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Axonal supercharged interpositional jump-graft with a hybrid artificial nerve conduit 

containing adipose-derived stem cells in facial nerve paresis rat model 

 

Abstract 

Purpose: Interpositional jump-graft (IPJG) technique with the hypoglossal nerve for 

supercharging can be applied in a facial nerve paresis case. In IPJG, an autologous nerve is 

required, and the donor site morbidity is unavoidable. Bio-degradable nerve conduits are made 

from polyglycolic acid (PGA) and used recently without donor site complications after providing 

autologous grafts. Hybrid artificial nerve conduits with adipose-derived stems cells (ASCs) also 
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attract attention as a nerve-regeneration enhancing agent. This study examined the effect of 

hybrid artificial nerve conduit on IPJG.  

Materials and Methods: A total of 34 Lewis rats were used and divided into four groups by the 

bridge materials: autograft (n = 8), PGA nerve conduit (n = 8), hybrid PGA nerve conduit with 

ASCs (n = 8), and the non-treated control groups (n = 8). ASCs were collected from 2 rats and 

cultured. The animals were assessed physiologically and histopathologically at 13 weeks after 

surgery. 

Results: In compound muscle action potential, the amplitude of hybrid PGA group (3,222 ± 

1,779 µV) was significantly higher than that of PGA group (1,961 ± 445 µV, p < 0.05), and no 

significant difference between hybrid PGA and autograft group. All treated groups showed a 

myelinated nerve regeneration with double innervation in hypoglossal and facial nerve nuclei for 

vibrissal muscle. 

Conclusion: This study showed the effectiveness of IPJG with a hybrid PGA conduit especially 

in physiological examination. 

 

Running head: Interpositional jump-graft with stem cells 

 

Keywords: Adipose-derived stems cells, Artificial nerve, Double innervation, End-to-side 

neurorrhaphy, Interpositional jump-graft  
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Introduction 

Facial nerve paresis including Bell’s palsy and Ramsey-Hunt syndrome appears suddenly in 

healthy individuals. Although remission is often focused by conservative treatment,1 in some 

cases, persists paresis adversely reduced the quality of life. In these cases, the pathological 

mechanism involves the attenuation of central-nervous-system motor-nerve signals rather than 

organic damage to the facial nerves or mimetic muscles. A surgical treatment for these 

neuropathies is reported by May et al. in 1991.2 Applying an end-to-side neurorrhaphy to the 

facial nerve for compensating signal attenuation with the hypoglossal nerve, they use an 

interpositional jump-graft (IPJG). Subsequently, many studies propose various modifications to 

the methodology with favorable outcomes.3-5 End-to-side neurorrhaphy is studied by grafting the 

sciatic nerves to the fibular,6 sciatic,7 and median nerves8 in the nerve defects of rat models. For 

treating the facial nerve paresis of rat model, (1) a cross-facial nerve graft method with sciatic 

nerve from the healthy to the paretic side of the face9 and (2) an end-to-side loop graft method, 

which harvests the buccal facial-nerve branch on the healthy side and sutures the grafting nerve 

with nerves for creating one nerve running from the facial nerve trunk to individual branch of the 

facial nerve and the hypoglossal nerve,10 are reported. These basic studies find the functional 

recovery of motor nerves and axonal regeneration at the neurorrhaphy site after end-to-side 

neurorrhaphy. Neurorrhaphy is used with favorable outcomes in clinical settings. End-to-side 
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sutures are used successfully from the axillary and musculocutaneous nerves to the ulnar nerve in 

brachial plexus palsy.11 Facial nerve branches are reconstructed after the resection of various 

tumors with favorable outcomes, and the first report shows the effectiveness of loop grafts to the 

peripheral ends of facial nerve stumps with the sural nerve in a parotid tumor case.12 However, 

the donor site morbidity is unavoidable in cases where the auricular, sural, or other nerves is 

taken for autologous nerve grafts. Therefore, the authors previously investigate IPJG with 

silicone tubes in a rat model with facial paresis and demonstrate that the efficacy of IPJG as an 

artificial nerve conduit.13 However, the recovery of facial nerve paresis treated by IPJG with the 

nerve conduit is found to be far inferior to that of autologous nerve grafting. 

 On the other hand, cellular sources for inducing nerve regeneration are speculated to be stromal 

vascular fraction (SVF),14 dedifferentiated fat cells,15 basic fibroblast growth factor,16 bone 

marrow stromal cells,17 dental pulp,18 and adipose-derived stem cells (ASCs).19 Cells from these 

sources are used to promote peripheral nerve regeneration and especially, used in combination 

with artificial nerve conduits in research for exploring hybrid artificial nerve conduit 

approaches.20 Harvesting ASCs is performed with a minimum invasiveness compared with other 

sources, and the harvested amount of the cells is easily increased. Therefore, ASCs are believed 

to be a potentially and clinically applicable cell source. Favorable outcomes are reported on ASC 

clinical applications for treating Crohn’s fistula,21 graft-versus-host disease,22 and stress urinary 

incontinence,23 and for cosmetic breast alteration surgery.24    
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 For obtaining IPJGs, of which functions are closely resembles those of autologous nerve grafts, 

this study constructed a hybrid artificial nerve conduit with ASCs as an IPJG and evaluated the 

effectiveness of ASCs in the conduits for end-to-side neurorrhaphy histopathologically and 

physiologically. 

 

Materials and Methods 

All animal care and handling procedures were performed in accordance with the Principles of 

Laboratory Animal Care of Tokyo Women’s Medical University Animal Experimentation 

Committee. Thirty-four male syngeneic Lewis rats were obtained from Charles River 

Laboratories Japan (Tokyo, Japan) and used through this study.  

 

Preparation of ASCs and Hybrid Polyglycolic Acid-based Tube 

Two-eight-week-old male rats were used. Adipose tissue was collected from the inguinal region 

of the animal and washed with phosphate-buffered saline (PBS) (Thermo Fisher Scientific, 

Carlsbad, CA, USA). Cells were then isolated mechanically from the tissue and treated with 

0.075% collagenase type I (Thermo Fisher Scientific) at 37 °C for 30 min, filtered through 

70-µm cell strainers (BD Falcon, Becton Dickinson, Oxford, UK), neutralized by adding 

Dulbecco’s minimum essential medium (DMEM) (Thermo Fisher Scientific) containing 10% 

fetal bovine serum (FBS), and centrifuged at 800 × g for 5 min. Precipitated stromal cells were 
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re-cultured in a 100-mm tissue culture dish at 37 °C in 5% CO2. At 24 h after the initiation of 

culture, non-adherent supernatant was removed, and the medium was exchanged with fresh 

medium. Cells were cultured adherently for 1 to 2 weeks at 37 °C in 5% CO2 with medium 

change every 72 h. After reaching to approximately 80% confluence, cells were detached 

enzymatically with 0.25% trypsin solution and passaged in fresh medium. A total of 1 × 105 

cultured cells were obtained at passage number two (P2) and put into a polyglycolic acid (PGA) 

tube (Nerbridge) (Toyobo, Osaka, Japan) with 10 µL type 1 collagen solution (Fig. 1).    

                                                    

ASCs as Mesenchymal Stem Cells 

ASCs showed a self-propagation ability with a flattened fibroblast morphology at P2 (Fig.2A) 

and were labeled with mouse monoclonal anti-Stro-1 antibody (MAB1038) (R＆D Systems, 

Minneapolis, MN), a mesenchymal stem cell (MSC) marker (Fig. 2B).  

 

Experimental Design  

The rats were divided into four groups. The rats belonging to the autograft group (n = 8), the 

PGA group (n = 8), and the hybrid PGA group (n = 8) underwent IPJG with an ipsilateral great 

auricular nerve, PGA tube, and PGA tube containing ASCs, respectively, and the non-treatment 

rats became the control group (n = 8). Histopathological and physiological assessments were 

performed at 13 weeks postoperatively. 
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Surgical Procedure 

Rats were anesthetized with 3% isoflurane with an inhalation anesthesia apparatus (KN–1071  

NARCOBIT-E) (Natsume Seisakusho, Tokyo). After the rat was kept in a right lateral recumbent 

position, an S-shaped incision was made extending from behind the left ear to the lower margin 

of the ipsilateral mandible (Fig. 3A). The great auricular nerve was identified on the 

sternocleidomastoid muscle approximately 10 mm ventral to the posterior auricular surface. 

Dissection was advanced above the sternocleidomastoid muscle, and the facial nerve trunk was 

identified emerging from the anterior margin of the sternocleidomastoid muscle. The external 

jugular vein was then ligatured and transected, and the digastricus was identified. Dissection was 

advanced deeply into the digastricus, and the hypoglossal nerve was identified (Fig. 3B). For 

preparing a rat facial nerve paresis model as reported by Shichinohe et al.,25 a ligature clip 

(LIGACLIP MCA, Ethicon, OH) was allowed to crush the facial nerve trunk (Fig. 3C). 

Subsequently, the procedures were completed for all groups. A 7-mm section was harvested from 

the ipsilateral great auricular nerve and used as IPJG to make the autograft group (Fig. 3D). A 

10-mm PGA tube was used as IPJG to make PGA group (Fig. 3E). A 10-mm hybrid PGA tube 

containing ASCs was used as IPJG to make hybrid PGA group (Fig. 3F). A 1.5-mm slit was 

made at both ends of artificial nerve conduit for inserting hypoglossal and facial nerves into the 

slits individually in PGA and hybrid PGA groups, and a 7-mm nerve bridge was expected to 
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appear in the conduit. End-to-side neurorrhaphy was performed with an epineural window on the 

facial or hypoglossal neve. As the control group, rats were underwent no further treatment after 

the facial nerve trunk was crushed with a ligature clip. Surgery was performed with a microscope 

(M60) (Leica Microsystems, Wetzlar, Germany). 

 

 

Compound Muscle Action Potential (CMAP) Measurement with Vibrissal Muscles 

For assessing the functions of regenerated nerves, CMAP was measured. The depth of anesthesia 

was confirmed by observing the disappearance of eyelid reflex and the absence of whisker 

movement. CMAP was measured at two sites per rat, and the mean value was obtained from 10 

successive stimulation pulses. Amplitude, duration, and latency were measured, and these 

parameters were measured with custom-made MATLAB software (MathWorks, Natick, MA).  

 

Retrograde Fluorescence Tracing of Facial and Hypoglossal Motor Nuclei 

Retrograde fluorescence tracers DiI (D-28) and DiO (D-275) (Invitrogen, Carlsbad, CA) were 

injected into the left whisker pads and tongue of rats at 11 weeks postoperatively to evaluate 

double innervation. Rats were anaesthetized with 4% isoflurane via the inhalation apparatus and 

injected with 100 μL 1% DiI in ethanol and 200 μL 0.5% DiO in N,N-dimethylformamide with a 

25-μL Hamilton syringe (Hamilton, Reno, NV). Two weeks later, rats were euthanized under 
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deep anesthesia, and whole animal perfusion fixation was performed. The thorax and abdomen 

were incised, and 150 mL of 0.1 mol/L PBS was injected into the left ventricle, followed by 300 

mL of 4% paraformaldehyde. The brain was extirpated and fixed with 4% paraformaldehyde and 

0.2% picric acid for at least 1 day. Subsequently, 50-μm-thick coronal sections were prepared 

from the brain stem with a vibratome (VT1000S) (Leica Microsystems, Buffalo Grove, IL). For 

preparing specimens, sections were treated with 0.005％ DAPI solution in the dark for 5 min 

and washed again with 0.1 mol/L PBS, mounted on gelatin-coated glass slides, and cover-slipped 

with aqueous mounting medium. Sections were then examined with a cooled charged-coupled 

device (CCD) camera (Quantum Scientific Imaging, Poplarville, MS) for observing DiI, DiO, 

and DAPI fluorescence signals. 

 

Toluidine Blue Staining of Regenerated Nerves 

After CMAP measurement, the central part of the nerve graft was harvested and fixed serially 

with 2% paraformaldehyde, 2% glutaraldehyde, and then overnight in 0.1 mol/L cacodylate 

buffer solution at pH 7.4 at 4 °C. Nerve specimens were washed, post-fixed with 2% osmium 

tetroxide, then dehydrated with ethanol, which was replaced with propylene oxide, embedded in 

resin (Quetol-812) (Nisshin EM, Tokyo). The specimen-embedded resin was allowed to 

polymerize for 48 h at 60 °C. After complete polymerization, 1.5-μm sections were prepared 

from the resin with an ultramicrotome (Ultracut UCT) (Leica, Vienna, Austria) and stained with 
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toluidine blue. The sliced specimens were photographed with a microscope (Leica DM ILLED) 

(Leica). Regenerated nerves found in photographs were counted by Photoshop CC 2017 (Adobe 

Systems, San Jose, CA). 

 

Electron Microscopic Examination of Regenerated Nerves 

Ultra-thin sections with a thickness of 70 nm were prepared from resin-embedded specimens 

with the ultramicrotome with a diamond knife. Sections were stained with 2% uranyl acetate for 

15 min at room temperature, washed with distilled water, and stained with lead stain solution 

(Sigma-Aldrich, St. Louis, MO) for 3 min. A JEM-1400Plus electron microscope (JEOL, Tokyo) 

was used at an acceleration voltage of 80 kV. Digital images were taken with a CCD camera 

(EM-14830RUBY2) (JEOL). Fiber diameter, axon diameter, and myelin thickness were 

measured at five randomly selected sites by Photoshop CC 2017. 

 

Statistical Analysis 

Mean values and standard deviations were calculated for data obtained from CMAP 

measurements, toluidine blue staining, and electron microscopy. P values less than 0.05 (p < 

0.05) were considered significant. Data from individual groups were analyzed with analysis of 

variance (ANOVA) and Tukey’s multiple comparison test, using JMP® software, version 13 

(SAS Institute, Cary, NC).   
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Results 

All rats survived after surgery, and no animal showed any complications. Autograft, PGA, and 

hybrid PGA groups showed macroscopic nerve regeneration at 13 weeks postoperatively (Fig. 

4A, B, and C). Toluidine blue stained specimens revealed myelin sheath and axonal regeneration 

in autograft (Fig.4D), PGA (Fig.4E), and hybrid PGA groups (Fig.4F). Distinct dense nerve 

regeneration was observed in the autograft group compared with PGA and hybrid PGA groups. 

Electron microscopy revealed myelinated nerve regeneration in the autograft (Fig. 5A), PGA 

(Fig. 5B), and hybrid PGA groups (Fig. 5C). Mean number of regenerated myelinated fibers of 

autograft group (1,852 ± 365) was significantly higher than those of other two IPJG treatment 

groups (p < 0.01); hybrid PGA group (320 ± 210) and PGA group (177 ± 78) (Fig. 6A). 

 Mean nerve fiber diameter of autograft group (5.7 ± 2.2 μm) (Fig. 6B) was significantly higher 

than those of PGA (4.5 ±0.2 μm) (p < 0.01) and hybrid PGA groups (5.0 ±2.2 μm) (p < 0.05). 

 No significant differences in axon diameter (Fig. 6C) were found among autograft (4.2 ± 1.8 

μm), PGA (3.6 ± 2.0 μm), and hybrid PGA groups (3.6 ± 1.9 μm). 

 Myelin thickness of autograft group (0.79 ± 0.03 μm) was significantly higher than that of 

hybrid PGA group (0.68 ± 0.29 μm) (p < 0.01), and that of hybrid PGA group was significantly 

higher than that of PGA group (0.44 ± 0.03 μm) (p < 0.01) (Fig. 6D). 
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The g ratio (axon/fiber diameter ratio) of PGA group (0.80 ± 0.15) (p < 0.01) was significantly 

higher than those of autograft and hybrid PGA groups (Fig. 6E). 

 CMAP measurement revealed muscle contractions after stimulation in all groups (Fig. 7A-D). 

Amplitude was greatest in autograft group (4,352 ± 1,587 μV), followed by hybrid PGA (3,222 ± 

1,779 μV), PGA (1,961 ± 445 μV), and the control groups (687 ± 490 μV) (Fig. 7E). The 

amplitude of hybrid PGA group was found to be significantly higher than that of PGA group. 

Duration of PGA group (0.49 ± 0.14 ms) was shortest among other groups; hybrid PGA (0.52 ± 

0.14 ms), autograft (0.95 ± 0.68 ms), and the control groups (1.11 ± 0.53 ms) (Fig. 7F). Duration 

values of PGA and hybrid PGA groups were significantly shorter than those of the control and 

autograft groups (p < 0.05). Latency was shortest in the autograft group (2.8 ± 0.9 ms), followed 

by hybrid PGA (4.3 ± 1.7 ms), the control (4.4 ± 0.4 ms), and PGA group (6.6 ± 2.8 ms) (Fig. 

7G). Latency was significantly shorter in hybrid PGA than PGA groups (p < 0.01).  

 Retrograde tracer examinations revealed DiI and DiO-positive motor neurons in both facial 

nerve nuclei (7N) and hypoglossal nuclei (12N) in the control group (Fig. 8A and B). On the 

other hand, autograft, PGA, and hybrid PGA groups, DiI and DiO-positive motor neurons were 

observed in both 7N and 12N with double innervation (Fig.8C-J), indicating that the double 

innervation of mimetic muscles in 7N and 12N. 

 

Discussion 
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Although the histopathological results of this study showed that the number of myelinated fibers 

of hybrid PGA group was unable to reach to that of autograft group, and the regenerated axonal 

thickness of hybrid PGA was comparable to that of autograft group, and the thickness of the 

myelin sheath was thicker than that of PGA group. The physiological results by CMAP showed 

that hybrid PGA-treated rats showed a significantly greater amplitude value than PGA-treated 

rats, and the amplitude value was comparable to that of autograft rats. These results 

demonstrated that ASCs in conduits promoted nerve regeneration and thicker myelin-sheath 

formation after nerve conduits bridged nerves by end-to-side neurorrhaphy. Especially, 

physiological examination was considered to show a clinical significance that the nerve 

regeneration of hybrid PGA group was similar with that of the autograft group. Although the 

number of regenerated myelinated fibers of the hybrid PGA group was lower than that of the 

autograft group, in the g-ratio representing the axonal myelination,26 there was no significant 

difference between these two groups, indicating that the quality of the regenerated nerve of the 

hybrid PGA group was comparable to that of the autograft group. 

 The retrograde results proved that end-to-side neurorrhaphy allowed regenerated nerves to have 

double innervation by functional facial and hypoglossal nerve neurons. Previously, experiments 

on retrograde tracers from whisker pads and tongues are performed in a model similar to that of 

this study for investigating interactive nerve regeneration.13,27 Referring the results of the 
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references, the authors speculated that this study’s model also proved no facial complete 

paralysis, indicating that IPJG provided double innervation to the mimetic muscles. 

Previously, hybrid artificial nerve conduits containing ASCs are investigated in rats with sciatic 

nerve deficit. 28 Although ASCs are unable to survive through 2 weeks after transplantation, they 

are considered to promote nerve regeneration by secreting neurotrophic factors such as nerve 

growth factor (NGF),29 brain-derived neurotrophic factor (BDNF)30 and vascular endothelial 

growth factor (VEGF)31 in the early post-transplant period. ASCs reportedly transform into 

Schwann-like cells with exudate released from damaged sciatic nerve in rats,32 and the 

transformation was considered to be performed by secreted NGF, BDNF, and neurotrophin 3 

from healthy Schwann cells in the deficient nerve. Therefore, the mechanism of ASC-promoted 

nerve regeneration in this study might consist of two serial paracrine actions; (1) the release of 

neurotrophic factors from the grafted ASCs in artificial nerve conduit and (2) the transformation 

of ASCs into Schwann-like cells with released neurotrophic factors from facial and hypoglossal 

nerves at the host sites where epineural windows were made by end-to-side neurorrhaphy.  

These experimental models were incomplete paralysis models and suitable for investigating the 

efficacy of neural supercharging from the hypoglossal nerve to the facial nerve, because IPJG 

procedure is a technique for an incomplete facial paralysis in clinical cases. Classical IPJG 

technique contains the axotomy of the hypoglossal nerve. However, the subsequent development 

of basic research on end-to-side neurorrhaphy highlights new techniques such as the 
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fenestrations of the epineurium and the perineurium, and end-to-side neurorrhaphy without the 

host-site axotomy. Nerve fiber influx is observed in the regenerated nerves treated by these 

techniques.33,34 Axotomy is reported to promote collateral spouting.35 In this study, epineural 

windows were made by a technique similar to IPJG method reported by Ueda et al.,5 because the 

technique could avoid damaging the functions of the residual facial nerves, or the hypoglossal 

nerve, which are known to be the source of supercharging. Therefore, this study performed 

neurorrhaphy with the technique meticulously for reducing the risk of axonal damage. Since the 

murine hypoglossal nerve lies deeply within the cervical region and end-to-side neurorrhaphy 

with a 1-mm diameter artificial conduit could be difficult, this study was able to successfully 

perform the procedure with untied sutures for both the hypoglossal nerve and facial nerve sides. 

Further studies including an investigation on differences in nerve regeneration between axotomy 

and non-axotomy groups and investigations on comorbidities such as the atrophy of the tongue 

were required. 

 This study performed a 7-mm IPJG in a rat facial nerve paresis model and obtained favorable 

outcomes in hybrid PGA group. However, a nerve bridge of around 50 to 70 mm in length will 

be required in clinical use. Currently, there is no data showing the size of nerve deficit where a 

hybrid conduit is effective. Future research using larger experimental animals with longer 

artificial nerve conduits is needed to confirm the limit of the range where regeneration can be 

achieved. This is the first report of end-to-side nerve neurorrhaphy with hybrid artificial nerve 
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conduits containing ASCs. Although the regeneration of myelinated fibers within the central part 

of the graft in all treatment groups was observed, the morphological data of the buccal branch 

including the control group was important in the recovery of facial nerve paresis. Collecting no 

buccal branch in this study, the authors will consider collecting the buccal branch in the future 

study. The regeneration of myelinated fibers within the central part of the graft in all treatment 

groups was observed, and these morphological data indicated that ASCs promoted nerve 

regeneration even in the artificial nerve conduits, which was used end-to-side neurorrhaphy. 

 

Conclusion 

This study successfully demonstrated end-to-side neurorrhaphy for the facial and hypoglossal 

nerves with a hybrid PGA nerve conduit containing ASCs, which promote nerve regeneration for 

the neurorrhaphy. This study clarified that the technique could potentially come closer to 

conventional IPJG techniques with autologous grafts. 
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