bessel function coefficients derived from Riemann-Hilbert Problem 1 in Section 6 below.

Comparing Figures 1–3 with Figures 4–5 makes clear that the asymptotic behavior of un(x;m) cannot possibly
be uniform with respect to m in any neighborhood of a half-integral value. It appears to therefore be compelling to
investigate how un(x;m) behaves if n is large while simultaneouslym is close to a given half-integer. Such an experiment
is reproduced in Figure 6. This figure suggests that if m is taken to be very close to a half-integer, the majority of the
poles and zeros of un(x;m) are captured in the midst of a process in which they are collapsing toward the origin,
leaving just a small fraction of them near the left (for positive half-integer m) “eyebrow”. In this situation, the domain
containing the majority of the poles and zeros appears to be smaller than the full domain E. This collapse process
can be studied [3] with the help of Theorem 1 and asymptotic analysis in a double-scaling limit in which n is large
and m differs from a half-integer by an exponentially small amount. The green curve plotted in Figure 6 is one of the
outcomes of this analysis. The same analysis shows that the convergence claimed in Conjecture 1 also holds for y in
the annular region between the boundary of E and the green curve, as well as near the right “eyebrow” (but something
more like Conjecture 2 occurs near the left “eyebrow”).

Taking now m ∉ ℤ + 1
2 , an interesting question suggested by the scaling analysis above is whether un(ny0 +w;m)

behaves asymptotically (as a function ofw for fixed y0 ∈ E) like an elliptic function solving (2.3) for a suitable choice
of integration constant C such that the quartic P has four distinct roots. To investigate this, we select a point y0 in
the domain E and display in Figure 7 the poles and zeros of un(ny0 + w;m) in the w-plane. This figure suggests that
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FIGURE 6. As in Figure 1 but for n = 20 and m = 1
2 −10

−4 (left), m = 1
2 (center), and m =

1
2 +10

−4

(right). Superimposed in green is another curve that better approximates the central pole/zero region
in a double-scaling limit where n grows while m approaches a half-integer [3].
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FIGURE 7. As in Figure 1 but plotted in the w-plane for m = 0 and y0 = 0.1 with n = 18 (left),
n = 19 (center), and n = 20 (right).

indeed for given large n, the poles and zeros are arranged roughly in a doubly-periodic lattice, with the lattice becoming
more rigid as n increases. An important observation is that the lattice does not appear to become fixed as n increases,
although its lattice vectors do. To the contrary, there appears to be a strong fluctuation of the offset of the lattice as n
is increased in integer increments. These observations are consistent with the approximation of un(ny0 + w;m) by a
family of solutions of the autonomous elliptic function differential equation (2.3) differing by an n-dependent shift in
the argument w. We formulate this as a conjecture.

Conjecture 3. Assume that m ∉ ℤ + 1
2 is fixed, and fix y0 ∈ E. Then there is a solution ṗ = ṗn(w; y0) (an elliptic

function of w) of the differential equation (2.3) for suitable C = C(y0) such that the quartic P has distinct roots, for
which

lim
n→∞

(

un(ny0 +w;m) − iṗn(w; y0)
)

= 0. (2.8)

This conjecture is proved in [3] using Theorem 1. Part of the proof involves isolating the correct value of the
integration constant C given y0 ∈ E. It is also important in the proof that y0 not lie on the imaginary axis, which is
excluded from E as shown in Figures 1–6. Also, w should be restricted to a bounded domain that excludes arbitrarily
small fixed neighborhoods of certain lattice points.

We have already pointed out that the two “corner points” of the eye-shaped domain E occur at the values y = y0 =
± 12 i. These values are the only ones for which the quartic P can have only one four-fold root. This particularly severe
degeneration of the quartic suggests that the rational solution un(x;m) may behave in a special way for large n when
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x ≈ ± 12 in, a notion that is reinforced by another suitable rescaling of (2.1). Indeed, to localize y = x∕n near y0 = ±
1
2 i,

we set x = ±i( 12n + (
1
32n)

1∕3�±) and consider �± to be bounded. Similarly, since p+0 (±
1
2 in) = ±1, we wish to localize

u near ±i so we set u = ±i(1 − ( 14n)
−1∕3W ±) and consider W ± to be bounded. (The exponents of ± 13 are chosen to

achieve a dominant balance, and the numerical coefficients of 1
32 and 1

4 are chosen for convenience.) Making these
substitutions, we multiply (2.1) through by ∓ 18 ixu(x) and obtain

d2W
d�2

= 2W 3 + �W + m + O(n−1∕3), � = �±, W = W ±,

where again the final term combines several others all proportional to n−1∕3 or more negative powers of n. Neglecting
the error terms and relabelingW as Ẇ yields as a model equation

d2Ẇ
d�2

= 2Ẇ 3 + �Ẇ + m (2.9)

which is the Painlevé-II equation with parameter m. Based on this calculation, we may expect that when n is large
and m is held fixed, the rational Painlevé-III functions behave near the points x = ± 12 in like certain solutions of the
Painlevé-II equation (2.9); moreover, the dependence on the fixed parameter m becomes apparent at leading order in
this approximation. To explore this possibility, we plot the poles and zeros of un(x;m) in the �± planes for two fixed
values of m and for increasing n in Figures 8–11.
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FIGURE 8. As in Figure 1 but plotted in the �+-plane form = 0 and n = 18 (left), n = 19 (center), and
n = 20 (right). Also shown with dashed lines are the rays Arg(�+) = ± 23�, which are the tangents
to the boundary of E at the upper corner.

In each of these figures, the three plots for consecutive reasonably large values of n are nearly indistinguishable
to the eye, suggesting convergence to a particular solution of (2.9) independent of n. To try to identify the relevant
particular solutions, we may start with the outer approximation given in Conjecture 1 and re-express it in terms of
the recentered and rescaled independent variables �±, taking careful account of the principal branch interpretation of
the square root in (2.5). Thus, un(x;m) ≈ ip+0 (y) = ip+0 (n

−1x) = ±i21∕6n−1∕3(�±)1∕2 + O(n−2∕3�±) assuming that
Conjecture 1 holds and that �± is small compared to n2∕3. If this expression is to agree in some overlap domain with
an approximation based on the Painlevé-II equation (2.9), we should expressW = W ± in terms of un(x;m) ≈ ip+0 (y).
Thus, W ± = ( 14n)

1∕3(1 ± iun(x;m)) ≈ ( 14n)
1∕3(1 ∓ p+0 (y)) = ±i( 12�

±)1∕2 + O(n−1∕3�±) if also �± is small compared
to n1∕3. Assumption of an overlap domain then suggests that the relevant solutions of the Painlevé-II equation (2.9)
should satisfy Ẇ ± ∼ ±i( 12�

±)1∕2 as �± → ∞ in the exterior domain where the outer approximation is valid. In the
limit n → ∞, this region corresponds to the sector Arg(�±) ∈ (− 23�,

2
3�). It is known that [11, Chapter 11] for each

complex m there are two and only two solutions of the Painlevé-II equation (2.9) denoted Ẇ = Ẇ ±(�;m) with the
asymptotic behavior Ẇ ±(�;m) ∼ ±i( 12�)

1∕2 as � → ∞ with |Arg(�)| ≤ 2
3� − � for � > 0 sufficiently small, where the

one-half power denotes the principal branch. These are known as (increasing) tritronquée solutions of (2.9). We are
led to formulate the following conjecture.
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FIGURE 9. As in Figure 1 but plotted in the �−-plane form = 0 and n = 18 (left), n = 19 (center), and
n = 20 (right). Also shown with dashed lines are the rays Arg(�−) = ± 23�, which are the tangents
to the boundary of E at the lower corner.
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FIGURE 10. As in Figure 8 (zooming into the upper corner of the domain E) but for m = 4
5 i.
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FIGURE 11. As in Figure 9 (zooming into the lower corner of the domain E) but for m = 4
5 i.

Conjecture 4. Let m ∈ ℂ be fixed. Then,

lim
n→∞

(1
4
n
)1∕3

(1 ± iun(±i(
1
2n + (

1
32n)

1∕3�);m) = Ẇ ±(�;m), (2.10)

where Ẇ = Ẇ ±(�;m) are the aforementioned increasing tritronquée solutions of the Painlevé-II equation (2.9).
12
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The convergence might be expected to be uniform on compact subsets of the �-plane from which arbitrarily small
open disks centered at the poles of the tritronquée solution in question have been excised. The assertion that the
particular solutions of (2.9) should be of tritronquée type means that they are asymptotically analytic in a sector of the
complex �-plane of opening angle 4

3�, consistent with the plots in Figures 8–11. Tronquée and tritronquée solutions
of the Painlevé-II equation (2.9) were originally studied long ago by Boutroux; see also Joshi and Mazzocco [16] and
Novokshenov [21]. When m = 0, the Painlevé-II equation (2.9) has the obvious symmetry Ẇ (�) ↦ −Ẇ (�), and
by uniqueness of the two tritronquée solutions this means that Ẇ −(�; 0) = −Ẇ +(�; 0). Comparing Figures 8–9 we
therefore expect a sign change while the figures clearly show instead some sort of reciprocation, with poles and zeros
of un(x;m) being exchanged. The explanation for this lies in the relation u = ±i(1 − ( 14n)

−1∕3W ±), which shows that
both poles and zeros of u correspond to W ± becoming very large; in other words, both the red and the blue dots in
Figures 8–11 should be attracted in the limit n → +∞ toward the fixed simple poles of the corresponding tritronquée
solution of the Painlevé-II equation (2.9). More to the point, assuming the validity of Conjecture 4 with the suggested
nature of convergence, one may apply the argument principle to the rational function un(±i(

1
2n + (

1
32n)

1∕3�);m) about
a Jordan curve C in the �-plane that encloses exactly one pole of the corresponding tritronquée solution of (2.9). The
index (increment of the argument) of un about C is zero for sufficiently large n because un converges uniformly on C
to ±i as Ẇ ± is analytic and therefore bounded on C . This means that in fact each pole of the Painlevé-II tritronquée
would be expected to attract (in the �-plane) an equal number of poles and zeros of un in the large-n limit. One can
see the indicated pairing of poles with zeros in Figures 8–11, although with larger values of n the phenomenon should
become even more obvious to the eye.

Remark 2. While tritronquée solutions are by definition asymptotically (i.e., for large |�|) pole-free in a certain sector
of the complex plane, the pole-free property is not a priori guaranteed in any bounded region of the complex-plane.
However, recently it was shown [9] that all tritronquée solutions of the Painlevé-I equation are actually analytic down
to the origin in the asymptotically pole-free sector, proving a conjecture of Dubrovin. See [1, 14] for related results on
certain solutions of the Painlevé-II equation (2.9). It is not known whether the tritronquée solutions Ẇ ±(�;m) of the
Painlevé-II equation are exactly pole-free in the sector − 23� < Arg(�) <

2
3�. Because we expect pole/zero pairs of un

to converge toward fixed poles of Ẇ ± in the �-plane, in our opinion the plots shown in Figures 8–11 are not sufficiently
resolved (i.e., n is not sufficiently large) to provide convincing evidence one way or the other, even though Figure 11
shows some poles and zeros of un lying in the asymptotic pole-free sector for Ẇ −(�; 45 i) near the origin.

The origin x = 0 is a fixed singular point of the Painlevé-III equation (1.1) and its presence appears to affect the
pattern of poles and zeros of un(x;m) close to the origin if m ∉ ℤ+ 1

2 , as can be seen in Figures 1–3. In particular, the
density of the regular distribution of poles and zeros within the domain E seems to blow up as y0 → 0, a phenomenon
that is confirmed by the asymptotic analysis in [3]. However, this accumulation phenomenon cannot be uniformly valid
in any neighborhood of the origin because un(x;m) is rational. Our numerical computations suggest that the x-distance
of the smallest poles and zeros of un(x;m) to the origin scales as n−1 when n is large, which suggests introducing into
(2.1) the scaling x = n−1z and considering n large for m bounded. Then (2.1) becomes

d2u
dz2

= 1
u

(du
dz

)2
− 1
z
du
dz
+ 4u

2 + 4
z

+ O(n−1), (2.11)

which is a perturbation of the parameter-free PIII3 equation

d2u̇
dz2

= 1
u̇

(du̇
dz

)2
− 1
z
du̇
dz
+ 4u̇

2 + 4
z

(2.12)

(arising from the general Painlevé-III equation in the special case  = � = 0, see [12, Section 2.2]). We may therefore
expect that un(n−1z;m) should behave like a particular solution (or possibly a family of particular solutions parametrized
by m and/or n) of this limiting equation when n is large and z is bounded. To explore this possibility, we plotted the
poles and zeros of un(n−1z;m) in the complex z-plane for two different fixed values of m and increasing large n in
Figures 12 and 13. Noting the alternation in the pattern of poles and zeros with increasing n in each case and taking
into account the symmetry u̇↦ −u̇−1 of (2.12) leads to the following conjecture.

Conjecture 5. Let m ∈ ℂ ⧵ (ℤ + 1
2 ) be given. Then there exists a corresponding particular solution u̇(z;m) of the

m-independent model equation (2.12) such that
lim
j→∞

u2j((2j)−1z;m) = u̇(z;m) and lim
j→∞

u2j+1((2j + 1)−1z;m) = −u̇(z;m)−1. (2.13)
13



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

FIGURE 12. As in Figure 1 but plotted in the z-plane for m = 0 and n = 18 (left), n = 19 (center),
and n = 20 (right).

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

FIGURE 13. As in Figure 1 but plotted in the z-plane for m = 4
5 i and n = 18 (left), n = 19 (center),

and n = 20 (right).

The reason for excluding half-integral values of m from this statement is that un(x;m) has either a simple pole or a
simple zero at the origin [8] for such m and asymptotic analysis [3] shows convergence to a function of y = x∕n (the
analytic continuation of ip+0 (y) to the complement of the “eyebrow”), which would correspond under rescaling either
to u̇ ≡ 0 or u̇ ≡ ∞; moreover, this limit is independent of whether n is odd or even. Naturally, this discrepancy raises
again the question of how the solution behaves near the origin in a double-scaling limit of large n and m close to a
half-integer.

The asymptotic analysis to establish Conjectures 4 and 5 using Theorem 1 is work in progress. The proof of Con-
jecture 5 is expected to be particularly challenging because Riemann-Hilbert Problem 1 cannot even be formulated for
x = 0.

3. LAX PAIR AND ISOMONODROMY THEORY FOR THE PAINLEVÉ-III EQUATION

The representation of the Painlevé-III equation (1.1) as the compatibility condition for a Lax pair of first-order linear
systems was discovered by Jimbo and Miwa [15]. Consider the linear differential equations

)	
)�
(�; x) = A(�; x)	(�; x), A(�; x) ∶= ix

2
�3 +

1
�

[

− 12Θ∞ y
v 1

2Θ∞

]

+ 1
�2

[

1
2 ix − ist is
−it(st − x) − 12 ix + ist

]

, (3.1)
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and
)	
)x
(�; x) = B(�; x)	(�; x), B(�; x) ∶= i�

2
�3 +

1
x

[

0 y
v 0

]

− 1
�x

[

1
2 ix − ist is
−it(st − x) − 12 ix + ist

]

. (3.2)

Here, Θ∞ is a constant parameter and y = y(x), v = v(x), s = s(x), and t = t(x) are coefficient functions5 (potentials).
The matrix coefficient of �−2 in (3.1) and of −(�x)−1 in (3.2) looks complicated, but it simply represents the most
general matrix having ± 12 ix as its eigenvalues (all such matrices depend on two parameters whose roles are played by
s(x) and t(x)). The compatibility condition Ax − B� + [A,B] = 0 for the simultaneous equations (3.1)–(3.2) is the
first-order system of nonlinear differential equations

x
dy
dx

= −2xs + Θ∞y, xdv
dx

= −2xt(st − x) − Θ∞v,

x ds
dx

= (1 − Θ∞)s − 2xy + 4yst, x dt
dx

= Θ∞t − 2yt2 + 2v.
(3.3)

This system admits an integral of motion:

I ∶=
2Θ∞
x

st − Θ∞ −
2
x
yt(st − x) + 2

x
vs (3.4)

is a conserved quantity, i.e, (3.3) implies that dI∕dx = 0 holds identically. Using (3.3) one can show that the combi-
nation

u(x) ∶= −
y(x)
s(x)

(3.5)

satisfies the differential equation
x du
dx

= 2x − (1 − 2Θ∞)u + 4stu2 − 2xu2. (3.6)

Taking another x-derivative and letting Θ0 denote the constant value of the integral I one then obtains the Painlevé-
III equation in the form (1.1). (For some details of these calculations, see the last lines of the proof of Lemma 2 in
Section 5.2 below.) The isomonodromy method algorithm for solving the initial-value problem for (1.1) with initial
conditions u(x0) = u0 and u′(x0) = u′0 is then the following [11]. Given constants (Θ0,Θ∞, x0, u0, u′0) ∈ ℂ5 with
x0u0 ≠ 0,

(1) Choose an arbitrary nonzero initial value of y: y(x0) = y0 ≠ 0. Then from (3.5) at x = x0 one obtains the
initial value of s: s0 ∶= s(x0) = −y0∕u0, which is well-defined and nonzero. Next, since s0u20 = −u0y0 ≠ 0,
t0 ∶= t(x0) is well-defined from (3.6) at x = x0:

t0 =
1

4u0y0

(

2x0 − (1 − 2Θ∞)u0 − 2x0u20 − x0u
′
0
)

. (3.7)

Finally, from (3.4) using I = Θ0 and substituting for s0 and t0 we get the initial value of v: v0 ∶= v(x0) where

v0 =
1

16y0u20

(

4x20 + (1 − 4Θ
2
∞)u

2
0 − 4x0u0 − 8Θ0x0u

3
0 − 4x

2
0u
4
0 − 4x

2
0u
′
0 + 2x0u0u

′
0 + x

2
0u
′2
0
)

. (3.8)

Note that s0 is proportional, while t0 and v0 are inversely proportional, to the arbitrary6 nonzero constant y0.
(2) Taking y = y0, v = v0, s = s0, t = t0, and x = x0 ≠ 0, seek four specific fundamental solution matrices of

(3.1) called canonical solutions, namely two satisfying the normalization condition

	�Θ∞�3∕2e−ix��3∕2 → I, �→∞ (3.9)
in two different abutting sectors with opening angle � and bisected by directions in which the factors e±ix� are
oscillatory; and two satisfying the normalization condition

[

a(x) b(x)s(x)
a(x)t(x) b(x)(s(x)t(x) − x)

]−1
	�−Θ0�3∕2eix�−1�3∕2 → I, �→ 0, (3.10)

5Our parametrization of the Lax system (3.1)–(3.2) differs from that of Jimbo and Miwa [15], who instead of s(x) and t(x) worked with the
combinations (in the notation of [11])U (x) ∶= s(x)t(x) andw(x) ∶= t(x)−1. The parametrization (3.1)–(3.2) has the advantage that the singularities
of the potentials y, v, and s are exactly the singularities of the simultaneous solution 	 with respect to the parameter x.

6Given any constant � ≠ 0, the system of equations (3.3) is obviously invariant under the substitution (y(x), v(x), s(x), t(x)) ↦
(�y(x), �−1v(x), �s(x), �−1t(x)), which also leaves u(x) defined by (3.5) invariant.
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in two different abutting sectors with opening angle � and bisected by directions in which the factors e±ix�−1

are oscillatory. In (3.10), a(x) and b(x) are arbitrary except that the determinant of the matrix factor on the left
should be equal to 1 and therefore a(x)b(x) = −x−1. The two fundamental matrices near � = 0 are obviously
related by right-multiplication by one �-independent Stokes matrix for each of the two sector boundary arcs;
similarly for the fundamental solution matrices near � = ∞. A fifth connection matrix relates the solution in
one sector near � = 0 to that in one sector near � = ∞. The four Stokes matrices and the connection matrix
constitute the solution of the direct monodromy problem.

(3) The equation (3.2) implies that the Stokes matrices and the connection matrix are independent of x when y, v,
s, and t evolve according to (3.3); this is the isomonodromy property of the representation (3.1)–(3.2). Hence,
letting x ∈ ℂ be arbitrary, solve the inverse monodromy (Riemann-Hilbert) problem of determining the four
fundamental solution matrices from the jump conditions relating them via right-multiplication by the Stokes
matrices and the connection matrix and from the asymptotic normalization conditions (3.9)–(4.4). From the
solution of this problem the coefficients (y, v, s, t) of equation (3.1) can then be extracted and from them u is
obtained for x ≠ x0 from (3.5).

4. MONODROMY DATA FOR u(x) = u0(x;m) = 1

In the special case that Θ0 = Θ∞ −1, i.e., n = 0 for arbitrary m ∈ ℂ, the Painlevé-III equation (1.1) has the rational
(constant) solutions u(x) = ±1. Our aim in this section is to calculate the necessarymonodromy data so that the solution
u(x) = 1 can be obtained from an appropriate Riemann-Hilbert problem. Although this appears to involve the study of
the direct problem (3.1) alone, our approach will be to leverage the compatibility with the isomonodromic deformation
(3.2) to solve the latter equation instead and then build in additional dependence on � via integration constants to satisfy
(3.1) as well. With these results in hand, in Section 5 we will apply Schlesinger transformations to increment/decrement
by 2 the value of the difference Θ∞ −Θ0 = 1 − 2n and thus obtain a Riemann-Hilbert representation for the Bäcklund
chain of rational solutions with seed solution u(x) = 1.

4.1. The Lax pair for Θ0 = Θ∞ − 1 and u(x) = 1. Since we will be exploiting the differential equation (3.2) to
construct the monodromy data, we need to know how the coefficients (y, v, s, t) depend on x. From (3.5) with u(x) ≡ 1
we find that s(x) ≡ −y(x), so the differential equation for y(x) in (3.3) closes as a linear equation with solution

y(x) = −1
4
Ke2xxΘ∞ and hence also s(x) = 1

4
Ke2xxΘ∞ , (4.1)

where K ≠ 0 is an arbitrary constant of integration. Using this result and u(x) ≡ 1 in (3.6) we obtain t(x):

t(x) = (1 − 2Θ∞)K−1e−2xx−Θ∞ .

Finally, using these along with I = Θ0 = Θ∞ − 1 in (3.4), we solve for v(x):

v(x) = −1
4
(1 − 2Θ∞)(4x + 1 + 2Θ∞)K−1e−2xx−Θ∞ .

In order that the coefficients in the Lax pair are well-defined, we assume for the purposes of this calculation that
x ∈ ℂ ⧵ ℝ− and agree to label the argument of x as being in the interval (−�, �), i.e., we use the principal branch
arg(x) = Arg(x). The arbitrary constant K plays a similar role as the arbitrary nonzero initial value y0 = y(x0)
in the solution of the initial-value problem for (1.1) by the isomonodromy method. Next, introducing into (3.2) the
well-defined substitution

	 = ex�3xΘ∞�3∕2x−1∕2W,
one finds that the first-row matrix entries W1j are solutions W of the confluent hypergeometric equation (cf., [22,
Eq. 13.14.1])

d2W
d�2

+
[

−1
4
+ �
�
+
1 − 4�2

4�2

]

W = 0, � = 1
4
, � = 1

2
(Θ∞ − 1), (4.2)

where � ∶= ix(� + 2i − �−1). The elements W2j of the second row are obtained from those in the first row by the
formula

W2j = −
4� (W ′

1j(� ) −
1
2W1j(� )) + (4� − i(1 − 2Θ∞)�−1)W1j(� )

K(1 + i�−1)
.
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If we fix a fundamental pair of solutions of (4.2) that depend on � only through the variable � as the first row of the
matrixW, then the general solution of (3.2) can be written in the form

	 = ex�3xΘ∞�3∕2x−1∕2WC(�), (4.3)
where C(�) cannot depend on x but might depend on �. Having found the general solution of the “x-equation” (3.2) in
the Lax pair for the Painlevé-III equation, we can now determineC(�) such that the expression (4.3) is simultaneously a
solution of both (compatible, because y(x), v(x),w(x), andU (x) satisfy (3.3)) equations (3.1)–(3.2). Upon substitution
of (4.3) into (3.1) one easily finds that

C(�) = (� + i)−1∕2C,
where C is a matrix independent of both x and �.

4.2. Normalized simultaneous solutions for Im(x) ≠ 0. For the moment, we assume that Im(x) ≠ 0 and define
xp (e.g., in (4.3)) by taking arg(x) = Arg(x) ∈ (−�, �). Later in Section 4.4 we will consider the exceptional cases
arg(±x) = 0. Our goal now is to determine the values of the matrixC in order to define the four canonical fundamental
solution matrices satisfying the normalization conditions (3.9)–(3.10). Note that (3.10) here takes the form

[

a(x) b(x) 14Ke
2xxΘ∞

a(x)K−1(1 − 2Θ∞)e−2xx−Θ∞ b(x) 14 (1 − 2Θ∞ − 4x)

]−1

	�−Θ0�3∕2eix�−1�3∕2 → I, �→ 0 (4.4)

where
a(x)b(x) = −1

x
. (4.5)

To specify these four solutions carefully, we should make sure that the power functions �p for various p appearing in the
normalization conditions, as well as the scalar factor (� + i)−1∕2 and the solutionsW of the confluent hypergeometric
equation (4.2) that are chosen for the first row of the matrixW are all unambiguous. We do this as follows. Firstly,
we note that according to the Wronskian identity [22, Eq. 13.14.30], we may choose as a fundamental pair of solutions
of (4.2) the two Whittaker functions W11 ∶= W−�,�(−� ) and W12 ∶= W�,�(� ). Now, W±�,�(z) are multi-valued
functions, and to be completely unambiguous we select in both cases the principal branches, whose argument z lies in
the domain arg(z) ∈ (−�, �). These solutions are related by the identity (cf., [22, Eq. 13.14.13])

lim
�↓0

W±�,�(−z + i�) = e±2�i� lim�↓0
W±�,�(−z − i�) +

2�ie±i��

Γ( 12 + � ∓ �)Γ(
1
2 − � ∓ �)

W∓�,�(z), z > 0, (4.6)

and its (negative) derivative

lim
�↓0

W ′
±�,�(−z + i�) = e

±2�i� lim
�↓0

W ′
±�,�(−z − i�) −

2�ie±i��

Γ( 12 + � ∓ �)Γ(
1
2 − � ∓ �)

W ′
∓�,�(z), z > 0, (4.7)

which express jump conditions for W±�,�(z) and its derivative across the branch cut on the negative real z-axis. We
also have the asymptotic behavior (cf., [22, Eq. 13.14.21])

W±�,�(z) = e−z∕2z±�(1 + O(z−1)), z→ ∞, arg(z) ∈ (−�, �),

as well as
� (W ′

11(� ) −
1
2W11(� )) = −�e�∕2(−� )−�(1 + O(�−1)), � → ∞, arg(−� ) ∈ (−�, �),

and
� (W ′

12(� ) −
1
2W12(� )) = −e−�∕2��+1(1 + O(�−1)), � → ∞, arg(� ) ∈ (−�, �),

and in these last three relations the indicated power functions all have their principal values. Now, with the principal
branches selected, given Arg(x) ∈ (−�, �), the matrixW becomes a well-defined analytic function of �, henceforth
denotedW =W(x, �), defined in the complement of the preimage under � of the real axis. This x-dependent preimage
is therefore the jump contour L forW, and it takes different forms for −� < Arg(x) < 0 and 0 < Arg(x) < �; see
Figure 14. Given a value of x with Im(x) ≠ 0 and a corresponding jump contour L as illustrated in this figure, we
will now define the multivalued functions �p and (� + i)−1∕2 precisely as follows. For �p, we take as a branch cut
L∞⬕ ∪ L0⬕. Furthermore, noting that as x varies in the upper half-plane L∞⬕ sweeps through the left half �-plane, we
define arg(�) = 0 for sufficiently large positive � when Im(x) > 0. Similarly, as x varies in the lower half-plane L∞⬕
sweeps through the right half �-plane and we therefore define arg(�) = � for � < 0 of sufficiently large magnitude
when Im(x) < 0. This choice of branch along with the cut L∞⬕ ∪ L0⬕ unambiguously determines arg(�) and hence �p
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FIGURE 14. The jump contour L for the Whittaker matrixW(x, �) takes a different form depending
on whether 0 < Arg(x) < � (left) or −� < Arg(x) < 0 (right). The arcs L∞⬔ and L0⬔ (red) are
where � < 0, and the arcs L∞⬕ and L0⬕ (cyan) are where � > 0. All four contour arcs meet at the
only zero of � , namely � = −i. Together with the unit circle (dotted), the contour arcs divide the
complex �-plane into four disjoint domains as indicated,Ω0± adjacent to � = 0 and where±Im(� ) > 0
holds, and unbounded domains Ω∞± where ±Im(� ) > 0 holds. The subscript notation ⬕/⬔ on the
contour arcs is a mnemonic for the lower/upper triangular structure of jump matrices defined below
(cf., (4.34)–(4.35)) that will be carried by the corresponding contour arcs.

for any p ∈ ℂ given x with Im(x) ≠ 0. We use the notation �p⬕ to indicate this branch. Note that if arg⬕(�) denotes
the value of the argument corresponding to this choice of branch we have

−�
2
− Arg(x) < arg⬕(�) <

3�
2
− Arg(x), |�| → ∞, (4.8)

while
Arg(x) − �

2
< arg⬕(�) < Arg(x) +

3�
2
, |�| → 0. (4.9)

Then, to define (� + i)−1∕2, we select L∞⬕ as the branch cut and for Im(x) > 0 we take (� + i)−1∕2 to be positive for
sufficiently positive values of � + i, while for Im(x) < 0 we take (� + i)−1∕2 to be negative imaginary for sufficiently
negative values of � + i. We denote the resulting well-defined function as (� + i)−1∕2⬕ . With this choice, we have in
particular that

(� + i)−1∕2⬕ = e−i�∕4 + O(�), �→ 0, (4.10)

and
(� + i)−1∕2⬕ = �−1∕2⬕ (1 + O(�−1)), �→∞. (4.11)

With these definitions in hand, we now construct the four normalized solutions for u(x) = 1 as analytic functions of �
in the four disjoint domainsΩ∞± andΩ0±. We will denote the resulting piecewise-analytic simultaneous matrix solution
of (3.1)–(3.2) by 	(�; x).

4.2.1. Defining 	(�; x) for � ∈ Ω∞+ . We define 	(�; x) for � ∈ Ω∞+ by the formula

	(�; x) = ex�3xΘ∞�3∕2x−1∕2(� + i)−1∕2⬕ W(x, �)C∞+ , � ∈ Ω∞+ , (4.12)
18
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andwe determine the constantmatrixC∞+ so that	 = 	(�; x) satisfies (3.9) (with �Θ∞�3∕2 defined carefully as �Θ∞�3∕2⬕ )
in the limit �→∞ in Ω∞+ . Note that the precisely-defined factor (� + i)

−1∕2
⬕ satisfies (4.11), and that when �→∞ the

Whittaker matrixW(x, �) takes the following asymptotic form:

W(x, �) =
([

1 1
0 4K−1�

]

+ O(�−1)
)[

e�∕2(−� )−� 0
0 e−�∕2��

]

, �→∞. (4.13)

This can be further simplified by recalling that � = ix(�+2i−�−1) is large when � is large, and making use of the fact
that the expressions (±� )±� refer to the principal branch. Indeed, by definition Im(� ) > 0 and Im(−� ) < 0 hold for � in
the domain Ω∞+ . Therefore to define (−� )

−� by the principal branch we need to have −� < arg(−� ) < 0 or, for large �,
−� < arg(−ix�(1+O(�−1)) < 0. Writing arg(−ix�(1+O(�−1))) = − 12�+Arg(x)+arg⬕(�)+Arg(1+O(�

−1))+2�l,
l ∈ ℤ, where arg⬕(�) satisfies (according to Figure 14 and (4.8) for large � ∈ Ω∞1 ) arg⬕(�) + Arg(x) ∈ (−

1
2�,

1
2�),

we see that l = 0, and therefore (−� )−� = ei��∕2x−��−�⬕ (1 + O(�−1)) as � → ∞ in Ω∞+ , where x
−� refers to the

principal branch. Similarly, to define �� by the principal branch we need to have 0 < arg(� ) < � or for large �,
0 < arg(ix�(1 + O(�−1))) < �. Writing arg(ix�(1 + O(�−1))) = 1

2� + Arg(x) + arg⬕(�) + Arg(1 + O(�
−1)) + 2�l

and again using arg⬕(�) + Arg(x) ∈ (−
1
2�,

1
2�) gives l = 0 so that �� = ei��∕2x���⬕(1 + O(�

−1)) as � → ∞ in Ω∞+ ,
where again x� is the principal branch. Putting these results together gives

	(�; x)e−ix��3∕2�Θ∞�3∕2⬕ =
([

ei��∕2 0
0 4K−1ei�(�+1)∕2

]

+ O(�−1)
)

⋅ �−Θ∞�3∕2⬕ eix��3∕2C∞+ e
−ix��3∕2�Θ∞�3∕2⬕ , �→∞, � ∈ Ω∞+ . (4.14)

Since Ω∞+ contains directions in which both exponential factors e±ix� are exponentially large as � → ∞, this can only
have a finite limit if C∞+ is a diagonal matrix, in which case the correct normalization requires that

C∞+ ∶=
[

e−i��∕2 0
0 − i

4Ke
−i��∕2

]

. (4.15)

Using this formula for C∞+ in (4.12) completes the precise definition of 	(�; x) for � ∈ Ω∞+ .

4.2.2. Defining 	(�; x) for � ∈ Ω∞− . In a similar way, we define 	(�; x) for � ∈ Ω∞− by the formula

	(�; x) = ex�3xΘ∞�3∕2x−1∕2(� + i)−1∕2⬕ W(x, �)C∞− , � ∈ Ω∞− (4.16)

and we determine C∞− so that 	 = 	(�; x) satisfies (3.9) with �Θ∞�3∕2 interpreted as �Θ∞�3∕2⬕ in the limit � → ∞
with � ∈ Ω∞− . Again we may use both (4.11) and (4.13), and it remains to interpret the principal branch power
functions (±� )±� appearing in (4.13). Now by definition, Im(� ) < 0 and Im(−� ) > 0 hold for � ∈ Ω∞− , so for the
principal branch powers we have −� < arg(� ) < 0 and 0 < arg(−� ) < �. Writing arg(� ) = arg(ix�(1 + O(�−1))) =
1
2� +Arg(x) + arg⬕(�) + Arg(1 +O(�

−1)) + 2�l, l ∈ ℤ, and taking into account that arg⬕(�) + Arg(x) ∈ (
1
2�,

3
2�)

according to Figure 14 and (4.8) we find that l = −1 and so �� = e−3�i�∕2x���⬕(1 + O(�
−1)) as � → ∞ from Ω∞−

where x� is the principal branch. Similarly writing arg(−� ) = arg(−ix�(1 + O(�−1))) = − 12� + Arg(x) + arg⬕(�) +
Arg(1 +O(�−1)) + 2�l we get that l = 0 and so (−� )−� = ei��∕2x−��−�⬕ (1 +O(�−1)) as �→∞ from Ω∞− where x−�
is the principal branch. Using this information and imposing the normalization condition (3.9) on the formula (4.16)
we learn that the matrix C∞− must again be diagonal for the required limit to exist, and then

C∞− =
[

e−i��∕2 0
0 − i

4Ke
3�i�∕2

]

.

Combining this with (4.16) completes the definition of 	(�; x) for � ∈ Ω∞− .
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4.2.3. Defining 	(�; x) for � ∈ Ω0−. We write 	(�; x) for � ∈ Ω0− in the form

	(�; x) = ex�3xΘ∞�3∕2x−1∕2(� + i)−1∕2⬕ W(x, �)C0−, � ∈ Ω0−, (4.17)

and try to determine the constant matrix C0− such that (4.4) holds (with �−Θ0�3∕2 carefully interpreted as �−Θ0�3∕2⬕ ) for
some appropriate a and b in the limit �→ 0 fromΩ0−. Note that the precisely-defined factor (� + i)

−1∕2
⬕ is analytic near

� = 0 and satisfies (4.10), while in the limit �→ 0, the Whittaker matrixW(x, �) takes the following asymptotic form:

W(x, �) =
([

1 1
K−1(1 − 2Θ∞) K−1(1 − 2Θ∞ − 4x)

]

+ O(�)
)[

e�∕2(−� )−� 0
0 e−�∕2��

]

, �→ 0. (4.18)

We carefully interpret the principal branch powers appearing in (4.18) by noting that � ∈ Ω0− means by definition that
Im(� ) < 0 so we need to have −� < arg(� ) < 0 and 0 < arg(−� ) < �. Writing arg(� ) = arg(−ix�−1(1 + O(�))) =
− 12�+Arg(x)−arg⬕(�)+Arg(1+O(�))+2�l, l ∈ ℤ, and observing from Figure 14 and (4.9) that � small and inΩ0−
means arg⬕(�)−Arg(x) ∈ (−

1
2�,

1
2�), we see that l = 0 and so �

� = e−i��∕2x��−�⬕ (1+O(�)) as �→ 0 fromΩ0− where
x� is the principal branch. Similarly, writing arg(−� ) = arg(ix�−1(1+O(�)) = 1

2�+Arg(x)−arg⬕(�)+Arg(1+O(�))+
2�l and again using arg⬕(�) − Arg(x) ∈ (− 12�,

1
2�) we find that l = 0 and so (−� )−� = e−i��∕2x−���⬕(1 + O(�))

as � → 0 from Ω0− where x−� denotes the principal branch. Using this information in (4.4) we see that for a similar
reason that C∞+ as given by (4.15) is diagonal, C0− must be a diagonal matrix, say

C0− =
[

c 0
0 d

]

(4.19)

with c and d independent of both x and �, and then 	 = 	(�; x) indeed satisfies (4.4) provided that
a(x) = e−i��∕2e−i�∕4c

b(x) = 4K−1e−i��∕2e−i�∕4x−1d.
(4.20)

Note that a(x) is independent of x. The unimodularity condition (4.5) is then equivalent to the following condition on
the constants c and d:

det(C0−) = cd = −
1
4
iKei�� . (4.21)

Therefore, to completely define 	(�; x) we should simply choose convenient values for c and d consistent with (4.21)
and then combine (4.19) with (4.17).

4.2.4. Defining 	(�; x) for � ∈ Ω0+. We write 	(�; x) for � ∈ Ω0+ in the form

	(�; x) = ex�3xΘ∞�3∕2x−1∕2(� + i)−1∕2⬕ W(x, �)C0+, � ∈ Ω0+, (4.22)

for a constant matrix C0+ to be determined from the normalization condition (4.4) in which �−Θ0�3∕2 is interpreted
as �−Θ0�3∕2⬕ . We may again use (4.10) and (4.18) and it remains to interpret the principal branch power functions
�� and (−� )−� for � ∈ Ω0+. By definition, � ∈ Ω0+ means Im(� ) > 0, so 0 < arg(� ) < � and −� < arg(−� ) <
0. Writing arg(� ) = arg(−ix�−1(1 + O(�))) = − 12� + Arg(x) − arg⬕(�) + Arg(1 + O(�)) + 2�l, l ∈ ℤ, and
noting from Figure 14 and (4.9) that � small in Ω0+ means that arg⬕(�) − Arg(x) ∈ ( 12�,

3
2�), we obtain l = 1

and therefore �� = e3�i�∕2x��−�⬕ (1 + O(�))) as � → 0 from Ω0+ where x� is the principal branch. Likewise writing
arg(−� ) = arg(ix�−1(1 + O(�))) = 1

2� + Arg(x) − arg⬕(�) + Arg(1 + O(�)) + 2�l we see that l = 0 and therefore
(−� )−� = e−i��∕2x−���⬕(1 + O(�)) as � → 0 from Ω0+ where x−� is the principal branch. Using this information in
(4.4) we see that the matrix C0+ must be diagonal (again, for similar reasons that C∞+ as given by (4.15) is diagonal):

C0+ =
[

g 0
0 ℎ

]

(4.23)

where the constants g and ℎ are related to a(x) and b(x) by
a(x) = e−i��∕2e−i�∕4g

b(x) = 4K−1e3�i�∕2e−i�∕4x−1ℎ.
(4.24)
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Once again, a(x) is independent of x, and the unimodularity condition (4.5) is then equivalent to

det(C0+) = gℎ = −
1
4
iKe−i�� . (4.25)

Choosing any constants g and ℎ consistent with (4.25) therefore determines 	(�; x) for � ∈ Ω0+ by combining (4.23)
with (4.22).

4.3. Jump matrices for Im(x) ≠ 0. Before computing the jump matrices, we will remove the ambiguity of the con-
stants c, d, g, ℎ still present in the definition of 	(�; x) for � ∈ Ω0± in the following way:

∙ If Im(x) > 0, we choose c and d so that C0− = C
∞
− . This is allowed because the diagonal elements of C∞−

obviously also satisfy (4.21) because 2� + 1 = Θ∞. Similarly, if Im(x) < 0, we choose g and ℎ such that
C0+ = C

∞
+ , which is consistent because the diagonal elements of C∞+ satisfy (4.25).

∙ We then insist that the normalization factors a(x) and b(x) appearing in (4.4) are exactly the same regardless
of whether �→ 0 from Ω0− or from Ω0+.

The first choice implies that at every point � ≠ −i of the unit circle forming the common boundary of Ω∞− and Ω0− (for
Im(x) > 0) or the common boundary of Ω∞+ and Ω0+ (for Im(x) < 0), the boundary values taken by 	(�; x) agree, i.e.,
the jump matrix for 	(�; x) across the unit circle S1 ⧵ {−i} is exactly the identity matrix. The second choice together
with the first implies, in light of (4.20) and (4.24), that the matrices C0± are necessarily given by

C0− =
[

e−i��∕2 0
0 − 14 iKe

3�i�∕2

]

and C0+ =
[

e−i��∕2 0
0 − 14 iKe

−i��∕2

]

.

Note that these formulæ do not depend on the sign of Im(x). Thus, the matrix function 	(�; x) has been determined
modulo only the value of the constant K ≠ 0, as an analytic function of � ∈ ℂ ⧵ L where L = L∞⬔ ∪ L0⬔ ∪ L

∞
⬕ ∪ L0⬕

is the jump contour for the Whittaker matrixW illustrated with red and cyan curves in Figure 14.

The jump conditions satisfied by 	(�; x) across the four arcs of L oriented as shown in Figure 14 are computed by
comparing the formulæ for	(�; x) on either side using the identities (4.6)–(4.7) together with the fact that � < 0 along
L0⬔ and L∞⬔ while � > 0 along L0⬕ and L∞⬕. One also has to take into account that the factor (� + i)−1∕2⬕ changes sign
across L∞⬕ by definition, but otherwise is analytic. The jump conditions are as follows:

∙ The arc L∞⬔ separates the domain Ω∞+ on its left from Ω∞− on its right. Using � < 0 for � ∈ L∞⬔ we deduce
that

	+(�; x) = 	−(�; x)V∞⬔, � ∈ L∞⬔ (4.26)
where

V∞⬔ ∶=
⎡

⎢

⎢

⎣

1 1
4Ke

i�� ⋅
2�

Γ( 12 + � − �)Γ(
1
2 − � − �)

0 1

⎤

⎥

⎥

⎦

. (4.27)

∙ The arc L0⬔ separates the domain Ω0− on its left from Ω0+ on its right. Using � < 0 we get

	+(�; x) = 	−(�; x)V0⬔, � ∈ L0⬔ (4.28)

where

V0⬔ ∶=
⎡

⎢

⎢

⎣

1 − 14Ke
i�� ⋅

2�
Γ( 12 + � − �)Γ(

1
2 − � − �)

0 1

⎤

⎥

⎥

⎦

. (4.29)

∙ The arc L0⬕ separates the domain Ω0+ on its left from Ω0− on its right. Using � > 0 we arrive at

	+(�; x) = 	−(�; x)V0⬕, � ∈ L0⬕ (4.30)

where

V0⬕ ∶=
⎡

⎢

⎢

⎣

e2�i� 0
( 14Ke

i��)−1 ⋅ 2�
Γ( 12 + � + �)Γ(

1
2 − � + �)

e−2�i�
⎤

⎥

⎥

⎦

. (4.31)
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∙ Finally, the arc L∞⬕ separates the domain Ω∞− on its left from Ω∞+ on its right. Using � > 0 and taking into
account that (� + i)−1∕2⬕ changes sign across L∞⬕ we obtain

	+(�; x) = 	−(�; x)V∞⬕, � ∈ L∞⬕, (4.32)

where

V∞⬕ ∶=
⎡

⎢

⎢

⎣

−e−2�i� 0
( 14Ke

i��)−1 ⋅ 2�
Γ( 12 + � + �)Γ(

1
2 − � + �)

−e2�i�
⎤

⎥

⎥

⎦

. (4.33)

These formulæ may be simplified further by recalling the definitions � = 1
4 and � = 1

2 (Θ∞ − 1) (so Θ∞ = m + 1 for
n = 0 implies � = 1

2m), using the duplication formula [22, Eq. 5.5.5] Γ(2z) = �−1∕222z−1Γ(z)Γ(z + 1
2 ), and choosing

K = 2m+2e−i�m∕2.

Thus we find

V∞⬔ = V∞⬔(m) ∶=
⎡

⎢

⎢

⎢

⎣

1

√

2�

Γ( 12 − m)
0 1

⎤

⎥

⎥

⎥

⎦

, V0⬔ = V0⬔(m) ∶=
⎡

⎢

⎢

⎢

⎣

1 −

√

2�

Γ( 12 − m)
0 1

⎤

⎥

⎥

⎥

⎦

, (4.34)

V0⬕ = V0⬕(m) ∶=
⎡

⎢

⎢

⎢

⎣

ei�m 0
√

2�

Γ( 12 + m)
e−i�m

⎤

⎥

⎥

⎥

⎦

, V∞⬕ = V∞⬕(m) ∶=
⎡

⎢

⎢

⎢

⎣

−e−i�m 0
√

2�

Γ( 12 + m)
−ei�m

⎤

⎥

⎥

⎥

⎦

. (4.35)

In the general theory [11] of the direct monodromy problem for (1.1), the Stokes constants are subject to an identity
known as the cyclic relation. In this setting, the cyclic relation is simply equivalent to the statement that for consistency,
the ordered product of the jump matrices around the self-intersection point � = −i must be the identity:

V∞⬕(m)
−1V∞⬔(m)

−1V0⬕(m)V
0
⬔(m) = I. (4.36)

While it is straightforward to check directly that (4.36) holds, this identity is in fact a simple consequence of the way
the jump matrices were computed, namely by comparing four functions, each of which admits analytic continuation
to a full neighborhood of the self-intersection point � = −i and that differ only by right-multiplication by constant
matrices.

4.4. The limiting cases of x > 0 and x < 0. The jump contour L for the Whittaker matrix W(x, �) undergoes a
bifurcation when x crosses either the positive or negative real axes. The bifurcation that occurs as Arg(x) passes
through zero is illustrated in Figure 15. Clearly, the arcs L0⬕ and L∞⬕ depend continuously on Arg(x) near Arg(x) = 0,
but the parts of L0⬔ and L∞⬔ close to the unit circle become interchanged as Arg(x) passes through zero. However,
noting that the matrices V∞⬔(m) and V

0
⬔(m) as defined in (4.34) are inverse to each other, we easily conclude that the

jump conditions satisfied by the matrix 	(�; x) actually depend continuously on Arg(x) near Arg(x) = 0. This makes
it possible to define the jump conditions by continuity for Arg(x) = 0. Note also that not only are the branch cuts
of the functions �p⬕ and (� + i)−1∕2⬕ continuous with respect to Arg(x) near Arg(x) = 0, but so also are the functions
themselves.

On the other hand, as x approaches the negative real axis from above and below, the bifurcation as illustrated in
Figure 16 is apparently more serious. Indeed, the arcs of L∞⬕ and L0⬕ near the unit circle are now interchanged while
L∞⬔ and L0⬔ depend continuously on Arg(−x). Since, according to (4.35), V0⬕(m)V

∞
⬕(m) = −I, it is not hard to see

that in the limit Arg(−x) → 0 the limiting jump conditions from Im(x) > 0 and Im(x) < 0 differ precisely on the unit
circle, by a sign. In terms of the matrix 	(�; x) itself,

lim
�↓0
	(�; x + i�) = sgn(ln |�|) lim

�↓0
	(�; x − i�), x < 0.

Naturally, both limiting values correspond to simultaneous solutions of the Painlevé-III Lax pair (3.1)–(3.2) for exactly
the same solution u(x) = 1; the apparent monodromy in the function 	(�; x) about x = 0 can be absorbed into a sign
change in the arbitrary constants a and b appearing in (4.4). For practical calculations one has to be careful about the
values of the power functions �p⬕ for |�| < 1 in taking the limit of 	(�; x) as x approaches a negative real value from
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FIGURE 15. As in Figure 14 except for values of x close to the positive real axis.
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FIGURE 16. As in Figure 14 except for values of x close to the negative real axis.

the upper/lower half-planes. Indeed, keeping track of the dependence of arg⬕(�) on x with the augmented notation
arg⬕(�; x), we have the identity

lim
�↓0

arg⬕(�; x + i�) = lim�↓0
arg⬕(�; x − i�) − 2�sgn(ln |�|), x < 0.

While the bifurcation for arg(−x) = 0 is of a merely technical nature for the rational solutions of (1.1) at hand, typical
solutions of Painlevé-III are multivalued in a neighborhood of the fixed singularity x = 0, and for such solutions the
bifurcation leads to a jump of u(x) across a branch cut on the negative real axis.
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5. SCHLESINGER-BÄCKLUND TRANSFORMATIONS

5.1. Schlesinger transformations to increment/decrement n. Now suppose that V∞⬕, V∞⬔, V0⬕, and V0⬔ are any
unimodular 2 × 2 matrices satisfying the cyclic relation (4.36), and that 	(�; x) is an analytic function of � in the
domain ℂ ⧵ L, L ∶= L∞⬕ ∪ L∞⬔ ∪ L0⬕ ∪ L0⬔, satisfying jump conditions of the form (4.26), (4.28), (4.30), (4.32), as
well as asymptotic conditions of the form

	(�; x)�Θ∞�3∕2⬕ e−ix��3∕2 = I +	∞1 (x)�
−1 +⋯ , �→∞ (5.1)

and
	(�; x)�−Θ0�3∕2⬕ eix�

−1�3∕2 = 	00(x) +	
0
1(x)� +⋯ , �→ 0. (5.2)

Here,	∞k (x), k ≥ 1 and	0k(x), k ≥ 0, are certain matrix coefficients. Since it necessarily holds that det(	(�; x)) = 1,
it follows that det(	00(x)) = 1 and tr(	

∞
1 (x)) = 0. We define the Pauli-type matrices

�̂ ∶=
[

1 0
0 0

]

and �̌ ∶=
[

0 0
0 1

]

,

and supposing further that the matrix element Ψ00,11(x) is not identically zero, we consider the Schlesinger transforma-
tion (also known as a Darboux transformation) given by

	̂(�; x) ∶= (�̂�1∕2⬕ + B̂(x)�−1∕2⬕ )	(�; x), (5.3)

where

B̂(x) ∶=
[

Ψ00,21(x)Ψ
∞
1,12(x)∕Ψ

0
0,11(x) −Ψ∞1,12(x)

−Ψ00,21(x)∕Ψ
0
0,11(x) 1

]

. (5.4)

Note that det(	̂(�; x)) = det(	(�; x)) by direct calculation. Since �±1∕2⬕ are analytic except on L0⬕ ∪L
∞
⬕ across which

these factors change sign, 	̂(�; x) is also analytic for � ∈ ℂ ⧵ L, and it is a direct matter to check the following jump
conditions:

	̂+(�; x) = 	̂−(�; x)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V0⬔, � ∈ L0⬔,
V∞⬔, � ∈ L∞⬔,
−V0⬕, � ∈ L0⬕,
−V∞⬕, � ∈ L∞⬕.

(5.5)

Next, combining (5.1) and (5.3), observe that in the limit �→∞ we have

	̂(�; x)�(Θ∞−1)�3∕2⬕ e−ix��3∕2 = (�̂�1∕2⬕ + B̂(x)�−1∕2⬕ )(I +	∞1 (x)�
−1 +⋯)�−�3∕2⬕

= �(�̂ + B̂(x)�−1)(I +	∞1 (x)�
−1 +⋯)(�̌ + �̂�−1)

= �̂�̌� + [�̂2 + �̂	∞1 (x)�̌ + B̂(x)�̌] + 	̂
∞
1 (x)�

−1 +⋯

= I + 	̂∞1 (x)�
−1 +⋯ ,

where
	̂∞1 ∶= �̂	∞1 (x)�̂ + �̂	

∞
2 (x)�̌ + B̂(x)�̂ + B̂(x)	

∞
1 (x)�̌. (5.6)

Similarly, combining (5.2) with (5.3) shows that in the limit �→ 0 we have

	̂(�; x)�−(Θ0+1)�3∕2⬕ eix�
−1�3∕2 = (�̂�1∕2⬕ + B̂(x)�−1∕2⬕ )(	00(x) +	

0
1(x)� +⋯)�

−�3∕2
⬕

= �−1(B̂(x) + �̂�)(	00(x) +	
0
1(x)� +⋯)(�̂ + �̌�)

= B̂(x)	00(x)�̂�
−1 + 	̂00(x) + 	̂

0
1(x)� +⋯

= 	̂00(x) + 	̂
0
1(x)� +⋯ ,

where
	̂00(x) ∶= B̂(x)	

0
0(x)�̌ + B̂(x)	

0
1(x)�̂ + �̂	

0
0(x)�̂. (5.7)

Thus, the Schlesinger transformation (5.3) results in a simplemodification of the jump conditions and preserves the form
of the asymptotic conditions (5.1)–(5.2), but with the replacements Θ∞ ↦ Θ̂∞ ∶= Θ∞ − 1 and Θ0 ↦ Θ̂0 ∶= Θ0 + 1.
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Comparing with (1.2), we see that these replacements have the effect of incrementing the value of n by 1 and holding
m fixed. Similarly, assuming that Ψ00,22(x) is not identically zero and setting

	̌(�; x) ∶= (�̌�1∕2⬕ + B̌(x)�−1∕2⬕ )	(�; x), (5.8)

where

B̌(x) ∶=
[

1 −Ψ00,12(x)∕Ψ
0
0,22(x)

−Ψ∞1,21(x) Ψ00,12(x)Ψ
∞
1,21(x)∕Ψ

0
0,22(x)

]

(5.9)

respectively, one finds that again det(	̌(�; x)) = det(	(�; x)) and (5.5) holds with 	̌ replacing 	̂, but now as �→∞,

	̌(�; x)�(Θ∞+1)�3∕2⬕ e−ix��3∕2 = I + 	̌∞1 (x)�
−1 +⋯ ,

where

	̌∞1 (x) ∶= �̌	
∞
1 (x)�̌ + �̌	

∞
2 (x)�̂ + B̌(x)�̌ + B̌(x)	

∞
1 (x)�̂,

and similarly, as �→ 0,

	̌(�; x)�−(Θ0−1)�3∕2⬕ eix�
−1�3∕2 = 	̌00(x) + 	̌

0
1(x)� +⋯

where

	̌00(x) ∶= B̌(x)	
0
0(x)�̂ + B̌(x)	

0
1(x)�̌ + �̌	

0
0(x)�̌.

Therefore, the Schlesinger transformation (5.8) also results in a simple modification of the jump conditions and pre-
serves the form of the asymptotic conditions (5.1)–(5.2), but now with the replacements Θ∞ ↦ Θ̌∞ ∶= Θ∞ + 1 and
Θ0 ↦ Θ̌0 ∶= Θ0 −1, replacements having the effect of decrementing the value of n by 1 and holding m fixed. We now
show that the transformations (5.3) and (5.8) are in fact inverse to each other:

Lemma 1. ̌̂	(�; x) = ̂̌	(�; x) = 	(�; x).

Proof. Fix x ∈ ℂ such that 	(�; x) exists satisfying the appropriate analyticity, jump, and normalization conditions;
hence in particular the diagonal elements of 	00(x) are finite. If Ψ00,11(x) ≠ 0 so that 	̂(�; x) exists, then according
to (5.7) with (5.4), the fact that det(	00(x)) = 1 implies that Ψ̂00,22(x) = 1∕Ψ00,11(x) ≠ 0. Therefore, (5.8) can be
applied to 	̂(�; x) with the elements of B̌(x) obtained from 	̂∞1 (x) and 	̂

0
0(x) rather than 	

∞
1 (x) and 	

0
0(x). Both

rows of the latter matrix are proportional to [1,−Ψ̂00,12(x)∕Ψ̂
0
0,22(x)], while both columns of B̂(x) are proportional to

[−Ψ∞1,12(x), 1]
⊤, with the inner product being

−Ψ∞1,12(x) −
Ψ̂00,12(x)

Ψ̂00,22(x)
= −Ψ∞1,12(x) − Ψ̂

0
0,12(x)Ψ

0
0,11(x) = 0,

again using (5.7) with (5.4). Therefore, since �̌�̂ = 0,

̌̂	(�; x) =
[

1 0
−Ψ00,21(x)∕Ψ

0
0,11(x) − Ψ̂

∞
1,21(x) 1

]

	(�; x) = 	(�; x),

with the help of (5.6) and (5.4). Another proof of this result is simply to note that thematrices ̌̂	(�; x) and	(�; x) satisfy
exactly the same analyticity, jump, and normalization conditions, and therefore since det(	(�; x)) = 1, Liouville’s
theorem shows that ̌̂	(�; x)	(�; x)−1 = I. The proof that (5.3) can be applied to 	̌(�; x) provided that Ψ00,22(x) ≠ 0 so

that the latter exists, with the result that ̂̌	(�; x) = 	(�; x), is completely analogous. �
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5.2. The defining inverse monodromy problem for the rational solution un(x;m). Let 	(0)(�; x, m) ∶= 	(�; x)
be the matrix function defined in Sections 4.1–4.2, which satisfies (5.1)–(5.2) with Θ0 = m and Θ∞ = m + 1, and
for which Ψ00,11(x) = a(x) = e−i��∕2e−i�∕4c ≠ 0 and Ψ00,22(x) ≢ 0 for b(x) ≢ 0 (note that both inequalities follow
from (4.20)–(4.21)). We now apply the Schlesinger transformations (5.3) and (5.8) repeatedly, assuming that after each
iteration, the condition Ψ00,11(x)Ψ

0
0,22(x) ≢ 0 persists

7 to obtain for each integer n ∈ ℤ a matrix function 	(n)(�; x, m)
that satisfies (5.1)–(5.2) as well as the jump conditions

	(n)+ (�; x, m) = 	
(n)
− (�; x, m)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V0⬔(m), � ∈ L0⬔,
V∞⬔(m), � ∈ L∞⬔,
(−1)nV0⬕(m), � ∈ L0⬕,
(−1)nV∞⬕(m), � ∈ L∞⬕,

(5.10)

where now the matrices V0⬔(m) and V
∞
⬔(m) are defined in (4.34) and V0⬕(m) and V

∞
⬕(m) are defined in (4.35). Since

det(	(0)(�; x, m)) = 1 it follows that det(	(n)(�; x, m)) = 1 for all n ∈ ℤ. The inverse monodromy problem consists of
fixing n ∈ ℤ, m ∈ ℂ, and x ∈ ℂ ⧵ {0} and attempting to determine 	(n)(�; x, m) from the following conditions only:

∙ Analyticity: 	(n)(�; x, m) is analytic for � ∈ ℂ ⧵ L and analyticity extends to the the contour L from each
component of its complement.

∙ Jump conditions: The boundary values taken by 	(n)(�; x, m) on the four oriented arcs of L are to be related
by the jump conditions (5.10).

∙ Behavior for small and large �: 	(n)(�; x, m) satisfies the two conditions (5.1)–(5.2) in which Θ0 and Θ∞ are
defined in terms of m and n by (1.2).

By its construction in Sections 4.1–4.2, 	(0)(�; x, m) is the simultaneous solution of a Lax pair of linear problems.
We now show that this is also true for 	(n)(�; x, m), ∀n ∈ ℤ, establishing simultaneously some related important
properties.

Lemma 2. Let n ∈ ℤ and m ∈ ℂ be fixed and suppose the above inverse monodromy problem for 	(�; x) =
	(n)(�; x, m) is solvable for x in some domain D ⊂ ℂ ⧵ {0}.

1. For � ∈ ℂ ⧵L, the function	(�; x) = 	(n)(�; x, m) is a simultaneous solution matrix of the Lax system (3.1)–
(3.2) in which the x-dependent coefficients y, v, s, and t are given in terms of the leading matrix coefficients
in the expansions (5.1)–(5.2) by

y(x) = −ixΨ∞1,12(x), v(x) = ixΨ∞1,21(x), s(x) = −xΨ00,11(x)Ψ
0
0,12(x), t(x) =

Ψ00,21(x)

Ψ00,11(x)
. (5.11)

2. None of the three matrix elements Ψ00,11(x), Ψ
0
0,12(x), nor Ψ

0
0,22(x) of the leading coefficient in the expansion

(5.2) of 	(�; x) = 	(n)(�; x, m) vanishes identically on the domain D.
3. The combination u(x) ∶= −y(x)∕s(x) (cf., (3.5)) is a solution of the Painlevé-III equation (1.1) meromorphic

on D with parameters Θ0 and Θ∞ given by (1.2).

Proof. It is a standard result based on Liouville’s theorem and the fact that the jump matrices are all unimodular that
there can be atmost one solution of the inversemonodromy conditions and that this solution satisfies det(	(n)(�; x, m)) =
1. Applying analytic Fredholm theory to a suitable singular integral equation equivalent to the inverse monodromy
problem and parametrized analytically by x ∈ ℂ ⧵ {0}, existence of a solution for x ∈ D implies that for each m ∈ ℂ
and for each fixed � disjoint from the jump contour L for all x ∈ D, x ↦ 	(n)(�; x, m) is analytic on D. In particular,
in a neighborhood of such fixed � and any x ∈ D, 	(n)(�; x, m) is jointly differentiable with respect to both � and x.
Because the jump matrices in (5.10) are independent of both � (on each arc) and x, it follows that the matrices

A(n)(�; x, m) ∶= )	(n)
)�

(�; x, m)	(n)(�; x, m)−1 and B(n)(�; x, m) ∶= )	(n)
)x

(�; x, m)	(n)(�; x, m)−1

are both analytic functions of (�, x) in the domain (ℂ ⧵ {0}) × D. Note that to define B(n)(�; x, m), we may take the
jump contour L to be locally independent of x because the boundary values taken from each sector on L are analytic

7See statement 2 of Lemma 2.
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functions of �. From (5.1) we see that in the limit �→∞,

A(n)(�; x, m) = ix
2
�3 +

(

ix
2
[

	∞1 (x), �3
]

−
Θ∞
2
�3

)

�−1

+
(

−	∞1 (x) −
Θ∞
2

[

	∞1 (x), �3
]

+ ix
2

{

[

	∞2 (x), �3
]

−
[

	∞1 (x), �3
]

	∞1 (x)
}

)

�−2 + O(�−3),

B(n)(�; x, m) = i
2
�3� +

i
2
[	∞1 (x), �3] +

(

	∞′1 (x) + i
2
[

	∞2 (x), �3
]

− i
2
[

	∞1 (x), �3
]

	∞1 (x)
)

�−1 + O(�−2).
(5.12)

Similarly, in the limit �→ 0, from (5.2) we get

A(n)(�; x, m) = ix
2
	00(x)�3	

0
0(x)

−1�−2

+
(

Θ0
2
	00(x)�3	

0
0(x)

−1 + ix
2
	01(x)�3	

0
0(x)

−1 − ix
2
	00(x)�3	

0
0(x)

−1	01(x)	
0
0(x)

−1
)

�−1

+ O(1)

B(n)(�; x, m) = − i
2
	00(x)�3	

0
0(x)

−1�−1 +	0′0 (x)	
0
0(x)

−1 + i
2
[

	00(x)�3	
0
0(x)

−1,	01(x)	
0
0(x)

−1] + O(�).

(5.13)

Therefore, Liouville’s theorem shows that A(n)(�; x, m) and B(n)(�; x, m) are Laurent polynomials:

A(n)(�; x, m) = ix
2
�3 +

(

ix
2
[

	∞1 (x), �3
]

−
Θ∞
2
�3

)

�−1 + ix
2
	00(x)�3	

0
0(x)

−1�−2 (5.14)

and
B(n)(�; x, m) = i

2
�3� +

i
2
[	∞1 (x), �3] −

i
2
	00(x)�3	

0
0(x)

−1�−1. (5.15)

Furthermore, the coefficients of different powers of � in (5.14)–(5.15) are analytic matrix-valued functions of x on D.
Since 	(n)� (�; x, m) = A

(n)(�; x, m)	(n)(�; x, m) and 	(n)x (�; x, m) = B(n)(�; x, m)	(n)(�; x, m), matching (5.14)–(5.15)
with (3.1)–(3.2) using also det(	00(x)) = 1 yields the expressions (5.11) and proves statement 1.

Suppose Ψ00,11(x) ≡ 0 holds as an identity on D. From det(	00(x)) ≡ 1 we then get Ψ00,12(x)Ψ
0
0,21(x) ≡ −1.

Therefore s(x) ≡ 0 and 1
2 ix − is(x)t(x) ≡ − 12 ix, so the matrices A(n)(�; x, m) and B(n)(�; x, m) can be written in the

alternate form

A = A(n)(�; x, m) = ix
2
�3 +

1
�

[

− 12Θ∞ y
v 1

2Θ∞

]

+ 1
�2

[

− 12 ix 0
−iV 1

2 ix

]

B = B(n)(�; x, m) = i�
2
�3 +

1
x

[

0 y
v 0

]

− 1
�x

[

− 12 ix 0
−iV 1

2 ix

] (5.16)

with y(x) and v(x) defined as in (5.11), while
V (x) ∶= −xΨ00,21(x)Ψ

0
0,22(x).

Existence of the simultaneous fundamental solution matrix	(n)(�; x, m) of the Lax system implies that these coefficient
matrices satisfy the zero-curvature compatibility condition Ax − B� + [A,B] = 0, which in turn implies that y(x) ≡ 0
also, making A and B lower-triangular with explicit diagonal entries. Therefore, the elements of the first row are
determined from the Lax system up to overall constants c1 and c2 by

[

Ψ(n)11 (�; x, m) Ψ(n)12 (�; x, m)
]

=
[

c1eix(�+�
−1)∕2�−Θ∞∕2⬕ c2eix(�+�

−1)∕2�−Θ∞∕2⬕

]

.

Applying the condition (5.1) then forces the choice c2 = 0, so Ψ
(n)
12 (�; x, m) ≡ 0 and therefore also Ψ00,12(x) ≡ 0 on D.

But since det(	00(x)) ≡ 1, this contradicts the assumption that Ψ00,11(x) ≡ 0.

Suppose next that Ψ00,22(x) ≡ 0. Then using det(	00(x)) ≡ 0 shows that the combination −it(x)(s(x)t(x) − x)
vanishes identically, and then the compatibility condition for the matrices A(n)(�; x, m) and B(n)(�; x, m) implies that
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also v(x) ≡ 0. Therefore, the coefficient matrices are upper-triangular in this case, and since also 1
2 ix − is(x)t(x) ≡

− 12 ix, the second row of 	(n)(�; x, m) takes the form
[

Ψ(n)21 (�; x, m) Ψ(n)22 (�; x, m)
]

=
[

c1e−ix(�+�
−1)∕2�Θ∞∕2⬕ c2e−ix(�+�

−1)∕2�Θ∞∕2⬕

]

(5.17)

where c1 and c2 are constants. Applying as before the condition (5.1) now forces c1 = 0, so Ψ00,21(x) and Ψ
0
0,22(x) both

vanish identically in contradiction to det(	00(x)) ≡ 1.

Finally, suppose that Ψ00,12(x) ≡ 0 on D. Then also s(x) ≡ 0 and s(x)t(x) ≡ 0, and the compatibility condition for
the Lax system implies that also y(x) ≡ 0, making the coefficient matrices lower-triangular. Solving for the first row
of 	(n)(�; x, m) now yields

[

Ψ(n)11 (�; x, m) Ψ(n)12 (�; x, m)
]

=
[

c1eix(�−�
−1)∕2�−Θ∞∕2⬕ c2eix(�−�

−1)∕2�−Θ∞∕2⬕

]

(5.18)

for constants c1 and c2, and applying the normalization condition (5.1) forces c1 = 1 and c2 = 0. For this result to be
compatible with (5.2) it is then necessary that Θ0 + Θ∞ = 0, i.e., that m = − 12 . But, if m = − 12 , the jump condition
across the arc L∞⬔ implies that (using Θ∞ = 1

2 − n for m = −
1
2 )

Ψ(n)12+(�; x,−
1
2 ) − Ψ

(n)
12−(�; x,−

1
2 ) =

√

2�Ψ(n)11−(�; x,−
1
2 ) =

√

2�eix(�−�
−1)∕2�n∕2−1∕4⬕ , � ∈ L∞⬔. (5.19)

The right-hand side is nonzero on the indicated contour, which is obviously inconsistent with Ψ(n)12 (�; x,−
1
2 ) ≡ 0

implied by c2 = 0. All together, since assuming Ψ00,11(x) ≡ 0, Ψ00,22(x) ≡ 0, or Ψ00,12(x) ≡ 0 leads in each case to a
contradiction, we have established statement 2.

The potentials y(x), v(x), and s(x) are analytic on D by analytic Fredholm theory, and by statement 2 it also holds
that t(x) is meromorphic on D. In general, the compatibility condition Ax − B� + [A,B] = 0 on the matrices (5.14)–
(5.15) implies that these four functions satisfy the coupled nonlinear differential equations (3.3). The system (3.3) has
a conserved quantity I defined by (3.4); to determine its constant value, it suffices evaluate it at any x ∈ D that makes
each term in I finite (it is only necessary to avoid the isolated zeros of Ψ00,11(x)). Note that the direct monodromy
problem (3.1) has an irregular singular point of Poincaré rank 1 at � = 0 and hence by general theory two fundamental
solutions exist in a vicinity of � = 0 which are uniquely specified by their asymptotics as � → 0 in the associated
Stokes sectors. An explicit computation of the formal expansions directly from the differential equation (3.1) (cf., [25])
yields, upon comparison with the expansion (5.2) the identity I = Θ0. Now, the expression u(x) = −y(x)∕s(x) defines
a meromorphic function on D because the zeros of s(x) are isolated by statement 2. Differentiating this expression
using (3.3) and eliminating y(x) = −s(x)u(x), one finds that u(x) and the product s(x)t(x) are related by the first order
differential equation (3.6). Solving this identity for s(x)t(x) in terms of u(x) and u′(x) and differentiating the result
yields a second-order differential expression involving u(x) alone. On the other hand, the product s(x)t(x) can be
differentiated directly using (3.3) after which y(x) can be eliminated using y(x) = −s(x)u(x), v(x) can be eliminated
using the integral of motion I = Θ0, and finally the product s(x)t(x) can be eliminated once again using (3.6). Equating
these two equivalent expressions for the derivative of s(x)t(x) yields precisely the Painlevé-III equation (1.1) for u(x).
This proves statement 3. �

Next, we have the following result.

Lemma 3. Given n ∈ ℤ and m ∈ ℂ, there is a finite set Pn(m) such that the inverse monodromy problem is uniquely
solvable for x ∈ ℂ ⧵ (ℝ− ∪ Pn(m)). The corresponding solution u(x) of the Painlevé-III equation (1.1) is a rational
function.

Proof. Since existence of a solution implies uniqueness by a Liouville argument, it is sufficient to establish existence
for suitable x. To this end we first consider n = 0. The explicit solution 	(0)(�; x, m) of the direct monodromy
problem constructed in Section 4 obviously satisfies the conditions of the inverse monodromy problem as well, and it
is well-defined for x ∈ ℂ ⧵ℝ−. A calculation shows that the leading term 	00(x) takes the form

	00(x) =
[

e−i�∕4e−i�m∕2 2me−3�i∕4e2xxm
1
4e
3�i∕42−m(2m + 1)x−1e−2xx−m 1

4e
i�∕4ei�m∕2(2m + 1 + 4x)x−1

]

, n = 0. (5.20)
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Obviously,Ψ00,11(x),Ψ
0
0,22(x), e

−2xx−mΨ00,12(x), and e
2xxmΨ00,21(x) are all rational functions (with poles at x = 0 only).

Similar calculations give
Ψ∞1,12(x) = −i2

me−i�m∕2e2xxm and Ψ∞1,21(x) = −i2
−(m+4)ei�m∕2(2m + 1)(4x − 2m − 1)e−2xx−m, n = 0. (5.21)

Therefore also e−2xx−mΨ∞1,12(x) and e
2xxmΨ∞1,21(x) are rational functions. Clearly, P0(m) = ∅ (the pole at x = 0 is

already excluded as 0 ∈ ℝ−), and the corresponding solution u(x) = −iΨ∞1,12(x)∕(Ψ
0
0,11(x)Ψ

0
0,12(x)) ≡ 1 is clearly

rational. Next, let k ≥ 0 be an integer, and suppose that Pk(m) is finite, that the inverse monodromy problem for n = k
is (uniquely) solvable for m ∈ ℂ and x ∈ ℂ ⧵ (ℝ− ∪ Pk(m)), and that for n = k the expansion coefficients Ψ00,11(x),
Ψ00,22(x), e

−2xx−mΨ00,12(x), e
2xxmΨ00,21(x), e

−2xx−mΨ∞1,12(x), and e
2xxmΨ∞1,21(x) are all rational functions. Taking

D = ℂ ⧵ (ℝ− ∪ Pk(m)) and applying Lemma 2 we see that Ψ00,11(x) ≢ 0 holds on D, so the Schlesinger transformation
(5.3) exists on D except at the finitely-many zeros of the rational function Ψ00,11(x) in D. Letting Pk+1(m) denote
the union of the set of these zeros with Pk(m), the matrix 	(k+1)(�; x, m) ∶= 	̂(k)(�; x, m) clearly satisfies all of the
properties of the inverse monodromy problem for n = k, m ∈ ℂ, and x ∈ ℂ ⧵ (ℝ− ∪ Pk(m)). Since, according to
(5.4) and the inductive hypotheses in force, the matrix e−x�3x−m�3∕2B̂(x)xm�3∕2ex�3 is a rational function of x, it then
follows that the transformed expansion coefficients are such that Ψ̂00,11(x), Ψ̂

0
0,22(x), e

−2xx−mΨ̂00,12(x), e
2xxmΨ̂00,21(x),

e−2xx−mΨ̂∞1,12(x), and e
2xxmΨ̂∞1,21(x) are all rational functions, as is û(x) = −iΨ̂∞1,12(x)∕(Ψ̂

0
0,11(x)Ψ̂

0
0,12(x)), which by

Lemma 2 satisfies the Painlevé-III equation with parameters n = k + 1 and m. The desired conclusion therefore holds
for all integers n ≥ 0 by induction on n.

For n ≤ 0, we apply instead the transformation (5.8)–(5.9) to decrease n, making use of the fact that Ψ00,22(x) ≢ 0.
A parallel induction argument shows that the desired conclusion holds for all negative integers n as well. �

We remark that the points at which the inverse monodromy problem fails to have a solution need not coincide with
the poles or zeros of the rational function u(x).

5.3. Induced Bäcklund transformations. The Schlesinger transformation (5.3) implies a corresponding Bäcklund
transformation for the potentials v(x), y(x), s(x) and t(x):

v̂(x) ∶= −ixt(x)

ŷ(x) ∶= i
x
(

xs(x) − (Θ∞ − 1)y(x) + y(x)2t(x)
)

ŝ(x) ∶=
iy(x)
x2

(

x2 + y(x)2t(x)2 − Θ∞y(x)t(x) − v(x)y(x)
)

t̂(x) ∶= ix
y(x)t(x)2 − Θ∞t(x) − v(x)

x2 + y(x)2t(x)2 − Θ∞y(x)t(x) − v(x)y(x)
.

(5.22)

It is straightforward to confirm directly that whenever (v, y, s, t) solves (3.3), then so does (v̂, ŷ, ŝ, t̂)whenΘ∞ is replaced
in (3.3) by Θ̂∞ ∶= Θ∞ − 1. Defining û(x) ∶= −ŷ(x)∕ŝ(x) and using (5.22) along with u(x) = −y(x)∕s(x), the identity
I = Θ0, and (3.6), one arrives at Gromak’s transformation (1.3). This proves the following.

Proposition 3. The rational function u(x) obtained from the inverse monodromy problem with parameters m ∈ ℂ and
n ∈ ℤ≥0 coincides with the function u(x) = un(x;m) obtained via n iterations of the Bäcklund transformation (1.3)
starting from the seed u0(x;m) ≡ 1.

This result establishes the link between the algebraic representation (1.6)–(1.7) of un(x;m) and the analytic represen-
tation afforded by the inverse monodromy problem. It is easy to check that the Bäcklund transformation (1.3) preserves
the property u(x) → 1 as x → ∞, and therefore un(x;m) and its odd reflection R2un(x;m) = −un(−x;m) are distinct
rational solutions of the Painlevé-III equation (1.1) for the same values of n ∈ ℤ and m ∈ ℂ. Suppose that m ∉ ℤ, but
u(x) is a rational solution of (1.1) for parameters (m, n). We may invert the Bäcklund transformation (the corresponding
explicit formula for the inverse can be obtained from the n-reducing Schlesinger transformation (5.8) in the same way
that Gromak’s transformation can be deduced from (5.3)) and apply the inverse n times to u(x), thereby arriving at a
rational solution of (1.1) with parameters (m, 0). However, it has been shown that when n = 0 and m ∉ ℤ, the only
rational solutions of (1.1) are the constants ±1. By Lemma 1, the inverse transformation is injective and therefore it
follows that either u(x) = un(x;m) or u(x) = R2un(x;m), i.e., for m ∉ ℤ and n ∈ ℤ, there are exactly two rational
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solutions. From this it follows that for generalm it is sufficient to study the family of functions {un(x;m)}n∈ℤ to analyze
all rational solutions of (1.1). This can be done using the inverse monodromy problem, suitably reformulated in the
form of Riemann-Hilbert Problem 1, which we now are in a position to establish.

5.4. Change of normalization. To study the asymptotic behavior of the rational solutions for n a large integer and
m ∈ ℂ fixed, it is useful to study in place of 	(n)(�; x, m) a matrix that is normalized to the identity matrix as �→∞.
Therefore, we consider the matrix Y(n)(�; x, m) defined by a small modification of the left-hand side of (5.1):

Y(n)(�; x, m) ∶= 	(n)(�; x, m)�Θ∞�3∕2⬕ e−ix(�−�
−1)�3∕2

where Θ∞ is given by (1.2). It is easy to check that if it exists for a given x ∈ ℂ, this matrix satisfies the conditions of
Riemann-Hilbert Problem 1. Recalling the expansions (1.16)–(1.17), the coefficients Y∞1 (x) and Y

0
0(x) are related to

the expansions of 	(n)(�; x, m) by

	∞1 (x) = Y
∞
1 (x) −

ix
2
�3 and 	00(x) = Y

0
0(x), (5.23)

and therefore combining (3.5), (5.11), and (5.23), the rational solution un(x;m) of the Painlevé-III equation (1.1) is
given by (1.18).

It is a consequence of the cyclic relation (4.36) that at this point we may take the contour L to be arbitrary subject to
the restrictions indicated in Subsection 1.1. Such a modified form of L can always be connected with the original L by
a homotopy that moves the intersection point but maintains the increment of arguments as specified by (1.10)–(1.11),
and throughout which the power functions �p⬕ appearing in the jump conditions (1.12)–(1.15) are deformed in a natural
way by analytic continuation. This completes the proof of Theorem 1.

6. ALGEBRAIC SOLUTION OF RIEMANN-HILBERT PROBLEM 1 FOR m ∈ ℤ + 1
2

Note that the jump matrices on L∞⬔ ∪ L0⬔ reduce to the identity if m = 1
2 ,
3
2 ,
5
2 ,… . Likewise, the jump matrices on

L∞⬕ ∪L
0
⬕ reduce to the identity if m = − 12 ,−

3
2 ,−

5
2 ,… . This observation results in an algebraic solution technique for

half-integer values of m that we will now describe.

Suppose first that m = 1
2 + k, k ∈ ℤ≥0. Then according to Riemann-Hilbert Problem 1, Y(n)(�; x, m) is analytic

for ℂ ⧵ L where now we may take L = L0⬕ ∪ L∞⬕ because the jump matrices on L0⬔ ∪ L∞⬔ reduce to the identity so
analyticity follows by Morera’s theorem. Moreover, the jump condition on L takes the form

Y(n)+ (�; x,
1
2 + k) = Y

(n)
− (�; x,

1
2 + k)

⎡

⎢

⎢

⎣

1 0
√

2�
k!

(�k∕2+3∕4⬕ )+(�
k∕2+3∕4
⬕ )−�−ne−ix(�−�

−1) 1

⎤

⎥

⎥

⎦

, � ∈ L, k ∈ ℤ≥0. (6.1)

A similar Morera argument therefore implies that the second column of Y(n)(�; x, 12 + k) has no jump across L and
hence is analytic for � ∈ ℂ ⧵ {0}. Applying the normalization condition at � = ∞ yields Y (n)12 (�; x,

1
2 + k) = O(�−1)

and Y (n)22 (�; x,
1
2 + k) = 1 + O(�

−1) as � → ∞, while Y (n)j2 (�; x,
1
2 + k) = O(�

k+1) as � → 0 for j = 1, 2. It follows by
Liouville’s theorem that

Y (n)12 (�; x,
1
2 + k) =

k+1
∑

j=1
a(n,k)j (x)�−j and Y (n)22 (�; x,

1
2 + k) = 1 +

k+1
∑

j=1
b(n,k)j (x)�−j

where a(n,k)j (x) and b(n,k)j (x) are coefficients to be determined. The first column of the jump condition (6.1) can then be
used together with the Plemelj formula and the normalization conditions Y (n)11 (�; x,

1
2+k) = 1+O(�

−1) and Y (n)21 (�; x,
1
2+

k) = O(�−1) as �→ ∞ to express Y (n)j1 (�; x,
1
2 + k) explicitly in terms of Y (n)j2 (�; x,

1
2 + k):

Y (n)11 (�; x,
1
2 + k) = 1 +

1

ik!
√

2� ∫L

Y (n)12 (�; x,
1
2 + k)(�

k∕2+3∕4
⬕ )+(�

k∕2+3∕4
⬕ )−�−ne−ix(�−�

−1)

� − �
d�
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and

Y (n)21 (�; x,
1
2 + k) =

1

ik!
√

2� ∫L

Y (n)22 (�; x,
1
2 + k)(�

k∕2+3∕4
⬕ )+(�

k∕2+3∕4
⬕ )−�−ne−ix(�−�

−1)

� − �
d�.

It only remains to enforce the condition that Y (n)j1 (�; x,
1
2 + k) = O(�

k+1) as � → 0 for j = 1, 2. Expanding (� − �)−1

for small � in a geometric series and elimination of the second column elements in favor of a(n,k)j (x) and b(n,k)j (x),
j = 1,… , k + 1, yields separate (k + 1) × (k + 1) linear systems of Hankel type separately for the a(n,k)j (x) and the
b(n,k)j (x): defining coefficients I+n,k,j(x) by

I+n,k,j(x) ∶= ∫L
(�k∕2+3∕4⬕ )+(�

k∕2+3∕4
⬕ )−�−n−je−ix(�−�

−1)) d� (6.2)

the systems are
H+n,k(x)a

(n,k)(x) = −i
√

2�k!e(1) and H+n,k(x)b
(n,k)(x) = −v+n,k(x)

where e(1) ∶= (1, 0, 0,… , 0)⊤ denotes the first coordinate unit vector, the unknowns are arranged in vectors as

a(n,k)(x) ∶= (a(n,k)1 (x),… , a(n,k)k+1 (x))
⊤, b(n,k)(x) ∶= (b(n,k)1 (x),… , b(n,k)k+1 (x))

⊤,

and the Hankel matrix and right-hand side vector for the b(n,k)(x) system are

H+n,k(x) ∶= {I
+
n,k,p+q(x)}

k+1
p,q=1, v+n,k(x) ∶= (I

+
n,k,1(x),… , I+n,k,k+1(x))

⊤.

Therefore, when m = 1
2 + k, k ∈ ℤ≥0, Riemann-Hilbert Problem 1 has a solution obtained by linear algebra in

dimension k + 1 provided that x is such that the complex Hankel determinant

D+n,k(x) ∶= det(H
+
n,k(x))

is nonzero. From the formula (1.18) we then get the corresponding rational solution un(x;
1
2 + k) of the Painlevé-III

equation (1.1) for k = 0, 1, 2, 3,… in the form

un(x;
1
2 + k) =

√

2�k!a(n,k)1 (x)

a(n,k)k+1 (x)
k+1
∑

j=1
a(n,k)j (x)I+n,k,j+k+2(x)

, k ∈ ℤ≥0. (6.3)

For instance, if k = 0, then we obtain

a(n,0)1 (x) = −
i
√

2�
D+n,0(x)

and b(n,0)1 (x) = − 1
D+n,0(x) ∫L

(�3∕4⬕ )+(�
3∕4
⬕ )−�−n−1e−ix(�−�

−1) d�

where
D+n,0(x) ∶= ∫L

(�3∕4⬕ )+(�
3∕4
⬕ )−�−n−2e−ix(�−�

−1) d�.

Therefore, assuming thatD+n,0(x) ≠ 0, the solution of Riemann-Hilbert Problem 1 has been obtained in closed form for
arbitrary integer n and for m = 1

2 . The corresponding rational solution of the Painlevé-III equation (1.1) is

un(x;
1
2 ) = i

∫L∞⬕∪L0⬕
(�3∕4⬕ )+(�

3∕4
⬕ )−�−(n+2)e−ix(�−�

−1) d�

∫L∞⬕∪L0⬕
(�3∕4⬕ )+(�

3∕4
⬕ )−�−(n+3)e−ix(�−�

−1) d�
. (6.4)

Assuming that the integrals in the fraction (6.4) have no common zeros, we see that the zeros of un(x;
1
2 ) are the

points where Riemann-Hilbert Problem 1 has no solution for m = 1
2 , while the poles of un(x;

1
2 ) are regular points for

Y(n)(�; x, 12 ).
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Next assume thatm = −( 12+k), k ∈ ℤ≥0. Then according to Riemann-Hilbert Problem 1, the matrixY(n)(�; x,− 12−
k) is analytic for � ∈ ℂ ⧵ L, where we may now take L to be the contour L = L∞⬔ ∪ L0⬔, across which we may write
the jump condition in the form

Y(n)+ (�; x,−
1
2 − k) = Y

(n)
− (�; x,−

1
2 − k)

⎡

⎢

⎢

⎣

1

√

2�
k!

(�k−1∕2⬕ )∞�neix(�−�
−1)

0 1

⎤

⎥

⎥

⎦

, � ∈ L, k ∈ ℤ≥0,

where (�k−1∕2⬕ )∞ denotes the function

(�k−1∕2⬕ )∞ ∶=

{

�k−1∕2⬕ , � ∈ L∞⬔,
−�k−1∕2⬕ , � ∈ L0⬔.

Note that (�k−1∕2⬕ )∞ is continuous at the junction point between L0⬔ and L∞⬔ because �k−1∕2⬕ changes sign across its
jump contour of L0⬕ ∪L

∞
⬕. Obviously, it is now the first column of Y(n)(�; x,− 12 − k) that is analytic for � ∈ ℂ ⧵ {0},

and from the normalization conditions Y (n)11 (�; x,−
1
2 − k) = 1 + O(�

−1) and Y (n)21 (�; x,−
1
2 − k) = O(�−1) as � → ∞

while Y (n)j1 (�; x,−
1
2 − k) = O(�

−k) as �→ 0, we see that the entries of the first column necessarily take the form

Y (n)11 (�; x,−
1
2 − k) = 1 +

k
∑

j=1
c(n,k)j (x)�−j and Y (n)21 (�; x,−

1
2 − k) =

k
∑

j=1
d(n,k)j (x)�−j

where c(n,k)j (x) and d(n,k)j (x) are coefficients to be determined. The jump condition together with the normalization
condition that Y (n)12 (�; x,−

1
2 − k) = O(�

−1) and Y (n)22 (�; x,−
1
2 − k) = 1+O(�

−1) as � →∞ then determines the second
column from the first:

Y (n)12 (�; x,−
1
2 − k) =

1

ik!
√

2� ∫L

Y (n)11 (�; x,−
1
2 − k)(�

k−1∕2
⬕ )∞�neix(�−�

−1)

� − �
d�

and

Y (n)22 (�; x,−
1
2 − k) = 1 +

1

ik!
√

2� ∫L

Y (n)21 (�; x,−
1
2 − k)(�

k−1∕2
⬕ )∞�neix(�−�

−1)

� − �
d�.

Then demanding that Y (n)j2 (�; x,−
1
2 − k) = O(�

k) as �→ 0 yields two Hankel systems on the coefficients c(n,k)j (x) and
d(n,k)j (x). Setting

I−n,k,j(x) ∶= ∫L
(�k−1∕2⬕ )∞�n−jeix(�−�

−1) d�,

these systems take the form

H−n,k(x)c
(n,k)(x) = −v−n,k(x) and H−n,k(x)d

(n,k)(x) = −ik!
√

2�e(1)

where
c(n,k)(x) ∶= (c(n,k)1 (x),… , c(n,k)k (x))⊤, d(n,k)(x) ∶= (d(n,k)1 (x),… , d(n,k)k (x))⊤,

and the Hankel matrix and right-hand side vector for the c(n,k)(x) system are

H−n,k(x) ∶= {I
−
n,k,p+q(x)}

k
p,q=1, v−n,k(x) ∶= (I

−
n,k,1(x),… , I−n,k,k(x))

⊤.

Therefore, if k ∈ ℤ≥1 andm = −
1
2 −k, then Riemann-Hilbert Problem 1 has a solution obtained by k×k linear algebra,

provided that the Hankel determinant
D−n,k(x) ∶= det(H

−
n,k(x))
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is nonzero given x. From (1.18) we get the corresponding rational solution of the Painlevé-III equation (1.1) in the
form

un(x; −
1
2 − k) =

iI−n,k,0(x) + i
k
∑

j=1
c(n,k)j (x)I−n,k,j(x)

c(n,k)k (x)I−n,k,k+1(x) + c
(n,k)
k (x)

k
∑

j=1
c(n,k)j (x)I−n,k,j+k+1(x)

, k ∈ ℤ≥1. (6.5)

Note that if k = 0, the linear algebra system is trivial and hence Riemann-Hilbert Problem 1 always has a solution
when m = − 12 :

Y(n)(�; x,− 12 ) =
⎡

⎢

⎢

⎢

⎣

1 1

i
√

2� ∫L

(�−1∕2⬕ )∞�neix(�−�
−1)

� − �
d�

0 1

⎤

⎥

⎥

⎥

⎦

.

The corresponding rational solution of the Painlevé-III equation (1.1) is

un(x; −
1
2 ) = i

∫L∞⬔∪L0⬔
(�−1∕2⬕ )∞�neix(�−�

−1) d�

∫L∞⬔∪L0⬔
(�−1∕2⬕ )∞�n−1eix(�−�

−1) d�
.

Remark 3. We remark that in both cases the solution becomes more complicated as |m| increases. This is similar to
the situation with the explicit solution of the Fokas-Its-Kitaev Riemann-Hilbert problem for orthogonal polynomials
[10]. Significantly however, the large parameter n appears explicitly in the (algebraic) solution of the Hankel system
corresponding to any fixed half-integral value of m. It is this latter feature that enables a direct large-n asymptotic
analysis by classical steepest descent methods [3].

Another observation is that the formula (6.4) can be written in terms of Bessel functions. Indeed, we may write this
formula in simplified form as

un(x;
1
2 ) = i

∫

∞

0
�−n−1∕2e−ix(�−�

−1) d�

∫

∞

0
�−n−3∕2e−ix(�−�

−1) d�

where in both integrals the path of integration is the same, chosen (depending on x) so that the integrals are convergent
at � = 0,∞, and also the branch of �−n−1∕2 is arbitrary as long as it is analytic along the contour of integration and
taken to be the same in both integrals. By the substitution � = et and comparison with [22, Equation 10.9.18] we then
find that if Im(x) > 0, then

un(x;
1
2 ) = i

H (2)
n−1∕2(−

i
2x)

H (2)
n+1∕2(−

i
2x)

where H (2)
� (z) denotes a Hankel function. This formula admits meromorphic continuation to the whole complex x-

plane. The same formula can then be expressed in terms of spherical Bessel functions of the second kind [22, 10.47(ii)]
as

un(x;
1
2 ) = i

h(2)n−1(−
i
2x)

h(2)n (−
i
2x)

.

The functions eizh(2)n (z) are explicit polynomials in z−1 [22, Equation 10.49.7] and this in turn leads to the explicit
formula

un(x;
1
2 ) =

n
∑

j=1

(2n − j − 1)!
(n − j)!(j − 1)!

xj

n
∑

j=0

(2n − j)!
(n − j)!j!

xj
.
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The identification of u(x; 12 ) with ratios of Bessel polynomials was also noted in [8]. More generally, from [22, Equa-
tion 10.9.18] it is clear that the integrals I±n,k,j(x) are proportional to Hankel functions, and hence the expression for
un(x; ±(

1
2+k)) can always be written in terms of ratios of Hankel-type determinants whose entries are Bessel functions.

More important from the point of view of asymptotic analysis in the large-n limit however is the fact that the coefficients
are integrals that may be analyzed by classical steepest descent methods; see [3]. This is an effective strategy precisely
because the matrices involved have a fixed size as n→∞.
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