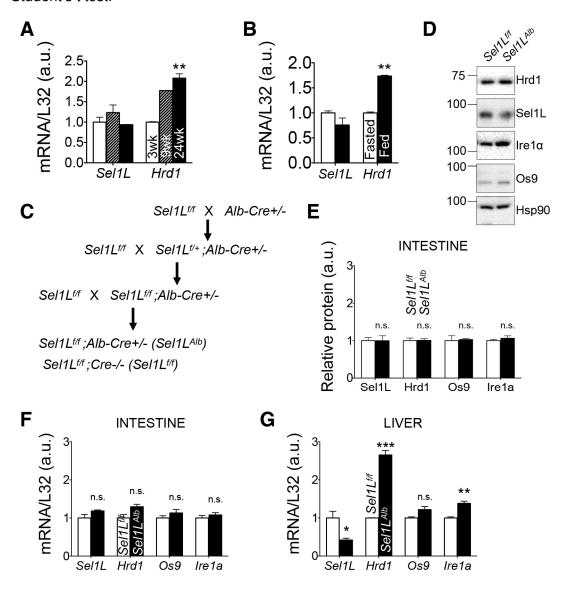
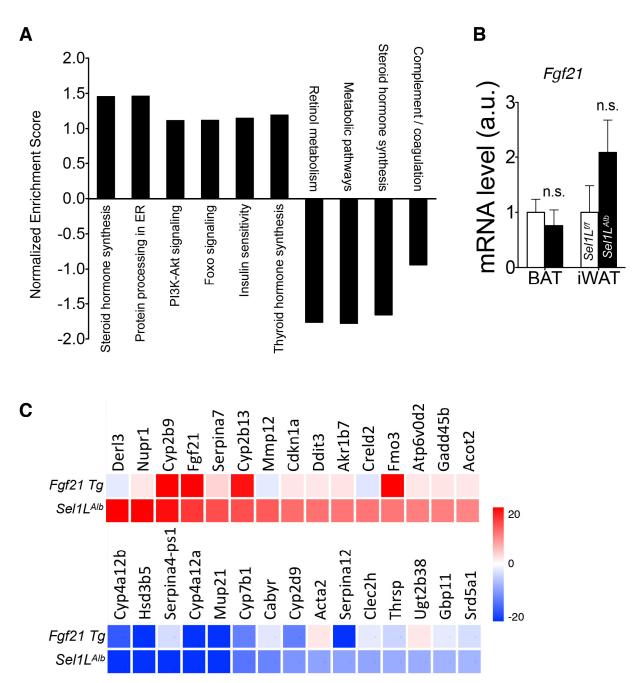
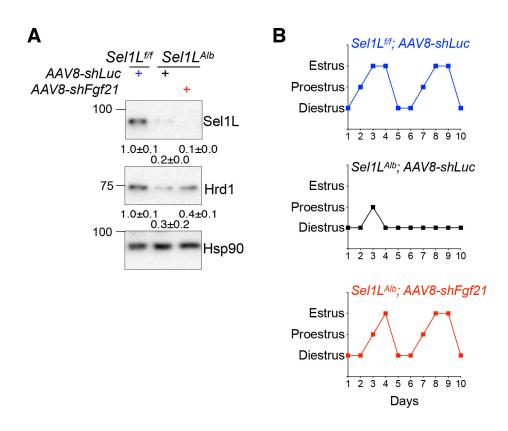
## **Appendix**


## Hepatic Sel1L-Hrd1 ER-Associated Degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH

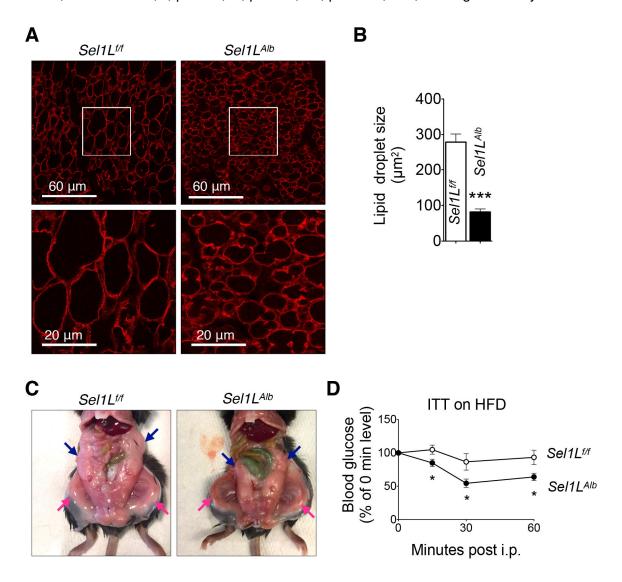
Asmita Bhattacharya<sup>1,2,8</sup>, Shengyi Sun<sup>3</sup>, Heting Wang<sup>4</sup>, Qiaoming Long<sup>5</sup>\*, Lei Yin<sup>1,8</sup>, Sander Kersten<sup>6</sup>, Kezhong Zhang<sup>7</sup>, Ling Qi<sup>1,8</sup>\*


## Table of contents

| Appendix Figures S1 | 2 |
|---------------------|---|
| Appendix Figures S2 | 3 |
| Appendix Figures S3 | 4 |
| Appendix Figures S4 | 5 |


**Appendix Figure S1.** Generation of liver-specific Sel1L-Hrd1 ERAD deficient mouse model. (A) mRNA levels of ERAD genes (*Sel1L*, *Hrd1*) in the livers of WT mice at 3, 9 and 24 weeks of age (n=3-4 per group, 2 independent repeats). (B) mRNA levels of Sel1L-Hrd1 ERAD genes in the livers of 10-week-old WT mice under fasted (overnight) or fed conditions (n=3-4 per group, 2 independent repeats). (C) Schematic breeding plan for generation of liver-specific Sel1L-knockout mouse model. (D-F) Western blot analysis (D), quantitation (E) and qPCR analysis (F) of ERAD genes (*Hrd1*, *Sel1L*, *Ire1α*, *Os9*) in small intestines of *Sel1L<sup>ff</sup>* and *Sel1L<sup>Alb</sup>* mice (n=3 per group, 2 independent repeats). (G) qPCR analysis of ERAD genes (*Hrd1*, *Sel1L*, *Ire1α*, *Os9*) in the livers of 9-week-old *Sel1L<sup>ff</sup>* and *Sel1L<sup>Alb</sup>* mice (n=6 per group, 2 independent repeats). Values, mean ± SEM; \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001, n.s., not significant by Student's t test.




Appendix Figure S2. Transcriptomics analysis of Sel1L-Hrd1 ERAD deficient liver. (A) KEGG pathway Gene Set Enrichment Analysis (GSEA) of differentially expressed hepatic genes of p<0.05 and fold change >1.9. (B) qPCR analysis of Fgf21 in brown and inguinal white adipose tissues (BAT, iWAT) of 9-week-old mice (n=3 per group, 3 independent repeat). (C) Heatmaps of top 15 significantly upregulated and downregulated genes in  $Sel1L^{Alb}$  livers and their expression levels in Fgf21 Tg livers (n=3 per group). Ribosomal L32, loading control for qPCR and RT-PCR analysis. Values, mean  $\pm$  SEM; \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001, n.s., not significant by Student's t test.



Appendix Figure S3. Fgf21 knockdown partially reverses the phenotypes of  $Sel1L^{Alb}$  mice. (A-B) Data from the rescue experiments where 5-week-old  $Sel1L^{flf}$  and  $Sel1L^{Alb}$  mice were injected i.v. with AAV8-shFgf21 or control AAV8-shLuc: (A) Western blot analysis of hepatic Sel1L and Hrd1, 3 weeks after injection (n=3 mice each). (B) Representative estrus cycles 3 weeks after injection (n=5-6 per group). Hsp90, loading control for Western blots. Values, mean  $\pm$  SEM; \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001, n.s., non-significant by 2-way ANOVA analysis.



**Appendix Figure S4.** Hepatic ERAD deficient mice show resistance to diet induced weight gain. (A-B) Confocal immuno-stained images (A) and quantitation (B, 100 droplets per image) of perilipin in inguinal white adipose tissues (iWAT) of 8-week-old mice (n=3 per group, 2 independent repeats). (C) Representative images of adipose tissues in male mice (n=4 per group) depicting difference in color and amount of WAT after 9 weeks of HFD feeding. (D) Insulin tolerance test (ITT) after 6 weeks of HFD (n=3-4 per group, 2 independent repeats). Values, mean ± SEM; \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001, n.s., non-significant by Student's t test.

