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Abstract

Fortropical marinespeciesendemisnhotspotsoccur in peripheral areas furiérom the center
of diversity, butthe evolutionary processes that leadhdr origin remains elusiveWetest
several hypotheses related to the evolutibperipheral endemidsy sequencingltraconserved

element (UCE) loci to produce a genostale phylogeny o47 butterflyfishspeciegfamily
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Chaetodontidaghatincludesall shallowwater butterflyfishfrom thecoastal waters of the
Arabian Peninsula (i.€&ked Sedo Arabian Gulf)and their close relativeBayesian tree building

methods producedwaell-resolved phylogenthatelucidatedhe origins ofbutterflyfishesin this

endemism hotspot. We show that UCESs, often used to resolve deep evolutionary relationships

representin important tool to assess the mechanisms underlying recently divergeduaxa.
analyses indicatdatunique environmental conditions in the coastal waters of the Arabian
Peninsula probably contributed to the formation of endemic butterflyfishes. @ldemic
species ar@lsoassociated with narrow versus bratepth ranges, suggestitiat adaptation to
deeper coralreeis this regionoccurred only recently<(1.75Ma). Even though deegeef
environmentsveredrastically reduceduring extreme low sea level stands of glacial ages,
shallow reefs'persistedndas suchhere was nevidence supportingnass extirpation of fauna

in this region

Keywords: biegeographic barrieiShaetodoncoral reefglaciation eventsleistocene;
ultraconserved elements
Introduction

Explainingthe underlyingfactorsresponsibldor thediversity of speciesaccumulatedt
endemism hotspotemainsadifficult problemin thefield of biogeographyRecentresearchhas
identifiedtheimportance of peripheral regiofrem tropical oceansn generating and exporting
biologicaldiversity, thusintermittentlyseedingadjacenseaqDiBattistaet al. 2010;Ebleetal.
2011;Gaitheretal. 2010, 2011Malay & Paulay2010; Skillingsetal. 2010;Bowenetal. 2013;
DiBattistaetal. 2013), howevewirecttestsof thisassumptiorarerare.Renewednterestin the
RedSeato ArabianGulf (or PersianGulf) regionprovides a new opportunitg explore
hypotheseassociateavith howendemicsareformedin peripherabrea, andts potential
contributionto thespeciegichnessof marinebiodiversityhotspotsThe RedSeais a £mk
enclosedasinlocatedat the northwesterncorner of the India®ceanandharbas oneof the

highestievelsof endemisnior marineorganisms (12.9%eor fishes,12.6%for polychaetes, 8.1%
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for echinoderms, 16.5%6r ascidiansand 5.8%or scleractiniarcorals;DiBattistaetal. 2016a).
Thelevel of endemism amongell-characterizedroupsin the RedSea suchasthe shordishes
exceedghose ofall other peripheral endemic hotspatentifiedfor thelndian Ocean(DiBattista
etal. 2016a)."Althoughmanyof theseRedSeaendemics extenttheir distributioninto the
adjacenGulf of AdenandArabianSea(Kemp 1998;DiBattistaet al. 2016a,b), iis notclear
whethertheyarepalecendemicqold lineages restricteddueto rangecontraction) neaendemics
(younglineages at site of origin), or “ecological’ endemicqold or youndineages restricted
range dueo speciexcology;seeCowmanetal. 2017) andvhere,when and howthis
diversificationoccurred.

TheRedSeahas a unique geological apdleclimactichistorythatmay have played a
rolein its highlevelsof endemismgeeDiBattistaet al. 2016bfor review). In brief, theRedSea
basinwasformedby episodes adeafloor spreadingd1to 34 Ma (Girdler & Styles1974),
followed hyintermittentconnectionso the Mediterranearseain thenorth(~14 Mato 5 Ma;
Hubertferrai etal. 2003), and anorerecentconnectiorto the Gulf of Adenin thesouth
throughthe Strait of Babal Mandab(~5 Ma to presentBailey 2009. The Straitis a narrow
channel(2%m)with a shallowsill (137m) that constitutethe only connectiorbetweertheRed
Seaand the Indiai©cean(Bailey 2009).Waterexchanges regulatedoy IndianOceanmonsoon
patternSmeedl 997;Raitsosetal. 2013) butwashistorically minimal or absenduringreduced
sealevelscausedy glacial periodsof the Pleistaene(Rohlinget al. 2009), including thenost
recentglacialmaximum(20to 15ka; Siddalletal. 2003; Ludt & Rocha 2015Restrictedvater
flow resultedn increasedalinity within the RedSea(Biton et al. 2008),leadingsometo
suggesthattherewascompleteextirpation ofRedSeafauna duringheseperiods(Klausewitz
1989).The“Pleistoceneextirpation” hypothesisyheran all RedSeafaunawereeliminated
duringthelastglacialmaximum(~18ka) and subsequenttg-populatedvia morerecent
colonizationeventsremainscontroversiabnduntestedvith moden comparativeapproaches
(DiBattistaet al..2016b), althougkimilar geological eventsmay have occurreth the
Mediterranearsea(Bianchietal. 2012). Thus, éspitesomeagreemenbn the broad strokes of
its geologic historylittle consensubasemergecn theprocessethatshaped thérabian
Peninsul& presentay marinebiodiversity,their influenceon biodiversityin adjacentegions,

and therole of historicalclosures of th&traitof Babal Mandab
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Butterflyfishesandbannerfishesbrightly coloredreeffishesin thefamily
Chaetodontidaggrea potential modedystemfor elucidatingthe origins, maintenanceand
evolutionaryhistory of RedSeaendemics antheir influence orspeciesichnessn adjacent
marinerégions:Thefamily is diverse(17 speciesn theRedSeaand >13G&peciesn thegreater
Indo-WestPacific; Allen etal. 1998) and phylogenticallyell-resolvedcomparedo otherreef
fish families (Cowman2014). A high proportion of the Chaetodontidgpeciedoundin the
coastalwatersof theArabianPeninsulareendenic (32%;DiBattistaet al. 201G). Although
recentmolecularphylogenies of chaetodontitiavehelpedto clarify manyaspect®of their
evolutioraryhistory (Fesslet& WestneaR007;Hsuetal. 2007;Bellwoodet al. 2010;Cowman
& Bellwoad 2011;Cowman& Bellwood2013; Hodgeet al. 2014), dack of sampling of
ArabianPeninsulaspeciedhas impeded our understandofghediversificationin this region.

Theevolution of endemispeciehasbeenlinkedto ecologicaltraits, suchasreductions
in dispersahbility and changem bodysize(i.e. theislandrule; reviewedby Lomolino 2005;
Whittaker& Ferpandez?alacios2007).For reeffishes,certaintraitsassociatedavith dispersal
ability arelinkedto geographicangesize.For examplejarge,gregarious, and nocturngpecies
tendto havelargerrangesizesthansmall,solitary, andstrictly diurnalspeciegLuiz etal. 2012,
Luiz etal. 2013).Moreover,dispersahbility canpotentially influence ladediversification:to
successfullycolonizeandestablishpopulationsn peripheralreastropicalfish speciesnustbe
gooddispersergHobbset al. 2012).Fdlowing diversificationin peripherakreasnewly formed
lineagesnay evolvetraitslessconduciveto dispersalthus becomingndemido theareawhere
it originated asoftenoccursin the evolution ofinsularterrestrialendemicgWhittaker&
Fernande®alacio2007).We thereforepredictthat butterflyfisheserdemicto the Arabian
Peninsulasregion iV havesmallerbodysizes,highersociability, andreduceddispersahbility
comparedo their widespreadcongeners. Broadly speaking, endenmpiecestendto be
ecologicalspecialistandthusadaptedo the environmental conditian which theyarose
(McKinney 1997). We thereforadditionallypredictthattheseendemicswill have a highelevel
of ecologicalspecialiationthanwidespreasgpeciesFor reeffishes,habitatspeciailzationis
oftendefined by thalepthrangewherethey occurand thenumberof differenthabitatghatthey
exploit (e.g.coralreefs,rockyreefs,seagrasbeds,mangrovest uiz etal. 2012). Detary

specialiationis often defined by the proportioof differentfood categoriesargeted Pratchett
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146  2014).We predictthatbutterflyfishesendemido the ArabianPeninsula regiowill havehigher
147  dietary specialiationandrelianceon coralsfor food givenrecentorigins alongsideheir coral
148  rich habitat(Renemaetal. 2016).We choosdo focus on adult versuarval ecologicaltraits

149  becausenoreinformationabout thdormeris available,andhasbeenshownto correlatewith
150 past(Ottimofioreetal. 2017) and presefituiz etal. 2013) geographiangesize

151 Theaimsof this studyarethreefold.First,we aimto reconstructhe phylogeny and

152 evolutionartimescalefor RedSeato ArabianGulf butterflyfishesin orderto testwhetherthese
153  peripheralieeasintermittentlyseedhe broadedndo-WestPacificwith biodiversity

154  (“evolutionaryincubator” hypothesis). Outcomes that woalldw rejectionof this hypothesis
155 include alack of'evidence supportingrabianPeninsulaendemidish lineagesgiving riseto
156  Indo-WestPagificfish lineagesaswell asrestrictedancestrafanges expandinigto this broader
157  region. Secondye look to testtheextentto which butterflyfishmaintaineda continuous

158  presencén the RedSeaduringthe major environmenrdl fluctuations othe Pleistocene

159  (“Pleistoceneextirpation” hypothesjs Outcomes that wouldllow rejectionof this hypothesis
160  include alackof evidence supportingrabianPeninsulaendemidish originatingafterthe

161  glacialcyelesofithePleistocengaswell ascolonizationeventsdatedonly before omafterthis
162  epoch.Third, we'aimto testwhetherspeciesendemido thecoastawatersof theArabian

163  Peninsulanonrandomlyassociatavith particularecologicaltraits (“ecologicaltrait” hypothesis),
164  which maybe importantn exdaining patternsof diversificationin this region.The expectation
165  hereis thatendemidishesaremorespecializedand thusetteradaptedo local conditions than
166  theirwidespreagdongenersOutcomeshatwouldallow rejecton ofthis hypothesis include a
167  lack of asseeciatiorbetweerendemismand any of thecologicaltraitsconsideredere.

168

169  Materials and Methods

170  Materials

171  Site locationsampling date, and museum voucher information (where available) for each
172 specimemare outlined imrable S1 available as electronigoplementary material. All

173 butterflyfish species includad this study and thegeographidistribution are listed in Table 1
174  As our primary objective is to reconstruct the evolutionary history of byfiisifes known to

175  occur in the Red Sea and adjacent gulfs or seas, we concentrated our sampling efforts on those
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species and their closest relativakhough five major Chaetodidae lineages were sampled,
Chaetodon Clad€H1 (Chaetodon robustusndC. hoeflerj restricted to the Altantic; Cowman

& Bellwood 2013), and multiple bannerfish genekafphichaetodon, Chelmon, Chelmonops,
Coradion; HemitaurichthysndJohnrandallig without species represented in the Red Sea were
not sampled in this study. Two species of negnathodegenus were included to facilitate

fossil calibration, but were not included in the biogeographic analyses due to taetrcAt
distributions (see below).

In total,we sampled 47 chaetodontid species (35% of the entire family), which includes
all regional endemics and wigtanging species found in tAeabian Peninsula regipeaveRoa
jayakari, a rare deepwater species distributed from the Red $eadtal Indiawe were unable
to secure attissue sample as part of this stht of these species have not previously been
sampled inephylogenetic studies of the family (Fessler & Westneat 200W0BdIR010;

Cowman & Bellwood 2011; Hodget al. 2014).Tissues were preserved in a saturated salt
DMSO solution,or 95% ethanol prior to processihlgis research was carried out under the
general auspices of King Abdullah University of Science and Technology’s (KAUST)
arrangements-for marine research with 8audi Arabian Coast Guard and the Presidency of
Meteorology.and Environment. The animal use protocol was approved by KAUST’s Brosafet
and Ethics Committee (KAUST does not provide specific approval number).

Phylogenomis goproach

We emplay the sequence capture method of ultraconserved elements (UCES) to ipibidnse
of reads insparallel from multiple butterflyfish specimens colletitaah the Gulf of Agaban the
west(Red=Seajo theHawaiian Archipelago in the eadPécific Ocean). UCEs are a class of
highly conserved and abundant nuclear markers distributed throughout the genomes of most
organisms (Bejeranet al. 2004; Siepeét al. 2005; Renekeet al. 2012). These markers do not
intersect paralogous genes (Dettal. 2006), do not have retmlement insertions (Simores al.
2006), have a range of variant sites (i.e. evolving on differentdoakes; Fairclotlet al. 2012),
and have been used to reconstruct phylogenies across vertebrates (Bxtjal&094; Faircloth
et al.2012, 2013; McCormacét al. 2013; Smithet al.2014; Suret al. 2014), including fishes at
both shallow (Mcgeet al. 2016) and deep (Faircloét al. 2013; Harringtoret al. 2016 Alfaro
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et al. 2018 phylogenetic scales

DNA library preparation and next-generation sequencing

DNA was extracted with DNeasy Blood and Tissue kits (Qiagen, Valencia, CA) witluded

an RNAse Atreatmenstep. Each extracted samplasvisualised by gel electrophoresis to
assess DNA gqualityTotal DNA from each extracted aliquot was quantified using a Qubit
dsDNA HS Assay Kit (Invitrogen, Carlsbad, $A.2 pg o DNA per individual samplgvas
fragmented by'sonication to 58@se pairskp) using a Covaris S2 sonicator (Covaris Inc,
Woburn, MAYandusedfor UCE library prep In brief, we endrepared, adenylated, and ligated
fragmentedNA to lllumina TruSegstyle adapterswvhich included custom sequence tags to
barcode eachrindividual samgkeaircloth & Glenn 2012). llowing an 18cycle PCR to

amplify indexed librags for enrichment, we creatpdols by combining 62.5 ng of eight
individuallibraries. Each poat¥as concentrated to 147 ng per pl using a vacuum centrifugeve
then followed an established workflow farget enrichmen(Gnirkeet al. 2009)with
modifications specified in Faircloth et §2012).Specifically,we enriched each padérgeting
UCE lociand-their flanking sequence, ussynthetic RNAcaptureprobes (MyBaits,

Mycroarray, Inc. Ann Arbor, MI). We combinedhe enriched, indexed pools at equima&tios
prior to sequencingThetwo final pooledlibraries wereesachrun paired-end (150 bp sequencing)
on independent lanes of an Illumina HiSeq2000 (v3 reagents) at the King Abdullah University of
Science and Tecdlogy KAUST) Bioscience Core Lab BL). Detailed methods of library
enrichment, poseénrichment PCRand validation using relative gqPCR may be found at

http://ultraconserved.org/#protocols

Sequence read quality controsssemblyand UCE identification

We removed adapter contamination and low quality bagasllumiprocessor (Faircloth2013),
a parallel wrapper tdrimmomatic (Bolgeet al.2014). To assemble the trimmed dataset, we
used thesPHYLUCE pipeline (version 8ca5884; Faircloth 2016) with the
phyluce_assembly _assemblo_trinity.py wrappeipséor Trinity (version 1.5.0Grabherret al.
2011). We matched assembled contigs to enriched UCE loci by aligning contigsaicbm

speciego our UCE probes using the phyluce_assembly _match_contigs_to_probes.py script with

This article is protected by copyright. All rights reserved


http://ultraconserved.org/#protocols�

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

the LASTZ assembler (Harris 2007). We stored these match resalts 8QLite relational
databaseafter excluding contigs that matched multiple UCE loci and UCE loci whose probes
matched multiple contigs.

We tsed phyluce_align_seqcap.py to align UCEWsih MAFFT (Katohet al. 2002;
Katoh & Standley 2013). Following alignment, we eadd internallytrimmed alignments with
GBLOCKS (Castresana 2000) to improve phylogenetic inference by removing poorly-aligned or
highly divergent sites (Talavera @astresana 2007). We selected loci that were present in at
least 75%f ouspecimensnd concatenated the alignments into a PHYfohiatted matrix
for phylogenetic analysi¥Ve included previously publishédiCE data for three species in our
alignment to'represent Acanthomorpha outgroup lineages and more accurdtedyectie

phylogeny+(see below).

Phylogenetic analysis of concatenated UCE datealuation othe “evolutiorary incubator”

and “Pleistocene extirpation” hypotheses

We fully partitioned our concatenated alignment by UCE locus and performed Bayesyaesnal

of the datasetwitkxaBayes (Aberegt al. 2014) and two independent runs, sampling every 500
generationsWe used the autostopping convergence criteria of an average standard deviation of
split frequencies of less than 5¥4d visualised the lelikelihood of each chain to ensure
convergence in Tracer version 1.6 (Ramlwl. 2014).

We estimated divergence times using MCMCTREE in the PAML package on the
Bayesian'consensus topology. We used the likelihood approximation approach following the
two-step procedure described bpPReis &Yang (2011) by first estimating a mean substitution
rate foritherentire alignment with BASEML under a strict molecular clockrerdusing this
estimate to set the rgene_prior in MCMCTREE. We ussdgle, unpartitioned alignmefuar
computational tractability, with an HKY85 modéle categories for the gamma distribution of
rate heterogeneity, an rgene_gamma prior for the gamma distrildesaribing gene rate
heterogeneity of (2, 371.0575, 1) and a sigma2_gamma prior of (2, 5, 1). We adopted a
calibration strategy that builds on Harrington et al. (2016) by including more proximal
acanthomorph outgroups to Chaetodontidae and their immediate relatives. \Waimesix

nodes on the basis of fossil information using hard lowesaftdipper bounds dlinedin
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FigureS1 (available as $yplementary Material)We assigned a minimum amount of prior
weight for ages below the lower bound (1e-200) and 5% prior weight for ages higher than the
upper bound. Briefly, we link a series of carangimorph, syngnathiform, holocentroid, and
lampridiformfossils to the sequences of acanthomorph outgroup fossils as pegtdaret al.
(2016). This resulted in the following outgroup node calibratiananthuoids vesus all other

taxa (laver bound: 54.17 Ma; upper bound: 70.84 Ma); acardewersus zanclidsower

bound: 49.0 Ma; upper bound: 6M&), NasoversusAcanthuruglower bound: 49.0 Ma; upper
bound: 57422Ma), Chaetodontide versus Pomacanthidaenr bound: 29.62 Ma; upper bound:
59.26 Ma), and thiotalgroupChaetodorversusPrognathodeglower bound: 7 Ma; upper

bound: 47.9V1a). Further pstification for calibrations aravailable as electronic supplementary

material(Appendix S2).

Ancestralbiogeographic rangestimation: evaluation dhe “evolutionary incubator” and
“Pleistocene extirpation” hypotheses
We estimatedancestral distribution patterns fonaetodontidineages using therunedtime-
calibrated-phydgeny analysed with the R packdgjeGeoBEARS (Matzk&013), which allows
several models of biogeographic evolution to be compared via likelihood inference, and the
ability to incorporate a parameter allowing for foundeent speciationFor theseanalyseswe
coded each taxon basedmesence/absence in nidiscretegeographical areas: Gulf of Agaba,
red of theRed SeaDjibouti and Gulf of Aden, Socotra, South Oman, Arabian Gulf, Gulf of
Oman andPakistan, rest of Indian Oceand Pacific Ocearl.he discrete coding of geographic
areas adjacentsto the Arabian Peninsula enable -adale investigation of the ancestral
biogeography=of that region for our taxa of interBsesence/absence and geographaage
data for 'each taxon were obtained from a combinati@idttista et al(2016a) and FishBase
(Froese &Pauly2011).Prognathodespp. (a Chaetodontidae genus) were not considered in this
part of the analysis given that these two taxa are restricted to tropical Atlantic waters.

We, constraied our biogeogrdpc analyses to prohibit colortion events between the
Red Sea and Indian/Pacific Ocean regions before 5 Ma reflecting the timea wiere
permanent connection was formed via the Strait of Bab al Maiialey 2009). Our
BioGedBEARSanalysis evaluated the DEBIVALIKE, and BAYAREALIKE models with
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and without the jump (J) paramet®tdtzke 2013 These models describe biogeographic
scenarios where dispersal, extinction, cladogenesis, vicayamddounder events are
differentially invoked to explain present day distributional pattdmsur case, we were
interested in‘whether thrangerestricted endemics from the coastal waters of the Arabian
Peninsulaepresent ancienglicts, new coloniation events, and/or a source of biodiversity (at

some point irthe past) for the broader Indest Pacific.

Comparativerait analysis: evaluation afhe “ecological trait” hypothesis

In order to déetermine whether particular spetée®l traits were associated withe evolution of
endemismn this subset of Chaetodontidsggecieswe fitted aphylogenetiagyeneralized linear
model (funetion‘phylogim’ in R package ‘phylolm’ [Het al. 2016])that assumedrégional
endemismi{(iver'endemic to theoastal waters of the Arabiaeminsula; DiBattist&t al. 2016)

as thebinomialresponse variable and a gof ecological traits as the predictive fixed factors.
For model selection, we performed a backward stepwise procedure for PGLMtsofiunc
‘phylostep’ in R package ‘phylolm’ [Het al. 2016]), which entailed sequential optimization by
removing=nonnfluential fixed-effect terms from the full model based on Akaike information
criteria (AIC)..Full details on the methods and data sources are providlablgS2 as

electronic supplementary material. We also explore interactionagthe predictive traits using
a regession tree approach (De’athR&bricius 2000; function ‘rpart’ in R package ‘rpart’
[Thernealet al. 2015])

Among the predictive variables considered were: maximum bodytsiatlength=
TL)(Allen et-al«1998; Kuiter 2002), deptfangeinhabited(Allen et al. 1998),social structure
(three categories ordered from low to high sociability: solitary,fpaination and group
formation;Allen et al. 1998; Kuiter 2002; Yabutu & Berumen 201Babitat breadth (estimated
as the sum value of all habitat types inhabited: C = coral, R = rocky, D = deep reetli®ense
R = rutble, CO.= coastal, CA = algal beddlen et al. 1998; Kuiter 2002)anddietary reliance
on coral'reefgfour categoriesrdered from low to high reliance: planktivore, benthic
invertivore, facultative corallivoreand obligate coréilyore; Cole & Pratchett 2013)We also
included the phylogenetic age of species (Myr) as an additional fixed factor to test if species

traitsare influenced by time of divergence from sister taxa. For phylogenetic age, wdesvalua
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for each species (regional endemic and widespread) whether we sampled its closest sister species
by comparing our phylogeny with those published previously (Cowman & Bellwood 2011) and
other published accounts (Kuiter 200Bhe ecological traits were selected because they are
associated'with speciadition,fitness and range expansion in butterflyfishes, and thus may help

to explain patterns of evolution fish endemido thecoral reefs of the Arabian PeninsuVde

do note this may be an oversimplification given that our categories are coarse and biased towards
adult versus larval traits, which are themselves data defi€eavious work, however, has
demonstrated that traits associated whnsuccessful recruitment of reef fishmore important

than traits associated with dispersal in determining differentiation between h@bédkeret

al. 2015; Keithet al. 2015).

Results

UCE =quences

Reads, contigs,.and UCE loci per individaet outlined irTfableS3 (available as electronic
supplementary ateria). In summary, & sequenced a total 563.31million reads, with a mean
of 1.55 millienreadsper sample fromd7 focaltaxa (excluding outgroupsajso see Table)l
Overall, we assembled a mean of 12,86Aatigs (95 CI, min = 10,593, max = 15,345) and 901
UCE lociper sampl€95 CI, min = 871, max = 932).

Phylogenetic reconstruction and timing efegenceto evaluate the “evolutionary incubator”

and “Pleistocene extirpation” hypotheses

Following assembly, alignment, trimminand filtering out loci that were present in fewer than

75 specimengfor a 75% completelataset weretained 971 alignments with a mean length of

515.6 bp. The concatenated supermatrix contained 500,642 bp with 52,680 informative sites and
was 83.3%completebased on the proportion of ngap sequenceshe following samples were
excluded from.further analysis due to the low humiéo® recovered

Chaetodon_interruptisy Chaetodon_lineolatds, Chaetodon_lunuta,andChaetodon

ulietensida for full detailssee Tablé&1); however, tissue replicates were retained for two of the
four species listed her€(lineolatusand C. /unulg.

Our Bayesian and maximum likelihood analyses produced a fully resolved topology that
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shared key points of congruence with prior multi-locus studies of butterflyfiBlesslér &
Westneat 2007; Hset al. 2007; Bellwoocet al.2010; Cowman & Bellwood 2011; Hodgéal.
2014 see Figure S2Although direct comparisons to previous phylogenies are difficult because
these are'missing many of the regional endemics@daetodon dialeuco€. gardineri, C.
leucopleura C. nigropunctatusC. pictus C. triangulum Heniochus intermedijsand contain
less sequence data and data overlap (e.g. six loci and 73% complete matrixetd2@l4),
where there was overlap the data setihe tips of the tree displagsimilar topologiegFigure
S3) In our'case, however, almost every node irtrie wasstrongly supportedopsterior
probabilities®of 1.0Figurel and 2).

By'only considering a single representative sample per spet@sr chronogram
(Figure 3,"we-foundthat the majority oRed Sea térabianGulf butterflyfishdiverged from
their closestrelates in the lastive million years(4.17 Ma to 1.16 Ma), with an average lineage
age of 2.39 Ma. In comparison to previous fossil calibrated studies of ChaetodontidaeaCowm
& Bellwood 2011; Hodget al.2014), the mean ages and 95% highest posterior density (HPD)
estimatesiare more restricted, but for the most part overlaprenious estimates (Figure S3).
In termssofthestopology, although our phylogenetic samplinge&ricted, it still captuecrown
nodes and agestimates of major chaetodontid lineages (with the exception of the bannerfish
lineage), as well as subclades containing Red Sea to Arabian Gulf species and their most recent
common ancestors (Figure SR)ost of the cladesitludedspecies pairdiverging with non
overlapping disibutions dating back 2 toMa. Thisdivergence does not appear to coincide
with the timing of the emergence of apparent geographic (and geological)$sucaras the
Straitof Bab-al*MandaljFigure 2 and B Regionalendemics appear to have diverged earliest
from ancestorssthat gave rigetheclades includingChaetodon larvatuandChaetodon
semilarvatusAt least one mtire sulcladeof CH4was comprised akgional endemics
(Chaeotordialeucos C. nigropunctatusandC. mesoleucdgs The split betweethe
butterflyfishes(€haetodonPrognathodesandbannerfishegHeniochusForcipiger) wasmuch
older, with.a mean of 28.7 M&%% HPD: 40.6018.26; Figure 2 and Figure S1), indicating an
ancient splitbbetween these highly divergent bddyms.
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385  Ancestral rangee@construction to evaluate the “evolutionary incubator” and “Pleistocene

386  extirpation” hypotheses

387  Model comparison revealed tBEC+J model as the most likely (LnL-250.79 AIC weight =

388  0.76) andthe'DYALIKE +J model as the second most likelyL=-252.76 AIC weight =

389 0.11 Table 2and Figure 4). The importance of the J parameter, which modelslisiagce or

390 “jump” dispersal Is thatancestratanges often comprise one area rather than searei@d The

391 addition ofithe J parameter resulted in a significantly better model fit forrb&dels when

392 comparedivia alikelihood ratio test (LRD:= 8.67,p = 0.0032).

393 Underithe DEC+J model, Chaetodontidae have their crown origins in th&esio-

394  Pacific, with/subsequent dispersal to include the Arabian PeniasdlBneages leading to the
395 base ofChaetodorand the bannerfish cladedqrcipiger/HeniochusFigure 4). Within theCH2

396 clade, diversification wasestriced to the Pacific Ocean with subsequent dispersal to the Indian
397 Ocean Chaetodon madagaskariensis, C. piatmfasciaticusC. unimaculatus andthree of the
398 speies have dispersed as far ag&ra Chaetodon guttatissimus, C. kleir@, trifasciatu3.

399  Only one species within CH2 diverged in the Gulf of Aden and subsequently colonized the Red
400 Sea Chaetodon paucifasciatusThe age o€. paucifasatusis relatively young (1.5 Ma, HPD:
401 0.8 — 2.3 Ma)suggesting a similar timeline for its occupatiorited Red Sea from the Gulf of

402  Aden.

403 In the CH3 clade threespecies are present in the Red Seavleatrestricted to the

404  Arabian PeninsulaGhaetodon austriacu§;. melapterus, C. larvatysin the case of sistgrair

405 C. austracusandC. melapterusthe reconstruction suggests that speciaticecurredoy

406  vicarianceswithin the Red Sealthough posterior probabilities makiee details of thisplit

407 equivocalythesmost likely scenario is a split between the Gulf of Agaba and the Redh&e

408 C.austriacussubsequently recolored the entire Red Séait C. melapterugxpanded out to the
409  Gulf of Aden, Arabian Sea, and Arabian Gulf, but no further. The extended historyctddiae

410 although not completely sampled (see Figure S2), sughestswidespread ancestor expanded
411  into the'Red Sea with subsequent vicariance between the Pacific Ocean, Indian Ocean, and
412  Arabian Peninsulaites Indeed Chaetodon larvatuappears to originatie Djibouti andthe

413  Gulf of Aden followed by dispersal into the Red Sea and South Qoiaetodoririfascialis, on

414  the other handnaintained connectigracross the InddVestPacific with subsequent range
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expansion into the Red Sea.

The CH4 cladehas been the mbsuccessfuin terms ofbutterflyfish colonizing the Red
Sea. Eight extant species from CH4 are distributed ieast some parts of the Red Sea
(ChaetodaonatrigaC. fasciatusC. leucopleuraC. lineolatus C. melannotus, C. mesoleucos, C.
pictus, C.(semilarvatysfour of which are restricted to the Arabian PeninsGlaaetodon
fasciatus, C. mesoleucos, C. pictuss@nilarvatus)Moreover, he reconstruction identified a
mix of origin states for CH4 species found in the Red Sea. BdtscatusandC. leucopleura
have theird@gins within the Red Sea, where@slineolatusandC. mesoleucobkave their
reconstructe@rigins atSocotra. The origins &@. semilarvatusre placed in South Oman,
whereagheorigins ofC. pictusareplaced in the Gulf of Oman. With the exceptiorCof
lineolatusawidespread IndWVest Pacific species, all CH4 lineadewe reconstructedrigins
in the Arabian*Peninsuand Indian Ocearegion and subsguent dispersal was limited from
this regionChaetodon lineolatuappears to be the only species in CH4 to originate in the
Arabian Peninsula and then disperse actiosdroader InddWest Pacific However, unsampled
taxa fromthis clade are more widely distributed across the Indian and Pacific Oceans (Figure
S2).

Three. taxa of the bannerfish clade are also present in the Relde®wachus
intermedius, Hdiphreutes, Forcipiger flavissimyswith H. intermediusonsidered a Red Sea to
Gulf of Aden endemic. Despite these taxa only beapyesentative of a smalioportion of the
entire banerfish clade, the reconstruction suggests a widespread ancesuivénged in the
Arabian Peninsul@H. intermediuywith subsequents(iccessfylcolonization of the broader

Indo-West.PacifiqF. flavissmusandH. diphreutek

Correlational trait analysigo evaluate the “ecological trait” hypothesis

Based on the best PGLM, depth range and phylogenetic age were negatively correlated with
endemismyith.depth range being a stronger predictor than phylogenetic age @l &jeire 5

and 6). Explaring these relationships usirmggressionree approach revesthat the effect of
phylogenetic age is dependent on depth range. Endemic species from the Arabian Peninsula
regionarethereforemore likely to be younger than widespread ones, but only for those species

with depth ranges extending to mesophotic reedptfdrange> 27 m; Figure and §.
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Endemism was not correlated with any of dtieer factors in the analydisr the butterflyfishes

considered herglectronic supplementary materidhble S2 and S4).

Discussion

This study used 901 loci to successfully generate a genome-scale phybganyerfishes and
butterflyfishesendemic to theoastal reefs of th&rabian Peninsulalhis isthe first time this
genomic method has been applied to species-level phylogenetic amdlggesf fish group.
Our phylogenywhich includes all shallow watehaetodontid species found in the Red Sea to
Arabian Gulfand their close relativdsstributed throughout the Indétest Pacifi¢ provides
divergence times with narrow confidence intervald hiogeograhic insightinto thisendemism
hotspot. Reeonstructing the evolutionary histdrthesefisheswith their widespread relatives
does not appear to support the evolutionary incubator hypothesis. That is, despitingenera
significant biodversity in the fornof endemic specietheseperipheralareasof the Arabian
Peninsula do not appear to haxpored significantbiodiversity to the central Indd/est

Pacific. In'fact, potentially only three species with reconstructed origins in the ArabiamsBla
(Chaetodorineolatus Heniochus diphreutes, Forcipigéavissimu$ appear to subsequently
disperse to the Ind@/est Pacific. Our phylogenetic analyses also revealedribstendemic
speciegriginatedprior to and persistettirough the major environmental fluctuations of the
Pleistocengwhich does not support the Pleistocene extirpation hypotfAdésgcologicaltrait-
based analyses revealed that the evolutidReaf Sea to Arabian Gulf endemic butterflyfishes
was associated witkpecialization to shallow reef habitat and, to a lesser extent, species’

phylogeneticrage.

Evaluating the “evolutionary incubator” hypothesis

The Red Sea, Gulf of AdeArabian Seaand Arabian Guléreall peripherato the broader
Indo-West Pacifidiogeographic regioand potentially producedntributenew reef fish species
to the centr¢see Boweret al.2013; Hodgeet al. 2014). Temporally, the Red Sea to Arabian
Gulf butterflyfish assemblage (16 spediesotal) is made up of recently diverged lineages, with
ages ranging from 4.17 M&drcipiger flavissimupto 1.16 Ma C. austriacusC. melapterus

split). In a few cases, the R&ka to Gulf of Adeendemicsappear to have diverged the
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475  earliestineage of that clade (e.§. larvatusandC. semilarvatusFigure2 and 3). Indeed, the

476  “oldest” endemidoutterflyfishlineagein our studyC. larvatus(2.86 Ma 4.3-1.6 Ma 95% HPD),
477  appearedh the late Pliocenend diverged from an Indé/est Pacific lineage that later gave rise
478  to speciesllopatricbetween the two ocean basiis {riangulumin the Indian OceaandC.

479  baronessan the Pacific Ocean)he ancestral range reconstructairihese Arabiafeninsula

480 endemics demonstrates consistent calaiion routes to the Red Sea and Arabian Sea via the
481 Indian Ocean from the ea$ligure 4) but with few examples of reciprocal expansion from the
482  Arabian Peninsulback to tle Indian/Pacific Ocearror example, botl. larvatusandC.

483  semilarvatusppearo havehistoricallydiverged inDjibouti/Gulf of Aden and South Oman,

484  respectivelysuccessfully colonized the Red $Sbat not established further south and east based
485  onpresent-daylistributions.Similar reconstruction results were obtained for the regional

486  endemicCepictus(Red Sea to Gulf of Oman), which showed apparent historical divergence in
487  the Gulf of Oman and only recent colonizatiortle# southern limits of the Red Sea

488 Other endemics appear to hdwustorically divergedvithin the Red Se&(. fasciatu$ or

489 adjacenDjibauti and Gulf of AdenC. paucifasciatusbut not colonized any further to the

490  soutteast=Athough equivocabased orthe probabilistic uncertaintpf nodesn theancestral

491  range reconstructioof the most likely modeIDEC+J), there are a number of competing

492  explanations for howZ. austriacusandC. melapterusliverged from each othevithin the

493  coastal waters of th&rabian Peninsula (also see Waldeial. 2016),particularlysinceC.

494  melapteruss the only species in this complex present in the Arabian Gulf. The mowgt likel

495  explanation is based on present day distributions (Figur€3apstriacuss largely restricted to
496 the northernsand central Red Sea (with rare records in the southern Red Sea andfdbtside
497 Red Sea)whereasC. melapteruss most abundant within or adjacent to the Arabian Gsio(

498  with rare records in the soutineRed Seg-these bodies of water show opposite trends in terms
499  of productivity,Sea surface temperatusndtemporal pattersof environmental variation

500 (Raitsoset al.2013; Pou®t al.2015). These environmental conditions are additionally

501 significantly differentfrom the rest of the Indian Ocean, and thus the unique conditions in the
502 Red Seand Arabian Gulf may help explain how endemics evolved, or at least, concentrated and
503 persistedn theseperipheral locations.

504 Despitea lack of supporting evidence for the evolutionary incubator hypotleesisar
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pattern emerges thtte unique environmentabnditionsin these peripheral seanay have
contributed to the formation of endemic species as outlined above. For exsonpde,
butterflyfishsulcladesarecomprised entirely of regional endemics (€aetodon dialeucos,

C. mesoleucasandC. nigropunctatug which providedurtherevidence that coral reef habitat
surrounding the Arabian Peninsuhay have generateainumber of new taxa. Moreovez,
dialeucos an Omani specieshows geographical divergence with temainingtaxain its group
(Figure 3), which allwent on to colonizéhe Red Sea arttie Arabian Gulind must have
thereforeencountered contrasting environments atthstern an@astern margins oheir

range. he shallow Arabian Gulf started fill with seawateapproximately 14,000 years ago
afterbeingdry during the last glacial maximuprior to that(Lambeck 1996), suggést) that it
was seeded"bysuccesswaves of colonization frornoastalOman. The same process would
have beenrongoing at the western margin ofthshaleucosrange, except that the conditions
encountered in the Red Sea would hemetrastedo those in the Arabian GulD{Battistaet al.
2016b).So, while there is some evidence to suggest vicariance at the scale of the Arabian
Peninsuldl.e. diversification of most taxaccurredn the PliaPleistocene)a strongescenario

is thatnaturalselection driven by the major differences in environment and habitan the
areaprobably.playe@nimportant role in the formation andemic species assemblage.g.
Gaitheretal.2015). Thus, even though the distribution of some of the butterflyfishes considered
in the present study does gtabruptly at the entrance of the Strait of Hormlagetodon

collare, C. pictus andC. gardner), it does not support the argument for geographically-driven
allopatry. Indeed, i of these species have a different distributional response near thewdher
of their distribution at the Strait of Bab al Mandab, which includes stopping before the Straits or
extendingsthrough the Straits into the southern RedBgare 3).Thealternativeis thatthe
incumbenwidespread butterflyfismayhaverestriced the Red Sea to Arabian Getidemics
from expanding furthevia competitiveexclusion.

The current environment of the Red Sea is spatially structured with caajasts in the
cool oligetrophic waters of the northern region compared to the much higher tempeaatires
productivity of the southern region (i.e. Farasan Islands in Saudi Arathie easand Dhalak
Archipelago in Eritredo the west(Raitsoset al. 2013 Racaultet al. 2015). This shift in

environmental conditions is most clearly demonstratete differences in life history traits
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associated witlheef fishspecies that occur in both areas, but is also seen in abundance estimates
across these gradients (DiBattistal. 2016a; Robertst al. 2016). Such putative selection
gradients arenostevident in corals, which shosignatures of local adaptationdivergent

environmental'condition£(Angelo et a/.2015).

Evaluatingthe “Pleistocene extirpation” hypothesis

The second hypothedisatwe tested in this study walse Pleista@ene extirpatiomypothesis,

which predictsthat all Red Sea fauna were eliminated during the last glacial maxima (~18 ka)
and were onlye-populated via recent colonization evef#se Hemlebeat al. 1996; Bitonet al.
2008).The number of species diverging at early stages in the Pleistocene dispute the argument
that Red Searfauna did not survive complete closure or restriction of water flonsatatihef

Bab al Mandab (igure 2). Although it clearly does not coincide with a singbarianceevent

given the variability in the splitting dategtween closely related spec{€gyure 3 see

Michonneau 2015 for invertebrate examplasd ancestral range reconstructiavoring +J
parameter models.€¢. founder events between nadjacent ocean regions; see Taljle
glaciatignsslikely played a role in their separatibloreover, even though almost all sister
species have.smalleas of overlap at their range edge, which is usually associated with
allopatric speciatiofin our case thes#o not coincide with geographical boundaries (i.e.
vicariant chokepointsjuch as the Strait of Bab al MandabeFigure3; Lambeck 1996;
DiBattistaet al. 2016b). Infact, the non-congruent age and distributionthef endemic species
indicate a series of variable eventgich may reflect localied patterns of habitat and
environmentalschange as outlined in the previous seclios best example is thelatively

young cladesof-Arabian Peninsula endemigsdialeucosC. nigropunctatusandC. mesoleucos
(crown node age 2.0 Ma; 2.9-1.2 Ma 95% HPD). This group appehaas¢deeninfluenced by
boundaries presented by the Omani dowsacross areas where there kenownchanges in the
upwelling regimgShi et al. 2000; Mcllwainet al. 2005).This is in sharp contrast to the Indo
West Pagific parrotfishes, whepeesent day species boundaries support the notion of allopatric
divergence (Choadt al.2012), and endemics appear to have diverged into one or more
subsequent endemics (i.e. secondary endemism; Roébadld 981) based on sympatrically

distributed sistespecies pairghighlighted inChoatet al. 2012).Moreover, Red Sea endemics
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565 from most other familiesf reef fishappear to have equal proportionsatidpatrically and

566  sympatrically distributed sistepeciegfHodgeet al. 2014) which is not the case for the

567  butterflyfishes

568 The diversification of these butterflyfisioccurred at ame when the coral assemblages
569 of the world’s reefs underwent a major changearal composition and growth forms. The

570 global proportion of staghorn coral occurrences in coral assemblages gelsistgghout most

571 of the Ceneozoic but increased substantially during the Pliocene and esphei&lyaternary

572 (Renemaetal.2016). Indeed he rapidly growindpranchingacroporid coraleffereddifferent

573  structural components in terms of shelter and feeding/foraging modes when edtopaassive
574  corals suclas pgritids that dominated Miocene reefs more than 5 Ma, Tieishaetodontids of
575 the Arabian*Peninsulgarticularlythe corallivorous speciesyere exposed to a much more

576  dynamic environment than thhedespreadndo-West PacificspeciegColes 2003pecause of

577  their close association with sensitiv@ral generahat proliferated in the region

578

579  Evaluating the %ecological trait” hypothesis

580 The thirdshypothesis that we tdwreis whether ecological traits are linked to the evolution of
581 endemism among butterflyfishes iretRed Sea to Arabian GuliVe found a negative,

582  significant relationship between endemism and depth range and, to a lessepbxtegéenetic

583 agefor these butterflyfishes (Figufeand 6). The relationship between a narrow versus broad
584  depth range and endemism supports the view that endpeu@s tend to be more speciatizo

585 local resources'than widespread speditssnkinset al. 2000). The majority ofegional

586 endemicsnsthis study had depth ranges that did not extend dep@5 meters (§ure 6),

587 despitestheravailability of light dependent coral habitat extending beyond thmatg&tzal.

588 2010).The broad range of ages represented by these shallow water specialists suggests that
589  adaptation to shallow reefs occurred mudtipmes across a relatively wide time frafme. 1.3

590 to 3.3 Myr).On.the other hand, speciation of endemics with a preference for deep reefs seems to
591 be arecent phenomenas deeper depth ranges were strongly associated with young age (less
592  than 1.75 MyrFigure 6.

593

594  Comments on incomplete sampling and biogeographic biases
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The goal of this study was to reconstruct the evolutionary history of Retd B8esbianGulf
butterflyfishes. As is the case with all phylogenetic and biogeographic recimstis, our

results have to be interpreted in light of the taxa that are not sampled, botraagtamtinct.
Indeed, the“inclusion of missing taxa has the potential toladézage relationships and their age
estimats, whereagheir geographic distribution may alter the most likely biogeographic
scenarios reconstructed across the tree (see discussiowman &Bellwood 2013). Here, we
have been.able to sampléRed Sedo ArabianGulf butterflyfishes(save onespeciesRoa
jayakari), and their close relatives from the Indian and Pacific Oceans, across four major
chaetodontidlineages (Figure S2). From a temporal perspective, the topology asstiatged
for the genont scale UCE data overlap with previous studies (Fgg&2 and S3). Moreover,
our sampling-of-eight species that have not previously been included in phylogeneteaftudie
the Chaetodontidae family means that for 13 out of the 17 Arabian Perspsoés, we are
confidentthatwe have sampletheir direct sister lineage. Two of tleeitstandinghree species
(Chaetodon melannotus, C. trifascialere wide ranging Ind@Vest Pacific taxshat are
reconstructed to have dispersed to the Arabian Peninsula (Bigdree most likely sister
speciesiofSemelannotuss C. ocellicaudugKuiter 2002; also see Figure 52 west Pacific
species not sampled in our dataset. In the caSe toifascialis it is placed as the sister lineage
of a subclade of CH3 containing 10 species distributed across the Indian and Pacific Oceans, of
which wesampled four (Figure S2; Cowman & Bellwood 2011). The final outstarsgieges,
Chaetodon leucopleur#s placed as a sister specie€tmaetodon gardinerBoth species have
not previously been sampled in phylogenetic stydiasare recognex to be closely related to a
third speciesE€haetodon selen@videspreadn thewest Pacific, Kuiter 2002yvhich wasnot
sampledsintour<UCE dataset. In each of these three cases, and more broadly across the family, the
inclusion of unsampled species would increase the influence of the ddeamand Pacific
Ocean in the ancestral estimation of biogeographic ranges. As such, itagbtddtrengtlen

our conclusiorthateven thoughhe Red Seand adjacemjulfs andseashave been important for
the generation of endemic species, they have had little contribution to the wid&Wésto-

Pacific diversity of butterflyfishes.

Conclusion
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It appears that the unique environmental conditions in the coastal waters of the Arabian
Peninsula may have contributed to the formation of endemic butterflyfishesyénq there is a
lack of evidence for endemics contributisignificantspecies richness to adjacent seas (i.e.
evolutionary‘incubator hypothesi8joreover, even witltatastrophic environmental instability
experienced by the Red Saad coastal environments of the Arabian Peninsulacisea level
changes associated wilacial cycles (Ludt 8Rocha 2015), there is no evidence for a massive
extirpationof butterflyfishfauna in the region (i.e. Pleistocene extirpation hypothalsis;see
DiBattistaet al.2016b). The broad range of phylogenetic ages among enddmailow water
butterflyfisheéS supports the view that species may have survived in isolated vathgiche

Red SedDiBattistaet al. 2016b). None of the dispersalated traits were associated with
endemismysuggesting that factoteer than those relateéa species intrinsic dispergabtential
may be limitingdispersal into the greatbrdian Ocean (e.g. coastline geography, oceanographic
barriers).
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Figure 1. Inferred phylogeny of Red Sea to Arabian Gulf butterflyfish species, including some
of closest their congeners, based on ExaBagalysis of ultraconserved element (UCE) data.
Yellow dots on node labels indicate a posterior probability of 1, whereas grey dotgeirdica
posteriorprobability of less than 1 but greater than 0.6. Clades based on Bellwlo¢2i04i0a

and Cowman & Bellwood (2011) are indicated. Records for each species are mapped onto the
topology as follows: red = Red Sea to Arabian Gulf, green = rest of Indian Ocean, and blue =
Pacific Ocean (PO).

Figure 2. Afessil calibrated chronogram for select Chaetodontidae species based on analysis of
ultraconserved element (UCE) data. The time scale is calibrated in millions of years before
presentNoderages are presented as median node heights with 95% HPD intervals rapbgsente
bars. Signifieant geological evenn the coastal waters of the Arabian Peninsula are temporally

indicated by red dashed lines.

Figure 3. Distributions, range overlap, and ages of divergence in eight clades of butterflyfish
from the€haetoedorgenus that contain species inhabiting the Red Sea to Arabian Gulf region.
Clade structure’and node ages (median node heights with 95% HPD intervals regriegent

bars) were extracted from Figure

Figure 4. Ancestral range estimations inferred using the DEC + J model based on a time
calibrated Bayesian phylogeny of Chaetodontidae species. States at branch tips indicate the
current geegraphical distributions of taxa, whereas states at nodes indicate the inferred ancestral
distributienssbefore speciation (middle) and after (corndm. regions considered in this
analysis‘include: Gulf of Agaba, rest of Red Sea, Djibouti and Gulf of Aden, Socmtita, S

Oman, Arabian)Gulf, Gulf of Oman and Pakistan, rest of Indian Ocean, and Pacdit. Oce
Abbreviations;_Plio. = Pliocene; Ple. = BleceneSignificant vicariance in the Red Sea to

Arabian Gulf region are indicated by red dashed lines.

Figure 5. Estimated probability of endemism among Red Sea to Arabian Gulf butterflyfish

species, including some of their closest congeners, asadu of depth range. Different line
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types represent variability in estimated species phylogenetic age extracted fron2 sgeire

legend).

Figure 6:The classification of specidsvel traits associated with endemism among the Red Sea
to Arabian Gulfbutterflyfishes (a). Data on the leaves (represented by squares) provide the
probability of endemism (top) and the percentage of all observations in the node (boftem). T

right panel.shows the prediction surface (b).
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1032  Table 1.Species distributiomndcladedesignation from Bellwood et al. (201&)d Cowman &Bellwood (2011or all

1033  Chaetodontidae samples used in this st@ayours inthe table header match the aslaised to eénote species distributions imgEre
1034 1. Asterisks'indicate regional endemics for the purposes of our correlational trait arfdigdistters below each region indicate the
1035  geographic groupings used BIOGeoBEARS analysiAlthoughChaetodorieucopleurg Chaetodon melapturyandChaetodon

1036  pictusare listed as being present in the Red Seaistiiased on rare records at treuthern limits. Similarly, we have only sampled
1037  C. pictus(and notChaeotdon vagabunduat Socotra (DiBattistat al. 2017), and rare records ©Ghaetodoraustriacusin the Gulf of

1038  Aden and Seuth Oman likely represent waifs.

Species Geographic distribudn

Rest of

Indian
Ocean

Clade 4

Chaetodorauriga \ \/
Chaetodon auripes

Chaetodon collare

Chaetodon decussatus

Chaetodon dialeucds

Chaetodon falcula

Chaetodon fasciat®#s v
Chaetodon gardingti

Chaetodon leucopleura

Chaetodon lineolatus v
Chaetodon lunula

Chaetodon melanfiotus v
Chaetodon mesoleticas v
Chaetodon nigropunctattis \ \ \

Chaetodon oxycephalus \ \
Chaetodon pictds

Chaetodon semilarvattis v
Chaetodon vagabundus \ \ \

< 2 2

<
<
L2222 2 @ =22 <2

2222 222 @2
< 2 2

2 2 =22 2
22 2 2 2 =2
<

< 2
< 2
<
<
<

Clade 3
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Chaetodon austriacus* v v v
Chaetodon baronessa

Chaetodon bennetti

Chaetodon larvatus* v v v
Chaetodon lunulatus

Chaetodon melapterus* \ \
Chaetodon plebeius

Chaetodon speculum

Chaetodon triangulum

Chaetodon trifascialis \ \
Chaetodon trifasciatus

Chaetodon zanzibariensis

< 2 2

Clade 2

Chaetodon guttatissimus
Chaetodon interruptus
Chaetodon kleinii

Chaetodon madagaskariensis
Chaetodon mertensii
Chaetodon paucifasciattis \ \ \
Chaetodorpelewensis
Chaetodon punctatofasciatus
Chaetodon trichrous
Chaetodon unimaculatus
Chaetodon xanthurus

Bannerfishes

Forcipiger flavissifmus \
Forcipiger longirostris

Heniochus acuminatus

Heniochus diphreutes \ \
Heniochus intermedidis \ \

2 2 2 =2

< 2 2

2 2 2 =2

< 2 2 2 2

<2 2 =2 2
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1045
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1047
1048
1049
1050
1051
1052

1053
1054
1055
1056

Table 2. Akaike information criterionAIC) model testing based on distribution patterns for butterflyfish lineages usitimée
calibrated phylogeny analysed with the R module BioGeoBEARS, where d reptasdatitpersal parameter representhe
extinction’parameteand | represent®underevent speciation. For these models we coded @aoim based opresence/absence in
nine discrete geographical areasGalJf of Aqaba, byed of Red Sea, dpjibouti and Gulf of Aden, d) Socotra) South Omant)
Arabian Gulf, g) Gulf of Oman and Pakistan &3t of hdian Ocearandi) Pacific OceanGrey shaahg indicates thdéavoured model
based oAlC/scores.

Ln Likelihood Number of d e ] AlC AIC weight
parameters

DEC -255.13 2 0.06 0 0 514.25 0.03
DEC+J -250.79 3 0.05 0 0.04 507.58 0.76
DIVALIKE -253.88 2 0.07 0.04 0 511.76 0.09
DIVALIKE+J -252.76 3 0.06 0.02 0.03 511.52 0.11
BAYAREALIKE -259.86 2 0.05 0.18 0 523.71 0

BAYAREALIKE+J -255.48 3 0.04 0.08 0.06 516.96 0.01
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1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068  Table 3_Summary of the final (best) phylogenetingar multiregression modebased on estimated probability of endemism as a

1069  response variableglected after the backward stepwise phylostep procedure. Coefficients in bold indicate signgisahOs).

Estimate Std. err. zvalue p value
(Intercept) 6.170 2.506 2.461 0.013
Depth range -1.423 0.543 -2.620 0.008
Phylogenetic age -1.209 0.694 -1.742 0.061
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Oligocene Miocene Plio. Ple.
Infilling of Arabian Gulf (~14 Ka)

Last Glacial Maximum (~18 Ka)

Closure of Red Sea connection to Mediterranean Sea
Formation of Strait of Bab al Mandab @

Formation of the Red Sea basin
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Chaetodon decussatus
Chaetodon pictus
Chaetodon vagabundus
Chaetodon auriga
Chaetodon nigropunctatus
Chaetodon mesoleucos
Chaetodon dialeucos
Chaetodon falcula
Chaetodon oxycephalus
Chaetodon lineolatus
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Chaetodon auripes
Chaetodon collare
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Chaetodon larvatus
Chaetodon melapterus
Chaetodon austriacus
Chaetodon lunulatus
Chaetodon trifasciatus
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Chaetodon xanthurus
Chaetodon mertensii
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Chaetodon unimaculatus
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Infilling of Arabian Gulf (~14 Ka)
Last Glacial Maximum (~18 Ka)
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Closure of Red Sea connection to Mediterranean Sea

Formation of Strait of Bab al Mandab
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Probability of Endemism
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yes Depth Range > 27 m
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Phylogenetic Age > 1.75 My
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