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Abstract

The materiakir partition coefficien{K ) is a key parametdo estimate the releasé
chemicalsncorporated in solidnateriab and resulting human exposures. Existiogelatiors to
estimate K, areapplicable for a limited number of chemigakterial combinationwithout
consideringrtheffect of temperaturéhe present study develops a quantitative property-
property relationshipQ@SPR to predict Ky, for a large number of chemiealaterial
combinaions. We compiled a datasat991measured K, for 179 chemicals in 2Zonsolidated
material typesA multiple linear regression modptedict Ky, as a function of chemical’'s 4§
enthalpy of vaporizatiomH,), temperature and material tydde model shows good fittingf
the experimefital datasetth adjwsted R of 0.93 anchasbeen verified by internal and external
validatiors to be robust, stable and has good predicting ability,(R 0.78). AgenericQSPRis
also developedito predict. from chemical propertiesnd temperaturenly (adjusted R=
0.84),without:the need to assign a specific material tyieseQSPRs provide correlation
methodgo-estimate k;, for a wide range of organic chemicals and matenaschwill
facilitate high-throughputestimates of human exposures for chemicals in solid materials,

particularly building materialand furniture

Keywords

Partitioningsdndoorelease, Solid materials, Organic chemicals, Consumer exposure, Correlation

Practical implications

ThedevelopedSPRs providea comprehensive correlation methim estimateK ,,;, coveing a
muchwider‘range of organic chemicals and solid matemalsipared to previous studies, and
include a still accurate generic correlatiwithout the need to assign a material tygembined
with the QSPRestimaing the internal diffusion coefficiertt theseQSPRs facilitate high-
throughput.estimates of indoor human expostoesemicalancorporatedn solid materials
This is highlyrelevant for multiplesciencepolicy fields, includingchemical alternatives
assessment (CAA), risk assessment (RA) and life cycle assessment (LCA).

1. Introduction

Chemicalancorporatedn solid materials have been identified as a major source a’pass

emissions to indoor aand of transfers into house dust and skin. Typical examples include
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chemicals used as plasticizersinlding materials and flame retardants in furnitre estimate
the release of these chemicals from solid materials and subsequent consumer exipesures,
dimensionlessolid materialair partition coefficientK ), defined as the ratio of the
concentration in thenaterial to the concentrationtineair at equilibrium is one of the key
parameteré.The Kyais essential in determining the chemical transfer from solid material to air
and to house dust, a=ll as the chemical concentration at the material surface, which further
determines‘the‘inhalation, dermal and dust ingestion exposusgs $pecificto a chemical
material combination and &so influenced by ambient temperatlEgperimental techniques
such as chamber tests for building matefiaésd sorption experiemts for polymer materiaf&®
have enabledsmeasurement of a limited number,@fM&lues for building materials such as
vinyl flooring, gypsum board, plywood amgément, as well as polymer materiased for
passivesamplergncluding polyurethane foams (PUlpplyethylene (PE)and polypropylene
(PP).Recently, studieave also been conducted to measure thefét clothing and fabrics®.
However,since experiments are costly and tiomsuming, measured,K values are only
available for@dimited number of chemicahateial combinations. Thus, quantitative
relationships‘are needed to predits partition coefficienfrom known physiochemical
propertiessfor chemicals without experimental dataich is especially important for high-
throudhput-approachesor whicha large number of chemiealaterial combinations need to be
evaluated

Several correlation methods have been developed to estimateok physiochemical
propertiesof‘chemicals. For example, several studies have correlatealtde chemical’s

vapor pressure using data on volatile organic compounds (VOCSs) in building mét&tials
Other studies which focused on sewalatile organic compounds (SVOCS) in passive sampling
devices have found correlation between,lind the octanair partition coefficient (k) > ® 2

13 Furthermore, Holmgren et al. estimateghtés a function of five Abraham solvation
parameters.forsix groups of materiisbut these paragters are not readily availablor the
aforementioned approaches, the main limitation is that the correlations are specifi@ito cer
chemical classes and materials; for exarpplgcyclic aromatic hydrocarbonBAHS) in low-
density polyethyleneLOPE), which limits their application for othehemicalmaterial
combinations. Addressing this research gap to facilitate wider applicability, Galmped a
method which estimates the,Kas a function of the chemical’s vapor pressure for all materials

This article is protected by copyright. All rights reserved



90
91
92
93
94
95
96
97
08
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

and chemical classés However, this approach @eveloped based on a small datageith

mainly includes VOCs in building materiaddhich limits its applicability taalso addresSVOCs
Another limitation of the previous studies is that the effect of temperature was not well
considered in the correlation. Some studies provided different correlation ieveffifor certain
discrete temperaturé3 while others corrected the predictfos temperaturé®. However, since
the known physiochemical properties such as vapor pressure,gacekoften only given as
values at 25C; correcting them for temperature may not always be practical as the
corresponding enthalpies of phase change are not available for all cheSevalsal studiedid
establish correlations betweenkand temperaturdut the correlations were only verified using
experimental@data on limited chemicals such as formaldehyde and other aldéH§des

In all, the currently available correlation methods to estimated€ not provide sufficient
coverage of chemicalncorporatedn solid materialsat different ambient temperatures. A recent
research hotspot exposure sciences to develogow tier, high-throughput methods to estimate
exposure to_ chemical in consumer products across a variety of chemaieglalcombinations,
which requiresthigh-throughput estimates @f,or a widerange of materiathemicals
combinations=Thus, the present study aims to develop a more comprehensive correthtidn me
to estimate.k, for a wide range of organic compounds in multiple solid materials, addressing
the need.for'high-throughput exposure assessndots. specifically, we aim to:

1) Carry ot a comprehensivierature review to collect experiment@},, data on a wide range
of materials and chemicals.

2) Use multiple linear regression techniques to estaliie relationship between,Kand

various predietor variables including physiochemical properties, matgreabnd temperature

3) Perform internal and external validations to characterize the validity and predictive power of
the developed correlation.

This QSPRprovidesa more advanced correlation method to estimate gheoKorganic
compounds.compared to previous studies, as it covers a wide range of solidsraatdria
chemicalsandconsistently incorporatdke effect of temperaturd. similar QSPRhas been
developed“by.our group for the internal diffusion coefficient in solid matérials . By prgvidi
reliable estimates dhe key partition and diffusion parameters for a large numbeiatérial
chemical combinans, thes&®SPRs will facilitate highthroughput assessments of chemical

emissions and human exposures for cheminatsrporatedn solid materials relevant for
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121 various science-policy fields such@wemical alternatives assessment (CAA), risk assarsis
122 andlife-cycle assessmeritCA).

123

124 2. Materials and Methods

125 2.1 Datzet

126 2.1.1 Data collection

127 Experimentamateriatair partition coefficient dta were compiled from3 references from the
128 peerreviewed scientific terature(provided in Supporting Information (SI), Section S1).

129 Dimensionless/partition coefficients were collected. If the partition coefficients were expressed
130 in mL/g orffilg;ithey were converted to dimensionless values by multiplying these by the
131 density of tle sold material. Ifthe partition coefficients were expressed in the unit of m, they
132 were converted to dimensionless values by dividing thesleebthickness of the materidlhe
133 initial datasebfK 5, contained a total of 1008 records covering 179 wnithemicals and 75
134  distinct solid=materials.

135 2.1.2Data’curation

136 For the 179 unique chemicals bktinitial Ky, datasetmolecular weightyapor pressure, water
137  solubility afdblogksw at 25°C were obtained from EPISUuit& For these physiochemical

138 properties, experiental values were used when available, otherthisesoftwareestimated

139 valueswere usedThe enthalpy of vaporizatiomH,, J/mol) of each chemical was obtained
140 from ChemSpider estimated valuasrw.chemspider.coin

141 For the octanoéir partition coefficient (loglss) at 25 °Cexperimental values are only available
142 for part of the 179 chemicals in the dataset. To avoid inconsistency, we used the/alg&s

143 estimated by EPISuit€ for all of the 179 chemicals. In EPISuite, lagks estimated by

144  subtracting logl, (dimensionless log airater partition coefficient) from logls, logKaw and
145  logKow beingestimated byhe HenryWin and KowWin functions, respectivélyExperimental
146 logK,, values'were also collected and their impacts on the QSPR were assepseskrasd in
147 Sl Section"S6.

148 To avoid overfitting of the QSPRmodel, the 75 original materials forKwere grouped into 22
149 consolidated material types, based on the name of the materials and the similarity of the

150 regression coefficients (seé SectionS1), ensuring a minimum of 5 data points and 3 different
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151 chemicals peconsolidatednaterial type The data points with materials that cannot be grouped
152 according to the above criteria were excluded from further analyses.

153 The final Ky, datasetontains 99Haa points with 179 unique chemicals in 22 consolidated
154 material types. The temperature at which thg Was measured ranges from 15 t® 2G. The

155 final dataset.is provided in Sl.

156

157 2.2 Modeling'methods

158 2.2.1 Multiple linear regression model

159 A multiplelinear regression (MLR) analysis was performed to identify and quantify the effe
160 different parameters ahe partition coefficient, with details described in our previous paper on
161 the QSPRfor diffusion coefficient. Briefly, the MLR model takes the following general form:
162 logioKme =a+ 1 X1+ +Bn-Xp+by-My+ -+ by, My, (2)
163 where logoKmais the logarithm of the dimensionlesg{ais the interceptX; to X, are

164 independent.variables relatedib@ properties of the chemiaal the environmenip; to 5, are

165 regression coefficients for the respective independent varigblesx,,. M; to M, are dummy

166 variables for the packaging materials, with one dummy variable per typdaeriahad dummy

167 variable equals 1 for the material type it represents, and djt@isll other materials; for

168 exampleM; = 1 for material type 1M; = O for material types 2 to ni; to by, are regression

169 coefficients for the respective dummy varialiésto M. The number ofmis equal to the

170 number of material types considered usri, sincé®U-ether- the material type with the highest
171 number of'measurddn,, data- is used as the reference material type and does not require a
172 dummy available in the MLR. Regression coefficients were estimated by the least squares (LS)
173 method. All regression analyses were performed using IBM SPSS Statistics version 23 (IBM
174  corporation, Armonk, New York).

175 In previoussstudies, either the chemical’s vapor presstitkor logKoa > *%*% has been used as
176 predictor efithe'tg, in a given material. Abraham solvation parameters were also used as

177  predictorssy Holmgen et al**

, but these parameters are not considered here since they are not
178 readily available. Initial regressions (SéctionS2) suggest that logk is a better predictor of

179 Knacompared to vapor pressure. Thus, the chemical’s logtk?5 T was used as the

180 independent variable for chemical properties in Eq. 1.

181 Thus, the MLR model takes the following form:
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10810Kma = @ + Biogk,, " 10910Koa + Br - T_term + by - My + -+ + by - My, (2)
whereT _termis a term representirte effect of temperature and will be described in the next
section (Section 2.2.2).

2.2.2 Temperature dependence
In thermodynamics, the temperature dependence of equilibrium consigrdai be described
by the van’t,Heff equation:

Ky _ AHpnasecn 11
ln K_Z — p as;c ange (T_ _ T_) X3a
1 2 1

where K and Ky are the equilibrium constants at temperatur@aid T, respectively, Tand T,
are absolute'temperatures (K), R is ideal gas constant (8.31#hdlI(K andAH phasechangelS the
enthalpy of phase change (J/mol).

Since Kqaistanequilibrium constant by definitiamd the chemical’s lagK o, at 25 °C or
298.15 K istused as an independent variable in the MLR model (Bge Z2ssume that the
temperatee dependence of g also follows the van’t Hoff equation:

Kma 2 _ AHmq l_ 1
Kma1  2303R (Tz 298.15) (3b)

Tterm = l0g10
whereAHn, iIs'the enthalpy of the partitioning between material and air (J/mol), and 2.303 is a
conversionsfactor between lggl and InK.
Ideally, the“enthalpyH . should be different foritferent chemicaimaterialcombinations.
Kamprad and Gashave determinetthe AH 5 values for 54 unique chemicals in Rtherusing
measured Ka data from 15 °C to 95°¢, so we were able to delop a linear correlation to
estimateAHm, from chemical propertiegesults shown in Section13. Sinceno experimental
AHmaVvaluesqare available for materials other thand®ier, we use th&Hn,correlation
developed above across all materidlserefore, in our regression model of KtheAH,is

chemicalspecifie, but not materiadpecific. The final MLR model thus takes the following form:

AHpg 1 1

10810Kma =% Biogk,, 10810Koq + Br - 2303 R (; - 298.15) + by - My + -+ by - My 4)

2.3 Model validation
Validation of the final MLR model (Eq. 4) was performed using the QSARINS safwarsion
2.2.1 (vww.gsar.i} which is developed by Gramatica et?&*".
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210 2.3.1 Internal validation

211 The MLR model's capacityo predict portions of the training dataset was evaluated in an internal
212 validation process, using two techniqueQSARINS: the leave more outNO) cross

213 validation,and the Yscrambling which have been described previousfy. 1000 iterationsvere

214 used for the.kMO crosegalidation and the percentage of the excluded elements was set as 20%,
215 and 1000 jterations for Y-scrambling.

216 2.3.2 Externalvalidation

217 We also evaluated the motehbility to provide reliable predictions on new datasets by external
218 validation using thesplitting approach, which split the existing dataset (@&h points) into one
219 training dataset and one prediction dataset. The training dataset was useddie gegexssion

220 coefficients‘of the MLR model, and then the MLR model was applied to the praedetido

221 examine the prediction performances of the mobeiee kinds of splitting were performed

222 using existing options in the QSARINS software (see S| Section S4.1 for deyaitg)dom

223 percentage, bgrdered response and by structure. We introduced a fourth kind of splitting by
224  studies, wheresall data points from certain studies were manually selected as the training set and
225 data points'fram remaining studies as the prediction set. If a consolidatehtgbe only

226 includes data points from one study, all of these data points were assigned irgmithg $et in

227 order to_ensure that the MLR model constructed using the training set inclucessallidated

228 material types. The four types of splitting yielded similar sample sizes of apprdyi@@delata

229 points for the training set and 200 data poiatghe prediction set (STableS3).

230

231 3. Resultssand Discussions

232 3.1Temperature dependence

233  As described.in'Section 2.21he temperature dependence @f.Ks determined by the enthalpy
234  of the partitioning between material and aiH ,, (J/mol).Using themeasured k, data for 54
235 chemicalsin*Ptether from 15 °C to 98 * (data are provided in Section SR weobtained the

236 followingscorrelation to estimat&H

237 AH,,, = 1.37 - AH, — 14.0 (5)
238 N = 54,R? = 0.786 R,q; = 0.782, SE = 2.85, RMSE = 2.80
239 ANOVA: F = 191,df =1, p < 0.0001
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whereAH, is the chemical’s enthalpy of vaporization (J/mol) obtained from ChemSpider
(www.chemspider.coijn

This simple linear model shows good fitting of the experimexital, data, with an adjusted R-
squared of 0.782, and the model fit is highly significant with an ANOWAlpe < 0.0001.
Figure 1 shows the scatter plot of predicted vs meagihigd and the residual plot, which
indicate good agreement withe 1:1 line and radom distribution of residuals throughout the
datasetTheseresults suggest that there is indeed a linear relationship batkggandAH, in

PU-ether,'and"Eq.5 was also used as default to estikhhtgfor all other materials

3.2 Final@SPRand model fitting
Using the full datase®@1 data points) and Eg. 4, the final MLR model for predicting the solid

materialair partition coefficient is as follows:

AHpmg (1 1
16810 Kmq = —0.38 + 0.63 - 10g10Koq + 0.96 - 2 (1 — ——) 4 p (6)

N = 991,R? = 0.934 R, = 0.933 SE = 062, RMSE =0.62
ANOVA: F =597,df = 23, p < 0.0001

where Kgais-the dimensionlessolid materialair partition coefficient, K, is the chemical’s
dimensionless octanalir partition coefficientet 25°C, AHn,4 Is theenthalpy of the partitioning
between‘material and air (J/mol) which is given by E@. & absolute temperature (K), and b is
the materiakpecific coefficients presented in Table 1. This model is provided as an excel model
in Sl to facilitate appication. The standard errors for tbeefficients are also presented in Table
1. An SE of 0.63 of the final model (Eg). i&dicates that the 95% confidence interval (Cl) of the
predicted legkwais the predicted value + 1.22, indicating that most of tedipted Ky, are
within a.facter.ef 16rom the measured k.
This MLR model shows excellent fitting of the experimental data, with an adjRssgjuareaf
0.93 and a rootimean square error (RMSE) of 0.62. The model fit is highly significant with an
ANOVA p-value smaller than 0.0001. FigurA 8hows the scatter plot of predicted vs measured
logKma, Which aligns well with the 1:1 line. The residual plot (Figure 1B) shows that the
residuals are distributedrenly throughout the datasend most residuals have absolute values
smaller than 2again indicating the good fit of the linear model for the data.
This MLR model assumdhat the correlation between logkKand the chemical’s logl is the

same across material types, which seems reasonable given the excellent modé&lifitting.
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271 the logKna against chemical’s logk for selectednaterial typegFigure 3) confirmed that the
272 correlation between logk; and the chemical’s logk (i.e., the slopes of the fitted straight lines
273 in Figure 3) is similar but with slight differences across material types, indi¢htihg single
274  coefficient for logks,, as in the prese@SPRmodel, might not be perfect. This could haverbe
275 accounted for,by includingteraction terms between logkand material typesut this would
276 introduce 2Imore terms in the modelithout greatly improvinghe model fitting(SI Section

277  SbH, sothe'interaction termaere not retaineth the finalQSPRmodel.

278 Asdescribed'in‘the methods, this final MLR model uses EPI@stieiated logls, values as
279 predictors, since experimental logkarenot available for all chemicals in the dataset. MLR
280 models developed using mixed logkralues {.e., for a chemicagxperimeral logK,, is used
281 when availablgotherwise EPISuitestimated logl, is used) alsgielded similar results as the
282 final MLR model (adjusted Rranged from 0.930 to 0.931, for details see Sl Section S6),
283 indicating thathe impact of experimental logKon the model is minimal.

284

285 3.3 Impagtofieach predictor

286 Asshown in Eq. 6, the key predictors of gwid materialair partition coefficient are the

287 chemical'sdegka, AH,, temperature, and tle®lid material type. The regression coefficient for
288 logKoy is:0763 and is highly significant (p < 0.0001), indicating thatregeriatair partition

289 coefficient increases with increasing lagKwhich is consistent with findings from previous
290 studies”®*,

291 The regressionycoefficient of the temperature terthd6 and is also highly significant (p <

292 0.0001), indieating that the decreases with higher temperatlEgperimental data ém

293 Kamprad et al. did show reducedwith increased temperatyrandit alsomakes intuitive

294 sense that at higher temperature thg i§ lower leading to faster chemical migration freaiid
295 material te.airAs discussed in Section 3.1, the effect of temperature,gralso depends on the
296 AHma Whichincreases linearly with the chemical’s enthalpy of vaporizaiitn

297 The2ldummy variables for the material types reflect the material dependencykof,ih&s

298 “PU-ether’(palyurethanesther)was used as the reference material in the regression, the value of
299 its coefficientb is zero (Table 1). For each of the other material types, the coeflicient

300 determines the difference in logkbetween that material type aRt)-ether. Chemicals isolid

301 material types with high values bfare more difficult to migrate tair than in thosevith low
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values ofb. The three material types with highestoefficients are ethylengnyl acetate (EVA),
latex and solverbased paint and polyether ether ketorfeHR) which are dense materials

while the three types with lowelstcoefficients ard®U-ester(polyurethanesster) PU-ether and
paper which tend to be porous materials. It should be noted that the data for a given cedsolidat
material type.were gatherém different studies, and the composition and properties of the
material type may vary between studies, so the material type coefficients in Table 1 only
represent’an‘average composition and partition behavior for the specific material types.

The signifcance of the material type coefficient only indicates that the coeffiosenitthese
material types are significantly different from the reference material Bigpether but if

another material type was selected as the reference material, the regression coefficients and
statistical significance of all materials would change. Thus, the insignificance of the regression
coefficient for‘paper” (Table 1) does not indicate tltlais material type does nbave a relevant
influence on the k.. As a result, w&eep all21 material type dummy variables in the final
regression.to retain as much information as possible.

To better illustrate the impact of each predictor omtlageriatair partition coefficient, we

varied each predictor from the minimum to the maximum value in the entire d@@kda(a

points) while keeping the other predictors constant, and calculated the change.inueyig

the regression coefficients in the fil@BPR(EQ. §. Since theehemical’'sAH, determines the
AHmawhich modifies the relationship between logkandtemperaturgthe impact of
temperaturgvas calculated as two extremeggshe minimum and maximum valuesAH, in

the entire datasef\s shown in Figure 4, thehemical's logk, has the highest impact on logK
among predietors. The impact of temperature on JggKvery low with the lowest value of

AH, (22.3(kJ/mol), but the impact become moderate with the highest vahii, ¢75.6 kJ/mol).

This indicates that for a chemical with low enthalpy of vaporization, the;l@gKly changes
slightly with temperature, and vice versa. The material type also has a moderate impact on the
logKma, Which.is similar to the impact of temperature with the aggjlvalue oiAH,.. Overall, the
impact of material type is relatively small compared to the impact of chemical’sogK

indicating that,the variation in logk does not strongly depend on the solid material type, which
suggests the possibility of develogia generi€QSPRto predict logk,, in absence of material

specificdata
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3.4 Model validation results

3.4.1 Internal validation

The correlation coefficierfor the LMO cross validation, Quo, averages 0.93 (range: 0.90 —
0.95) for the 1000 iterations, and the root mean square error for cross validation{([RMSE
averages G3=Both the & yo and RMSE, are similar to the Rand RMSE computed using the
full dataset;,which.is 0.93 and 0.62, respectively, indicating that the msad&drnally stable.

For Y-scramblifng, the Rscr, QPvser and RMSEs,; for the 1000 iterationaveraged 023 -0.028,
and 2.37, fespectively, whigresubstantiallydifferentfrom the R, Q°.vo and RMSE of the
original mode] indicating thathat no corelation exists between the scrambled responses and the
predictorsFhusithe internal validatiowveralldemonstrates that thimal QSPRmodel(Eq. 6)

is robust and stable, and is not a result of chance correlation.

3.4.2 External validation

As described.irection 23.2, four types of splitting were used for external validation, including
splitting bysrandom 20%, by ordered response, by structure, and by studies. Six criteria for
external validation, described in detail previousfy >, were computed and are presented in
Table 2. Fothefirst three types of splitting, thédg are higher than 0.9, and the other five
criteriaall'pass the threshold values and are higher than 0.9, indicating good predictive ability of
the malels*constructed froitmaining set datalhis is expected becautee prediction sets

resulted from these three types of splitting are generally well within the applicability domain
(described.in detail belovgefined by the trainingets(Sl, FiguresS1-S6), since the data points
were drawn either randomly or alternately.

For the splitting by studies, data from 2Rdies were selected as the prediction set, while data
from 20 studies constituted the training Sktis splitting can better representaly “external”
validationgsince all data from one stuggreeither be in the training or the prediction $keé
prediction.ability of the model constructed from the training set is apparedtiged, as the

R?ex Of this.splitting dropped to 0.79, and the values of the other five criteria are lower than
those for the'above three types of splittimbis is reasonable since the data variability is higher
between studies than within studiss the prediction set might not be well within the AD
defined by the training se$(, Figures S%&10).Nonetheless, all validation criteria for this
splitting still pass the thresholdmdicaing acceptable prediction abilityéble 2).
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363 3.4.3 Applicability domain (AD)

364 Itis important to define the ADf our QSPRmodel, as it can provide information on the

365 reliability of the model predictiord for future users who would like to use the model on new
366 chemicals, If the new chemicals are indide AD, the model predictiorege interpolated and are
367 more reliables,;However, if the chemicals are outside the AD, the predictions are extrapolated and
368 less reliablg”,

369 For definition"of'the AD, the model being evaluated is the fgaPRmodel presented in Eq. 6,
370 and the training dataset thus refers to the full dataset including 991 data Huiets.

371 complementary methods were applied to define the AD of the¥SPR the range of model

372 predictorsgthesleverage approach, and the PCA of the model predidiaris havebeen

373  describedin detapreviously®.

374 For the range gbredictorsthe model has four predictotegK,,, AH,, temperaturend material
375 type. The logK., AH,, temperature of the training dataset range from 1.4 tq ftdr622.3 to

376 75.6 kd/mol, and frori5to 100 °C, respectively, defining the AD of the modlaks noteworthy
377 that the material type is a categorical variable, and the training set c@#ainossolidated

378 materials typessothe model's AD is also restrictéd these22 material typeskor the leverage
379 approachytheritical valueh* for the diagonal values of the hdi) (natrix of the modelvas

380 calculatedto’be 0.0727, and the AD is defined a traues less thai* *2°, For thePCA

381 approachthe AD is defined as the space between the minimum and maximum vatheP&1
382 and PC2 Scores of the training dat&$ét, which range from -4.39 to 2.04 and from -4.52 to
383  2.22, respectively-or future model users, a new chemical should be considered “inside AD” if
384 viewed inside-AD by all three methods, and be considered “outside AD” if viewed At by
385 all three methods, otherwise it should be considered “bordeffine”

386

387 3.5 GenericQSPR

388 In order to.predict the K, without assignig material propertiesve builta genericQSPRmodel
389 which doesmot include any materggecific variables using the same dataset. This model only

390 uses the chemical properties and temperature as predictors and is as follows:

A ma
391 10810Kmq = —0.37 + 0.75 - 10g10Koq + 1.29 - —oma (1) 7)
392 N =991,R? = 0.80,R,¢ = 0.8Q SE =1.08 RMSE =1.08
393 ANOVA: F =1943,df= 2, p < 0.0001
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This model has atill relatively high adjusted R-squared of 0.80 compared to the 0.93 of the
regression with material coefficie(q. 6), indicating a good fit of experimental data (Figure 5).
As discussed in Section 3.2, tingpact of the solid material typmn logKma is relatively small
compared.to the impact of ahnéal propertiesso logkna can be predicted with reasonably high
accuracy without the material type as a predictor. This ge@&RRthus provides a relatively
reliable method to estimate tKe,, for various solidnaterials thainay be difficult to assign a
material'type-listeth Table 1, which provides a more comprehensive and flezdierage,
although witha'slightly lower accuradyy differentchemicalmaterial combinations than the
materiatspecificQSPRandcanthereforegreatly facilitate higithroughputevaluations of a

large variety efichemicahaterial combinationddowever, it should be noted that although
without thesmaterial type as a predictor, this generic model was still developed using the
experimental data of our collection of 22 material types. Thus, this generit lbestiapplies to
materials listed in Table 1 and similar materiblg,may cause a large error for materials with
special propertie®.g. in presence of strong ionic forces, or of strong pseudo-solvation such that
some of thestarget adsorbate molecules take on a different structure within the material itself,
either dueto'ienization or tautomerization

3.6 Limitations and future work

While thescoverage of 22 consolidated materials and possibly any solid material as well as
inclusion of the effect of temperature are major advantages, the present model has several
limitations.\First, the model does not consider chemical ionization or interadgtloother
chemicalswithin,a solid magrial, which may affect the chemical’s partitioning between the
material and-air. Second, the present model assumes that the relationship hetyesmd
chemical’'sAH,, derived from experimentaH , data for one material type “Réther”, is the

same across different material types. Ideally, more experim@ttaldata for different material
types are needed to verify this assumption or to develop unldugAH, relationships for

different material types.

Third, sincesfor most k,, datasets the material properties are not well characterized or provided
in the originakpublicationghe classification of the consolidated material types is qualitative and
is simply based on material names, which may result in considerable variatroaterial

properties within one consolidated material typeaddition, even with the same composition,

different material structure may affect the mateaialpartitioning.ldeally, quantitative,
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continuous properties of the solid materials, such ssrigi¢ors of the material’'s composition

and molecular structure, could be measured and entered into the modeleagal predictors,

so that the model can be more accurate for particular materials and can be extrapolated to other
material types outsidée training dataseln addition, if quantitative variables for material types
are used, interaction terms between chemical’s Jegld material type variables can be added

to the model without introducing too many additiotems,which can improve moddtting, as
discussedin“Section 3.2

Fourth,many“materials that appear in indoor environments are inhomogeneous, such as plywood,
gypsum boardcarpet,concrete, and paper, which may have layers or portions with distinctive
properties«Thus, the g values measured in experiments and the QSPR built on these
measurements'likely only represent the material properties across the experiments. As a result,
one needs to use caution when applyingptiesenQSPR to predict K,, especially for highly
inhomogeneous materials. Another important asgated to heterogenicifg surface
partitioning,versus bulk partitionin@incethe partitioning between solid material and air

happens mainly at the material surface, the sugemgerties mayave arunusually large

influence on the apparent partitioning behavior. Thereforen&derials with a surface layer of
distinct properties, or materials with the same composition but different surface/bulk structures,
the present'QSPR mawt give a correct estimate of thg,KThe distinct surface layer may be a
result of oxidative aging and soiling, which may change with time, or intrinsiaésattuat are

time invariant.These problems again highlight the importance of using quantitesaiptors

of materialeempositions and structuras predictors in the QSPR.

Finally, thesfunctional mechanisms atherinfluence factors such as relative humidity are

unclear, so they are not included in the QSPR. The effect of relative humidity.as lkely

both chemical and material dependehtwhich will require more irdepth research.

4. Conclusioens

A multiplesdinear regression model has been developed to predsolitlenaterialair partition
coefficients (Ksg) of organic compounds in various sofithterials. Experiment# , data
collected from43 studies were usdd construct the regression modehe model uses three
continuous variables, chemical’s loglAH,, and absolute temperature, as well as one

categoricalvariable, material type, as predictors. The model has been validatedlintanaa
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externally to be robust and stable, and have good predicting abiigyagdplicability domaiof

the model, in terms of the range of predictors, inclutiesnical’s logKa betweenl.4 to 14.6,

AH, from 22.3 to 75.6 kJ/moktemperature betwedrb and100 °C, and material type belonging
to the 22 consolidated types.

The main advantage of the present model is that it is applicable for a wide range of lehemica
materialtemperatre combinationswhich is more comprehensive thitwe correlation methods
developediin‘previous studiedich werespecific for onesolid material andften at room
temperatureMoreover, a generic model is also developed which is able toejate/ely

accurate estimates of,Kwithout assigning a particular matertgpe, making it suitable for
highthroughput assessments of the chemical releases from solid maedasbsequent

consumer-exposures.
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Tables and Figures

Table 1. Regression coefficients for Eq. 6
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Variable Coefficient SE? P-value

Intercept -0.38 0.06 <0.001
10g10Koa 0.63 0.01 <0.001
AH,,(1/T-1/298.15)/2.303R 0.96 0.04 <0.001

Consolidated'material types (coefficient b)

Carpet 1.97 0.14 <0.001
Cellulose-fabrics(cotton, linen) 0.72 0.12 <0.001
Cement, Calcium silicate 1.11 0.10 <0.001
Concrete 2.20 0.29 <0.001
Ethylene Vinyl,Acetate (EVA) 3.50 0.32 <0.001
Glass 1.11 0.29 <0.001
Gypsum board 1.28 0.18 <0.001
Latex and solventbased paint 2.92 0.19 <0.001
Paper 0.14 0.10 0.16
Plywood 1.36 0.18 <0.001
Polyester fabric 0.60 0.14 <0.001
Polyether ether.ketone (PEEK) 2.73 0.29 <0.001
Polyethylene (PE) 2.45 0.17 <0.001
Polypropylene (PP) 2.06 0.29 <0.001
Polytetrafluoroethylene (PT FE) 2.08 0.29 <0.001
PU-ester -0.72 0.07 <0.001
PU-ether 0.00 0.19 n/a
PUF-undefined 1.06 0.15 <0.001
Rayon fabric 0.97 0.18 <0.001
Stainless steel 2.07 0.29 <0.001
Vinyl flooring 2.26 0.11 <0.001
Wooden boards ° 2.01 0.09 <0.001
4Standard‘efror.

"Reference material.
479 “Includes oriented strand board (OSB), particleboard, medium-density board and high-density board.

480
481
482 Table 2. Externalalidation results
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External validation criteria Rext Q% Q% Q% r2 cce
Threshold >0.70 >0.70 >0.70 >0.65 >0.85
Splitting by random percentage 0.93 0.93 0.93 0.92 0.90 0.96
Splitting by-ordered response 0.93 0.93 093 0.93 0.90 0.96
Splitting by ordered structure 0.94 0.94 0.94 0.94 0.91 0.97
Splitting by studies 0.79 0.86 0.78 0.86 0.71 0.89

R?,,: determination coefficient of the prediction set external data.

Q% correlation.coefficient proposed by Shi et al.

Q?,: correlation Soefficient proposed by Schuurmann etal.

02F3: correlationscoefficient proposed by Consonni et al.

12, : determination coefficient proposed by Ojha et al.
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CCC: concordance correlation coefficient proposed by Chirico and Gramatica.



487 Figure 1.(A) MeasurecEnthalpy of materia&ir partitioning AH) and (B) residuals as a
488 function of the AH ;) predictedirom chemical enthalpy of vaporizationKl, - Eq. 5). The
489 dotted line in (A) indicates the 1:1 line.
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492  Figure 27(Aymeasured logkand (B)residuals as a function wfigK 4 predicted by the final
493 QSPR(EQ. 6). The dotted line in (A) indicates the 1:1 line.
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Chemical logK,,

Figure 3. temperature adjusted measured jQ@is a function of logk, for selected material

types includingeVA, PE, vinyl flooring, and PUester.
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Changein logK,,,,
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ChemicallogKoa Temperature, Temperature, Material
AHv =22.3kl/mol  AHv = 75.6kJ/mol type

Figure 4. Change in loghks with respect to the change in each predi¢tom minimum to

maximumvaluesvithin the entire dataset.
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Figure 5. (A) measured logk and (B)residuals as a functiorf tngKn, predicted by the generic
QSPR(EQ..7). The dotted line in (A) indicates the 1:1 line.
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