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Abstract 

We develop heuristic and optimal methods for determining lot sizes when setup cost reductions occur over time due to 
emphasis on continuous improvement, learning effects and incremental process changes. Our heuristic methods are 
intuitiv~'~y appealing, easy to implement, require little information about setup costs, and have low computational burden. 
Computational studies show that choosing the appropriate heuristic yields nearly optimal solutions. Recommendations for 
choosing the appropriate heuristic are also provided. The optimal method developed in this paper is also useful to managers 
for evaluating investments in hardware and/or worker training for setup reduction. Concepts and methods are illustrated 
with numerical examples. Managerial implications of using our policies are discussed. 

1. Introduction 

Over the last several years, focus on the high 
productivity of the Japanese manufacturing sector 
has resulted in efforts to identify and adapt some of 
these methods to other environments. One of the 
factors cited for the responsiveness and efficiency of 
Japanese manufacturing methods is the small lot 
sizes resulting from a constant emphasis on reducing 
setup costs. The adoption of Japanese manufacturing 
techniques and emphasis on continuous improvement 
initiatives has resulted in large reduction in setup 
times and costs being achieved in many industries. 
For example, consider Table 1 which shows the 
trends in die setup times for the same stamping 
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presses over years in two automotive plants (Mc- 
Elroy, 1986, 1987, 1988, 1989, 1990, 1991). 

Suzaki (1987) mentions how setup time reduc- 
tions at a household goods manufacturer were 
achieved over time through engineering efforts such 
as externalizing setup times. Plossl (1985) suggests 
that the benefits of reforms in JIT related manufac- 
turing activities accrue over several years with an- 
nual improvements in the range 2-40%. 

Many initiatives and factors such as emphasis on 
continuous improvement (Schonberger, 1982), incre- 
mental process improvements (Fine and Porteus, 
1989) and learning effects (Chand, 1989; Mekler, 
1993) contribute to decreasing setup costs. Citing 
empirical studies by Rosenberg (1982) and Hollan- 
der (1965) from industry, Fine and Porteus (1989) 
suggest that the cumulative benefits of incremental 
process changes occurring over time can be a major 
source of improvement in manufacturing systems. 
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Table 1 
Trends in die setup times in automotive stamping plants (in minutes) 

Plant Equipment 1986 1987 1988 1989 1990 1991 
(location) (type) 

Honda I1 Semi- 5:14 4:38 3:57 2:49 2:52 2:36 
(Marysville, OH) automatic 
GM-BOC Semi- N / A  N/A 18:16 15:33 10:32 10:47 
(Buick City, MI) automatic 

Learning effects also play an important role in setup 
reductions. Chand (1989) refers to the comments by 
practitioners at an APICS conference: "We in the 
USA do not setup as frequently as the Japanese do 
because our setup costs are high; and, our setup costs 
are high because we do not learn to setup by setting 
up as frequently as the Japanese do". 

The above empirical and anecdotal evidence sug- 
gests that practitioners need appropriate decision tools 
to aid in determining lot sizes when setup costs 
decrease over time due to factors such as emphasis 
on continuous improvement, learning effects and 
incremental process improvements. Further, such 
tools are also useful in evaluating investments in 
such activities. In this paper, we develop both heuris- 
tic and optimal methods to determine lot sizes for 
these environments. 

First we develop a procedure for determining 
optimal lot sizes using net present value methods. 
This procedure requires the use of a dynamic pro- 
gramming based procedure, an approach more diffi- 
cult to comprehend than simple lot sizing proce- 
dures. Like any other optimal procedure, it also 
requires full information regarding all future setup 
costs, which may be difficult to estimate. Under such 
circumstances, practitioners prefer to use effective 
heurisitic policies which are easy to comprehend, 
and are modest in their information and computa- 
tional requirements. Hence we also investigated two 
heuristic policies which are intuitively appealing, 
easy to understand, require little future information, 
and also are of low computational burden. One of 
them is based on the minimum ach~:evable setup cost. 
The other is the cont:Lnuous time version of the well 
known Part Period Balancing method (Zoller and 
Robrade, 1988). Computational resalts show that our 
heuristic policies are very effective. We also present 
insights into their wor~,t case behavior which help in 

identifying situations where the use of a heuristic 
may not be appropriate. Further, our two heuristics 
supplement each other in the sense that while one of 
them performs well in machine intensive (auto- 
mated) situations, the other is suitable for labor 
intensive situations. 

Our paper is organized as follows. The next sec- 
tion provides a review of the relevant literature. In 
Section 3, we provide a mathematical formulation of 
the problem, and develop a method for determining 
optimal lot sizes. It is illustrated with numerical 
examples. We also demonstrate how our method can 
be used to evaluate investments in improving learn- 
ing and/or lowering the limit on the minimum 
achievable setup cost. In Section 4, we describe two 
heuristic policies and provide insights into their worst 
case behavior. Section 5 provides details of our 
computational study which shows how the heuristics 
perform across a broad range of possible scenarios, 
and also suggests when one policy is better than the 
other. Finally, in Section 6, w~ ~,'o~'ide conclusions. 
Secondary aspects such as optimal procedures, ana- 
lytical derivations and detailed computational results 
are provided in the appendi~es. 

2. Literature review 

There are many early studies on the effects of 
learning on lot sizes. Keachie and Fontana (1966), 
Adler and Nanda (1974), Fisk and Ballou (1982), 
Smunt and Morton (1985), Klastorin and Moinzadeh 
(1989), Karwan et al. (1988), among others, ad- 
dressed the problem of determining optimal lot sizes 
when the runtime costs (process costs such as mate- 
rial cost) and/or holding costs decrease due to learn- 
ing effects. Some of these studies t~sed dynamic 
programming procedures to determine lot sizes. Be- 
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cause they used either the cumulative number of 
units produced and/or the cumulative number of 
setups to define the state space, large state space 
requirements limited applicability of their analysis to 
finite horizon situations. 

Chand (1989) addressed a similar problem in a 
pure setup learning environment in which only setup 
costs are susceptible to improvements. Kanvan et al. 
(1988) also studied this situation for a special case of 
learning in setups, in which setup costs decrease 
according to the well known power function (Argote 
and Epple, 1990), and for finite horizons. Chand's 
model (Chand and Sethi, 1990) is useful in environ- 
ments where runtime operations are machine paced 
(hence little scope exists for learning) and setup 
operations are labor intensive. Chand denotes these 
situations as "semi-automatic" environments. His 
study is also limited to finite horizons, but his analy- 
sis permit~ any decreasing setup cost structure. He 
suggests a binary search procedure for determining 
the optimal number of setups. Extending his analysis 
to long planning periods (or infinite horizon situa- 
tions) leads to the conclusion that learning effects 
should be disregarded, and only the minimum 
achievable setup cost should be the basis for lot 
sizing. Chand also suggested a variable lot sizing 
policy (similar to (Replogle, 1988)) as a heuristic, 
but did not explore its effectiveness. Based on aver- 
age cost analysis, Cheng (1991) suggested an opti- 
mal lot sizing policy for finite horizons using numer- 
ical approximation methods. 

Chand and Sethi (1990) recently extended Chand's 
study (Chand, 1989) to a discrete time, dynamic 
demand version of the problem. This formulation 
permits modelling varying demand. Though the basic 
Wagner-Whitin model (Wagner and Whitin, 1958) 
can be used in concept to analyze setup learning with 
varying demand situations, Chand and Sethi (1990) 
developed an efficient forward dynamic program- 
ming procedure which can be used effectively on a 
rolling horizon basis for infinite horizon problems. 
Also, they present decision/forecast horizon results 
which can further reduce both computational effort 
and the amount of demand forecast information 
needed. 

There is also a parallel stream of research for 
determining optimal investments in setup cost reduc- 
tion. Porteus (1985a, 1986) studied the effects on lot 

sizes of investing in setup cost reduction. However, 
the framework used in his studies makes them appli- 
cable to situations in which the entire reduction in 
setup costs occurs immediately (or at some point in 
time), Porteus' results help to identify optimal in- 
vestment strategies when setup cost can be character- 
ized as a logarithmic or power function of invest- 
ment in setup reduction. Billington (1987) extended 
the analysis to situations in which the setup cost is a 
linear or exponential (continuous) function of the 
investment in setup reduction for infinite horizon, 
constant demand problems. However, Melder (1993) 
suggested that the investment opportunities to reduce 
setup costs are discrete, and shows how the Wag- 
ner-Whitin procedure (Wagner and Whitin, 1958) 
can be used to evaluate investments for discrete time, 
varying demand situations. Her approach is useful 
for finite horizon, varying demand situations. 

Our study extends earlier research in two ways. 
First, we develop and then characterize optimal poli- 
cies for lot sizing in infinite horizon situations (such 
as the manufacture of commodity products which 
have stable demand over long periods of time) when 
additional reductions in setup cost persist to occur 
due to factors such as emphasis on continuous im- 
provement, incremental process changes and learn- 
ing. Unlike earlier studies, we use net present value 
methods to capture the effects of variations in setup 
costs over long horizons. Second, we investigate and 
evaluate two heuristic lot sizing policies which are 
intuitively appealing and easy to understand. Our 
methods are also useful for evaluating investments in 
initiatives such as worker learning and training where 
payoffs are not necessarily instantaneous. 

Our research also provides an opportunity to ver- 
ify a suggestion made by Chand (1989) and Karwan 
et al. (1988) about the use of lot size corresponding 
to the minimum possible setup cost as a heurisitic. 
Also, Hadley (1964), based on his computational 
experiments, suggested that the average cost analysis 
is an excellent surrogate for the conceptually rigor- 
ous net present value analysis for lot sizing deci- 
sions. Because we use the net present value analysis 
in our study, our paper provides an opportunity to 
validate his conjecture, albeit in the context of non- 
stationary parameter situ~:t~ons. 

The notation used in the paper is shown in Table 
2. Whenever a parameter is invariant, we suppress 
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Table 2 
Notation 

Acronyms 

CURS 
MINS 
npv 
PPB 

current setup cost lot sizing policy 
minimum setup cost lot sizing policy 
net present value 
part period balancing heuristic 

Parameters and variables 

P 
D 
N 
Stain 
S~ 
r 

h 

b 
R 
T, 
F(i) 

v(ri) 
r~" 
T.;. 
J(i) 

Gcuns(i) 

GMINS(i) 

price per unit 
demand rate 
the setup index (number) at which minimum setup cost is first realized 
asymptotic limit on the setup costs due to technological constraints 
setup cost for the ith setup, S t >I S 2 >I • .. S i >t Si+ ! " " "  > I  Smin = S N = SN+ I " " "  

discount rate 
noncapital holding charges per unit per period 
learning rate. This indicates how fast setup costs decrease. For example, 
a 90% learning rate implies that when the cumulative number of setups 
doubles, the cost for the last setup equals 90% of the median setup cost. 
learning index, ~b -- 2-b 
setup cost reduction factor, Stain~S1 
replenishment interval corresponding to the ith setup, i.e., units ordered equals DT~ 
net present value of all future costs in the optimal policy, discounted to 
the time at which the ith setup occurs (the value of the the optimal policy is given by F(1)) 
npv of costs incurred in the ith setup cycle, discounted to the time at which the ith setup occurs 
optimal replenishment interval for the ith setup 
optimal replenishment interval if all setup costs are equal to  Smi n 

net present value of the optimal policy for the problem in which each setup cost equals S i 

optimal replenishment interval for the problem in which all setup costs equal Si 
net present value of all costs incurred in CURS policy beginning from the 
ith setup, discounted to the time at which the ith setup occurs 
net present value of all costs incurred in MINS policy beginning from the 
ith setup, discounted to the times at which the ith setup occurs 

the subscript. For example, the setup cost for the ith 
setup is denoted by S~. However, if all setup costs 
are equal, then the setup cost is denoted by S. 

3. Problem statement and optimal lot sizing 

Consider a manufacturing environment in which 
setup costs decrease because of investments in worker 
learning and/or emphasis on continuous improve- 
ment. Since the process is assumed to be machine 
intensive, very little or no improvement in runtime 
costs is expected to occur (Chand, 1989). S i denotes 
the setup cost for the ith setup. Because of continu- 
ous improvement and learning effects, 

Sl ~ S 2 ~ S 3 ~  . . .  S i ~ S i +  1 ~ . . .  S,¥(-'Smin ) 

. . . ,  (1) 

where Smi n is the minimum achievable setup cost. 
This is realized at the Nth setup. Let D, P and r 
denote the demand rate, price per unit and the dis- 
count (interes0 rate, respectively, h represents the 
noncapital holding charges per unit per period. Let T~ 
represent the replenishment interval for the ith re- 
plenishment cycle, i.e., the amount ordered or pro- 
duced in that cycle will be DT~ units. V(Ti), the npv 
of all costs associated with the ith cycle discounted 
to the time at  which the ith setup takes place, is 
given as follows: 

V(Ti)=Si+DPTi+ for'Dh(Ti-t)e-'tdt. (2) 

The first term in (2) represents the setup cost for 
the ith cycle. The second term represents the runtime 
costs (such as materials) incurred for the cycle. The 
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third term represents the npv of inventory carrying 
costs (noncapital charges such as material handling 
and warehousing) discounted to the time at which 
the ith setup takes place (note that the interest 
charges for the capital tied up in inventory is implic- 
itly recognized through discounting). We need to 
determine optimal replenishment intervals. The prob- 
lem can be mathematically stated as follows: 

minimize ,=~1 exp{ - r E V(T/), (3) 
j = l  

subject to T~ >t 0 Vi = 1,2, . . . .  (4) 

Eq. (3) states that the sum of net present values of 
costs related to each replenishment cycle (V(T~)) 
discounted to time zero should be minimized. Eq. (4) 
states that the replenishment intervals are nonnega- 
tive. We solve this optimization problem using a 
dynamic programming procedure. Details of the dy- 
namic programming procedure are provided in Ap- 
pendix A. We next illustrate the method with numer- 
ical examples. 

3.1. Numerical examples 

Suppose the demand (D) equals 2000 units per 
year, the initial setup cost ($1) is $310, Smi n - $81.26, 
P -  $10 per unit, r = 20% per year and h = $1.95 
per unit per year. Setup costs are expected to de- 
crease due to emphasis on worker training and con- 
tinuous improvement. For convenience, assume that 
the setup costs can be computed using the well 
known power function shown below (Argote and 
Epple, 1990; Yelle, 1979): 

S i = S, i  -a V{iIS i >I Stain}, (5) 

where $1 is the initial setup cost and b is an index 
characterizing the learning rate (ok). Prior experience 
indicates that the setup costs decline at an 80% 
learning rate. An 80% learning rate implies that 
when the cumulative number of setups is doubled, 
the marginal setup cost reduces to 80% of the cost 
for the median setup. We need to determine optimal 
lot sizes, and the npv of the optimal policy. From 
(5 ) ,  

Learning rate(4,) 

Si 
= ~ r.  Smin} $2 i "-- 0 . 8  = 2 - b  V[llS2i >i . (6) 

From (6), b equals 0.321928. Empirical studies 
(Argote and Epple, 1990) suggest that in most cases 
0 < b < 1. Further, it can be verified that the mini- 
mum setup cost is achieved at the 64th setup. Be- 
cause no further reductions in setup costs are antici- 
pated, optimal lot sizes for the 64th and subsequent 
setups can be found by solving the discounted cash 
flow version of the classical economic order quantity 
problem. Eq. (7) is used to find T~n (=  T64, the 
optimum replenishment interval if all setup costs are 
equal to $64): 

Stain r 2 

D(h + Pr) 
= e r r "  - 1 --  r f , , .  ( 7 )  

Eq. (7) is the same as (A.7) in  Appendix A. Eq. (7) 
can be solved efficiently for T64 using the iterative 
procedure suggested by Porteus (1985b), starting 
with the classical square root formula (also known as 
the economic order quantity) as the initial solution. 
Hence T64 = T6,~ =0.142754. Next we find F(64), 
the npv of all costs incurred in all future replenish- 
ment cycles starting at the 64th setup, discounted to 
the time at which the 64th setup occurs. This is 
found using Eq. (A.6) in Appendix A. 

F ( 6 4 )  = Smi n + DPT64 + 7 ( r T 6 4 - -  1 + e  -rr~)  

x(m - - ' .  (s) 

F(64) equals $105720. Using /~64, and F(64), and 
applying (A.5) and (A.4) iteratively backwards we 
find optimal lot sizes for setups 63 to 1. We termi- 
nate with F(1), npv of the optimal policy. Computa- 
tional results are shown in Table 3. Since Eqs. (A.5) 
and (A.4) are applied backwards, results in the table 
are shown in decreasing order of the setup index. 
The value of the optimal policy (F(1)) equals 
$107299. It is clear from Table 3 that the lot sizes 
decrease rapidly. We elaborate on this characteristic 
of the optimal policy in Section 3.2. 

Note that F(1) includes the npv of inventory 
related costs, and also variable raw material costs. 
Clearly, irrespective of the type of lot sizing deci- 
sions made, we need to spend $100000 on raw 
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Table 3 
Results for the numerical example 

Setup no. Setup cost 
(i) (si) 

Optimal 
lot size 
DT~* 

F(i) 

~64  81.26 285.5 105720 
63 81.67 285.5 105720 
62 82.09 285.5 105721 
61 82.53 285.5 105722 
60 82.97 285.6 105724 
59 83.42 285.7 105726 
58 83.88 285.8 105729 
57 84.35 285.9 105731 
56 84.83 286.0 105735 
55 85.32 286.2 105738 
54 85.83 286.4 105742 
53 86.35 286.6 105747 
52 86.88 286.8 105752 
51 87.42 287.0 105757 
50 87.98 287.3 105763 
49 88.56 287.6 105769 
48 89.15 287.9 105775 
47 89.75 288.2 105782 
46 90.38 288.5 105789 
45 91.02 288.9 105797 
44 91.68 289.3 105805 
43 92.36 289.7 105814 
42 93.06 290.1 105823 
41 93.79 290.5 105833 
40 94.53 291.0 105843 
39 95.31 291.5 105853 
38 96.11 292.0 105865 
37 96.94 292.6 105876 
36 97.80 293.1 105888 
35 98.69 293.7 105901 
34 99.61 294.3 105914 
33 100.57 295.0 105928 
32 101.58 295.7 105942 
31 102.62 296.4 105957 
30 103.71 297.1 105973 
29 104.85 297.9 105989 
28 106.~ 298.7 106006 
27 !07.29 299.5 106024 
26 108.60 300.4 106042 
25 109.98 301.3 106062 
24 111.43 302.3 106082 
23 112.97 303.3 106103 
22 114.60 304.3 106126 
21 116.33 305.4 106149 
20 118.17 306.5 106173 
19 .120.14 307.7 106199 
18 122.25 309.0 106226 
17 124.52 310.3 106254 
16 126.97 311.7 106284 
15 129.64 313.2 106316 
14 132.55 314.7 106350 

Table 3 (continued) 

Setup .o. Setup cost Optimal 
( i ) ( S i) lot size 

DT~* 

F(i) 

13 135.75 316.4 106385 
12 139.29 318.1 106424 
11 143.25 320.0 106465 
10 147.71 322.0 106509 
9 152.81 324.2 106557 
8 158.72 326..5 106609 
7 165.69 329.1 106666 
6 174.12 331.9 106730 
5 184.64 335.1 106803 
4 198.40 338.6 106887 
3 217.65 342.7 106987 
2 248.00 347.6 107114 
1 310.00 353.8 107299 

a Setup costs and optimal lot sizes do not change after the 64th 
setup. 
b Value of the optimal policy is given by F(1). 

materials ( D P / r  - npv of material costs). Hence the 
npv of the costs related to lot sizing in the optimal 
policy is $7299(F(1) - (DP/r) ) .  Netting out vari- 
able material costs in our analysis is exactly analo- 
gous to the classical economic order quantity analy- 
sis in which material costs are netted out, since these 
costs are incurred irrespective of the type of lot 
sizing decisions. This is also true of studies in heuris- 
tic lot sizing in MRP systems where direct material 
costs are excluded from consideration. 

Now reconsider the above problem data, except 
that now the minimum achievable setup cost (Smi n) 
is $31 - a reduction to 10% of the initial setup cost. 
It can be verified that 1279 setups take place before 
the setup cost levels off at this value. Using the 
optimal procedure described in Appendix A, the cost 
of the optimal policy (F(1)) is $107244. Hence the 
inventory related costs in the optimal policy is $7244. 
Suppose that the scheduler ignored the learning ef- 
fects, and simply set all lot sizes equal to the opti- 
mum lot size corresponding to the minimum setup 
cost (DT~n). It can be verified that the inventory 
related costs for this policy is $7949 or 9.7% above 
the optimum. This example illustrates the benefits of 
incorporating learning effects in lot sizing decisions. 

Preceding numerical illustrations used the well 
known power function from learning curves litera- 
ture to characterize setup cost reductions. However, 
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because the optimal procedure does not make any 
such restrictive assumption about setup cost reduc- 
tion patterns, the methodology developed in this 
paper can be used for any arbitrary setup cost trends. 

3.2. Characterization of optimal lot sizes 

In our numerical example (see Table 2), as setup 
costs decrease, so do optimal lot sizes. Detailed 
proof is provided in Appendix B. Though this result 
is intuitively obvious, earlier researchers concluded 
that the effect of investment in setup cost reduction 
(such as worker training and or process enhance- 
ments) is to reduce the lot sizes, but all lots should 
be kept equal to each other (Porteus, 1985a, 1986; 
Biilington, 1987; Karwan et al., 1988; Replogle, 
1988; Chand, 1989; Cheng, 1991). The divergence in 
conclusions is due to either (i) implicit assumption 
about immediate and all at-one-time reduction in 
setup costs (Porteus, 1985a, 1986; Billington, 1987), 
and/or  (ii) using average cost analysis instead of the 
conceptually rigorous npv method (Karwan et al., 
1988; Replogle, 1988; Chand, 1989; Cheng, 1991). 
Our methodology for determining optimal lot sizes 
eliminates approximations due to both these factors. 

3.3. Evaluation of investments in learning and~or 
minimum setup cost reduction 

Porteus (1985a, 1986) and Billington (1987) de- 
veloped methods to determine optimal investment 
when the setup cost can be expressed as a special 
function (continuous) of the investment in setup cost 
reduction, and implicitly assumed that the benefits of 
the investment are realized by an all-at-one-time 
reduction (permanent) in setup costs. Our methodol- 
ogy is more general in the sense that it can be used 
to evaluate the investments when additional reduc- 
tions in setups continue to occur at later times, as 
illustrated below. 

Consider a product with D -  8074 units per pe- 
riod, P ffi $10 per unit, r ffi 5% per period, h = 
0.4875 per unit per period, and initial setup cost 
(S~) - $400. Assume that the current learning rate is 
95% - i.e., the cost for the last setup reduces to 95% 
of the median setup cost, until technological limits 
preclude further cost reductions. Also, the current 
equipment configuration results in a minimum setup 

cost (Smin) of $294.50. However, studies indicate 
that an additional investment of $20000 in worker 
training and equipment reconfiguration will immedi- 
ately reduce the setup cost to $310. Further, these 
efforts will also improve &e worker learning rate to 
55%, and reduce the minimum achievable setup cost 
(Smi n) to $124. We want to determine if the invest- 
ment is economically justified. 

Using the optimal procedure described in Ap- 
pendix A, npv of the optimal policy for the current 
system configuration (exclusive of material costs, 
F ( 1 ) -  DP/r )  is $44691. Similarly, with the new 
parameters based on the proposed investment, npv of 
the optimal policy (exclusive of material costs) is 
$28438. Hence the resulting cost saving (44691-  
28438 = $16253) is less than the required marginal 
investment. Unless there are additional nonquantifi- 
able benefits, the investment in training and equip- 
ment reconfiguration is not economically justified. 

4. Heuristic policies 

Computation of optimal lot sizes requires cost 
information on each future setup cost. These costs 
may be difficult to forecast. Also, the optimal policy 
is based on dynamic programming, a procedure diffi- 
cult to comprehend when compared to most heuristic 
lot sizing procedures. Hence we now propose and 
evaluate two heuristic policies which are intuitively 
appealing, easy to understand, and require little in- 
formation regarding future setup costs. These are (i) 
the current setup cost lot sizing policy, and (ii) the 
minimum setup cost lot sizing policy. 

4.1. Current setup cost lot sizing policy (curs) 

Under this policy, the lot size at each setup is 
computed assuming that all future setup costs will be 
equal to the current setup cost. This policy results in 
decreasing lot sizes until no further reduction in 
setup cost occurs. It disregards any beneficial effects 
of future setup cost reductions on the current lot size. 
Since this policy only uses information about the 
current setup cost, we call it "current setup cost lot 
sizing policy" (CURS). The lot size for the ith setup 
will be equal to D~,  where T/ equals the optimum 
replenishment interval if all future setup costs are 
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Table 4 
Description of CURS policy 

Step 1: 
Step 2: 

Step 3: 

Using Eq. (9), determine the lot size for each setup (D~),  i = 1,2 ..... N. 
Determine GcuRs(N), the npv of all future costs discounted to the time at which the Nth setup occurs: 

( Oh )) 
CCURS(~')-- Smio +D~,,+ 7 ( r ~ , , -  1 +e -'~" O--e -'T') 

Do i = N - 1, 1, step - 1 
Dh 

GCURS(i) = S i + DPf~ + - ~ ( r T  i - 1 + e -rye) + e-rr'GcuRs(i + 1). 

equal to S i. The exact value of ~ can be calculated 
using the following formula (Trippi and Levin, 1974; 
Porteus, 1985b; Rachamadugu, 1988): 

Sir2 - e r~ - 1 - rT s. (9) 
D(h+ Pr) 

Porteus (1985b) suggested an effective iterative pro- 
cedure for finding the value of ~, using the lot size 
provided by the classical square root formula as the 
initial upper bound. The procedure for determining 
lot sizes and the npv of the CURS policy is summa- 
rized in Table 4. 

Step 1 in Table 4 determines the optimal lot size 
for each setup. The net present value of the CURS 
policy is found in Steps 2 and 3. In Step 2, we 
determine GCURS(N), the npv of all costs discounted 
to the time at which the minimum setup cost is 
realized for the first time. Step 3 discounts recur- 
sively costs of all earlier setups to the start of the 
first setup, and gives the npv of the CURS policy. 

It is interesting to note that the CURS policy has 
the same intuitive appeal as the Part Period Balanc- 
ing (PPB) heuristic. PPB and CURS set the current 
lot size disregarding all future setup cost informa- 
tion. PPB is well known in the Materials Require- 
ments Planning literature (Zoller and Robrade, 1988). 
Both these procedures set the current lot size so that 
the setup cost for any lot is approximately equal to 
the inventory carrying costs incurred during its de- 
pletion. When setup costs are decreasing, lot sizes 
under CURS will also be decreasing. However, 
CURS overestimates lot sizes. Details are given in 
Appendix C. 

Computational results reported later in the paper 
show that CURS performs very well over a broad 
range of scenarios. However, we are also able to 
provide some insights into its worst case behavior. 

Though worst case analysis is generally based o.n 
pathological cases, it provides bounds on the perfor- 
mance of a heuristic. Also, it can provide insights 
into when it is inappropriate to use a heuristic policy, 
and it can be a guide in developing improved heuris- 
tics. Earlier studies by Axsater (1982) and 
Rachamadugu (1994) showed that policies very simi- 
lar to CURS can result in twice the optimal cost in 
the worst case. Though their results were based on 
average cost analysis for finite horizon problems, we 
conjecture that the same result is also valid for our 
case. Appendix C prevides an instance of the prob- 
lem in which CURS results in twice the optimal cost. 
It also provides insights into when CURS may not 
perform well; in particular, CURS performs poorly 
in rapid learning environments (low values of ~b). 
Our conclusion is also corroborated by the computa- 
tional studies reported in Section 5, 

4.2. Minimum setup cost lot sizing policy (MINS) 

Under this policy, we disregard learning effects 
and use the economic lot size corresponding to the 
estimated minimum setup cost (Smin). This lot size is 
used for all setups from the beginning. Hence all lot 
sizes are set equal to DT~n, where Tmi n is given by 

Sminr2 -- e train - 1 -- rT~.. (10) 
D(h+Pr) 

As discussed in Section 4.1, an excellent approxima- 
tion to DT~n is provided by the classical square root 
formula. Its exact value can be determined by using 
the procedure suggested by Porteus (1985b). 

Table 5 provides a summary of MINS policy. In 
Step 1, we determine the lot size corresponding to 
the minimum setup cost. This lot size is used at all 
setups from the beginning. Steps 2 and 3 are used to 
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Table 5 
Description of MINS 

Step 1: 

Step 2: 

Step 3: 

policy 

Using (10), determine DT~n , the lot size for all setups: 

Sminr2 = e rrmi. - 1 - rT~n. 
D(h + Pr) 
Determine GMms(N), the npv of all future costs discounted to the time at which the Nth setup occurs: 

Do i = N -  1, 1, step - 1  
Dh 

cM,,,s(i) = s, + Derdio + - 7 ( r r ~ -  1 + e - '~ ,o )  + e-~,~acuRs( i  + 1). 

evaluate the npv of the MINS policy. Their descrip- 
tion is similar to their counterparts in Table 4 for the 
CURS policy. 

All lot sizes in the MINS policy are equal. This 
feature is useful in developing cyclic schedules. Also, 
practitioners may favor the stability of constant lot 
sizes. When the learning is rapid (i.e., ~k is low) 
and/or  technological constraints preclude significant 
reductions in setup costs, optimal lot sizes quickly 
decrease to DT~n. Hence MINS may perform well 
in those scenarios. Further, it consistently underesti- 
mates the optimal lot sizes until setup costs stabilize. 
Though this makes the policy suboptimal, small lots 
provide quick feedback on quality. This feature can 
be beneficial, particularly in the initial stages of new 
product introduction. 

MINS policy has a few disadvantages. Though it 
does not require forecasts of future setup costs, it 
does require an estimate of Smt n, which may be 
difficult to forecast. While our earlier arguments 
point out that the policy may perform well under 
some circumstances (such as rapid learning), we 
show in Appendix D that it has unbounded worst 
case performance - i.e., under some circumstances, 
the cost of using the policy can be arbitrarily large. 

5. Computational experiments 

We conducted computational experiments to gain 
a better understanding of how well our heuristics 
perform across a broad spectrum of scenarios, and 
also to determine when one is better tLan the other. 
For our computational experiments, we chose the 
demand, price, setup cost and inventory holding cost 

parameters so that the initial replenishment interval 
(using the classical square root formula) would be 2, 
5.4 or 14.5 weeks. These parameter settings are 
consistent with earlier research in lot sizing (Wem- 
merlov and Whybark, 1984; Blackburn and Millen, 
1980; Baker, 1977). The initial setup cost was set at 
$310. The price of the product was set at $10 per 
unit. The discount rate was set at two levels, 5% and 
20% per year, to represent low and high capital 
costs. Since we are using discounted cashflow meth- 
ods for lot sizing (Hadley, 1964; Rachamaduga, 
1988), we chose the parameters so as to control for 
the relative ratio of nonfinancial holding charges to 
the total inventory charges (h/(h + Pr)). h repre- 
sents the noncapital related holding charges such as 
material handling and warehousing costs. P times r 
represents the holding charges attributable to the 
capital costs associated with carrying the product in 
inventory. The ratio (h/(h + Pr)) represents the ex- 
tent to which cash flows arising from items such as 
material handling, warehousing, etc., influence the 
total inventory carrying costs. Controlling this ratio 
helps to see if that component of noncaptial holding 
charges has any significant effect on the performance 
of the procedures. Since capital related costs tend to 
dominate inventory holding costs, we chose the pa- 
rameters so that the ratio (h/(h + Pr)) was set at 
0.25. Preliminary investigations with this ratio as 
large as 0.5 showed that it did not have significant 
influence on the performance of the CURS and 
MINS heuristics. Hence we did not vary the (h/(h 
+ Pr)) ratio in our computational study. 

The benefits of continuous improvement efforts, 
worker learning and incremental process improve- 
ments on setup costs are characterized by two pa- 
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rameters in our study - the learning rate (~,), and the 
setup cost reduction factor (R). Eq. (5) is a typical 
representation of the learning phenomenon (Argote 
and Epple, 1990). Earlier research by Baloff (1966, 
I971) and Conway and Schultz (1959) suggests that 
levelling in learning takes place in machine intensive 
situations. We model this effect with the parameter 
R, which is defined as follows: 

Smi n 
R -  . (11) 

St 

R - 1 implies that the setup costs are not susceptible 
to any reduction at all. When R = 0, there is scope 
for entirely eliminating setup costs. However, how 
fast these reductions occur depends on the learning 
rate. The setup costs in our experiment are as fol- 
lows: 

Si--max{S,i-b,Smin} =Slmax{i-b,R}, (12) 

where b is an index representing the learning rate. 
Eq. (12) implies that the setup costs cannot be less 
than Smi n. Learning effects reduce the setup cost 
until it reaches Stain. Technological constraints limit 
any further reductions. Eq. (12) is a generalization of 
the classical learning model. Setting Smi n ---0 yields 
the classical learning model. 

Given a learning rate (~), b can be determined 
using (6), ~ = 2 -b. Note that high values of learn- 
ing rate ( dp) denote slow reductions in setup costs 
(slower learning or none at all). For example, ~ = 1 
(highest possible value) implies that there is no 
learning at all, and Smi n will never be achieved. 
0 = 0 (lowest possible value) implies that the mini- 
mum setup cost is achieved in the second setup! This 
anomalous and counterintuitive notation for the 
learning rate (0)  has been used extensively in learn- 
ing theory and its applications, and we use the same 
notation to be consistent with earlier research. 

In our computational experiments, R was varied 
from 0.1 to 0.9 in steps of 0.1 so that we could 
analyze the performance of the CURS and MINS 
heuristics for a broad range of setup cost reductions. 
We also varied the learning rate (~)  from 0.5 to 0.95 
in our experiments. This range is representative of 
the field studies cited in Argote and Epple (1990). 

We tested a total of 480 scenarios ({8 settings for 
R} x {10 settings for &} × {2 settings for r} X {3 
settings for the initial reorder interval}). As discussed 
earlier, h and D were varied so as to hold the ratio 
of noncapital related holding charges to total holding 
charges (h/(h  + Pr)) constant at 0.25, while achiev- 
ing necessary initial reorder interval. Procedures were 
coded in Fortran77, and run on an IBM 9021-720 
mainframe computer. 

5.1. Analysis 

Performance of the heuristic policies relative to 
the optimum (in percent) was evaluated using the 
following criterion: 

Excess cost(%) 

NPV of the heuristic policy - m 

NPV of the optimal policy - 

DP 

r 
× 100. DP 

(13) 
In the above expression, DP/r  represents the npv 

of material costs (i.e., npv obtained by discounting 
the infinite stream of annual material cost at the 
discount rate). Note that the material price (P)  is 
constant in our analysis. Hence the effect of material 
costs should be excluded from the analysis, since 
those costs are invariant with respect to lot sizing 
decisions. For example, it is common practice to 
exclude material costs from consideration in evaluat- 
ing the heuristics in Material Requirements Planning. 
Similarly, in performing sensitivity analysis of lot 
sizing decisions, and also when evaluating the effect 
of nonoptimal order quantities in the classical lot 
sizing analysis, material costs are excluded (see 
(Fogarty et al., 1991)). Hence DP/r  is netted out 
from both the optimal and heuristic policies in (13) 
to evaluate the effectiveness of the heurisitics. 

Table 6 shows the relative performance (excess 
cost in % over optimum) of the MINS and CURS 
heuristics. Each cell represents the average value for 
six problems for a specific combination of R and ~,, 
and different values of r and initial reorder interval. 
A bold figure in a cell shows the average perfor- 
mance of CURS policy. Bold figures in parentheses 
show the performance of the MINS poli . Entries 
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R 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

0.1 0.2 0.3 0.4 ' 0.5 0.6 

1.7 
(<o.D 
1.9 
(<O.l) 
2.1 
(<o.1) 
2.5 
(o.O 
2.8 
(0.2) 
2.8 
(0.8) 

=~:~:~ i~i:~ii!~i~i~i~iii~i~, i 

i',iiiiiiiii::i::i::i i:: 
' " " "  

i iiiil 
iiiiiij!i 

0.7 0.3 0.2 O.l < 0.1 
(< O.l) (< o.0 (< o.1) (< o.0 ( < o.D 
0.7 0.3 0.2 o.1 < o.1 
( < 0. I) ( < 0.I) ( < 0.I) ( < 0.I) ( < 0. I) 
o.s 0.4 0.2 0.1 < 0.1 
(< 0.1) (< 0.1) (< O.l) (< 0.1) ( < o. ~) 
0.9 0.4 0.2 0.1 < 0.1 
(<o.I)  ( < o . 0  (<o.1) (<O.l) (<O.l) 
1.0 O..q 0.2 0.1 < 0.1 
(<o.1) (<o.1) (<o.1) (<o.1) (<o.1) 
1.2 o.~5 0.3 o.1 < oJ 
(o.1) (<  o.1) (< O.l) (<  o.0 (<  o.I) 

iii::!ii:: 1,3 0.7 0,,3 0.2 0.1 
~il (0.3) (o.I) (<o.1) (<o.1) (<o.~) 
i!iii',iiiiii: i !ili,.   ii!ii:,iiiii::iiiiii':i',iiii! o.7 0.4 o.z 
i',iii ii!! i!',!i!iiiiiiiiiiii  i  iii',iiiii!iiiii!iiiiiii', (o.i) ( < ( < o.1) ( < o.1) 
i i i i i i iii!iiii~i~i~iiiiiiiii~iiiiiiiiiiiii ii i!i~iiiiiiiiiiiiii iiii~i~iii:iiiiiii~. ::i:.iiiiiiiiiiiiiiii:: ~ ii:.i::i~!iiiiii!i!iiiiii~:i:. ::i~ ii~ii!i :~i:.i::!i::i:!~:iiii~:iiiiiiiii:: ~: o.2 oa 

• indicates that no computational tests were performed due to excessive computational requirements. 
Shaded cells indicate situations in which CURS performs better than the average cost policy. 

marked with * indicate the instances when optimal 
values could not be found due to excessive computa- 
tional time requirements (i.e., number of setups re~ 
quired to reach Smi, exceeded 160,000). This oc- 
curred in instances for which the learning rate was 
high (slow learning), and also R was low. This is 
not surprising, because these parameter combinations 
imply that too many setups are required to reach 
Smi .. Results for R -  0.7 and 0.8 were deleted since 
both heuristics performed equally well (<  0.1% 
above optimum) in all cases. 

The results in Table 6 indicate that the CURS 
policy performs well. It provides nearly optimal 
solutions in an average sense, with its cost within 
2.8% above the optimum for any combination of 
learning rate (ok) and setup cost reduction factor (R) 
considered in our experiments. Among 450 problems 
with known optima, its worst performance was 5.7% 
above the optimum. In other cases (30 problems - 
cells with • in Table 6), trends in the table indicate 
that its performance could only be better. It is inter- 
esting to note that the CURS policy performed so 
well without the benefit of any information about 
future setup costs. 

Table 6 also shows that MINS also performs well 
for most parameter combinations, except when the 
learning rate is high and R is low. For example, 
when the learning rate is 0.85 and R=0.1 ,  the 
average excess cost resulting from the MINS policy 
was 10.6% above the optimum. Further, detailed 
analysis of all 450 optimally solved cases showed 
that the MINS policy cost could be as high as 19.5% 
above the optimum. Trends in Table 6 indicate that 
the performance of MINS policy deteriorates as the 
learning rate increases (slow learning). This is also 
evident from the worst case analyzed in Appendix D. 
The MINS policy sets lot sizes too small under these 
circumstances, resulting in excessive setups in early 
stages (which leads to high npv). These computa- 
tional results suggest that MINS is better suited for 
fast learning environments (such as manual work 
environments) which are characterized by low learn- 
ing rate (tk). 

In our computational experiments, choosing the 
best heuristic for any problem resulted in excess 
costs being at worst 3.4% above the optimum. 
Choosing the best heuristic is not difficult either. In 
Table 6, the shaded cells indicate combinations of R 
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and ~ for which CURS is a better choice than 
MINS. Note that they form an unbroken block. 
Hence at high values of ~ and low values of R, 
CURS is a better choice. For all other situations 
MINS is a better choice. Note that if Smi,, cannot be 
forecast, or if one is in doubt about which heuristic 
to choose, we recommend using CURS policy. The 
computational results in Table 6 show that it is quite 
robust. Further, worst case analyses of the heuristics 
also support our conclusion. 

6. Conclusions 

We addressed the problem of determining optimal 
lot sizes when reductions in setup costs persist due to 
emphasis on continuous improvement, worker learn- 
ing and incremental process improvements. We de- 
veloped a procedure for determining optimal lot 
sizes. This methodology is both general and practical 
in the sense that it assumes no special functional 
form for successive setup costs. In addition to its 
primary use as a tool for determining optimal lot 
sizes, it is also useful in evaluating investments in 
hardware that lower the minimum achievable setup 
costs and/or investments which enhance the pace of 
worker learning. 

Determination of optimal lot sizes requires infor- 
mation on how fast setup costs decrease and also on 
the minimum achievable setup cost. We suggested 
two heuristic procedures (CURS and MINS policies) 
which can be used when information about setup 
cost reduction trends is not available. The current 
setup cost lot sizing policy (CURS) is better suited 
for situations in which improvements in setup costs 
occur at a slow pace (high learning rate - such as 
highly automated environments). For other situa- 
tions, the MINS policy is appropriate. In the absence 
of any information about future setup costs, we 
recommend the use of CURS policy due to its 
robustness and better worst case performance. 

Also, our analysis has implications for the use of 
average cost analysis. Hadley (1964) showed in his 
computational experiments that average cost analysis 
is an adequate substitute for the conceptually rigor- 
ous net present value approach for lot sizing. This 
was further substantiated by Porteus (1985b) in his 

analytical studies. Since the results of long run aver- 
age cost analysis are not influenced by transient 
effects, using the average cost analysis in our situa- 
tion would result in the conclusion that all lot sizes 
should be equal to the optimal lot size corresponding 
to the minimum setup cost (which is the MINS 
policy). However, our computational results have 
shown that such a policy can result in lot sizing costs 
that exceed the optimum by as much as 19.5% or 
more. This implies that the average cost analysis 
could be inadequate for nonstationary cost parameter 
situations, such as when a production process is used 
for long periods of time while the reductions in setup 
costs continue to occur over time due to emphasis on 
kaizen (continuous improvement - (Stephanou and 
Spiegl, 1992)) and worker learning. Such situations 
call for more accurate decision making tooI~ based 
on npv analysis instead of approaches based on 
average costs. 
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Appendix A. Dynamic programming procedure 
for optimal lot sizing 

In this appendix we first characterize the optimal 
policy, and then describe how the characterization 
can be used to find the optimal lot sizes. 

Optimal policy 

Reconsider the costs incurred in the ith replenish- 
ment interval. These costs, discounted to the start of 
the ith replenishment cycle, are given by Eq. (2) 
which is stated once again below for the ease of 
exposition: 

V(Ti) --Si + DPT i + fr'Dh(T~- t)e-r'dt.  (A.1) 
Jo 
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Fig. 1. Costs incurred in the ith setup. 

The first term in (A.1) represents the setup cost for 
the ith cycle. The second term represents the vari- 
able costs such as materials incurred in the cycle. 
The third term represents the npv of inventory carry- 
ing costs (noncapital charges such as material han- 
dling and warehousing) discounted to the time at 
which the ith setup takes place (note that the interest 
expense for the capital tied up in inventory is implic- 
itly recognized through discounting). We need to 
determine opitmal replenishment intervals. The tem- 

poral occurrence of these costs is shown in Fig. 1. 
Integrating (A.1), we have 

Dh 
V(Ti)=Si+DPTi+-~y(rT i- 1 +e-'r'). (A.2) 

Let F( i )  represent the npv of costs incurred in all 
replenishment cycles i, i + 1, i + 2,... discounted to 
the start of the ith cycle. Note that i represents the 
setup index, and not time. Hence, by definition, the 

¢ 
1st setup 

value of 
optimum 
policy = F{ I) 

Inv t 

~'9$'--" T i ~ ~  

i th setup i + l th setup 

npy of the F(i+l) = npv of all optimal 
po. licy at decim'om sinning with 
nh setup (i+l) th setup 

= V{Ti) + e" rTiF(i+l) 

Fig. 2. Structure of the optimal policy. 

Tune 



242 R. Rachamadugu, TJ. Schriber ~Journal of Operations Management 13 (1995) 229-245 

value of the optimal policy is given by F(1). By the 
principle of optimality (Bellman and Dreyfus, 1962), 

F(i)=min(V(T~) + e - ' r ' F ( i  + 1)), (A.3) 

where 0 ~< T~. Fig. 2 explains the recursion graphi- 
cally. The first term in (A.3) is the npv of all costs 
incurred in the ith replenishment cycle. The second 
term is the npv of all optimal future lot sizing 
decisions discounted to the start of the ith cycle. 
Substituting (A.2) in (A.3), 

Dh e_,r,) 
F ( i )  -- min $, + DPT i + - '~-(rTi- 1 + 

+ e - ' r , F ( i  + 1)), (A.4) 

where 0 ~< T~. It can easily be verified that (A.4) is 
convex in T~. Therefore, the optimum replenishment 
interval (T~*) is obtained by setting the derivative of 
(A.4) equal to zero: 

r' ) 
T~*- In h ~ . P r + D ( h + e r ) V ( i + l )  . 

(A.5) 

It is also interesting to note that the optimal lot 
sizes do not depend on the inial setup cost. This is 
evident from (A.5) by setting i = 1. A similar result 
was derived by Mekler (1993) for dynamic lot sizing 
with setup reduction. Optimal replenishment inter- 
vals (or lot sizes) depend on all parameters, except 
the initial setup cost. This is not surprising because 
the initial setup cost has to be incurred at time zero, 
and hence constitutes a sunk cost from the decision 
making point of view. Therefore, the optimal lot 
sizes depend only on how fast setup costs decrease, 
and also the minimum setup cost (Smi n) that can be 
realized. Next, we describe how the above optimal 
policy characterization can be used to determine both 
the optimal lot sizes and the associated optimal cost. 

Procedure for determining optimal lot sizes and cost 

Note that the setup costs for the Nth and subse- 
quent setups equal,Smi n. Hence each of these lot 
sizes is equal to DTN. Therefore, F(N) is given by 

( Oh 
F ( N )  -- Smi. + DP~N +--~-(rT~-  I +e 

X(1 - e - ' ~ )  - '  . (A.6) 

The terms in the first set of large brackets in (A.6) 
represent the npv of costs for each of the replenish- 
ment cycles in all setups indexed N and beyond, 
discounted to the start time of each respective cycle. 
The terms in the second set of large brackets dis- 
count this infinite stream of costs to the time at 
which the Nth setup occurs. /~N is found by the 
following: 

Smin r2 
= e rfN - 1 - rT N . (A.7) 

O ( h +  Pr) 

Eq. (A.7) is the discounted cash flow formulation of 
the classical economic order quantity model. Details 
of deriving (A.6) and (A.7) are given in (Trippi and 
Levin, 1974; Rachamadugu, 1988). Eq. (A.7) can be 
solved very efficiently for /~N using the iterative 
procedure suggested by Porteus (1985a,b), starting 
with the classical square root formula (also known as 
the economic order quantity) as the initial solution. 
We find all optimal replenishment intervals by work- 
ing backwards with Eqs. (A.5) and (A.4) iteratively 
for each setup. We terminate with finding F(1), the 
npv of the optimal policy. 

Appendix B. Characterization of optimal policies 

Proposition B.I. If the setup costs are nonincreas- 
ing, then the optimal lot sizes are also nonincreas- 
ing. 

Proof. It is intuitively clear that 

F(1) >IF(2) >tF(3) >i . . .  F ( i )  > i F ( i +  1 ) . . . ,  
(B.1) 

However, we provide a rigorous proof below. Using 
(A.5) and rewriting (A.4), 

(s, F(i)  ffi E e-'zJ + DPTj* 
lffil 

Dh,  • e_,Tj. ) +-~--(rTj - 1 + ) ,(B.2) 
/ 

where 

{i~/  i f j = i  

Zjffi Tl* if j >  i 

and Sj=Sj+ 1 +Sj, Sj>~0. (B.3) 
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Using (B.3) in (B.2), 
00 

F ( i )  = E e-'Z'(Sj+, + DPTi* 
]=i 

Oh, . )1 +-~- ( rT /  - l + e - ' r /  l + E e-rZ'6"" 
j=t 

(B.4) 

Note that the first summation on the right-hand side 
of the expression in (B.4) represents the net present 
value of a feasible policy for all future setups start- 
ing with the (i + 1)th set up. Hence it is >t F(i + 1). 
Clearly, the second summation on the right-hand side 
of Eq. (B.4) is non-negative. Therefore, (B.4) can be 
rewritten as 

oo 

F ( i )  >I F ( i  + 1) + Y'~ e-rZisi >t F(i  + 1). (B.5) 
j=i 

From (A.5), it is clear that T~* is monotonic in F(i). 
Using (B.5) in (A.5), 

Si>~Si+ 1 ~ F(i)>_.F(i+ l) ~ T~*+1>~T~*+:. 
(B.6) 

Recursive application of the above completes the 
proof. [] 

Appendix C. Characteristics of curs policy 

In this appendix, we discuss the characteristics of 
CURS policy. First, we compare the lot sizes result- 
ing from CURS policy with the optimal lot sizes. 
Next, we comment on its worst case performance. 

Lot sizes 

Proposition C.I. In the CURS policy, the lot size for 
any particular setup is not less than the optimal lot 
size corresponding to that setup. 

Proof. By definition, the lot size for the ith setup in 
the CURS policy equals D~. Let J(i) represent the 
net present value of the optimal policy for the prob- 
lem in which all future setup costs are equal to Sr 
Using (6), 

1 ( h r 2 ) 
in (C.1) 

But J(i + 1) = J(i)  >1 F(i + 1). Hence/~i >i T~*. This 
completes the proof. [] 

Worst case performance 

In this appendix, we show that the current setup 
cost lot sizing policy (CURS) can result in costs 
twice as high as the optimal policy. The performance 
measure (see Eq. (13) in Section 5.1) used to evalu- 
ate the heuristic policies is repeated below: 

NPV of the heuristic policy - 

NPV of the optimal policy - 

DP 

DP x 100. 

The term DP/r  represents the minimum net 
present value of the material costs. It is netted out 
from both the optimal and heuristic policies to make 
the performance measure comparable to the classical 
studies on lot sizing policies. 

Now we present a scenario in which the worst 
case performance of the current setup cost lot sizing 
policy (CURS) is twice the cost of the optimal 
policy. Consider a situation in which the initial setup 
cost is Sm and all subsequent setup costs are zero. 
Note that contrived as it may seem, we identify a 
situation here in which the performance of CURS 
can be at its worst. The cost of the CURS policy in 
this case is given by 

{ oh } 
S l +DPT, + --~-(r#, - 1 + e  -~f ')  +e-~r'DP'r 

(C.2) 

The first term in braces in (B.1) is the setup cost for 
the first setup. The second term accounts for the 
variable material costs incurred in the first setup. The 
third term shows the net present value of the non- 
financial holding costs during the first setup, dis- 
counted to time zero. The term outside the braces 
accounts for the present value of all future costs. 
Clearly, the optimal policy is to set up the machine 
once, and then treat the process as a continuous 
process. The net present value of the optimal policy 
is given by S~ + (DP/r).  Hence the performance of 
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the CURS policy is given by (using (C.2) in Eq. 
(13)) 

worst case performance of the MINS policy cannot 
be less than the following expression: 

DhT, . D( h + Pr) nS + 
$1 + DPT1 -~ (1 - e -r r~ ) r 2 ~ r r 

r Dh 
S~ " { S + DPT + 1 + e - r f ) }  

(C.3) --~-( r f  -. OP 
1 --e  -rr  r 

Earlier, Rachamadugu (1988) showed that 

e rf, - 1 - rT ! r 2 
ffi ( c . 4 )  

S i D( h + e r )  " 

Using (C.4) in (C.3), and with a little algebraic 
manipulation, the performance measure for CURS 
reduces to the following expression: 

e r#l + e - r f t  _ 2 
( c . 5 )  

e rf~ - 1 - rT l " 

The maximum of the above expression occurs as 
rT l ---* 0, and equals 2. Hence, CURS can be twice as 
costly as the optimal policy. Computational results 
in this paper, as well as earlier worst case results 
for variants of our problem (Axsater, 1982; 
Rachamadugu, 1988) lend strong support to the con- 
jecture that at worst CURS is likely to cost twice the 
optimal policy. However, as our computational ex- 
periments show, its performance in a typical situa- 
tion is far superior to its worst case performance. 

Appendix D. Worst case analysis of MINS policy 

(D.1) 

where T is the optimal replenishment interval for the 
infinite horizon problem in which the setup costs 
remain invariant at S. With algebraic manipulation, 
(D.1) can be rewritten as 

S +  

nS(1 - e  - r f )  

d ( h + P r )  
r2 ( r f -  1 + e - r f )  

(D.2) 

Rachamadugu (1988) has shown that 

e r f -  1 - rT = 
Sr 2 

D ( h + P r )  " 
(D.3) 

Using (D.3), (D.2) can be rewritten as 

1 - e  - r f  } 

n r T -  1 + e - r f  " 

1+  e r f _ l _ r T  

(D.4) 

As r:fi -* oo, (D.4) - ,  n. As n -* oo, pertbrmance of 
the MINS policy becomes arbitrarily bad. 

We present an instance of the minimum setup cost 
lot sizing policy (MINS) which has unbounded worst 
case performance. Let St equal S for the first n 
setups, and then the process becomes a continuous 
one, i.e., St ffi 0 Vi > n. In this case the MINS policy 
suggests that the lot sizes should be infinitesimal - 
i.e., repeatedly perform all the setups at the start of 
the process. An upper bound on the optimal policy is 
given by assuming that setup costs do not decrease at 
all. Clearly, the worst case performance of the MINS 
policy can be no better than its performance relative 
to the upper bound suggested here. Using (13), the 
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