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Abstract 29 

The material-air partition coefficient (Kma) is a key parameter to estimate the release of 30 

chemicals incorporated in solid materials and resulting human exposures. Existing correlations to 31 

estimate Kma are applicable for a limited number of chemical-material combinations without 32 

considering the effect of temperature. The present study develops a quantitative property-33 

property relationship (QSPR) to predict Kma for a large number of chemical-material 34 

combinations. We compiled a dataset of 991 measured Kma for 179 chemicals in 22 consolidated 35 

material types. A multiple linear regression model predicts Kma as a function of chemical’s Koa, 36 

enthalpy of vaporization (∆Hv), temperature and material type. The model shows good fitting of 37 

the experimental dataset with adjusted R2 of 0.93 and has been verified by internal and external 38 

validations to be robust, stable and has good predicting ability (R2
ext > 0.78). A generic QSPR is 39 

also developed to predict Kma from chemical properties and temperature only (adjusted R2 = 40 

0.84), without the need to assign a specific material type. These QSPRs provide correlation 41 

methods to estimate Kma

Keywords 45 

 for a wide range of organic chemicals and materials, which will  42 

facilitate high-throughput estimates of human exposures for chemicals in solid materials, 43 

particularly building materials and furniture. 44 

Partitioning, Indoor release, Solid materials, Organic chemicals, Consumer exposure, Correlation 46 

Practical implications 47 

The developed QSPRs provide a comprehensive correlation method to estimate Kma, covering a 48 

much wider range of organic chemicals and solid materials compared to previous studies, and 49 

include a still accurate generic correlation without the need to assign a material type. Combined 50 

with the QSPR estimating the internal diffusion coefficient 1, these QSPRs facilitate high-51 

throughput estimates of indoor human exposures to chemicals incorporated in solid materials. 52 

This is highly relevant for multiple science-policy fields, including chemical alternatives 53 

assessment (CAA), risk assessment (RA) and life cycle assessment (LCA). 54 

 55 

1. Introduction 56 

Chemicals incorporated in solid materials have been identified as a major source of passive 57 

emissions to indoor air and of transfers into house dust and skin. Typical examples include 58 
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chemicals used as plasticizers in building materials and flame retardants in furniture. To estimate 59 

the release of these chemicals from solid materials and subsequent consumer exposures, the 60 

dimensionless solid material-air partition coefficient (Kma), defined as the ratio of the 61 

concentration in the material to the concentration in the air at equilibrium, is one of the key 62 

parameters 2. The Kma is essential in determining the chemical transfer from solid material to air 63 

and to house dust, as well as the chemical concentration at the material surface, which further 64 

determines the inhalation, dermal and dust ingestion exposures. Kma is specific to a chemical-65 

material combination and is also influenced by ambient temperature. Experimental techniques 66 

such as chamber tests for building materials 3, and sorption experiments for polymer materials 4-6 67 

have enabled measurement of a limited number of Kma values for building materials such as 68 

vinyl flooring, gypsum board, plywood and cement, as well as polymer materials used for 69 

passive samplers including polyurethane foams (PUF), polyethylene (PE), and polypropylene 70 

(PP). Recently, studies have also been conducted to measure the Kma for clothing and fabrics 7, 8. 71 

However, since experiments are costly and time-consuming, measured Kma

Several correlation methods have been developed to estimate K

 values are only 72 

available for a limited number of chemical-material combinations. Thus, quantitative 73 

relationships are needed to predict this partition coefficient from known physiochemical 74 

properties for chemicals without experimental data, which is especially important for high-75 

throughput approaches, for which a large number of chemical-material combinations need to be 76 

evaluated. 77 

ma from physiochemical 78 

properties of chemicals. For example, several studies have correlated Kma

4

 to the chemical’s 79 

vapor pressure using data on volatile organic compounds (VOCs) in building materials , 9-11. 80 

Other studies which focused on semi-volatile organic compounds (SVOCs) in passive sampling 81 

devices have found correlation between Kma and the octanol-air partition coefficient (Koa
5) , 6, 12, 82 

13. Furthermore, Holmgren et al. estimated Kma

14

 as a function of five Abraham solvation 83 

parameters for six groups of materials , but these parameters are not readily available. For the 84 

aforementioned approaches, the main limitation is that the correlations are specific to certain 85 

chemical classes and materials; for example polycyclic aromatic hydrocarbons (PAHs) in low-86 

density polyethylene (LDPE), which limits their application for other chemical-material 87 

combinations. Addressing this research gap to facilitate wider applicability, Guo developed a 88 

method which estimates the Kma as a function of the chemical’s vapor pressure for all materials 89 
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and chemical classes 11. However, this approach is developed based on a small dataset which 90 

mainly includes VOCs in building materials which limits its applicability to also address SVOCs. 91 

Another limitation of the previous studies is that the effect of temperature was not well 92 

considered in the correlation. Some studies provided different correlation coefficients for certain 93 

discrete temperatures 15, while others corrected the predictors for temperature 16. However, since 94 

the known physiochemical properties such as vapor pressure and Koa are often only given as 95 

values at 25 °C, correcting them for temperature may not always be practical as the 96 

corresponding enthalpies of phase change are not available for all chemicals. Several studies did 97 

establish correlations between Kma

17

 and temperature, but the correlations were only verified using 98 

experimental data on limited chemicals such as formaldehyde and other aldehydes , 18. 99 

In all, the currently available correlation methods to estimate Kma do not provide sufficient 100 

coverage of chemicals incorporated in solid materials at different ambient temperatures. A recent 101 

research hotspot in exposure sciences is to develop low tier, high-throughput methods to estimate 102 

exposure to chemical in consumer products across a variety of chemical-material combinations, 103 

which requires high-throughput estimates of Kma for a wide range of material-chemicals 104 

combinations. Thus, the present study aims to develop a more comprehensive correlation method 105 

to estimate Kma

1) Carry out a comprehensive literature review to collect experimental K

 for a wide range of organic compounds in multiple solid materials, addressing 106 

the need for high-throughput exposure assessments. More specifically, we aim to: 107 

ma

2) Use multiple linear regression techniques to establish the relationship between K

 data on a wide range 108 

of materials and chemicals. 109 

ma

3) Perform internal and external validations to characterize the validity and predictive power of 112 

the developed correlation.  113 

 and 110 

various predictor variables including physiochemical properties, material type and temperature.  111 

This QSPR provides a more advanced correlation method to estimate the Kma

1

 of organic 114 

compounds compared to previous studies, as it covers a wide range of solid materials and 115 

chemicals, and consistently incorporates the effect of temperature. A similar QSPR has been 116 

developed by our group for the internal diffusion coefficient in solid materials . By providing 117 

reliable estimates of the key partition and diffusion parameters for a large number of material-118 

chemical combinations, these QSPRs will facilitate high-throughput assessments of chemical 119 

emissions and human exposures for chemicals incorporated in solid materials relevant for 120 
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various science-policy fields such as chemical alternatives assessment (CAA), risk assessment 121 

and life-cycle assessment (LCA). 122 

 123 

2. Materials and Methods 124 

2.1 Dataset 125 

2.1.1 Data collection 126 

Experimental material-air partition coefficient data were compiled from 43 references from the 127 

peer-reviewed scientific literature (provided in Supporting Information (SI), Section S1). 128 

Dimensionless partition coefficients were collected. If the partition coefficients were expressed 129 

in mL/g or m3/g, they were converted to dimensionless values by multiplying these by the 130 

density of the solid material. If the partition coefficients were expressed in the unit of m, they 131 

were converted to dimensionless values by dividing these by the thickness of the material. The 132 

initial dataset of Kma

2.1.2 Data curation 135 

 contained a total of 1008 records covering 179 unique chemicals and 75 133 

distinct solid materials. 134 

For the 179 unique chemicals of the initial Kma dataset, molecular weight, vapor pressure, water 136 

solubility and logKow
19 at 25 °C were obtained from EPISuite . For these physiochemical 137 

properties, experimental values were used when available, otherwise the software-estimated 138 

values were used. The enthalpy of vaporization (∆Hv, J/mol) of each chemical was obtained 139 

from ChemSpider estimated values (www.chemspider.com).  140 

For the octanol-air partition coefficient (logKoa) at 25 °C, experimental values are only available 141 

for part of the 179 chemicals in the dataset. To avoid inconsistency, we used the logKoa

19

 values 142 

estimated by EPISuite  for all of the 179 chemicals. In EPISuite, logKoa is estimated by 143 

subtracting logKaw (dimensionless log air-water partition coefficient) from logKow, logKaw and 144 

logKow
19 being estimated by the HenryWin and KowWin functions, respectively . Experimental 145 

logKoa

To avoid over-fitting of the QSPR model, the 75 original materials for K

 values were also collected and their impacts on the QSPR were assessed, as presented in 146 

SI Section S6.   147 

ma were grouped into 22 148 

consolidated material types, based on the name of the materials and the similarity of the 149 

regression coefficients (see SI Section S1), ensuring a minimum of 5 data points and 3 different 150 
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chemicals per consolidated material type. The data points with materials that cannot be grouped 151 

according to the above criteria were excluded from further analyses. 152 

The final Kma dataset contains 991 data points with 179 unique chemicals in 22 consolidated 153 

material types. The temperature at which the Kma

 156 

 was measured ranges from 15 to 100 °C. The 154 

final dataset is provided in SI. 155 

2.2 Modeling methods 157 

2.2.1 Multiple linear regression model 158 

A multiple linear regression (MLR) analysis was performed to identify and quantify the effect of 159 

different parameters on the partition coefficient, with details described in our previous paper on 160 

the QSPR for diffusion coefficient 1. Briefly, the MLR model takes the following general form:  161 

log10��� = � + �1 ∙ �1 + ⋯+ �� ∙ �� + �1 ∙ �1 + ⋯+ �� ∙ ��                           (1) 162 

where log10Kma is the logarithm of the dimensionless Kma, α is the intercept; X1 to Xn are 163 

independent variables related to the properties of the chemical or the environment; β1 to βn are 164 

regression coefficients for the respective independent variables X1 to Xn. M1 to Mm are dummy 165 

variables for the packaging materials, with one dummy variable per type of material. A dummy 166 

variable equals 1 for the material type it represents, and equals 0 for all other materials; for 167 

example, M1 = 1 for material type 1, M1 = 0 for material types 2 to m. b1 to bm are regression 168 

coefficients for the respective dummy variables M1 to Mm. The number of m is equal to the 169 

number of material types considered minus 1, since PU-ether - the material type with the highest 170 

number of measured Kma

In previous studies, either the chemical’s vapor pressure 

 data - is used as the reference material type and does not require a 171 

dummy available in the MLR. Regression coefficients were estimated by the least squares (LS) 172 

method. All regression analyses were performed using IBM SPSS Statistics version 23 (IBM 173 

corporation, Armonk, New York).  174 
4, 9-11 or logKoa

5 , 6, 12, 13 has been used as 175 

predictor of the Kma

14

 in a given material. Abraham solvation parameters were also used as 176 

predictors by Holmgren et al. , but these parameters are not considered here since they are not 177 

readily available. Initial regressions (SI Section S2) suggest that logKoa is a better predictor of 178 

Kma compared to vapor pressure. Thus, the chemical’s logKoa

Thus, the MLR model takes the following form: 181 

 at 25 °C was used as the 179 

independent variable for chemical properties in Eq. 1. 180 
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log10��� = � + ������� ∙ ���10��� + �� ∙ �_���� + �1 ∙ �1 + ⋯+ �21 ∙ �21                 (2) 182 

where T_term is a term representing the effect of temperature and will be described in the next 183 

section (Section 2.2.2). 184 

2.2.2 Temperature dependence 185 

In thermodynamics, the temperature dependence of equilibrium constant, Keq

�� �2�1 =
∆��ℎ��� �ℎ����� (

1�2 − 1�1)                                                    (3a)    188 

, can be described 186 

by the van’t Hoff equation: 187 

where K1 and K2 are the equilibrium constants at temperature T1 and T2, respectively, T1 and T2 189 

are absolute temperatures (K), R is ideal gas constant (8.314 J/(K∙mol)), and ∆Hphase change 

Since K

is the 190 

enthalpy of phase change (J/mol). 191 

ma is an equilibrium constant by definition and the chemical’s log10Koa at 25 °C or 192 

298.15 K is used as an independent variable in the MLR model (Eq. 2), we assume that the 193 

temperature dependence of Kma ����� = ���10 ���_2���_1 =
∆���2.303∙� (

1�2 − 1298.15)                                                    (3b) 195 

also follows the van’t Hoff equation: 194 

where ∆Hma is the enthalpy of the partitioning between material and air (J/mol), and 2.303 is a 196 

conversion factor between log10

Ideally, the enthalpy ∆H

K and lnK.  197 

ma should be different for different chemical-material combinations. 198 

Kamprad and Goss have determined the ∆Hma values for 54 unique chemicals in PU-ether using 199 

measured Kma
4 data from 15 °C to 95°C , so we were able to develop a linear correlation to 200 

estimate ∆Hma from chemical properties (results shown in Section 3.1). Since no experimental 201 

∆Hma values are available for materials other than PU-ether, we use the ∆Hma correlation 202 

developed above across all materials. Therefore, in our regression model of Kma, the ∆Hma 

log10��� = � + ������� ∙ log10��� + �� ∙ ∆���2.303∙� (
1� − 1298.15) + �1 ∙ �1 + ⋯+ �20 ∙ �20        (4) 205 

is 203 

chemical-specific, but not material-specific. The final MLR model thus takes the following form: 204 

 206 

2.3 Model validation 207 

Validation of the final MLR model (Eq. 4) was performed using the QSARINS software, version 208 

2.2.1 (www.qsar.it) which is developed by Gramatica et al. 20, 21.  209 
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2.3.1 Internal validation 210 

The MLR model’s capacity to predict portions of the training dataset was evaluated in an internal 211 

validation process, using two techniques in QSARINS: the leave more out (LMO) cross-212 

validation and the Y-scrambling, which have been described previously 1, 21. 1000 iterations were 213 

used for the LMO cross-validation and the percentage of the excluded elements was set as 20%, 214 

and 1000 iterations for Y-scrambling.  215 

2.3.2 External validation 216 

We also evaluated the model’s ability to provide reliable predictions on new datasets by external 217 

validation, using the splitting approach, which split the existing dataset (991 data points) into one 218 

training dataset and one prediction dataset. The training dataset was used to generate regression 219 

coefficients of the MLR model, and then the MLR model was applied to the prediction set to 220 

examine the prediction performances of the model. Three kinds of splitting were performed 221 

using existing options in the QSARINS software (see SI Section S4.1 for details) by random 222 

percentage, by ordered response and by structure. We introduced a fourth kind of splitting by 223 

studies, where all data points from certain studies were manually selected as the training set and 224 

data points from remaining studies as the prediction set. If a consolidated material type only 225 

includes data points from one study, all of these data points were assigned into the training set in 226 

order to ensure that the MLR model constructed using the training set includes all consolidated 227 

material types. The four types of splitting yielded similar sample sizes of approximately 800 data 228 

points for the training set and 200 data points for the prediction set (SI Table S3).  229 

 230 

3. Results and Discussions 231 

3.1 Temperature dependence 232 

As described in Section 2.2.2, the temperature dependence of Kma is determined by the enthalpy 233 

of the partitioning between material and air, ∆Hma (J/mol). Using the measured Kma

4

 data for 54 234 

chemicals in PU-ether from 15 °C to 95°C  (data are provided in SI Section S3), we obtained the 235 

following correlation to estimate ∆Hma∆��� = 1.37 ∙ ∆�� − 14.0                                                      (5) 237 

: 236 

N = 54, R2 = 0.786, R2
adj

ANOVA: F = 191, df = 1, p < 0.0001 239 

 = 0.782, SE = 2.85, RMSE = 2.80 238 
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where ∆Hv is the chemical’s enthalpy of vaporization (J/mol) obtained from ChemSpider 240 

(www.chemspider.com).  241 

This simple linear model shows good fitting of the experimental ∆Hma data, with an adjusted R-242 

squared of 0.782, and the model fit is highly significant with an ANOVA p-value < 0.0001. 243 

Figure 1 shows the scatter plot of predicted vs measured ∆Hma and the residual plot, which 244 

indicate good agreement with the 1:1 line and random distribution of residuals throughout the 245 

dataset. These results suggest that there is indeed a linear relationship between ∆Hma and ∆Hv in 246 

PU-ether, and Eq.5 was also used as default to estimate ∆Hma 

 248 

for all other materials. 247 

3.2 Final QSPR and model fitting 249 

Using the full dataset (991 data points) and Eq. 4, the final MLR model for predicting the solid 250 

material-air partition coefficient is as follows: 251 

log10��� = −0.38 + 0.63 ∙ log10��� + 0.96 ∙ ∆���2.303∙� �1� − 1298.15� + �              (6) 252 

N = 991, R2 = 0.934, R2
adj

ANOVA: F = 597, df = 23, p < 0.0001 254 

 = 0.933, SE = 0.62, RMSE = 0.62  253 

where Kma is the dimensionless solid material-air partition coefficient, Koa is the chemical’s 255 

dimensionless octanol-air partition coefficient at 25 °C, ∆Hma is the enthalpy of the partitioning 256 

between material and air (J/mol) which is given by Eq. 5, T is absolute temperature (K), and b is 257 

the material-specific coefficients presented in Table 1. This model is provided as an excel model 258 

in SI to facilitate application. The standard errors for the coefficients are also presented in Table 259 

1. An SE of 0.63 of the final model (Eq. 6) indicates that the 95% confidence interval (CI) of the 260 

predicted logKma is the predicted value ± 1.22, indicating that most of the predicted Kma are 261 

within a factor of 16 from the measured Kma

This MLR model shows excellent fitting of the experimental data, with an adjusted R-squared of 263 

0.93 and a root mean square error (RMSE) of 0.62. The model fit is highly significant with an 264 

ANOVA p-value smaller than 0.0001. Figure 2A shows the scatter plot of predicted vs measured 265 

logK

. 262 

ma

This MLR model assumes that the correlation between logK

, which aligns well with the 1:1 line. The residual plot (Figure 1B) shows that the 266 

residuals are distributed evenly throughout the dataset, and most residuals have absolute values 267 

smaller than 2, again indicating the good fit of the linear model for the data.  268 

ma and the chemical’s logKoa is the 269 

same across material types, which seems reasonable given the excellent model fitting. Plotting 270 
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the logKma against chemical’s logKoa for selected material types (Figure 3) confirmed that the 271 

correlation between logKma and the chemical’s logKoa (i.e., the slopes of the fitted straight lines 272 

in Figure 3) is similar but with slight differences across material types, indicating that a single 273 

coefficient for logKoa, as in the present QSPR model, might not be perfect. This could have been 274 

accounted for by including interaction terms between logKoa

As described in the methods, this final MLR model uses EPISuite-estimated logK

 and material types, but this would 275 

introduce 21 more terms in the model without greatly improving the model fitting (SI Section 276 

S5), so the interaction terms were not retained in the final QSPR model.  277 

oa values as 278 

predictors, since experimental logKoa are not available for all chemicals in the dataset. MLR 279 

models developed using mixed logKoa values (i.e., for a chemical experimental logKoa is used 280 

when available, otherwise EPISuite-estimated logKoa is used) also yielded similar results as the 281 

final MLR model (adjusted R2 ranged from 0.930 to 0.931, for details see SI Section S6), 282 

indicating that the impact of experimental logKoa

 284 

 on the model is minimal.     283 

3.3 Impact of each predictor 285 

As shown in Eq. 6, the key predictors of the solid material-air partition coefficient are the 286 

chemical’s logKoa, ∆Hv, temperature, and the solid material type. The regression coefficient for 287 

logKow is 0.63 and is highly significant (p < 0.0001), indicating that the material-air partition 288 

coefficient increases with increasing logKoa

5

, which is consistent with findings from previous 289 

studies , 6, 13.  290 

The regression coefficient of the temperature term is 0.96 and is also highly significant (p < 291 

0.0001), indicating that the Kma decreases with higher temperature. Experimental data from 292 

Kamprad et al. did show reduced Kma with increased temperature, and it also makes intuitive 293 

sense that at higher temperature the Kma is lower leading to faster chemical migration from solid 294 

material to air. As discussed in Section 3.1, the effect of temperature on Kma also depends on the 295 

∆Hma, which increases linearly with the chemical’s enthalpy of vaporization ∆Hv

The 21 dummy variables for the material types reflect the material dependency of the K

.   296 

ma. As 297 

“PU-ether” (polyurethane-ether) was used as the reference material in the regression, the value of 298 

its coefficient b is zero (Table 1). For each of the other material types, the coefficient b, 299 

determines the difference in logKma between that material type and PU-ether. Chemicals in solid 300 

material types with high values of b are more difficult to migrate to air than in those with low 301 
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values of b. The three material types with highest b coefficients are ethylene vinyl acetate (EVA), 302 

latex and solvent-based paint and polyether ether ketone (PEEK) which are dense materials, 303 

while the three types with lowest b coefficients are PU-ester (polyurethane-ester), PU-ether and 304 

paper which tend to be porous materials. It should be noted that the data for a given consolidated 305 

material type were gathered from different studies, and the composition and properties of the 306 

material type may vary between studies, so the material type coefficients in Table 1 only 307 

represent an average composition and partition behavior for the specific material types. 308 

The significance of the material type coefficient only indicates that the coefficient bs of these 309 

material types are significantly different from the reference material type, PU-ether, but if 310 

another material type was selected as the reference material, the regression coefficients and 311 

statistical significance of all materials would change. Thus, the insignificance of the regression 312 

coefficient for “paper” (Table 1) does not indicate that this material type does not have a relevant 313 

influence on the Kma

To better illustrate the impact of each predictor on the material-air partition coefficient, we 316 

varied each predictor from the minimum to the maximum value in the entire dataset (991 data 317 

points) while keeping the other predictors constant, and calculated the change in logK

. As a result, we keep all 21 material type dummy variables in the final 314 

regression to retain as much information as possible.  315 

ma using 318 

the regression coefficients in the final QSPR (Eq. 6). Since the chemical’s ∆Hv determines the 319 

∆Hma which modifies the relationship between logKma and temperature, the impact of 320 

temperature was calculated as two extremes using the minimum and maximum values of ∆Hv in 321 

the entire dataset. As shown in Figure 4, the chemical’s logKoa has the highest impact on logKma 322 

among predictors. The impact of temperature on logKma is very low with the lowest value of 323 

∆Hv (22.3 kJ/mol), but the impact become moderate with the highest value of ∆Hv (75.6 kJ/mol). 324 

This indicates that for a chemical with low enthalpy of vaporization, the logKma only changes 325 

slightly with temperature, and vice versa. The material type also has a moderate impact on the 326 

logKma, which is similar to the impact of temperature with the highest value of ∆Hv. Overall, the 327 

impact of material type is relatively small compared to the impact of chemical’s logKoa, 328 

indicating that the variation in logKma does not strongly depend on the solid material type, which 329 

suggests the possibility of developing a generic QSPR to predict logKma

 332 

 in absence of material-330 

specific data. 331 
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3.4 Model validation results 333 

3.4.1 Internal validation 334 

The correlation coefficient for the LMO cross validation, Q2LMO , averages 0.93 (range: 0.90 – 335 

0.95) for the 1000 iterations, and the root mean square error for cross validation (RMSEcv) 336 

averages 0.63. Both the Q2LMO  and RMSEcv

For Y-scrambling, the R2

 are similar to the R2 and RMSE computed using the 337 

full dataset, which is 0.93 and 0.62, respectively, indicating that the model is internally stable. 338 

Yscr, Q
2

Yscr and RMSEYscr for the 1000 iterations average 0.023, -0.028, 339 

and 2.37, respectively, which are substantially different from the R2, Q2
LMO

3.4.2 External validation 344 

 and RMSE of the 340 

original model, indicating that that no correlation exists between the scrambled responses and the 341 

predictors. Thus, the internal validation overall demonstrates that the final QSPR model (Eq. 6) 342 

is robust and stable, and is not a result of chance correlation. 343 

As described in Section 2.3.2, four types of splitting were used for external validation, including 345 

splitting by random 20%, by ordered response, by structure, and by studies. Six criteria for 346 

external validation, described in detail previously 1, 22, 23, were computed and are presented in 347 

Table 2. For the first three types of splitting, the R2
ext

For the splitting by studies, data from 22 studies were selected as the prediction set, while data 354 

from 20 studies constituted the training set. This splitting can better represent a truly “external” 355 

validation, since all data from one study were either be in the training or the prediction set. the 356 

prediction ability of the model constructed from the training set is apparently reduced, as the 357 

R2

 are higher than 0.9, and the other five 348 

criteria all pass the threshold values and are higher than 0.9, indicating good predictive ability of 349 

the models constructed from training set data. This is expected because the prediction sets 350 

resulted from these three types of splitting are generally well within the applicability domain 351 

(described in detail below) defined by the training sets (SI, Figures S1-S6), since the data points 352 

were drawn either randomly or alternately. 353 

ext of this splitting dropped to 0.79, and the values of the other five criteria are lower than 358 

those for the above three types of splitting. This is reasonable since the data variability is higher 359 

between studies than within studies, so the prediction set might not be well within the AD 360 

defined by the training set (SI, Figures S7-S10). Nonetheless, all validation criteria for this 361 

splitting still pass the thresholds, indicating acceptable prediction ability (Table 2). 362 
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3.4.3 Applicability domain (AD) 363 

It is important to define the AD of our QSPR model, as it can provide information on the 364 

reliability of the model predictions 24 for future users who would like to use the model on new 365 

chemicals. If the new chemicals are inside the AD, the model predictions are interpolated and are 366 

more reliable. However, if the chemicals are outside the AD, the predictions are extrapolated and 367 

less reliable 24. 368 

For definition of the AD, the model being evaluated is the final QSPR model presented in Eq. 6, 369 

and the training dataset thus refers to the full dataset including 991 data points. Three 370 

complementary methods were applied to define the AD of the Kma

25

 QSPR: the range of model 371 

predictors, the leverage approach, and the PCA of the model predictors, which have been 372 

described in detail previously .  373 

For the range of predictors, the model has four predictors: logKoa, ΔHv, temperature and material 374 

type. The logKoa, ΔHv

21

, temperature of the training dataset range from 1.4 to 14.6, from 22.3 to 375 

75.6 kJ/mol, and from 15 to 100 °C, respectively, defining the AD of the model. It is noteworthy 376 

that the material type is a categorical variable, and the training set contains 22 consolidated 377 

materials types, so the model’s AD is also restricted to these 22 material types. For the leverage 378 

approach, the critical value h* for the diagonal values of the hat (h) matrix of the model was 379 

calculated to be 0.0727, and the AD is defined as the h values less than h* , 25. For the PCA 380 

approach, the AD is defined as the space between the minimum and maximum values of the PC1 381 

and PC2 scores of the training dataset 21, 25, which range from -4.39 to 2.04 and from -4.52 to 382 

2.22, respectively. For future model users, a new chemical should be considered “inside AD” if 383 

viewed inside AD by all three methods, and be considered “outside AD” if viewed out of AD by 384 

all three methods, otherwise it should be considered “borderline” 25. 385 

 386 

3.5 Generic QSPR 387 

In order to predict the Kma

log10��� = −0.37 + 0.75 ∙ log10��� + 1.29 ∙ ∆���2.303∙� �1� − 1298.15�                   (7) 391 

 without assigning material properties, we built a generic QSPR model 388 

which does not include any material-specific variables using the same dataset. This model only 389 

uses the chemical properties and temperature as predictors and is as follows: 390 

N = 991, R2 = 0.80, R2
adj

ANOVA: F = 1943, df = 2, p < 0.0001 393 

 = 0.80, SE = 1.08, RMSE = 1.08 392 
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This model has a still relatively high adjusted R-squared of 0.80 compared to the 0.93 of the 394 

regression with material coefficient (Eq. 6), indicating a good fit of experimental data (Figure 5). 395 

As discussed in Section 3.2, the impact of the solid material type on logKma is relatively small 396 

compared to the impact of chemical properties, so logKma can be predicted with reasonably high 397 

accuracy without the material type as a predictor. This generic QSPR thus provides a relatively 398 

reliable method to estimate the Kma

3.6 Limitations and future work 410 

 for various solid materials that may be difficult to assign a 399 

material type listed in Table 1, which provides a more comprehensive and flexible coverage, 400 

although with a slightly lower accuracy, for different chemical-material combinations than the 401 

material-specific QSPR and can therefore greatly facilitate high-throughput evaluations of a 402 

large variety of chemical-material combinations. However, it should be noted that although 403 

without the material type as a predictor, this generic model was still developed using the 404 

experimental data of our collection of 22 material types. Thus, this generic model best applies to 405 

materials listed in Table 1 and similar materials, but may cause a large error for materials with 406 

special properties, e.g. in presence of strong ionic forces, or of strong pseudo-solvation such that 407 

some of the target adsorbate molecules take on a different structure within the material itself, 408 

either due to ionization or tautomerization. 409 

While the coverage of 22 consolidated materials and possibly any solid material as well as 411 

inclusion of the effect of temperature are major advantages, the present model has several 412 

limitations. First, the model does not consider chemical ionization or interaction with other 413 

chemicals within a solid material, which may affect the chemical’s partitioning between the 414 

material and air. Second, the present model assumes that the relationship between ∆Hma and 415 

chemical’s ∆Hv, derived from experimental ∆Hma data for one material type “PU-ether”, is the 416 

same across different material types. Ideally, more experimental ∆Hma data for different material 417 

types are needed to verify this assumption or to develop unique ∆Hma-∆Hv 

Third, since for most K

relationships for 418 

different material types.  419 

ma datasets the material properties are not well characterized or provided 420 

in the original publications, the classification of the consolidated material types is qualitative and 421 

is simply based on material names, which may result in considerable variations in material 422 

properties within one consolidated material type. In addition, even with the same composition, 423 

different material structure may affect the material-air partitioning. Ideally, quantitative, 424 
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continuous properties of the solid materials, such as descriptors of the material’s composition 425 

and molecular structure, could be measured and entered into the model as numerical predictors, 426 

so that the model can be more accurate for particular materials and can be extrapolated to other 427 

material types outside the training dataset. In addition, if quantitative variables for material types 428 

are used, interaction terms between chemical’s logKoa

Fourth, many materials that appear in indoor environments are inhomogeneous, such as plywood, 432 

gypsum board, carpet, concrete, and paper, which may have layers or portions with distinctive 433 

properties. Thus, the K

 and material type variables can be added 429 

to the model without introducing too many additional terms, which can improve model fitting, as 430 

discussed in Section 3.2. 431 

ma values measured in experiments and the QSPR built on these 434 

measurements likely only represent the material properties across the experiments. As a result, 435 

one needs to use caution when applying the present QSPR to predict Kma, especially for highly 436 

inhomogeneous materials. Another important aspect related to heterogenicity is surface 437 

partitioning versus bulk partitioning. Since the partitioning between solid material and air 438 

happens mainly at the material surface, the surface properties may have an unusually large 439 

influence on the apparent partitioning behavior. Therefore, for materials with a surface layer of 440 

distinct properties, or materials with the same composition but different surface/bulk structures, 441 

the present QSPR may not give a correct estimate of the Kma

Finally, the functional mechanisms of other influence factors such as relative humidity are 446 

unclear, so they are not included in the QSPR. The effect of relative humidity on K

. The distinct surface layer may be a 442 

result of oxidative aging and soiling, which may change with time, or intrinsic features that are 443 

time invariant. These problems again highlight the importance of using quantitative descriptors 444 

of material compositions and structures as predictors in the QSPR. 445 

ma

4

 is likely 447 

both chemical and material dependent , 9, which will require more in-depth research. 448 

 449 

4. Conclusions 450 

A multiple linear regression model has been developed to predict the solid material-air partition 451 

coefficients (Kma) of organic compounds in various solid materials. Experimental Kma data 452 

collected from 43 studies were used to construct the regression model. The model uses three 453 

continuous variables, chemical’s logKoa, ∆Hv, and absolute temperature, as well as one 454 

categorical variable, material type, as predictors. The model has been validated internally and 455 
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externally to be robust and stable, and have good predicting ability. The applicability domain of 456 

the model, in terms of the range of predictors, includes chemical’s logKoa between 1.4 to 14.6, 457 

∆Hv

The main advantage of the present model is that it is applicable for a wide range of chemical-460 

material-temperature combinations, which is more comprehensive than the correlation methods 461 

developed in previous studies which were specific for one solid material and often at room 462 

temperature. Moreover, a generic model is also developed which is able to give relatively 463 

accurate estimates of K

 from 22.3 to 75.6 kJ/mol, temperature between 15 and 100 °C, and material type belonging 458 

to the 22 consolidated types. 459 

ma

 467 

 without assigning a particular material type, making it suitable for 464 

high-throughput assessments of the chemical releases from solid materials and subsequent 465 

consumer exposures.  466 
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Tables and Figures 477 

Table 1. Regression coefficients for Eq. 6 478 
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 479 

 480 

 481 

Table 2. External validation results 482 

Variable Coefficient SE 
a

P-value

Intercept -0.38 0.06 < 0.001

log10Koa 0.63 0.01 < 0.001

ΔHma(1/T-1/298.15)/2.303R 0.96 0.04 < 0.001

Consolidated material types (coefficient b)

Carpet 1.97 0.14 < 0.001

Cellulose fabric (cotton, linen) 0.72 0.12 < 0.001

Cement, Calcium silicate 1.11 0.10 < 0.001

Concrete 2.20 0.29 < 0.001

Ethylene Vinyl Acetate (EVA) 3.50 0.32 < 0.001

Glass 1.11 0.29 < 0.001

Gypsum board 1.28 0.18 < 0.001

Latex and solvent-based paint 2.92 0.19 < 0.001

Paper 0.14 0.10 0.16

Plywood 1.36 0.18 < 0.001

Polyester fabric 0.60 0.14 < 0.001

Polyether ether ketone (PEEK) 2.73 0.29 < 0.001

Polyethylene (PE) 2.45 0.17 < 0.001

Polypropylene (PP) 2.06 0.29 < 0.001

Polytetrafluoroethylene (PTFE) 2.08 0.29 < 0.001

PU-ester -0.72 0.07 < 0.001

PU-ether 
b

0.00 0.19 n/a

PUF-undefined 1.06 0.15 < 0.001

Rayon fabric 0.97 0.18 < 0.001

Stainless steel 2.07 0.29 < 0.001

Vinyl flooring 2.26 0.11 < 0.001

Wooden boards c 2.01 0.09 < 0.001
aStandard error.
bReference material.
cIncludes oriented strand board (OSB), particleboard, medium-density board and high-density board.
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 483 
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   486 

External validation criteria R
2

ext Q
2

F1 Q
2

F2 Q
2

F3 CCC

Threshold > 0.70 > 0.70 > 0.70 > 0.65 > 0.85

Splitting by random percentage 0.93 0.93 0.93 0.92 0.90 0.96

Splitting by ordered response 0.93 0.93 0.93 0.93 0.90 0.96

Splitting by ordered structure 0.94 0.94 0.94 0.94 0.91 0.97

Splitting by studies 0.79 0.86 0.78 0.86 0.71 0.89

R2
ext: determination coefficient of the prediction set external data.

Q2
F1: correlation coefficient proposed by Shi et al. 

Q2
F2: correlation coefficient proposed by Schuurmann et al.

Q2
F3: correlation coefficient proposed by Consonni et al.

       : determination coefficient proposed by Ojha et al. 

CCC: concordance correlation coefficient proposed by Chirico and Gramatica. 
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Figure 1. (A) Measured Enthalpy of material-air partitioning (∆Hma) and (B) residuals as a 487 

function of the (∆Hma) predicted from chemical enthalpy of vaporization (∆Hv

 490 

 - Eq. 5). The 488 

dotted line in (A) indicates the 1:1 line. 489 

   491 

Figure 2. (A) measured logKma and (B) residuals as a function of logKma

 494 

 predicted by the final 492 

QSPR (Eq. 6). The dotted line in (A) indicates the 1:1 line.  493 
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  496 

Figure 3. temperature adjusted measured logKma as a function of logKoa

 499 

 for selected material 497 

types including EVA, PE, vinyl flooring, and PU-ester. 498 

 500 

 501 

Figure 4. Change in logKma

 504 

 with respect to the change in each predictor, from minimum to 502 

maximum values within the entire dataset. 503 

EVA: y = 1.00x + 0.31

PE: y = 0.59x + 2.46
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 505 

Figure 5. (A) measured logKma and (B) residuals as a function of logKma

 508 

 predicted by the generic 506 

QSPR (Eq. 7). The dotted line in (A) indicates the 1:1 line.  507 

 509 
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 511 
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