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Summary 

Analyses of three-dimensional slope failures can be elaborate because of the complexity owed to 

the geometry of the failure mechanism that needs to conform to an admissible kinematics of the 

slope collapse. This admissibility is imposed by the soil limit state condition, the normality 

plastic flow rule, and the boundary conditions. The kinematic approach of limit analysis is 

employed, and a rotational 3D slope failure is revisited.  The study leads to the conclusion that 

some geometric constraints used in previous studies limit the range of admissible mechanisms 

resulting in overestimating stability factors. A set of results is presented that was obtained using 

an algorithm that allowed eliminating limitations present in previous studies. The largest 

improvements in the solutions were found for undrained failures of narrow slopes. For a 30° 

slope limited in width by the width-to-height ratio of 0.6, the stability factor calculated in 

previous studies overestimated the current calculations by nearly 39%.  This overestimation is 

smaller for drained failures and it drops significantly with an increase in the width of the failure 

mechanism. 
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1. INTRODUCTION 

Safety assessment of slopes is an important exercise in geomechanics. Typical stability analyses 

involve two-dimensional considerations, but in many cases a three-dimensional analysis is called 
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for. For example, excavation slopes or soil slopes limited in width by a rock outcrop require 

three-dimensional analyses if an accurate assessment is needed.  

 

Observations of failure surfaces in clays were documented as early as 1846 by Collin1, but 2D 

analyses of stability were not introduced until the 20th Century (Fellenius2, Taylor3, Drucker and 

Prager4). Three-dimensional analyses of stability of slopes can be grouped into traditional limit 

equilibrium methods, limit analysis, and numerical approaches such as finite element analysis.  

The 3D analyses were first developed for undrained failures, as the mechanisms in 

incompressible materials are easier to construct (Baligh and Azzouz5, Gens et al.6). The early 3D 

analyses for pressure-dependent materials were based on traditional limit-equilibrium slice 

methods extended to 3D failures7,8,9. Drescher10 presented a one-block collapse mechanism in a 

pressure-dependent material, while a 3D multi-block limit analysis was presented by 

Michalowski11. Leshchinsky et al.12 developed a rotational mechanism in pressure-dependent 

materials using a limit equilibrium approach, with a kinematically admissible mechanism arrived 

at through a variational approach. The outcome of that approach was equivalent to kinematic 

limit analysis.  A rotational mechanism was also considered by De Buhan and Garnier 13. A 3D 

rotational mechanism was postulated by Michalowski and Drescher14, which was used in a series 

of related publications15, 16, 17, 18.  More recently, the variational approach to finding the critical 

failure surface was revisited by Zhang et al.19. While purely rotational mechanisms may not 

necessarily be the most critical20, the rotational collapse appears to be more critical than other 3D 

mechanisms suggested throughout the literature.   

 

Finite element analysis of two- and three-dimensional slope failures was considered throughout 

the literature21,22,23,24, while the finite element implementation of limit analysis for the purpose of 

safety assessment of slopes (3D) was also presented in recent years25,26. Numerical approaches 

have advantages of accounting for soil inhomogeneities and not having to predetermine the mode 

of failure. However, when it comes to assessment of stability, they also come with some 
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disadvantages.  For example, at the time of stability loss, the solution does not converge in the 

finite element analyses, and a lack of convergence in a prescribed number of iterations is often 

considered as a criterion for reaching instability. This is not an elegant procedure, though it has 

proved to be effective. An advantage of using finite element implementation of limit analysis is 

in its ability to find both the upper and lower bounds to the true solution, whereas the more 

common “analytical” method can be used effectively only with the kinematic approach of limit 

analysis.  It is not uncommon, however, that a well-chosen mechanism in the analytical approach 

can yield a better solution to a stability measure than the finite element approach15,19,27.   

 

The slope failure mechanism considered in this paper can be applied to slopes with arbitrary 

limitations on the slope width.  Failing mass in natural slopes, particularly hillside slopes, is 

often constrained by bedrock22,23, while the kinematics can also be affected by a rock outcrop 

and the terrain topography28.  These kinematic constraints are not considered in this paper, 

although the limitation on the depth of the mechanism can be easily introduced into the analysis 

by placing a proper constraint on the optimization process. 

 

This paper’s focus is on the kinematic approach of limit analysis in slope stability considerations. 

In particular, the rotational failure mechanism is revisited to assess the source of differences in 

the outcomes of analyses coming from different studies, but based on the same mechanism of 

failure. The kinematic approach is described briefly first, followed by the description of the 3D 

collapse mechanism and the geometric intricacies in the mechanism that are likely to be the 

source of discrepancies in the results published throughout the literature.  

 

2. KINEMATIC LIMIT ANALYSIS APPLIED TO SLOPES 

2.1. Material model and limitations of the method 

Limit analysis has been widely applied in stability of structures and plastic forming of metals 

(Hill29), followed by applications in geotechnical engineering (Drucker and Prager4, Salençon30, 
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Chen31). The fundamental assumption in the analysis is the perfectly plastic behavior of the 

material, described by a convex yield condition and the normality plastic flow rule.  This 

assumption allows using the postulate of maximum plastic work, which, in turn, allows proving 

the theorems of limit analysis. The yield criteria for metals are pressure-independent, and the 

outcome of application of the normality flow rule is incompressible plastic flow, which is 

consistent with experimental observations for metals. With yielding of geomaterials exhibiting 

pressure dependency, the associative (normality) flow rule leads to dilative plastic deformation, 

typically overestimating the observed volumetric strains. Application of the non-associative flow 

rule to geomaterials was considered early by Mróz32.   

 

Plastic deformation of geomaterials does not conform to the normality flow rule (typically, 

normality law overestimates volumetric deformation), and the reason for using associativity in 

limit analysis is purely mathematical: without the normality flow rule, the theorems of limit 

analysis cannot be proved. Hence, the associativity of plastic flow is needed for the solutions to 

boundary value problems to be strict lower or upper bounds to a true solution. The kinematic 

approach is used in this paper, and we refer to the theorem used as the kinematic theorem of limit 

analysis. This theorem is more commonly referred to as the upper-bound theorem, but this term 

is ambiguous. This is because the outcome of application of this theorem can be either an upper 

bound, for instance, when the active limit load is calculated, or a lower bound when a passive 

force (reaction) is sought. Whether the material obeys associativity or not, it can be proved that 

this approach yields a rigorous bound to the true solution. This was shown by Redenkovic33 and, 

with an intuitive graphical interpretation, by Palmer34. For this very same reason, the normality-

sliding rule was used in problems with frictional boundary conditions, where the true sliding rule 

made the analytical solution not possible (Collins35, Mróz and Drescher36, Michalowski and 

Mróz37).  
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Limit analysis is an approximate method, but it yields a rigorous bound to the true solution. 

However, not every stability problem can be addressed with limit analysis. This is because the 

theorems of limit analysis, strictly, only allow calculations of a bound on an integral of the rate 

of work of the unknown load, and not every boundary condition allows extracting the load from 

this integral. For instance, a limit force on a footing can be found using limit analysis if the 

boundary condition is given as a rigid translation of the footing, but if the kinematic boundary 

condition is given in terms of rotation, one can only find a limit moment, but not the force.  This 

is one of the limitations of the method. Another limitation follows from the integral form of the 

work rate balance, making it possible to find limit forces (or moments), but not their 

distributions. The stress field cannot be determined either. Finally, only incipient stability 

problems can be tackled, and no displacements or progressive failure can be tracked with 

confidence. The formulation of the slope stability problem involves a static boundary condition, 

most typically a stress-free boundary.  

 

2.2. Equilibrium in kinematic limit analysis 

The common form of the work rate balance equation used in the kinematic approach can be 

written as 

 [ ]pl
ij ij i i i i i i

V L S V

dV T v dL T v dS X v dVσ ε + = +∫ ∫ ∫ ∫   (1) 

where the two terms on the left-hand side represent the rate of plastic work dissipation (internal 

work), and the two terms on the right-hand side depict the rate of external work (see Notation for 

explanation of symbols). The first term on the left-hand side represents the work dissipation rate 

in volume V (due to plastic strain within the volume), and the second one is the dissipation on 

kinematic discontinuity surfaces L. The first term on the right-hand side represents the work rate 

of traction vector Ti on boundary S of the mechanism, and the second term is the work rate of 

distributed forces Xi in volume V (e.g., gravity load).  The kinematic theorem indicates that the 

left-hand side (the rate of plastic work) is not smaller than the work rate of the true external loads 
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(right-hand side) in any kinematically admissible mechanism of plastic deformation. 

Manipulation of Eq. (1) allows one to find a rigorous bound on an unknown limit load. For 

example, in the case of a footing on boundary S, one could find an upper bound to the footing 

limit load (integral of traction Ti on boundary S), if the velocity on this boundary, vi, was 

constant (rigid translation). However, the left-hand side of the balance in Eq. (1) is calculated 

based solely on the yield condition and normality flow rule applied to the postulated failure 

mechanism; hence, in general, stress field ijσ  does not satisfy equilibrium. Therefore, Eq. (1) 

cannot be considered the principle of virtual work for a deformable body. For a rigid-body 

translational mechanism, however, the first term in Eq. (1) is zero, and the remaining terms 

assume the form of the principle of virtual work for a rigid-body mechanism. Consequently, the 

equilibrium of forces (not stresses) will be enforced if Eq. (1) is used to calculate an unknown 

force in a rigid block mechanism. This was shown explicitly by Michalowski11 (see also 

Drescher and Detournay38 and Salençon39). Similarly, global equilibrium of moments will be 

enforced in a rigid rotational mechanism.      

 

3. ROTATIONAL 3D FAILURE MECHANISM 

There are relatively few limit analysis solutions to slope stability that include three-dimensional 

mechanisms of failure in pressure-dependent materials. The early ones are the translational 

mechanisms, including the classical wedge-type failure often exploited in rock mechanics with a 

limit equilibrium type of solution40, a single-block mechanism by Drescher10, and a multi-block 

mechanism by Michalowski11. A rotational mechanism of slope failure was used in limit analysis 

by De Buhan and Garnier13 and by Michalowski and Drescher14. A special case of the 

mechanism postulated by Michalowski and Drescher14 was arrived at earlier by Leshchinsky et 

al.12, and it was exploited further more recently by Zhang et al.19. The primary method used by 

Leshchinsky et al.12 was the limit equilibrium method with the variational approach used to 

optimize the mechanism of failure. The kinematics in these rotational mechanisms is plane, but 

the geometry of the failure surface is three-dimensional.  
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3.1. Curvilinear cone failure surface  

A curvilinear cone failure surface was postulated in Michalowski and Drescher14 by requiring 

that all radial cross sections of the cone are circles, and the trace of the cone on the plane of 

symmetry is governed by two log-spirals 

 

 0( ) tan
0( )r r e θ θ φθ −=   (2) 

 
 0( ) tan

0( )r r e θ θ φθ − −′ ′=   (3) 

 

with r0 and r0' illustrated in Fig. 1. Effectively, this surface is generated by revolving a circle of 

variable radius R(θ) 

 ( ) ( )( )
2

r rR θ θθ
′−

=   (4) 

about an axis passing through center O.  The central line of the generated curvilinear cone is 

described by radius rc(θ) 

 ( ) ( )( )
2c

r rr θ θθ
′+

=   (5) 

 

With the material strength described by the Mohr-Coulomb criterion, such a surface forms an 

admissible failure surface in the rotational mechanism as it assures that the vector of velocity is 

inclined at internal friction angle φ to the conical surface at every point of the surface. Such 

surface was earlier postulated in a translational mechanism under square and rectangular 

footings41, and was more recently used to analyze passive pressure on retaining walls42. This 

surface can also be modified to account for pressure-dependent geomaterials with non-linear 

strength envelopes43,44. Since its inception, the 3D slope failure mechanism postulated14 was 

adopted in many slope stability studies. The mathematical description of this mechanism is 
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redeveloped here to remove some of the restrictions, and to allow for finding more critical failure 

surfaces. This new and more general algorithm is also simpler than the one originally 

presented14.   

 

In the polar co-ordinate system ρ,θ  the contour of the slope can be described as a piece-wise 

linear function rs(θ) (see Fig. 1) 

 

 ( )
( )

0 0
0 B

h h
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h h
C h

sin ,
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+= < ≤ = +
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  (6) 

where  

 0( ) tan
0

h
hr r e θ θ φ−=   (7) 

and 

 h h

h h

sinarctan
cos cotB
r H

r H
θθ

θ β
 −

=  + 
  (8) 

   

and θ0, θh, and θC are independent geometrical parameters (θC = θh for toe failures). The 

mechanism in Fig. 1 differs from that in Michalowski and Drescher14 in the following detail: the 

center line rc(θ) of the curvilinear cone intersects the slope (rc > rs, see Eqs. (5) and (6) for rc and 

rs), whereas in the former the surface was limited to cases where its center line (Eq. (5)) could be 

tangent to the slope surface, but could not intersect the slope. This limitation was implied by an 

intuitive conjecture that a critical mechanism will not have “overhanging” regions in the 

stationary portion of the slope. However, it was found that for some combinations of slope 

geometry and material properties, the most critical mechanism is one where the center line of the 
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cone intersects the slope (rc > rs), as indicated in the upper portion of the slope in Fig. 1.  If an 

undrained failure is considered, the shape of the failure surface in Fig. 1 becomes a torus.  

 

The slope has a stress-free boundary, and the collapsing block rotates as a rigid body, hence there 

are only two non-zero terms in Eq. (1): the rate of work dissipation D along the failure surface 

and the rate of work of the soil weight Wγ  

 [ ]i i i i
L V

T v dL X v dV=∫ ∫   (9) 

or 

 D Wγ=   (10)  

We first derive an expression for term Wγ. A new algorithm is developed for calculating Wγ in 

order to include cases with rc > rs. A general expression can be written as 

 

 cos
V

W v dVγ γ θ= ∫   (11) 

where γ is the soil unit weight, v is the velocity magnitude, θ  is the angle between the velocity 

and the gravity direction, and V is the volume of the rotating block. The infinitesimal volume 

element shown in Fig. 1 (hatched stripe) is calculated as 

 

 2 2( )cdV R r d dρ ρ ρ θ= − −   (12) 

 
With velocity magnitude v given by v = ωρ (ω - angular velocity about axis through point O) and 

its direction perpendicular to ρ, one obtains 

 

 h

0 s

2 2 2
c2 cos ( )

r

r
W R r d d

θ

γ θ
ωγ ρ θ ρ ρ θ= − −∫ ∫   (13) 
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where the lower and upper radial integration limits rs and r are defined in Eqs. (6) and (2), 

respectively. A general expression for the rate of work dissipation along a failure surface can be 

written as  

 

 cos
S

D cv dSφ= ∫   (14) 

where c is cohesion, φ is the internal friction angle and S is the area of the failure surface. With 

the infinitesimal surface element dS (Fig. 1)  

 

 
2 2cos ( )c

RdS dl da d d
R r

ρ ρ θ
φ ρ

= =
− −

  (15) 

 

the rate of work dissipation can be calculated as 

 

 
( )

h

0 s

2

22
c

2
r

r

RD c d d
R r

θ

θ
ω ρ ρ θ

ρ
=

− −
∫ ∫   (16) 

where the lower and upper radial limits rs and r are defined in Eqs. (6) and (2), respectively. 

Substituting the expressions in Eqs. (13) and (16) into Eq. (10), one can determine the upper 

bound to the stability factor defined as  

 f
HN
c
γ

=   (17) 

or a lower bound to its reciprocal, often referred to as the stability number3 

 
1

n
f

cN
N Hγ

= =   (18) 

The best solution is found through minimization of Nf  with angles θ0, θC, θh, and ratio 0 0/r r′  

being variable. If ratio 0 0/r r′  is restricted to 0 0/ 0r r′ ≥ , the critical mechanism has a finite 
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width, with the critical solution typically when 0 0/ 0r r′ = . However, it is counterintuitive that a 

3D solution would not approach the 2D solution in the absence of any restriction on the width of 

the failure. The cause of this peculiarity is presumably in that the curvature of the failure surface 

in the central cross-section (Fig. 1) is not independent of the curvature in the cross-section 

perpendicular to the plane of Fig. 1.  To remove this limitation, an alternative mechanism was 

developed (Michalowski and Drescher14), where negative ratio 0 0/r r′  was allowed. The 

respective mechanism is illustrated in Fig. 2. The log-spiral in Eq. (3) is now replaced with 

 

 0( ) tan
0( )r r e θ θ φθ −′ ′= −   (19) 

With ratio 0 0/r r′  dropping to large negative numbers, the size of the circular cross-section 

(shaded area in Fig. 2(a)) increases (curvature decreases), whereas the curvature in the plane of 

symmetry is not coupled with this change. Consequently, the solution to the stability factor 

approaches an asymptote with a decrease in ratio 0 0/r r′ , but this asymptotic solution is not equal 

to the 2D solution. For example, for a 45-degree slope and φ = 15°, the asymptotic solution is 

about γH/c = 14.11, whereas the 2D solution is γH/c = 12.05.  

 
Based on a different premise (limit equilibrium and variational approach to finding the critical 

solution), Leshchinsky et al.12 arrived at a similar failure surface, albeit with two distinct 

restrictions. Although their analysis included a different set of geometric parameters, the two 

restrictions, in terms of parameters used in this paper, were: 0 0/ 0r r′ = , i.e., the upper log-spiral 

in Fig. 1 is reduced to a point, and rc  ≤  rs, i.e., the center line of the curvilinear cone cannot 

intersect the slope. Leshchinsky et al.12 reported their 3D results in a graph as a stability number 

(Eq. (18)); their solution is compared in Fig. 3 to the 3D asymptotic solution calculated based on 

the alternative mechanism shown in Fig. 2, and to the 2D solution. Not surprisingly, the 2D 

solution yields the more critical outcome than either of the 3D solutions (the higher the stability 
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number the more accurate the result as the kinematic approach yields the lower bound to the 

stability number in Eq. (18)). 

 

3.2. A mechanism with an insert   

In order to allow the 3D solution to approach the 2D solution in the absence of restrictions on the 

size of the mechanism, an insert with 2D geometry is included, as shown in Fig. 4. Such a 

modification was used earlier by Baligh and Azzouz5 and Leshchinsky and Baker45 in the limit 

equilibrium analysis, and also by Michalowski and Drescher14 in the limit analysis approach. The 

reader will notice the “overhanging” region in the stationary material when the center line of the 

curvilinear cone intersects the slope (rc >  rs). The work dissipation and the work rate of the soil 

weight in the insert were calculated using a well-known procedure31, and the respective 

expressions are not reproduced here. Figure 5 illustrates the trace of three possible variations of 

the collapse mechanism: toe failure, below-toe failure, and the face collapse.  Depending on the 

limitation on the width of the mechanism, the most critical toe and below-toe mechanisms may 

include the insert, but the face failure mechanisms never do.  This is illustrated in an example 

solution in Fig. 6 for a 60-degree slope and φ = 30°. Without any limitation on the mechanism 

width, the failure pattern tends to a 2D mechanism reaching the toe (or below the toe for small 

slope inclinations). In this particular case, the stability number (Eq. (18)) from the 2D solution is 

0.062. Once the limitation on the width is imposed, the plane insert in the most critical 

mechanism is progressively reduced with a drop in the mechanism width (drop in ratio B/H; B –

 width, H – slope height), until the 2D insert is reduced to zero (at about B/H = 0.78). With 

further decrease in the width of the mechanism, the critical toe mechanism (without insert) 

slightly changes its shape due to width reduction, until such ratio (B/H)* where an admissible toe 

mechanism can no longer be constructed. In this particular example, this occurs at B/H = 0.65, 

beyond which only a face mechanism can fit into the narrow space. This is why the critical face 

mechanisms do not include plane inserts. The dimensionless width at that transition is defined as 
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(B/H)*, with associated stability number *
nN . For this specific example: *

nN = 0.032. The stability 

number for narrower slopes can be simply determined from 

 
*

* *
*n n

B
c H BHN N
H B HB

H
γ

 = =  
  

 
 

  (20) 

where B/H is the limitation on the slope width (B/H < (B/H)*).  Because the starred quantities are 

constant for a given slope, Eq. (20) is linear in B/H, as illustrated by the dashed line in Fig. 6. 

The dots on the dashed line represent independent computations for varying heights h (h < H) of 

the mechanism (see Fig. 5 for h). 

 

4. CALCULATED RESULTS 

An upper bound to the stability factor in Eq. (17) was calculated using the work rate balance in 

Eq. (10) with the two terms described in Eqs. (16) and (13). Additionally, the respective terms 

for the plane insert31 were added to account for wide mechanisms. The variable parameters in the 

process of minimizing the stability factor were angles θ0, θh, θC (the latter for below-toe failure 

only), and ratio 0 0/r r′ (see Fig. 1). Angles θi were varied with a minimum increment of 0.01° and 

ratio 0 0/r r′was varied with a minimum of 0.001. The iteration was stopped when the difference 

between the two consecutive solutions was less than 10-6.  The first set of results is presented in 

Fig. 7.  Stability numbers (reciprocal of stability factors) are shown as functions of tanφ for slope 

angles varying from 30° to 90°, and for different limitations B/H on the width of the mechanism. 

Such presentation is convenient, because it allows for easy reading of the factor of safety F 

defined as  

 

 tan
tand d

cF
c

φ
φ

= =   (21) 
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where subscript d stands for developed (mobilized) strength parameters at failure. This procedure 

is described briefly in the Appendix.  

 

In the case of undrained failure, the failure surface reduces to a torus. Numerical values of the 

stability factors for undrained failure γH/su are compared in Table 1 to those in Gao et al.17 and 

Zhang et al.19 (Zhang et al. presented numerical values of stability numbers, so they were 

converted into stability factors). The results given in [17] follow the analysis presented originally 

in Michalowski and Drescher14, though Gao et al.17 used a more efficient minimization 

procedure. The largest difference in the results produced in this paper and those in [17] and [19] 

is for narrow slopes. For instance, for B/H = 0.5 and undrained failure, Gao et al.17 overestimate 

the result in this study by about 33% for a gentle slope of 30°, and by about 27% for a vertical 

slope. The largest overestimation of almost 39% was found for a 30-degree slope and B/H = 0.6. 

However, this overestimation drops to no more than 2% when B/H = 3. Zhang et al. (2016) did 

not report the results for B/H < 1.5.  Because the kinematic analysis yields an upper bound to the 

stability factor, the lower estimates in Table 1 are more accurate. The most likely reason for 

overestimating the results in Gao et al.17 and Zhang et al.19 is excluding mechanisms that would 

allow the center line of the torus to intersect the slope. This limitation on the geometry of the 

mechanism was imposed in both papers17,19, even though a different method of solution was 

used. This limitation was also used in the paper of Michalowski and Drescher14, but this 

restriction is relaxed in this study. A graphical illustration of this limitation is presented in Fig. 8 

using an example of undrained failure of a 30° slope limited to width ratios B/H = 0.5 and 

B/H = 0.8. The said limitation can be mathematically described as   

 

 s cr r≥   (22) 

 

where rs is the radius tracing the contour of the slope given in Eq. (6), and rc is the radius of the 

central line of the torus given in Eq. (5). The central line of the torus is traced with a dashed line 
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in Fig. 8. The geometry of the failure mechanism for H/B = 0.5 is illustrated in Figs. 8(a) and (b) 

with the restriction in Eq. (22) and without, respectively. The most critical mechanism was found 

when the restriction in Eq. (22) is not enforced; it is a toe mechanism illustrated in Fig. 8(b), 

which has the lowest stability factor γH/su
 = 16.65. When the constraint in Eq. (22) is enforced, 

the best failure mechanism appears to be a face failure as in Fig. 8(a), with γH/su = 20.79.  Gao et 

al.’s solution in [17] used the limitation in Eq. (22), and they found the face failure to be critical, 

but their solution appears to be less accurate (γH/su
 = 22.10, Fig. 8(a)), and it overestimates the 

best solution in this paper (Fig. 8(b)) by almost 33%.  Zhan et al.19 did not produce results for 

B/H less than 1.5; they only considered mechanisms with an additional limitation 0r′ = , and 

only toe failures. Calculations revealed that with these two limitations, one cannot fit an 

admissible toe mechanism in a narrow slope such as that with a width ratio B/H = 0.5.   

 

It is interesting to investigate an undrained failure of a slightly wider 30° slope, B/H = 0.8. The 

most critical mechanism found now is an under-toe failure, γH/su
 = 12.17, whereas the solution 

offered by Gao et al.17 is a face failure with γH/su
 = 15.38, a 26% overestimation. If the limitation 

in Eq. (22) is used in the solution offered in this paper, the critical mechanism is a toe failure, 

and with γH/su
 = 14.60 still more accurate than the solution in [17], Fig. 8(c).  The specific 

geometric parameters defining the solutions in Fig. 8 are given in Table 2. The precision of three 

digits after the decimal point in all tables is given only for comparative reasons.    

 

Comparisons of stability factors for φ = 15° and φ = 30° are presented in Tables 3 and 4. In all 

cases the current study provides lower stability factors, but the differences are less than 6% and 

in many cases less than 1%.  

 

In all results presented in the tables, the least upper bound to the stability factor was reported. 

Whether this critical solution is a toe failure, below-toe, or a face failure depends on the 
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combination of the slope inclination angle (β), internal friction angle (φ), and the slope width 

limitation (B/H). The three collapse patterns are marked in the graph in Fig. 9. 

 

4.1. An influence of seepage 

Previous results were presented for slopes with no seepage. In the absence of known specific 

hydraulic conditions, coefficient ru (Bishop and Morgrnstern46) is used as a generic means to 

compare the influence of the presence of pore water pressure for different slopes. This 

coefficient yields the distribution of the pore water pressure, and the work of this pore water 

pressure on the volumetric strain of the soil during plastic deformation can be proved to be equal 

to the work of the buoyancy and the seepage forces47,48. Because the plastic deformation occurs 

only along the failure surface in the mechanism considered, the rate of work of the pore water 

pressure Wu on the volumetric strain of the soil can be calculated as  

 

 u sin
L

W uv dLφ= ∫   (23) 

where u is the pore water pressure determined from given coefficient ru, v is the magnitude of 

velocity jump vector on the failure surface, φ is the internal friction, and L is the area of the 

failure surface. The expression in Eq. (23) was included on the right-hand side of the balance in 

Eq. (10), and the results of calculations are shown in Fig. 10.  
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4.2. An influence of quasi-static seismic force 

Although considering the seismic effects requires dynamics computations, a rough estimate of 

the vulnerability of slopes to seismic shaking can be considered using a quasi-static approach 

where the dynamic effects are substituted with a static horizontal load. The intensity of this load 

is defined by the coefficient of horizontal acceleration kh. The seismic influence is then included 

as additional work done by inertial forces. This rate of work, WS, can be calculated analogously 

to the rate of soil weight in Eq. (11) 

 

 sinS h
V

W k v dVγ θ= ∫   (24) 

This term was included on the right side of the work rate balance in Eq. (10), and the results of 

computations are illustrated in Fig. 11.  

 

5. DISCUSSION 

Kinematic limit analysis is an effective method to assess safety of slopes. Its limitations come 

from difficulties in considering non-homogeneities in material properties and complex 

geometries of slopes. Numerical approaches are more efficient in these cases, e.g., Li et al.25, but 

for simple slopes, the approach presented in this paper typically yields better results15,19.    

 

The focus of the discussion is on the sources of discrepancies in the solution results presented in 

the literature, solutions that come apparently from considering the same failure mechanism. The 

results based on the procedure presented in this paper were compared to those of Gao et al.17 in 

Section 4. Their results were based on the same algorithm as that in [14]. The largest 

discrepancies, up to 39%, were found for narrow slopes failing in an undrained manner. The 

differences, however, became less significant with an increase in the width of the mechanism of 

failure and with an increase in the internal friction angle. More comprehensive comparison is 
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presented graphically in Fig. 12. The results were presented in [17] in terms of the stability 

factor, and they were converted to the stability number in order to have all graphs presented in a 

consistent manner (the bullets are the converted numerical values of stability factors and the 

dashed lines are converted from the graphs in [17]).  

 

Zhang et al.19 have not presented results for narrow slopes, where the discrepancies between the 

results produced in this paper and those in [17] were found to be the largest.  Their 

considerations were subject to three constraints: 0r′ = , rs ≥ rc (see Fig. 1 for r′ , rs, and rc), and 

toe failures only. With these constraints, one cannot fit admissible rotational mechanisms in 

narrow slopes, e.g., H/B = 0.5. The comparison in Fig. 13 is then presented for B/H = 1.5, the 

smallest width for which the results were reported in [19].  

 

When slopes are not subjected to seismic loads, a substantial difference occurs only for very 

steep slopes failing in an undrained manner. If substantial seepage is accounted for (ru = 0.5), the 

considerable difference occurs for very steep slopes and large internal friction angles. When 

slopes are subjected to seismic loads, the results for steep slopes failing in undrained process 

show the largest discrepancy. In all cases the analysis presented in this paper provides more 

accurate results (the kinematic approach yields the lower bound to the stability number, thus the 

larger the stability number the more accurate the solution).   

 

To reveal the causes of discrepancies among different solutions we consider the influence of 

assumptions used in different analyses on the geometry of the critical mechanisms and on the 

outcome in terms of the stability factor. Consider an undrained failure of a vertical slope with 

width defined by B/H = 1.5.  The two graphs (upper and lower) in Fig. 14(a) present a cross 

section of the critical mechanism from the analysis where the inner diameter of the torus was set 

to zero, 0r′ = , and the center line of the torus was not to intersect the slope, rs ≥ rc.  With these 

limitations the algorithm proposed in this paper converged to a minimum of γH/su = 5.41, which 
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is equivalent to a stability number (reciprocal of stability factor) equal to 0.185. This is exactly 

the result reported in [19], where the authors used the two restrictions. The center line of the 

torus forming the failure surface is tangent to the slope crest, which is enforced by limitation 

rs ≥ rc.  The solution illustrated in Fig. 14(b) was obtained when limitation 0r′ =  was relaxed, 

but the restraint rs ≥ rc was still enforced. The solution is now improved, with γH/su = 5.38, the 

same stability factor as reported in [17] where the same limitations were used.  If limitation 

rs ≥ rc  is relaxed but the inner radius of the torus is set to zero, 0r′ = , the solution becomes 

γH/su = 5.37 (Fig. 14(c)), but the best solution is obtained when both restrictions on the geometry 

are removed, as in Fig. 14(d), where γH/su = 5.19. In this particular case, the numbers reported in 

[17] and [19] overestimate the result calculated in this study by only a little more than 4%, but 

the difference becomes much larger for narrower slopes, as shown in Table 1.  

 

6. CONCLUSIONS 

The geometry of the mechanism postulated in the kinematic approach of limit analysis for 

assessing the safety of slopes plays a crucial role. While construction of mechanisms with two-

dimensional geometry is relatively straightforward, three-dimensional (3D) mechanisms can be 

intricate due to their complicated geometry. 3D rotational mechanisms with a failure surface in a 

shape of a curved cone, or a torus for undrained failures, have been used in past studies.  It was 

demonstrated in this paper that two assumptions used in previous studies of 3D slope failures 

lead to limitations that exclude the most critical failure mechanisms for some range of slope 

parameters.  

 

An early example of a rotational 3D collapse pattern was described by Leshchinsky et al.12, and 

it was derived by a variational approach used as a means of finding the most critical mechanism. 

A more general class of admissible failure surfaces can be defined as curvilinear cones, or “horn-

shape” surfaces. They can be generated by rotating a circle of increasing diameter about an 

axis14.  The surface found in [12] is a special case of such a surface when the axis about which 
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the generating circle revolves is tangent to the circle, Fig. 15(a), which is a limitation on the 

multiplicity of admissible surfaces. The second limitation found in earlier analyses14,17 was in the 

requirement that the center line of the generated surface would not intersect the slope. These 

limitations affected the assessment of slope safety, and also did not allow finding admissible 3D 

collapse mechanisms for narrow slopes. The mechanism in the paper by Michalowski and 

Drescher14 was independently postulated based on admissibility of the kinematic field; this 

mechanism was later adopted by others.17 Although the mechanisms in [12] and [14] are based 

on different premises, their geometry is essentially the same, with the exception of the limitations 

already mentioned.  Zhang et al.19, who more recently presented both approaches, pointed out 

that an improvement of the results due to removing the first limitation is negligible for wider 

slopes (B/H  ≥ 1.5). In the study presented in this paper both limitations were removed, 

Fig. 15(d), and it was found that these restrictions have very significant consequences for narrow 

slopes. The largest difference was found for an undrained failure of a narrow slope with 

B/H = 0.6; the stability factor found by Gao et al.17 overestimates the one in this study by almost 

39% (Table 1). Such a large difference was found because removing both limitations widens the 

range of slope parameters for which admissible failure mechanisms can be found. In general, 

substantial differences exist for undrained failures in narrow slopes (B/H ≤ 1.0).  The study by 

Zhang et al.19 did not produce solutions for narrow slopes, because only toe failures were sought, 

and with the limitations imposed on the geometry of the slope collapse, admissible rotational 

mechanisms could not be found. The comparisons of results produced in this study and those 

from previous studies allow concluding that the discrepancies among published results for 3D 

slope stability analyses come from limitations imposed on the collapse mechanisms used in some 

of the approaches. 

 

The solution discussed in this paper falls under the category of semi-analytical as the numerical 

calculations were only used in the optimization phase of the analysis. The numerical approach 

using finite elements in limit analysis49,50 is a method that has some advantages over the semi-
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analytical approach; for example, geometric complexities and material non-homogeneities are 

easier to account for. However, the solutions to homogeneous slopes with simple geometry 

appear to be more accurate when using the semi-analytical approach, as demonstrated in [19]. 

This appears to be true also for other limit-state geotechnical problems27. 
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7. NOTATION 

D -  rate of internal work (dissipated work) 

H - slope height 

L - area of velocity discontinuity surface  

Nf - stability factor γH/c 

Nn - stability number c/γH 

R -  radius of the nonlinear cone cross section 

S -  area of a surface   

iT  -  stress vector 

V -  volume of the mechanism 

Ws -  rate of work of inertial (seismic) forces 

Wu -  rate of work of pore water pressure on volumetric strain of soil  

Wγ -  rate of work of soil weight  

Xi -  distributed load vector 

c -  cohesion of bonded soil  

kh  -  coefficient of horizontal acceleration    

r -  radius of the failure surface at the central cross section 

r’ -  upper radius of the conical surface 

rc -  radius of the curvilinear cone centerline 

rs -  radius defining the contour of the slope 

ru -  pore water pressure coefficient 

su -  undrained shear strength 

[v]i -  velocity jump vector on a failure surface 

vi -  velocity vector  

v -  magnitude of the velocity vector 

γ -  unit weight 
pl

ijε  -  plastic strain rate tensor 
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θ -  angular coordinate 

ρ -  radial coordinate 

ijσ  -  stress tensor 

φ -  internal friction angle 

ω -  angular velocity 
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APPENDIX 

The stability factor or stability number in Eqs. (17) or (18) are often used as the means of 

assessment of the slope safety, but more often the factor of safety in Eq. (21) is required in 

geotechnical design. Extracting the factor of safety from the stability factor (or stability number) 

typically requires an iterative procedure (except in cases of undrained collapse). A convenient 

manner of presenting the results without the need for iterations was shown earlier51.  An 

alternative way is illustrated here, where the stability number is reported as a function of tanφ, as 

in Figs. 7, 10, and 11.  Inferring the factor of safety from the graphs is explained in an example 

illustrated in Fig. 7(b). 

 

Consider a 10-m tall (H) slope, 15 m in width (B), with inclination angle of 60° (β), and the 

following material properties: γ = 17 kN/m3, c = 20 kN/m2, and φ = 15°. Hence tanφ = 0.268 and 

the noncritical dimensionless group c/γH for this (safe) slope is 0.118. Now, mark a point on the 
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graph with coordinates 0.268 and 0.118 (upper open circle), and draw a straight line through it 

and the origin of the chart. Find the intersection point of this line with the curve for β = 60° and 

B/H = 1.5 (lower open circle). The ratio of the length from the origin to the upper circle to the 

length connecting the origin and the lower circle is the factor of safety; in this case F ≈ 1.20.   
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Figure Captions 

Figure  1. Three-dimensional rotational failure mechanism generated by revolving a circle of 

increasing diameter about an axis passing through point O.  

Figure  2. Alternative mechanism generated by revolution of a circle with increasing diameter 

about a chord. 

Figure  3. Comparison of 3D solutions from [12] to the 3D asymptotic solution in this study 

based on the alternative mechanism in Fig. 2. 

Figure  4. Rotational mechanism with an insert with 2D geometry. 

Figure  5. Trace of three types of possible failure patterns. 

Figure  6. Dependence of the failure type on the relative slope width. 

Figure  7. Stability number for slopes as function of tanφ for slopes with inclination 30° to 90°: 

(a) for narrow slopes, B/L ≤ 1.0, and (b) for wide slopes, B/L ≥ 1.5. 

Figure  8. Discussion of critical collapse patterns for undrained failure in narrow slopes (slope 

inclination 30°). 

Figure  9. Dependence of the failure pattern on the slope inclination and the soil internal friction 

angle.  

Figure 10. Stability number for slopes in the presence of seepage for slopes with inclination 30° 

to 90°: (a) ru = 0.25 and narrow slopes, B/L ≤ 1.0, (b) ru = 0.25 and slopes, B/L ≥ 1.5, 

(c) ru = 0.5 and narrow slopes, B/L ≤ 1.0, and (d) ru = 0.5 and wide slopes, B/L ≥ 1.5 

Figure 11. Stability number for slopes subjected to horizontal acceleration: (a) kh = 0.1 and 

narrow slopes, B/L ≤ 1.0, (b) kh = 0.1 and wide slopes, B/L ≥ 1.5, (c) kh = 0.2 and 

narrow slopes, B/L ≤ 1.0, (d) kh = 0.2 and wide slopes, B/L ≥ 1.5, (e) kh = 0.3 and 

narrow slopes, B/L ≤ 1.0, and (f) kh = 0.3 and wide slopes, B/L ≥ 1.5. 

Figure 12. Comparison of calculated stability numbers to those in [17] for slopes of different 

widths.  

Figure 13. Comparison of calculated stability numbers to those in [19] for selected seepage and 

seismic acceleration, for B/H = 1.5. 
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Figure 14. Explanation of the impact of geometrical limitations on the outcome of the analysis. 

Figure 15. (a) The shape of a failure surface with limitation 0r′ = , and (b) failure surface 

allowing  0r′ > , and also permitting the center line (dashed) to intersect the slope.  
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