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T he prevailing first-come-first-served approach to outpatient appointment scheduling ignores differing urgency levels,
leading to unnecessarily long waits for urgent patients. In data from a partner healthcare organization, we found in

some departments that urgent patients were inadvertently waiting longer for an appointment than non-urgent patients.
This study develops a capacity allocation optimization methodology that reserves appointment slots based on urgency in
a complicated, integrated care environment where multiple specialties serve multiple types of patients. This optimization
reallocates network capacity to limit access delays (indirect waiting times) for initial and downstream appointments differ-
entiated by urgency. We formulate this problem as a queueing network optimization and approximate it via deterministic
linear optimization to simultaneously smooth workloads and guarantee access delay targets. In a case study of our indus-
try partner we demonstrate the ability to (i) reduce urgent patient mean access delay by 27% with only a 7% increase in
mean access delay for non-urgent patients, and (ii) increase throughput by 31% with the same service levels and over-
time.
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1. Introduction

Patient health and financial concerns have spurred a
growing shift to delivery of outpatient care through
coordinated care networks (American Hospital Asso-
ciation 2015). There is also a growing interest in the
ability to limit patients’ wait times to receive an
appointment. Still, there is not much literature on
methods to limit access delays that are set according
to patient type, and the problem is compounded for
networks of outpatient specialist services. We develop
methods that are general in the numbers of services
and patient types. A case study of three departments
at our industry partner is used to demonstrate how to
balance the access delays for (i) new patients who

have an unknown condition that requires rapid diag-
nosis through a stochastic series of consults in multi-
ple medical specialties, and (ii) established patients
who are involved in ongoing monitoring and treat-
ment of a previously diagnosed condition. We call the
patients who present with a new condition urgent
patients. Aside from organizational priorities that
may justify urgent status, new patients require a diag-
nosis and therefore rapid access to mitigate their
health risks. Urgency in the outpatient setting differs
from urgent care in the inpatient setting where most
critical patients are admitted through the emergency
department.
Coordinated care networks are faced with the chal-

lenge of providing rapid access to urgent patients. To
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do so, they reserve some of their capacity for initial
diagnostic visits. However, reserving capacity for
new patients in one department, if not carefully con-
sidered, can lead to long delays for established
patients returning for a follow-up appointment (we
call these patients non-urgent) in that department and
possibly for other patients (urgent and non-urgent) in
other departments. Our definition of urgency comes
from our partner organization, however it can be
easily tailored to other definitions based on the needs
of the application. This capacity management and
allocation problem is especially challenging due to
the interconnected network of services employed in a
diagnostic itinerary and the complex relationships
between the delays for different patient types. Next,
we discuss the main contributions of the study in
terms of application, theory, and management
insights.
Application: This model addresses the challenges of

care networks as they seek to stratify patient access
delay (also called indirect waiting in Gupta and Den-
ton (2008)) according to the needs of each patient
type. In our case study of a partner organization, we
show that it is possible to improve mean access delay
for urgent patients while limiting delays for non-
urgent patients. We extend this analysis, to show that
the distribution on access delay is also controllable to
fit the needs of the organization by allowing for multi-
ple service level constraints. Next, we show how our
model can be used to create Pareto curves that illus-
trate the tradeoffs between three key competing met-
rics: throughput, overtime, and access delay. Finally,
we demonstrate the value of the integrated solution,
showing that the siloed approach can cause signifi-
cant downstream congestion which can be mitigated
by our integrated model.
Technical: The technical contributions of this study

include novel methods for capacity planning and allo-
cation across an integrated network of care services.
Specifically, we formulate and solve a capacity reser-
vation optimization through the analysis and lin-
earization of a complex (and non-traditional)
queueing network that accounts for multiple patient
classes, multiple specialties, and multiple competing
metrics. Our performance metrics described in section
3, if captured exactly, are nonlinear in the decision
variables, so we transform a nonlinear stochastic
queueing network into a tractable, deterministic lin-
ear optimization model. Finally, we develop methods
for controlling not only the mean, but the full shape of
the access delay distributions, which in turn shapes
the workload distributions.
Managerial insights: Without an integrated model,

ad hoc or siloed approaches in one service often lead
to unintended consequences for other services in the
system. For example, increasing throughput in one

department at the partner institution led to increased
access delay and congestion in other departments.
Even with clear goals in mind for competing metrics,
powerful analytical methods and decision support
are needed to tie these metrics to capacity planning
decisions. The what-if scenario capabilities provided
by our model can support a wide array of managerial
decision frameworks.
The rest of this study is organized as follows. Sec-

tion 2 describes the problem context based on our col-
laboration with a leading integrated care provider
that serves patients from throughout the United States
and around the world. We use real data to demon-
strate challenges and inefficiencies in the planning
approach currently used in practice, and we review
the literature. Section 3 describes the system dynam-
ics and presents the model. Section 4 discusses the
conversion of nonlinear, stochastic system dynamics
into a set of deterministic, linear optimization equa-
tions. In section 5, we numerically validate our model
and present a case study of our partner organization.
Section 6 concludes the paper.

2. Context and Literature Survey

Our focus is on outpatient capacity allocation plan-
ning models for integrated care. Integrated care has
been identified as an increasingly important trend in
the U.S. healthcare system (see Kocher and Sahni
2010). In contrast to scheduling, we perform planning
through the optimization of an appointment template.
Our partner institution, like many others, requests
that medical departments reserve some slots for speci-
fic types of patients in their appointment template.
Each slot may have a deterministic duration that
depends on the type of appointment it is designated
for. This template process has historically been man-
aged in a siloed and reactive manner, whereas our
method designs optimized templates so that manage-
rial decisions become precise, integrative, and
proactive.
To illustrate our context, consider the General Inter-

nal Medicine (GIM) department. Patients requiring
diagnosis and treatment planning for a new condition
are typically scheduled for an initial/root appoint-
ment via the GIM template. Based on the analysis of
this initial consult at GIM, downstream appointments
are generated in GIM and other departments—e.g.,
Gastroenterology (GI)—for further analysis, diagno-
sis, and treatment. These downstream appointments
are not known in advance of the initial consult, so
some capacity in the template must also be reserved
to accommodate each patient’s dynamically gener-
ated itinerary. This is similar to the inpatient context
in which a patient’s treatment path is unknown at the
time of arrival to the hospital (see Bekker and
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Koeleman 2011). However, in the business model for
care networks such as the one we study, an itinerary
typically consists of a rapid succession of multiple vis-
its to multiple specialties over the course of several
days. Hence, the GIM template reserves some capac-
ity for root appointments that are scheduled in
advance, and reserves the remaining capacity for two
types of unplanned downstream visits: those originat-
ing from a root appointment in GIM—called follow-up
appointments, and those originating from root appoint-
ments in other departments that refer their patients to
GIM—called internal referrals.
In this context, a decision support system is needed

for a variety of reasons. Suppose, for example, that
hospital management anticipates an increase in the
volume of urgent patients to the GIM department,
and they were considering hiring new physicians to
accommodate the new demand. There are several nat-
ural questions that might arise: How many physicians
are needed? If the number of root appointments for
urgent patients in GIM increases, how many down-
stream visits might be generated? That is, what is the
distribution of the stochastic resource requirements
during a patient’s itinerary, which occurs from the
time of the root appointment until the patient leaves
the care network? Moreover, how will increasing the
number of patients in GIM affect other departments?
Do increases in GIM cause unacceptable delays in,
say, GI?
Based on roughly one year of data from our indus-

try partner, Figure 1 shows the historical complemen-
tary C.D.F. of access delay by patient urgency to
obtain a root appointment in GI, GIM, and Neurology
under the historical capacity plan. Access delay is the
time between when a patient requests an appoint-
ment and when the appointment is able to be sched-
uled. Essentially, the graph in Figure 1 shows the
probability of exceeding n weeks of access delay

(n = 1, . . ., 6). The percent of urgent vs. non-urgent
patients in each department was: GI 25.9% urgent,
GIM 71.6% urgent, Neuro 76.7% urgent.
Figure 2 shows (i) the average daily resource capac-

ity for each department (in physician hours), (ii) the
average daily total workload (in hours) based on cur-
rent practice scheduling, and (iii) the average daily
workload in that department that is generated from
internal referrals. The whiskers represent �1 standard
deviation.
From Figure 1, observe that urgent vs. non-urgent

access delays vary significantly by medical depart-
ment. This is not surprising since effective control of
wait times for advance appointments is not well
understood. One consequence is the surprising find-
ing that urgent patients in both Neurology and GIM
have stochastically longer delays to obtain a root
appointment than non-urgent patients, which is seen
in Figure 1a where the complementary C.D.F.’s of
urgent patients are strictly greater than those of non-
urgent patients. Two-sample t-tests resulted in p-
values of 0.000, indicating that the mean access delays
are different for urgent and non-urgent patients.
In contrast to Neurology and GIM, urgent GI

patients (Figure 1b) experience stochastically shorter
delays than non-urgent patients. This is because the
GI department recently began an initiative to priori-
tize urgent patients. However, this heuristic prioriti-
zation scheme resulted in much higher mean access
delays for non-urgent patients (compared to GIM and
Neurology). This initial effort, though, indicates an
opportunity to optimize access delays with greater
precision while working within the existing appoint-
ment scheduling framework of our partner institu-
tion, which allows patient slots to be restricted to
certain types of patients.
Figure 2 demonstrates two key features that moti-

vate our capacity planning methodology. First,
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Figure 1 Historical Complementary C.D.F.’s of Access Delay (In Weeks) for the Root Appointment of Urgent and Non-Urgent Patients in (a) Neurol-
ogy and GIM and (b) GI. For Instance, for GIM, 54% of Urgent Patients Wait 4 Weeks or More, while Only 32% of Non-Urgent Patients
Wait 4 Weeks or More. In Contrast, for GI, while 45% of Non-Urgent Patients Wait 4 Weeks or More, Only 14% of Urgent Patients Wait
4 Weeks
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internal referrals make up a significant proportion of
the total workload for GIM. This workload cannot be
controlled by GIM themselves, but can have a major
impact on the access delay and overtime at GIM. This
motivates the need for an integrated network capacity
plan, since the internal referrals are indirectly con-
trolled by root appointments in other departments.
Second, workload is not particularly well matched to
capacity. For example, Neurology is very likely to
exceed capacity later in the week, while there is more
slack capacity on Monday and Tuesday. This moti-
vates the need for an optimization to smooth the
workload relative to capacity across the days of the
week, reducing access delay and overtime.
Our solution methodology is designed to account

for the metrics of access delay, overtime, and utiliza-
tion by controlling multiple demand streams across a
network of services. Section 5.2 presents cases that
include (i) the reducing mean access delay, (ii) con-
trolling the shape of the distribution of access delay
by patient type, and (iii) increasing the number of
urgent cases served while meeting service levels for
non-urgent patients and limiting overtime caused by
downstream demands for subsequent visits in an
interconnected network of departments. The last
point is particularly new to the literature.
Next, we survey the most relevant literature. Emer-

gency care has developed priority-based reactive
admission control methods based on severity/ur-
gency scoring during triage to reactively differentiate
access delays based by patient severity; e.g., see
Saghafian et al. (2014). In contrast, proactive advance
planning methods for appointment-based service
operations are lacking. To the best of our knowledge,
the objectives of this research are beyond the capabili-
ties of published research or available commercial
products. Our approach differs significantly from the
appointment-based scheduling literature (and other
areas such as capacity planning, lead time quoting,
and revenue management) because it contains multi-
ple technically difficult features including: (i) scope
(network vs. single clinic), (ii) planning horizon (mul-
ti-day vs. single day), and (iii) stochastic service

itineraries in a network (as opposed to a single
appointment).
Much of the outpatient scheduling and planning lit-

erature focuses on a single resource/clinic, often
modeled as a queueing system, and considers
scheduling patients to time slots within a day consid-
ering no-shows, doctor availability, etc., as in the key
survey papers of Cayirli and Veral (2003), Gupta and
Denton (2008), and Hulshof et al. (2012). Gupta and
Denton (2008) were among the first to identify indi-
rect wait, which we call access delay, as an important
yet overlooked operational metric that negatively
impacts patient outcomes and can be managed
through appropriate planning and scheduling. The
authors state that, in contrast to effective operational
management methods, the “soft nature of provider
capacity is relied upon to absorb variations in
demand.” Further, they point out that this problem
inherently has a multi-day horizon without a clear
decomposition approach. The practical value of
capacity planning considering access delay is indi-
cated in Vermeulen et al. (2009), which reports an
operational implementation of a capacity reservation
approach for a single resource (CT scanners). That
paper focuses on the percentage of patients meeting
their access delay target, which is achieved by
dynamically adjusting the capacity with final adjust-
ments performed by a human scheduler.
Aligning with most outpatient healthcare practice,

our study takes a multi-day planning approach,
which is similar to “advance scheduling,” in which
patients are booked/scheduled into future days at the
time of their arrival. Gerchak et al. (1996) provides an
early stochastic dynamic programming analysis of a
time-homogeneous surgical planning system that
must optimize the amount of daily capacity to be
reserved for emergency (same day) surgeries. Gupta
et al. (2007) addresses elective surgery booking con-
trol and maximum access delay by patient class using
a Markov decision process (MDP). In the context of
operating rooms, Lamiri et al. (2008) emphasizes
planning of elective cases known in advance under
uncertain demand for emergency cases. Feldman
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Figure 2 Current Practice Internal Referral Workload in Physician Hours and Total Workload in Three Medical Departments. The Bar Heights are
the Historical Workload Means. The Whiskers Display �1 Standard Deviation
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et al. (2014) develops a heuristic for a daily appoint-
ment booking system, and utilizes a multinomial logit
model to incorporate patient preferences.
Several recent studies for single-unit (non-network)

systems have considered priority scheduling and
dynamic capacity allocation problems solved via
approximate dynamic programming (ADP) (e.g., Her-
bots et al. 2010). Some papers consider multi-priority
jobs arriving dynamically that must be scheduled on
some future date (or rejected) with holding costs for
delays or overtime (see Erdelyi and Topaloglu 2010,
Gocgun and Puterman 2014, Patrick et al. 2008).
Patrick et al. (2008) uses ADP and heuristics to
address a single diagnostic resource with stationary
capacity (a perhaps simpler model than our template
based approach), but does not explicitly incorporate
access delay targets, or a care network with feedback.
Their advance scheduling method incorporates ele-
ments of both real-time scheduling and planning.
Patients requesting service can be scheduled immedi-
ately, diverted/rejected, or deferred with a later call-
back to schedule the appointment. Their model has
been simplified in some ways but also extended to n
demand classes, random service times, and multiple
resources in Truong (2015), which links advance
scheduling to allocation scheduling. While diversions
or deferment can be appropriate in some settings,
most outpatient care requires an up-front appoint-
ment date and time. Gocgun and Puterman (2014)
consider chemotherapy scheduling and also use ADP
for an MDP model considering diversion and
scheduling costs (without overtime limits, which we
model). They decompose the problem using a two-
stage process by which they promise an appointment
date in advance, then at a later date specify the time
on that day. Their paper involves both planning and
real-time decision making, but focuses on scheduling
only follow-up appointments, while our work must
integrate the resource allocation for both new and fol-
low-up visits. Our mixed integer programming (MIP)
based approach benefits from the relatively easy
incorporation of many constraints. Like their paper,
ours also makes the case that the time-of-day details
of scheduling can be resolved well enough that the
daily level decisions of who will be seen on that day
can be made well in advance.
Other papers consider the fact that each patient

(job) may initiate a time series of appointments over
multiple days with deadlines/time windows for
downstream appointments (see Gocgun and Ghate
2012, Hulshof et al. 2013, Saur�e et al. 2012). Targeting
clinical trial site operations, Deglise-Favre-Hawkin-
son (2015) studies capacity reservation and time win-
dows for service, but focuses on the selection of
which clinical trials to conduct subject to capacity.
Turkcan et al. (2012) studies an optimization

approach to planning as well as scheduling for
chemotherapy infusion. They assume the desired ser-
ies of care visits along a planned time profile is
known, and their two-stage optimization model
sequentially decomposes the planning and schedul-
ing phases. Our study differs in key ways, including
the important feature of a network model (feature 1
above) and the stochastic itineraries of care
(feature 3).
The work on integrated care systems is fairly lim-

ited. Hulshof et al. (2013) develops an intermediate
horizon admission planning model that seeks “to
achieve equitable access [delay] for patients, to meet
production targets/to serve the strategically agreed
number of patients, and to use resources efficiently.”
They optimize the system to meet throughput
requirements, efficiency, and weights in the objective
to prioritize the service of patients “at a particular
stage in a particular care process.” Their model allows
a variety of resources and patient types, but a critical
difference is that they assume deterministic arrivals
and resource requirements, whereas our model
allows for stochastic models for each of these.
Integrated outpatient care also has similarities to

hospital inpatient scheduling problems. Elective
patient admission scheduling research, including the
studies of Adan et al. (2009), Chow et al. (2011), Bek-
ker and Koeleman (2011), and Helm and Van Oyen
(2014), has treated the optimization of elective admis-
sion schedules for stochastic flows through a network
of inpatient hospital resources (e.g., wards). These
studies, however, consider elective scheduling rather
than capacity reservation, which is more appropriate
for outpatient networks. The former sets the admis-
sion policies to achieve efficiency and low variability
flow, and it does not focus on access delay under
stochastic arrivals.
The concept of capacity reservation/allocation is

present in some revenue management oriented
research (e.g., Akkan 1997, Gupta and Liu 2008, Hsu
and Wang 2001, Mula et al. 2006, Talluri and Van
Ryzin 2006), but those models lack the features and
complexity proposed in this work.

3. Model and System Dynamics

From here on, we will refer to our solution methodol-
ogy and our research software instantiation as APT
for “Access Planning Technology.” APT’s main out-
put for managers of an outpatient care network is a
template for planned capacity allocation. APT bal-
ances the tradeoffs between achieving (i) short access
delays to a root appointment, (ii) high utilization of
clinicians’ time, and (iii) low probability of workload
exceeding regular-time capacity. The main decision
variables,
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H ¼ Hk;s
t

� �
;

specificy the maximum number of patients of class
s 2 CðkÞ patients to be admitted on day
t 2 {1, . . ., T} to department/service k 2 K for a root
appointment of an itinerary. For modeling purposes,
we will refer to the tuple (k, s) as the patient type. In
our examples, K is {GI, GIM, Neuro}. If k = Neuro,
then in our study C(Neuro) is {Urgent, Non-Urgent}.
Thus, for example, decision variable HNeuro;Urgent

t is
the maximum number of urgent patient root
appointments allowed in Neurology on day t. Fol-
low-up appointments and internal referrals are con-
trolled indirectly, being scheduled into the
remaining capacity left over after allocating H for all
the root appointments.
There are three primary inputs to APT: (i) capacity

of department k on day t measured in physician
hours, denoted Ck

t , (ii) exogenous demand, Xk;s
t ,

which is the random variable for the number of
patients of class s that request an appointment in
department k on day t, and (iii) downstream demand
that is stochastically generated by each root appoint-
ment, which is described by a stochastic location
function.
In the dynamics of our model, demand is either

scheduled into the current day if capacity is available
or carries over to the following day. To link this to an
outpatient practice’s actual process, a scheduler
would receive a patient request to start a new itiner-
ary. The scheduler would then sequentially check
each future day of the scheduling template, H, for
appointment slot availability for the appropriate
patient type until a day with sufficient capacity is
found and the patient is booked into that slot. The
patient would then be informed, in real time, of the
future appointment availability. Approximating cur-
rent practice, we assume that patients are booked in a
FCFS manner within patient type, which is the only
possible mechanism given that there is no “queue” to
choose from at the time a given patient calls. Our
queueing model described below mimics the dynam-
ics of this booking system.
On a given day t of our planning horizon, the class

s demand in service k can be split into: (i) the exoge-
nous demand Xk;s

t for a root appointment that is
received on the current day t, and (ii) the “carryover
demand” that represents all previously made
requests that were not scheduled up to day t due to
lack of template capacity. We refer to the combination
of (i) and (ii) as the Demand In Progress (DIP) (similar
to the concept Work In Progress (WIP) for queueing
networks). The distribution of the DIP (section 3.1)
drives both the access delay (section 3.2) and the total
workload (section 3.3).

The main modeling assumptions underlying the
APT decision framework are as follows:

1. The exogenous demands Xk;s
t are mutually

independent and independent of all other
inputs and decisions. In our case study, the
arrivals form a cyclo-stationary process with a
5-day workweek as the system’s period; e.g.,
successive Mondays are i.i.d., but have a differ-
ent distribution than other days.

2. Within type (k, s), patients are scheduled on a
FCFS basis.

3. The total workload is assumed to be well
approximated by a Normal distribution.

4. If the workload from downstream appoint-
ments exceeds capacity, the workload is served
through overtime as opposed to being carried
over into the future.

Collaborators at our partner institution indicated
that the first two assumptions closely match what
they observe in practice. Assumption 3 is empirically
validated in our data in section 3.3. Our partner orga-
nization also affirmed that, in their context, overtime
is essentially unlimited. If there are patients sched-
uled for a particular day, the providers will stay until
all have been served. It is extremely rare in their sys-
tem that someone would have an appointment but
not be seen. In the following sections, we characterize
the DIP distribution and use it to analytically compute
our key performance metrics:

1. (M1) Access delay (mean and service level) by
patient type (k, s).

2. (M2–M3) Mean and variance, respectively, of
the resource utilization.

3. (M4) Expected amount (in hours) by which
total workload exceeds capacity Ck

t .
4. (M5) Probability that the total workload

exceeds capacity Ck
t .

3.1. Demand in Progress
Let Dk;s

t be the random variable that represents the
amount of class s DIP (number of patients) seeking an
appointment in service k on a given day t of the plan-
ning horizon. The DIP accumulates to the next day,
t + 1, recursively:

Dk;s
tþ1 ¼ Xk;s

tþ1 þ Dk;s
t �Hk;s

t

h iþ
;

where ‘+’ denotes the positive part
(xþ ¼ maxðx; 0Þ). For our application, we consider a
cyclo-stationary system with a cycle of T business
days (we consider T = 5; Monday–Friday). Non-
cyclostationary models are also possible within the
framework. As a result, we can rewrite the above
equation as follows:
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Dk;s
t ¼ Xk;s

t þ bk;st ; t ¼ 1; . . .;T; ð1Þ

bk;st�1 ¼ Dk;s
t �Hk;s

t

h iþ
; ð2Þ

where bk;st�1 is defined as the carryover demand from
weekday t to the following weekday. The operator
⊕ is the modulo T operator: if t = T then t ⊕ 1 = 1.
As we will see, bk;st drives the distribution of the
access delay (section 3.2). The workload distribution
(section 3.3) is driven by the the amount of DIP that
is met on weekday t, denoted by ak;st :

ak;st ¼ minfDk;s
t ;Hk;s

t g ¼ Dk;s
t � bk;st�1; t ¼ 1; . . .;T: ð3Þ

Figure 3 displays some simulated DIP distributions
(using the simulation described in Online
Appendix C.6) for a single day of the week. In some
cases, e.g., Figure 3a, DIP is well approximated by a
Normal distribution. In other cases, when utilization
is very high, e.g., Figure 3b, the DIP distribution has
a heavier tail. A Normal distribution allows for an
all-encompassing online optimization (section 4),
while for non-Normal DIP we use an iterative tech-
nique that combines optimization and simulation
(Online Appendix D). For either case, we want to
translate the set of stochastic, nonlinear Equations
(1)–(2) into a set of deterministic expressions that
are linear in H (section 4). In the next section, we
describe how DIP can be used to calculate access
delay.

3.2. Access Delay: Metric M1
In this section, we develop analytical formulas for
mean access delay and service level constraints on
access delay. First, mean access delay for urgent
patients can be formulated as:

PT
t¼1 E bk;Urgent

t

h i
PT

t¼1 E X
k;Urgent
t

h i : ð4Þ

Here, T�1
PT

t¼1 E½bk;Urgent
t � represents the average

number of urgent patients waiting per day (T is the
length of the stationary cycle) (i.e., average queue

length). T�1
PT

t¼1 E½Xk;Urgent
t � represents the average

access demand for appointments (i.e., average arrival
rate). Using Little’s Law, we get the average delay to
obtain an appointment (i.e., average waiting time) by
dividing the two quantities: long-run average time in
queue (access delay) equals the long-run average
number of patients in the queue (overflow demand)
divided by the long-run average arrival rate.
Next we formulate service level constraints on access

delay, which we define as a limit on the fraction of
patients whose delay to obtain a root appointment
exceeds a specified number of days. We let the fraction
and number of days be patient type-specific and
selected a priori by the user (manager). To do so, we
define each service level constraint as a tuple,
ðpk;sn ; TFAVk;s

n Þ, which indicates that pk;sn is the upper
bound on the percentage of class s patients in service k
that will exceed a time to first available visit (i.e., access
delay) of TFAVk;s

n days. The subscript n allows us to set
multiple bounds for each patient type. For example, we
may want the first service level constraint (n = 1) to be
(0.2, 4), which means that 20% (pk;s1 ¼ 0:2) of type (k, s)
patients get an appointment within 4 days
(TFAVk;s

1 ¼ 4). We might also want to include a second
service level constraint (n = 2) for type (k, s) patients as
(0.5, 7), which means that 50% (pk;s2 ¼ 0:5) of type (k, s)
patients will get an appointment within 7 days
(TFAVk;s

2 ¼ 7). This approach actually allows us to
have control over the distribution of access delay, as
demonstrated in section 5.3.2.

Figure 3 Simulated DIP Distributions (Number of Patients) for a Single Day, Patient Class, and Department. (a) Lower Traffic Example: Monday DIP
Distribution with a Mean of 26.36 and Standard Deviation of 9.16, which is Well Approximated by a Normal Distribution (26.36, 9.16). (b)
Heavier Traffic Example: Monday DIP Distribution with a Mean of 91.91 and Standard Deviation of 73.91, which is More Closely Approxi-
mated by a Heavier Tailed Log-Normal Distribution (91.91, 73.91) than a Normal Distribution (91.91, 73.91). In both Examples, as is Com-
mon, the DIP Mean is Greater than the Template Capacity H [Color figure can be viewed at wileyonlinelibrary.com]
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To capture these service level metrics, we begin by
defining dk;st;n as the total number of open slots left in
our template from day t up to day t þ TFAVk;s

n after
all demand prior to day t has been scheduled:

dk;st;n ¼
XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st

2
4

3
5
þ

: ð5Þ

This is the positive difference of (i) the total number
of type (k, s) slots from day t to day t þ TFAVk;s

n

(i.e., the access delay limit for patients requesting an
appointment on or before day t) minus (ii) the num-
ber of type (k, s) carryovers to day t (i.e., the num-
ber of patients that requested an appointment on or
before day t and have yet to be assigned an appoint-
ment). dk;st;n therefore represents the number of slots
remaining before the TFAV deadline that can be
used to satisfy the day t demand.
The expected fraction of class s patients requesting

an appointment in service k on day t (maintaining
FCFS) that exceed TFAVk;s

n days of delay to obtain a
root appointment is denoted by Gk;s

t;n:

Gk;s
t;n ¼ E

Xk;s
t � dk;st;n

� �þ
Xk;s

t

2
64

3
75: ð6Þ

Note that Xk;s
t is independent of dk;st;n. The service

level constraints are of the form Gk;s
t;n � pk;sn :

3.3. Linearity of the Clinic Workload Process:
Metrics M2 and M3
We model the workload using an offered load
approach, leveraging a stochastic location function to
capture the downstream resource requirements
generated by each root appointment (e.g., Leung
et al. 1994). We then approximate the resulting
Poisson-distributed offered load by a Normal distri-
bution. This approximation is validated in our data
of total workload in physician hours. For example,
Figure 4 displays Normal probability plots, 95%
confidence bands, and Anderson–Darling test statis-
tics and p-values (the higher, the better) for the his-
torical GIM total workload by day. Note that, as
desired under a Normal approximation, the data
points form nearly straight lines. Other depart-
ments are similar.
The Normal distribution is fully specified through

its mean and variance. In this section, we show (Theo-
rem 1) that the workload mean can be expressed lin-
early in the mean amount of DIP met, E½a�, which is
the only quantity that depends on H. Likewise, the
workload variance only depends on H through a;
and, we show (Theorem 2) that the workload variance
is linear in E½a� and Var[a].

First, we mathematically define the patient’s path
through the network of specialist services. Since a
patient could have downstream appointments at mul-
tiple medical specialties on a single day, we need to
consider a vector state space for the stochastic loca-
tion process. Let this vector state space be
S0 ¼ f½a1; a2; . . .; ajKj� : ak 2 Zþ; 8k 2 Kg; where ak is
the number of time slots the patient requires in ser-
vice k. We let the full state space be S ¼ S0 [ fDg,
where D represents that the patient has no appoint-
ments (e.g., has returned home, has not yet become a
downstream patient, or has no visits on a given day
within his/her itinerary). The S-valued stochastic loca-
tion function denoted by Lk1;st1

ðtÞ represents the number
of appointment slots needed at time t during a care
episode for a patient of class s that started her itiner-
ary with a root appointment in service k1 at time t1.
We define the resource probabilities, r, as follows:

rk1;s;kt1
ðm; t� t1Þ ¼ PðLk1;st1

ðtÞ � ek ¼ mÞ;

where ek is a column vector with all 0’s and a 1 in
the kth row. Then, rk1;s;kt1

ðm; tÞ is the probability that
a class s root appointment in department k1 on day
t1 will result in m downstream appointment slots t
days later in department k. These resource probabili-
ties are calibrated from historical data; for an exam-
ple see Table 2 in section 5.1. While we may jointly
optimize the templates of all departments in K,
there may be other outside departments with static,
uncontrolled templates that still refer patients to the
departments in K. That is, k1 2 K0 where, for exam-
ple, K0 � K [ fOtherg.
Define Wk

t as the total workload (root appointments
and downstream visits) in service k on day t, measured
in terms of physician hours. The next two theorems
show that the first two moments of Wk

t (i.e., E½Wk
t � and

Var½Wk
t �) can be expressed linearly in the mean and

variance of the scheduled demand for day t in service
k. Let Mk be the maximum number of appointment
time slots a patient can require within a day in specialty
k, and let sk be the time (in physician hours) per slot in
specialty k. We assume that sk is a deterministic input.

THEOREM 1. The steady-state mean offered workload in
service k on day t (under the capacity reservation plan
H) can be computed as:

E½Wk
t � ¼

X
k12K0

X
s2Cðk1Þ

XT
t1¼1

E½ak1;st1
� �
X1
j¼0

XMk

m¼1

m

� rk1;s;kt1
m; t� t1 þ jTð Þ � sk: ð7Þ

THEOREM 2. The steady-state variance of the offered
workload in specialty k on day t of our steady state plan-
ning horizon is given by
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Var½Wk
t �¼

X
k12K0

X
s2Cðk1Þ

XT
t1¼1

X1
j¼0"

Var ak1;st1

h i XMk

m¼0

m�rk1;s;kt1
m;t� t1þ jTð Þ�sk

 !2

þE ak1;st1

h i
�
XMk

m¼0

�
m2�s2k�rk1;s;kt1

m;t� t1þ jTð Þ

1�rk1;s;kt1
m;t� t1þ jTð Þ

� �
�

X
m\q�Mk

2mq�s2k�rk1;s;kt1
m;t� t1þ jTð Þ

�rk1;s;kt1
q;t� t1þ jTð Þ

�#
:

ð8Þ

Proofs for all theorems and propositions are
presented in Online Appendix A. According to Theo-
rem 1, the workload mean is linear in E½ak1;st1

�, which
are the only quantities that depend on the control H.

According to Theorem 2, the workload variance
depends linearly on E½ak1;st1

� and Var½ak1;st1
�, which are

the only quantities that depend on H. A challenge
then is to express the mean and variance of ak1;st1

lin-
early in Θ. Once successful (section 4.3), since utiliza-
tion is the ratio of total workload to a deterministic
capacity, the fact that metrics M2-M3 can be
expressed linearly in Θ easily follows.

4. Mixed Integer Program

The equations that specify the system dynamics
(Equations (1)–(3)) and performance metrics (Equa-
tions (6), (7), and (8)) are both stochastic and nonlin-
ear in the decision variables H. In this section, we
transform these equations into a set of expressions
that are both deterministic and linear in H. This
allows us to formulate an MIP that can be solved by
commercial solvers like IBM CPLEX.

4.1. Linear Formulation of the System Dynamics
The first step in formulating the deterministic, linear
MIP is to discretize the DIP distribution. As discussed

Day AD P-Value

Mon. 0.651 0.084

Tue. 0.332 0.506

Wed. 0.519 0.180

Thur. 0.177 0.917

Fri. 0.467 0.242

Figure 4 Normal Probability Plots of GIM’s Historical Total Workload (in Physician Hours), by Day of Week. The Anderson–Darling (AD) Test Statis-
tics are Presented along with the Associated p-values, where the Null Hypothesis is that the Data Follow a Normal Distribution. At a 5%
Level of Significance (95% Confidence), there is Insufficient Evidence to Reject the Null Hypothesis since the p-values are above .05. This
Minitab� 17 Output also Displays the 95% Confidence Interval (CI) Bands
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above, the DIP distribution may be well approxi-
mated as Normal (Figure 3a). However, when utiliza-
tion is very high, DIP tends to have a heavier tail
(Figure 3b). In this section, we restrict attention to the
Normal case. For non-Normal DIP, we use the tech-
nique presented in Online Appendix D to adjust the
approach presented here. In either case, simulation
may be used to verify that the metrics calculated
within the optimization are close to the true, simu-
lated metrics for the output template.
We first discretize the DIP distribution through an

approximation based on Riemann integration. Let
I � f1; 2; . . .; Ig be an index that creates a discrete
grid with I + 1 sections. First, grid point i is located at
m(i) standard deviations above the DIP mean. Define
Ψ(i) to be the probability mass contained within the
interval between the ði � 1Þst and ith grid points:
(l + m(i � 1)r, l + m(i)r] for mean l and standard
deviation r. For an example, see the grid in Table 1.
We then interpret Ψ(i) as the probability that the real-
ized value of Dk;s

t lies within (l + m(i � 1)r, l + m(i)
r]. As in Riemann integration, the grid does not need
to be linear. It is important to note that, due to the fact
that any Normal distribution can be standardized, the
probability masses, Ψ, can be calculated off line using
a Standard Normal distribution and enter the opti-
mization as inputs.
We now define the variable Dk;s

t ðiÞ as the realization
of the DIP at m(i) standard deviations above the mean,
where the DIP mean and standard deviation are cal-
culated within the optimization:

Dk;s
t ðiÞ ¼ E½Dk;s

t � þmðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Dk;s

t �
q

: ð9Þ

To apply MIP optimization techniques, we need to

express Dk;s
t ðiÞ linearly in H. To do so, we linearize

E½Dk;s
t � and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Dk;s

t �
q

below. To linearize this stan-

dard deviation, we will first show that Var½Dk;s
t � can

be expressed linearly in H. Then, we approximate
the standard deviation by applying one step of
Newton’s method:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Dk;s
t �

q
	 1

2
Var½Dk;s

t �=D̂k;s
t þ D̂k;s

t

� �
; ð10Þ

where D̂s
t denotes a “guess” for the true value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Dk;s
t �

q
. The D̂s

t are inputs to the MIP. In prac-

tice, we may calibrate D̂s
t using historical data.

Alternatively, we may fix a (non-optimized) tem-
plate and simulate the DIP standard deviation to

obtain D̂s
t . In previous work, Helm and Van Oyen

(2016) showed that a similar Newton’s method
approximation is highly effective for modeling

offered workloads, and that the approximation is
robust to deviations of the fixed/historical estimate

(in our case, D̂s
t ) from the true standard deviation. If

we can show that both E½Dk;s
t � and Var½Dk;s

t � are lin-

ear in H, then, since D̂s
t is constant, the approxima-

tion of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Dk;s

t �
q

will also be linear in H. Next, we

show (Theorem 3) that Dk;s
t ðiÞ can be expressed lin-

early in Θ. Recall from Equations (1)–(2) the follow-

ing DIP recursive relationship: Dk;s
t�1 ¼ Xk;s

t�1 þ bk;st�1,

where bk;st�1 ¼ ½Dk;s
t � Hk;s

t �þ. In order to linearize

Dk;s
t�1ðiÞ, we introduce additional “helper” decision

variables bk;st�1ðiÞ defined as follows:

bk;st�1ðiÞ ¼ ½Dk;s
t ðiÞ �Hk;s

t �þ:

conditioned on DIP equaling Dk;s
t ðiÞ. In order to lin-

earize bk;st�1ðiÞ, we define yk;st ði; lÞ as a binary variable
that equals 1 when Dk;s

t ðiÞ � Hk;s
t [ l, and 0 other-

wise; l = 0, 1, . . .. (Technically, for Normal DIP,
l 2 [0, ∞), but we discretize l since DIP is discrete
in practice). The following constraints will guarantee
that this definition is satisfied:

�M� 1� yk;st ði; lÞ
� �

�Dk;s
t ðiÞ �Hk;s

t � l; ð11Þ

Dk;s
t ðiÞ �Hk;s

t � l�M� yk;st ði; lÞ; ð12Þ
where M is a sufficiently large number. The follow-
ing constraints linearize bk;st�1ðiÞ:

bk;st�1ðiÞ
Dk;s
t ðiÞ �Hk;s

t ; ð13Þ

bk;st�1ðiÞ�Dk;s
t ðiÞ �Hk;s

t þM� 1� yk;st ði; 0Þ
� �

: ð14Þ

We can now approximate the mean of bk;st�1 by b
k;s
t�1

(using the bar to denote expectation) as follows:

b
k;s
t�1 ¼

X
i2I

bk;st�1ðiÞWðiÞ:

Since Ψ(i) is the probability mass for the conditional

value bk;st�1ðiÞ, it follows from the Law of Total Expec-

tation that b
k;s
t�1 is an expected value. In the Riemann

limit, as I ? ∞ and Ψ(i) ? 0, b
k;s
t�1 converges to

E½bk;st�1�. Note that since expectation is a linear opera-

tor, if the bk;st�1ðiÞ can be expressed linearly in H, then

b
k;s
t�1 can also be expressed linearly in H. Similarly,
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define ~bk;st�1 as a value that converges, in the Rie-

mann limit, to Var½bk;st�1�. (The “� ” denotes variance

throughout.) The following proposition demon-

strates that ~bk;st�1 can be linearized.

PROPOSITION 1. Using the previously defined binary
variables yk;st ði; lÞ, the overflow demand variance can be
expressed linearly as follows:

~bk;st�1 ¼
X1
l¼0

ð2lþ 1Þ �
X
i2I

yk;st ði; lÞ �WðiÞ
" #

�
X

ðl1;l2Þ2ðZþÞ2

X
ði1;i2Þ2I 2

zk;st ði1; i2; l1; l2Þ �Wði1Þ �Wði2Þ;

where the zk;st ði1; i2; l1; l2Þ are binary variables that sat-
isfy the following constraints:

zk;st ði1; i2; l1; l2Þ� yk;st ði1; l1Þ; ð15Þ

zk;st ði1; i2; l1; l2Þ� yk;st ði2; l2Þ; ð16Þ

zk;st ði1; i2; l1; l2Þ
 yk;st ði1; l1Þ þ yk;st ði2; l2Þ � 1: ð17Þ

THEOREM 3. Within a MIP, variables Dk;s
t ðiÞ and bk;st ðiÞ,

i 2 I , and b
k;s
t and ~bk;st can be expressed linearly in Θ

using additional binary variables yk;st ði; lÞ, i 2 I , l 2 Zþ,
and zk;st ði1; i2; l1; l2Þ, i1 2 I , i2 2 I , l1 2 Zþ, l2 2 Zþ;
t = 1, 2, . . ., T.

Even with linearization, tractability can be an
issue, as the number of binary variables
zk;st ði1; i2; l1; l2Þ needed to linearize the carryover
variance (Proposition 1) can become very large. To
overcome this challenge, in Online Appendix B we
propose a linear approximation of the carryover
variance that works very well in practice, and is
validated in section 5.2.
Next, we use these system dynamics to formulate

the access delay and workload/overtime metrics lin-
early in H. A full MIP formulation is presented in
Online Appendix C. There are additional constraints
that appear in the formulation for practical reasons:

(i) We add variables to ensure that the DIP distribu-
tion is nonnegative. (ii) We add cuts (orderings) for
the binary variables that tend to speed up computa-
tion. Finally, we note that we truncate infinite sums,
as detailed in Online Appendix C.

4.2. Linear Transformation of the Access Delay:
Metric M1
In this section, we formulate our service level con-
straints on access delay. Specifically, we linearly
approximate with respect to our decision variables, Θ,
the expected fraction, Gk;s

t;n, of class s patients request-
ing an appointment in service k on day t that exceed
TFAVk;s

n days of delay to obtain a root appointment.
Recall (Equation 6) that Gk;s

t;n is a function of
ðXk;s

t � dk;st;nÞþ. Because the exogenous demand at t is
independent of past demand/decisions, Xk;s

t and dk;st;n
are independent. We condition dk;st;n on the event that
the total demand is Dk;s

t�1ðiÞ on day t � 1 (see Equation
(11)), and obtain:

dk;st;nðiÞ ¼
XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st ðiÞ

0
@

1
A

þ

; 8i 2 I ; 8n 2 N ;

ð18Þ
where N � f1; 2; . . .; Ng and N is the total number
of TFAVk;s

n targets.
To capture the joint distribution between Xk;s

t and
dk;st;n (which is simplified by their independence), we
define ck;st;nði; jÞ as the percentage of class s patients
requesting an appointment in service k on day t that
exceed TFAVk;s

n days of waiting for their appointment
given that (i) there are j class s requests in service k on
day t, and (ii) there are dk;st ðiÞ class s slots in the tem-
plate for service k prior to the TFAV deadline after all
demand prior to day t has been scheduled. Then,
ck;st;nði; jÞ can be expressed as follows:

ck;st;nði; jÞ ¼
j� dk;st;nðiÞ
� �þ

j
¼ 1� dk;st;nðiÞ

j

 !þ
; 8i 2 I ;

8j 2 J ; 8n 2 N ;

ð19Þ
where the set J 
 Zþ represents the sample space
of all the Xk;s

t random variables (excluding the out-
come equal to 0). Thus, the access delay metric is
given by:

Table 1 Sample Grid Mapping Along with p.m.f. Ψ

i 2 I 1 2 3 4 5 6 7 8 9 10 11 12 13

m(i) �3.1 �1.8 �1.2 �0.6 �0.2 �0.1 0.0 0.1 0.2 0.6 1.2 1.8 3.1
Ψ(i) 0.036 0.079 0.159 0.146 0.039 0.040 0.040 0.039 0.146 0.159 0.079 0.035 0.001
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Gk;s
t;n ¼

X
i2I

X
j2J

ck;st;nði; jÞ �WðiÞ � PðXk;s
t ¼ jÞ; 8n 2 N ;

ð20Þ
where PðXk;s

t ¼ jÞ is an input calibrated using his-
torical data.
In order to have linear constraints, we need to alter

Equations (18) and (19). In the optimization, there is
an incentive to keep ck;st;nði; jÞ small to meet the access
delay constraints (or because we are minimizing it in
our objective). This allows us to replace Equation (19)
with the following:

ck;st;nði; jÞ
 1� dk;st;nðiÞ
j

 !
; ck;st;nði; jÞ
 0; 8i 2 I ; 8j 2 I ;

8n 2 N :

ð21Þ
The same cannot be said for Equation (18), since the
optimization has the incentive to increase dk;st;nðiÞ in
order to get a smaller ck;st;nði; jÞ that will meet the
access delay constraints. Therefore, we introduce a
binary variable xk;st;nðiÞ that equals 1 when
ðPTFAVk;s

n

l¼0 Hk;s
t�lÞ � bk;st ðiÞ 
 0 and equals 0 otherwise.

The following constraints will ensure that the xk;st;nðiÞ
take on the correct values:

�M�ð1� xk;st;nðiÞÞ�
XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st ðiÞ; 8i 2 I ;

8n 2 N ;

ð22Þ

M� xk;st;nðiÞ

XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st ðiÞ; 8i 2 I ; 8n 2 N :

ð23Þ
We now have a set of linear inequalities equivalent
to Equations (18):

dk;st;nðiÞ

XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st ðiÞ; 8i 2 I ; 8n 2 N ; ð24Þ

dk;st;nðiÞ�
XTFAVk;s

n

l¼0

Hk;s
t�l

0
@

1
A� bk;st ðiÞ þM� ð1� xk;st;nðiÞÞ;

8i 2 I ; 8n 2 N ;

ð25Þ

dk;st;nðiÞ�M� xk;st;nðiÞ; 8i 2 I ; 8n 2 N : ð26Þ

4.3. Linear Transformation of Excess Workload
and Overtime: Metrics M4 and M5
Metric M4: Expected Overtime. In this section, we use the
total workload,Wk

t , to calculate the amount of overtime
due to insufficient capacity in specialty k on day t.
Recall that Wk

t is Normally distributed. Under this
assumption, the distribution of Wk

t is specified by its
mean and variance. In Theorem 1, note that the work-
load mean depends on the decision variables, H, only
through E½ak;st �; and, in Theorem 2, the variance
depends on Θ through E½ak;st � and Var½ak;st �. Moreover,
the workload mean is linear in E½ak;st �, and the workload
variance is linear in E½ak;st � and Var½ak;st �. To show that
these workload moments can be expressed linearly in
H, we then only need to express E½ak;st � and Var½ak;st � lin-
early in H. For Var½ak;st �, we use the linear expression
for ~ak;st in Equation (36) of Online Appendix B. For the
mean, denoted by ak;st , the following linear expression
follows from Equations (1) and (3) and the fact that
expectation is a linear operator:

ak;st ¼ E½Dk;s
t � � b

k;s
t�1 ¼ E½Xk;s

t � þ b
k;s
t � b

k;s
t�1: ð27Þ

Similar to the discretization of the DIP distribution
in section 4.1, we discretize the workload distribution
using a grid approximation. For grid point i, the

possible workload realization is W
k

t þ mðiÞ
ffiffiffiffiffiffiffi
~Wk
t

q
, and

the associated probability mass is Ψ(i). The mean, W
k

t ,

and variance, ~Wk
t , are calculated using Theorems

1 and 2, respectively, with the linear expressions ak;st
and ~ak;st . We capture the realization of overtime hours

at grid point i using a variable Ok
t ðiÞ as follows:

Ok
t ðiÞ ¼ W

k

t þmðiÞ �
ffiffiffiffiffiffiffi
~Wk
t

q
� Ck

t

� �þ

	 W
k

t þ
1

2
mðiÞ �

~Wk
t

Ŵk
t

þ Ŵk
t

 !
� Ck

t

 !þ
; ð28Þ

where Ck
t is the total capacity of specialty k on day t,

and Ŵk
t is the initial guess for the standard devia-

tion of the total workload on day t in specialty k.
The approximation follows from the one-step New-
ton’s method approximation detailed in section 4.1.
Then, the expected overtime hours, denoted O

k

t , are
calculated as follows:

O
k

t ¼
X
i2I

Ok
t ðiÞWðiÞ: ð29Þ

Metric M5: Probability of Overtime. In addition to
constraining the expected overtime amount (metric
M4), we can also limit the probability of exceeding
service k’s capacity on a given day by some amount qkt
(metric M5). First, we select the smallest i� 2 I such
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that 1 � Uðmði� þ 1ÞÞ � qkt , where Φ(�) is the Stan-
dard Normal C.D.F. Then, we can constrain the work-
load level at this grid point i� to be less than or equal
to capacity:

W
k

t þ
1

2
mði�Þ �

~Wk
t

Ŵk
t

þ Ŵk
t

 !
�Ck

t : ð30Þ

5. Numerical Case Study

In this section, we present a case study based on a col-
laboration with several services at the same health-
care organization. This case study is comprised of
several sub-studies, each designed to solve different
managerial challenges faced by our industry partner.
These studies were carried out over the course of sev-
eral years through numerous interactions and itera-
tions, and months of on-site work with our industry
partner. We begin by describing the data that was
available to us and how we used this data to validate
our analytical approximations of our key metrics. Our
first study analyzes the impact of template design and
patient mix on access delay for both urgent and non-
urgent patients. Our second study focuses on design-
ing templates to accommodate the business need of
increasing the volume of one particular patient type
while still maintaining a high level of patient access.

5.1. Data
We obtained one calendar year of data containing the
following data items for three services (GI, GIM, and
Neuro) by patient class and by day: (i) capacity data,
(ii) histories of downstream appointments generated
from a root appointment, (iii) demands for new root
appointments, and (iv) internal referral workload to
each service.
The capacity data indicate how many slots are

available in each service by appointment type and by
day, from which we can calculate the total physician
hours available by day. These data are summarized
for the three services in Figure 2 of section 2. The data

regarding type, timing, quantity, and length (how
many time slots and how many minutes they take) of
downstream appointments was used to estimate the
p.m.f.’s of the stochastic location functions defined in
section 3.3. An example of three location probability
matrices for urgent GI patients either returning to GI
for follow-up appointments or being internally referred
to Neurology or GIM is shown in Table 2. The rows
indicate days after the root appointment, and the col-
umns indicate the number of appointment slots
required on that day in GI (left table), Neurology
(middle table), and GIM (right table). For example,
row 3 of the GI to GI matrix indicates that two days
after a root appointment in GI, 2 appointment slots
are scheduled for a follow-up in GI with probability
0.11 and zero slots with probability 0.89. Also two
days after a root appointment, Neuro requires 4 slots
with a probability of 0.02 and zero otherwise and
GIM requires 2 slots with probability of 0.01 and zero
otherwise.
The empirical distribution of new root appointment

requests was generated from historical data on new
requests for each service. The mean and standard
deviation of the number of slots requested by each
patient class (urgent vs. non-urgent) and day of week
in each service are given in Figure 5.
Finally, we used data on historical internal referral

workloads from all other services (not just GI, GIM,
and Neurology). The amount of internal referrals typ-
ically increases throughout the week, with Monday
having the lowest level and Thursday and Friday hav-
ing the highest amount of internal referrals. Table 3
shows the percent of total demand at each service (on
average) that was made up of internal referrals. As
can be seen from the percentages, planning for the
impact of internal referrals from the aggregated
departments of the network can be very important.

5.2. Simulation Validation of Analytical
Approximations and Performance Metrics
In this section, we employ the discrete event simu-
lation described in Online Appendix C.6 to validate

Table 2 Example of the Location Function for Urgent GI Patients

Days after root appt

GI to GI (follow up) GI to Neuro GI to GIM

Number of appt slots Number of appt slots Number of appt slots

0 1 2 3 4 5 6 0 1 2 3 4 0 1 2

0 0% 0% 0% 0% 55% 3% 42% 99% 0% 0% 0% 1% 100% 0% 0%
1 85% 0% 15% 0% 0% 0% 0% 97% 0% 0% 0% 3% 98% 0% 2%
2 89% 0% 11% 0% 0% 0% 0% 98% 0% 0% 0% 2% 99% 0% 1%
3 89% 0% 11% 0% 0% 0% 0% 99% 0% 0% 0% 1% 99% 0% 1%
4 91% 0% 9% 0% 0% 0% 0% 100% 0% 0% 0% 0% 99% 1% 0%
5 98% 0% 2% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%

Notes: Rows are days after the root appointment, and columns are the number of appointment slots required on that day. GI to GI follow-up
appointments are to the left, GI to Neuro internal referral is in the middle, and GI to GIM internal referral is on the right.

Deglise-Hawkinson, Helm, Huschka, Kaufman, and Van Oyen: Planning for Integrated Care and Access
2282 Production and Operations Management 27(12), pp. 2270–2290, © 2018 Production and Operations Management Society



the novel analytical approximations that make the
optimization tractable. The simulation provides an
accurate testbed to perform this validation, since it
makes no approximations and instead directly
models the dynamics of the system from the avail-
able data. Using the optimized template from sec-
tion 5.3, the simulation computes the performance
of the metrics that are critical to the institution,
which we compare with those from the analytical
approximation.
Figure 6 shows that the complementary C.D.F.’s of

access delay computed via the analytical approxima-
tions are indeed very close to the results from the
simulation model. Observe that the analytical approx-
imations are shown to perform very well in predicting
the C.D.F. of the access delay, not just the mean or

variance. The absolute percentage errors (APEs) of
our estimations are summarized in Table 4. Observe
that, even at the distribution level, these errors are
quite small even in the worst cases.
Figure 7 and Table 5 show the validation results for

the mean and standard deviation approximations for
clinic workloads. It is clear that the error in the analyt-
ical approximation of workload is likewise very small.
We believe one reason this approximation is so accu-
rate lies in the fact that the system we study from our
partner organization tends to run under a heavy
load, which makes daily workloads behave more
predictably.

5.3. Improving Access
First, we consider the case where management has
target performance levels and needs a template to
achieve those targets. As a proof of concept, we pre-
sent one particular scenario that was of strong interest
to our industry partner. This scenario is motivated by
the Figure 1, where urgent patients were experiencing
longer access delays than non-urgent patients. The
key information is reproduced for the particular ser-
vice we studied in Figure 9a.
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Table 3 Percent of Total Demand (on Average) that is Comprised of
Internal Referrals for GI, GIM, and Neurology

Svc

-
Day Monday Tuesday Wednesday Thursday Friday

GI 23% 28% 34% 41% 49%
GIM 38% 42% 45% 46% 47%
Neuro 13% 21% 22% 22% 21%
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5.3.1. Minimizing Mean Access Delay. We
began solving this problem by consulting our indus-
try partners to obtain bounds on the various compet-
ing metrics modeled in APT. From these discussions,
we selected APT settings that minimize mean access
delay for urgent patients under the following con-
straints: (i) mean access delay for non-urgent cases
should not exceed 5 weeks (25 workdays since we do
not count weekends), (ii) overtime is used on less than
10% of workdays, and (iii) the expected number of
appointments performed in overtime is less than 5
per day. The resulting template is shown in Figure 8a.
Running our simulation using this template demon-
strates a 26.9% decrease in mean access delay for
urgent patients from 24.59 to 17.98 days (from close
to 5 weeks down to 3.5 weeks on average). The trade-
off of this improvement was an increase of only
1.6 days (7.3%) in mean access delay for non-urgent
patients from 23.21 to 24.92 days. The probability of
overtime under this schedule was 9.75%. Prior

improvement projects conducted by the partner orga-
nization were not able to achieve the level of benefit
offered by our new template design.
In this analysis we minimized the mean access

delay for urgent patients while constraining the mean
access delay for non-urgent patients. An alternative
approach could minimize a weighted average of
mean access delays for both urgent and non-urgent
patients, while keeping the other constraints the
same. For instance, if we choose the weights to be
73% on urgent and 27% on non-urgent mean access
delay, which matches the fractions of the patient
classes arriving to Neurology for root appointments
(placing more weight on urgent patients), then the
results are instead a 16.1% decrease in urgent mean
access delay (from 24.59 days to 20.62 days) and a
5.8% decrease is non-urgent mean access delay (from
23.21 days to 21.86 days), while the probability of
overtime of 9.87% is very close to the original formu-
lation. In practice, management preferred the con-
strained approach, because they are able to set
service-level targets which are more interpretable and
easier work with than objective function weights. For
the weighted objective instance reported here, the
weights were somewhat arbitrarily chosen. Rather
than trying to tune the weights, management was
more comfortable working with constraints, which
more directly reflect management’s strategic goals.
All future results use the constrained approach.
Another item of keen interest for our industry part-

ner was to understand how the templates change
when further relaxing the constraints on non-urgent
patient access delay. For this what-if analysis, we
increased the limit on mean access delay for non-
urgent patients from 5 weeks to 6 weeks (Figure 8).
To provide better urgent patient access, the new

template reduces the overall slot reservations for non-
urgent patients. Of particular interest to our partner
organization, is that, in addition to reserving more
urgent slots, the template also reserves more capacity
for downstream appointments. This is because urgent
patients tend to use more downstream resources than
non-urgent cases due to their unknown condition
and/or case complexity. Thus, the increase in urgent
slots earlier in the week results in the need for more
downstream appointments towards the middle and
end of the week. These subtleties are easily over-
looked without the aid of a decision support tool such
as APT.
We conclude this analysis and segue to the next sec-

tion with a more detailed examination of how the opti-
mization was able to achieve this reduction in mean
access delay. Specifically, optimizing mean access
delay may leave some patients with very long delays
while others have unnecessarily short delays. Thus, it
is important to also examine service level metrics.

Table 4 Absolute Percentage Error of the Expected Percentage of
Urgent and Non-Urgent Patients Exceeding n Weeks of Access
Delay

n (in weeks) 1 2 3 4 5 6

Urgent access
delay APE (%)

2.58 1.91 1.01 2.18 3.98 1.95

Non-urgent access
delay APE (%)

3.90 4.84 5.47 5.39 5.67 4.16
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Workload by Day of Week for the Analytical Model vs. the
Simulation.

Table 5 Absolute Percentage Error of the Expected Percentage of
Urgent and non-Urgent Patients Exceeding n Weeks of Access
Delay

Day of week Monday Tuesday Wednesday Thursday Friday

Mean workload
APE (%)

0.29 0.28 0.04 0.15 0.36

Workload
st.dev. APE (%)

3.13 2.4 4.01 3.57 1.49
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Figure 9 shows the complementary C.D.F. of access
delays for urgent and non-urgent patients before (Fig-
ure 9a) and after (Figure 9b) optimization. This figure
shows that, by focusing on the mean access delay, the
optimization still leaves more than 20% of non-urgent
patients with delays longer than 5 weeks and almost
20% of urgent patients with delays longer than
3 weeks, which was considered undesirable by our
partner organization. Our partners showed great
interest in ensuring that long waits are avoided in
most cases (i.e., they are interested in high service
levels). Hence, in the next section, we examine service
level type constraints and how APT can control not
just the mean access delays, but also the distribution
of delays.

5.3.2. Controlling the Distribution of Access
Delay. After seeing the results of the first template
(see Figure 9), the managers of that service indicated
that, even though their initial constraints were met, it
was unacceptable to have a service level in which
more than 10% of their urgent patients would have to
wait longer than 3 weeks to get a root appointment.
However, improving urgent patient service levels has
a trade-off–negatively impacting the non-urgent

access delay. Hence, our partners also requested that
we add a service level constraint assuring that no
more than 20% of their non-urgent cases wait longer
than 5 weeks.
To incorporate these additional requirements, we

add the following additional constraints to the previ-
ous model: (iv) no more than 10% of the urgent cases
will exceed 3 weeks access delay for a root appoint-
ment (represented by the horizontal solid line in Fig-
ure 10a) and (v) no more than 20% the non-urgent
cases will exceed 5 weeks access delay for a root
appointment (represented by the horizontal dotted
line in Figure 10a). Figure 10b shows the complemen-
tary C.D.F. of access delays resulting from the new
optimization.
For urgent patients, note that now only 40% must

wait longer than a week for a root appointment (as
opposed to 55% under the original optimization) and
the curve drops more sharply in the first 3 weeks to
ensure that at most 10% of urgent patients wait longer
than 3 weeks. This makes it more difficult for a non-
urgent patient to obtain a root appointment in under
3 weeks: the number of non-urgent cases that will
wait longer than 3 weeks for a root appointment
increases from 40% to 54%. However, by including
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the service level target on non-urgent patients as well,
there is a noticeable drop in the non-urgent access
delay curve after 3 weeks to ensure that fewer than
20% of non-urgent patients wait longer than 5 weeks.
By incorporating the ability to control probability dis-
tributions on access delay, APT provides a far more
precise tool for managing customer service require-
ments in such complex service systems.

5.4. Increasing Urgent Patient Throughput
Another motivating factor for pursuing this research
agenda was a request from both GIM and Neurology
to increase the volume of urgent patients. In this sec-
tion, we increase the volume of urgent root appoint-
ment requests while generating templates according
to the optimization presented in section 5.3.1. The
optimization increases throughput as much as possi-
ble without worsening access delay or overtime as
compared to historic levels. Further, we show that, by
varying constraints on access delay and overtime,
APT is able to provide managers with richer decision
support in the form of efficient frontiers. This sup-
ports managerial decisions surrounding how much
and what class (e.g., urgent vs non-urgent) of access
they are willing to sacrifice to increase patient
throughput.
For Neurology, urgent patient throughput was

maximized under the following constraints on non-
urgent patients: (i) no more than 30% of patients
exceed 1 week access delay, (ii) no more than 20%
exceed 2 weeks access delay, and (iii) no more than
10% exceed 3 weeks access delay. The results of this
study are summarized in Figure 11, which displays
both the historical total workload in Neurology

(Figure 11a) and the optimized workload with
increased throughput (Figure 11b). The optimization
results in 31% increase in throughput relative to the
historical rate. At the same time, expected utilization
is higher, and the standard deviation of total work-
load is lower. This is despite the fact that urgent
patient root appointments on average result in the
highest downstream workload requirements. APT is
capable of producing a more controlled plan that
increases expected utilization in the clinic by reducing
workload variability and also by smoothing work-
loads relative to average capacity (see Figure 11b).
Using the method described above, we also created

efficient frontiers for the GIM service, displayed in
Figure 12. For this study, we constrain access delays
such that no more than 5% of urgent patient requests
will wait more than 4 weeks for a root appointment,
and all patient types will have access delays no longer
than 6 weeks. We also include constraints similar to
those considered previously on total overtime. In
Figure 12, we consider the impact of increasing
urgent patient volume (vertical axis) subject to service
level guarantees on access delay for non-urgent
patients (indicated by the different curves) and
constraints on the probability of overtime (along the
horizontal axis). In the figure, we denote the non-
urgent patient access delay metric by the term “Ser-
vice Level x%,” by which we mean that no more than
x% of non-urgent patients will have access delays
longer than 4 weeks.
These frontiers accurately capture the inherent

trade-offs in key patient mix decisions. For example,
with 10% overtime probability, the optimal schedule
can achieve an urgent patient throughput of either (i)
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� 80 urgent patients per week while ensuring no
more than 10% of non-urgent patients wait more than
4 weeks to get an appointment, (ii) � 100 urgent
patients per week if we allow up to 20% of non-urgent
patients to wait more than 4 weeks, or (iii) � 130
urgent patients per week if we allow up to 30% of
non-urgent patients to wait more than 4 weeks for
their root appointment. In current practice (denoted
by the ‘9’ in Figure 12) 30% of non-urgent patients
wait more than 4 weeks, the overtime probability is at
least 15% (a lower bound on current average overtime
provided by our industry partners), and throughput
129 patients per week. This can be improved in a
number of ways. For example, Figure 12 shows that it
would be possible to increase throughput by 10%
with the same level of overtime and non-urgent
access delay, or decrease overtime probability by 5%
(absolute) with the same level of throughput and
access delay. There are other ways to improve upon
the current state as well by jumping to other curves.
These frontiers are efficient solutions that provide a

rich decision framework regarding the effects of
changing patient mix for strategic decisions that have
traditionally been made in an ad hoc, trial and error
manner.
Effective sensitivity analysis is a critical part of

meeting the advisory and managerial decision sup-
port goals. Based on our interactions with physicians
and the managerial staff, it seems that this sensitivity
analysis feature is a key component of this new
methodology. Analyzing many different template sce-
narios allows management to incorporate their expe-
rience into a trade-off analysis, giving them the
control and information needed to make effective
decisions.

5.5. The Value of the Integrated Solution
For the purpose of comprehensive and rapid diagno-
sis and treatment plan design, patients are often
scheduled for a root appointment in a diagnostic
department. Based on the results of the initial tests,
new appointments are generated at other depart-
ments for deeper diagnosis and/or to begin treatment
design. In this section, we demonstrate the value of
the integrated solution by comparing it with a model
that optimizes services independently, which we call
the siloed solution. This comparison is a conservative
estimate of the benefit of APT, since the siloed
solution presented here is still the result of an
optimization.
We first solve the optimization presented in section

5.3.1 to minimize mean access delay in Neurology
independent of the other services. We then compute
the difference in access delay and overtime for all
three services (Neuro, GI, and GIM), comparing the
integrated and siloed solutions. Table 6 shows the
performance metrics of the siloed solution subtracted
from the integrated. Negative values indicate an
improvement of the integrated solution over the
siloed solution. The arrivals per week, which are the
same for both the integrated and the siloed scenarios,
are also provided.
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Table 6 demonstrates the problems associated with
independent management of integrated services dis-
cussed in the introduction. As compared to the inte-
grated solution, the siloed solution has the strongest
negative impact on GIM. For GIM, the integrated
solution decreases the probability of overtime by
5.51%, decreases the mean access delay for urgent
patients by 7%, and decreases the mean access delay
for non-urgent patients by 20%. GI experiences little
impact because few Neurology patients have down-
stream appointments in GI. The mean access delay for
Neurology is, of course, smaller for the siloed solution
since it ignores other departments. From a system’s
perspective, the integrated solution is better. In aggre-
gate, across the three departments there is an average
reduction of 0.6 days (2.3% decrease) of mean access
delay per patient (calculated by multiplying the
change in mean access delay by number of patients in
each category in Table 6). Other benefits include a
1.7% reduction in the chance a patient will need to be
served in overtime across the three departments.
Next, we consider a scenario where the depart-

ments have greater interdepartmental flows. Some
clusters of services at our partner institution have
greater connectivity of downstream appointments
than those exhibited by Neurology, GI, and GIM;
hence, we construct a counterfactual (that is, a hypo-
thetical example) where we increase the probability
that a patient with a root appointment in Neurology
requires subsequent downstream appointments in GI
and GIM. Historically, every root appointment in
Neurology generated on average 0.13 and 0.03 down-
stream appointments in GIM and GI respectively. In
our counterfactual study, we increase this to 0.26 and
0.15 downstream appointments in GIM and GI

respectively. Using an integrated model as opposed
to the siloed model improves the aggregate mean
access delay (across all 3 departments) by 2.7 days
(11% decrease), with mean access delays reduced by
3.0 days (13% decrease) for non-urgent patients, and
2.3 days (9.0% decrease) for urgent patients. The over-
time probability is reduced by 5.0%. When depart-
ments are more connected, the integrated solution
demonstrates even greater gains across all aggregate
metrics. Table 7 summarizes the results for each
department in the same format as Table 6.
For this study, computations were performed using

IBM CPLEX on a computer with an Intel Xeon E5-
2640v3 2.6 GHz processor. Runtimes for the integrated
solutions of the three departments ranged from
1.5 hours up to 12–15 hours in some cases. In contrast,
siloed solutions ranged from 17 minutes to 2–
2.5 hours. The wide range of run times depended on
how tight the constraints were. For tighter constraints,
the algorithm may spend 90% of the time trying to
determine a feasible solution. Since this is a planning
model, these runtimes are acceptable for practice.

6. Conclusion

This work contributes to the sparse research on
advance capacity planning methods supporting effec-
tive control of access delay for appointments in inte-
grated outpatient care delivery systems with multiple
patient classes that have multi-visit stochastic itiner-
aries in a network of specialist services. We take a
novel approach that linearly approximates system
congestion to enable tractable optimization of capac-
ity planning appointment templates to control access
delays via mean and service level constraints. Our

Table 6 Absolute (Percent) Difference for Mean Access Delay in Days and Absolute Difference for Probability of Overtime of the Integrated Solution
Relative to the Siloed Solution

Arrivals/week Diff. mean access delay in days (%)

Diff. prob. overtimeUrgent Non-urgent Urgent Non-urgent

Neuro 104 39 3.36 (18.69%) 0.03 (0.12%) 2.23
GI 53 132 �0.05 (�0.41%) 0.60 (2.46%) �0.20
GIM 130 85 �2.63 (�7.24%) �4.67 (�19.9%) �5.51

Notes: Prob. is an absolute value, multiplied by 100. Negative values indicate an improvement.

Table 7 Counterfactual Case Absolute (Percent) Difference of the Integrated Relative to the Siloed Solution

Arrivals/week Diff. mean access delay in days (%)

Diff. prob. overtimeUrgent Non-urgent Urgent Non-urgent

Neuro 104 39 7.07 (37.0%) 2.68 (12.7%) 7.26
GI 53 132 �4.90 (�37.6%) �5.20 (�21.5%) �4.02
GIM 130 85 �8.77 (�24.2%) �2.30 (�9.8%) �13.93

Note: Prob. is an absolute value, multiplied by 100.
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model can control not only mean delay, but even the
shape the distribution of wait times, which allows for
much finer control over the delays experienced by
each class of patient.
To solve this complex stochastic optimization, we

transform the model into a deterministic mixed inte-
ger program, which allows for tractable optimization
and the ability to model many performance con-
straints required in practice. This new approach pro-
mises to increase the ability to manage complex
tradeoffs involving (i) operational efficiency, (ii)
access delays for urgent patients, and (iii) the amount
of network overtime. These objectives are not new to
leading organizations; however, advanced methods
to achieve metric targets were not previously avail-
able. The alternative to an optimization approach is to
employ intuition driven policies that are evaluated by
simulation. However, it is extremely difficult to obtain
well-performing solutions due to the size and com-
plexity of the policy space. While optimizing a net-
work of three services was computationally feasible,
large networks may suffer from tractability, which
represents an area for future research.
To apply APT in practice, we suggest the following

process: (i) identify patient types and priorities, (ii)
define metrics and target levels, (iii) calculate resource
requirements for each patient type, (iv) identify con-
nected bundles of services, (v) generate templates,
workload forecasts, and trade-off curves, and (vi)
evaluate and approve the final templates. In the first
step, management must determine a set of patient
characteristics and a priority ordering that meets the
clinical and business objectives of the organization.
These characteristics for a class of patients may
include: condition, complexity, severity, convenience
(e.g., distance traveled to receive service), and physi-
cian research, and practice goals.
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