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ABSTRACT 

We sought to better characterize the progression of periodontal tissue breakdown in rats 

induced by a ligature model of experimental periodontal disease (PD). A total of 60 male 

Sprague–Dawley rats were evenly divided into an untreated control group and a PD 

group induced by ligature bilaterally around first and second maxillary molars. Animals 

were sacrificed at 1, 3, 5, 7, 14, and 21-days after the induction of PD. Alveolar bone loss 

was evaluated by histomorphometry and microcomputed tomography (μCT). The 

immune-inflammatory process in the periodontal tissue was assessed using descriptive 

histologic analysis and quantitative polymerase chain reaction (qPCR). This ligature 

model resulted in significant alveolar bone loss and increased inflammatory process of 

the periodontal tissues during the initial periods of evaluation (0-14 days). A significant 

increase in the gene expression of proinflammatory cytokines, interleukin-1β (IL-1β), 

interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and proteins involved in 

osteoclastogenesis, receptor activator of nuclear factor-k B ligand (RANK-L) and 

osteoprotegerin (OPG) was observed in the first week of analysis. In the later periods of 

evaluation (14-21 days), no significant alterations were noted with regard to 

inflammatory processes, bone resorption, and expression of cytokine genes. The ligature-
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induced PD model resulted in progressive alveolar bone resorption with two different 

phases: Acute (0-14 days), characterized by inflammation and rapid bone resorption, and 

chronic (14-21 days) with no significant progression of bone loss. Furthermore, the gene 

expression of IL-6, IL-1β, TNF-α, RANK-L and OPG were highly increased during the 

progress of PD in the early periods. 

 

Key Words: Periodontal disease; rats; periodontitis; alveolar bone loss; bone resorption; 

X-ray microtomography. 

 

Research Highlights 

• Ligature-induced bone resorption in rats occurred in the initial periods after 

disease induction; 

• The bone resorption was characterized by two distinct phases: Acute (0-14 days), 

with pronounced inflammation and alveolar bone loss;  

• Chronic phase (14-21 days): No further disease progression; 

• Several proinflammatory cytokines were increased during the progress of 

periodontitis. 
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1. INTRODUCTION 

Periodontal disease, an infection condition of the supporting tissues around the teeth, is 

caused by an accumulation of dental biofilm and subsequent release of proinflammatory 

mediators, cytokines, growth factors and signaling molecules. The persistent presence of 

oral microorganisms to the dental structures lead to weakened periodontal tissue causing 

an imbalance in bone metabolism, resulting in substantial alveolar bone resorption 

(Alencar et al., 2002; de Molon et al., 2016b; Mizuno et al., 2015). Recent observations 

in adult humans identify a prevalence of periodontal disease varying around 46%, which 

represents 64.7 million people with periodontitis in the United States population (Eke et 

al., 2015), and is considered the most common cause of tooth loss (Albandar and Rams 

2002).   
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 Uncoupling of bone formation and resorption are associated with a higher degree 

of tissue breakdown during the course of periodontitis in susceptible hosts. At a 

histological level, periodontal disease leads to an inflammatory infiltrate composed of 

neutrophils and leukocytes, which activate immune cells such as lymphocytes to trigger 

the release of prostaglandins, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and 

IL-6. These cellular events culminate with the activation of osteoclastogenesis and bone 

destruction through a direct stimulation of osteoclasts or through the release of tissue-

destructive enzymes by the inflammatory cells (Mundy 1991).  

 Paralleling clinical observations of periodontal disease, histological and molecular 

analysis of experimental animal models of periodontitis in mice and rats have provided 

important insights into the disease pathogenesis recapitulating clinical, radiographic and 

histologic features of the disease (de Aquino et al., 2014; de Molon et al., 2014b; de 

Molon et al., 2016b; Graves et al., 2008; Hiyari et al., 2018a; Hiyari et al., 2018b; Li and 

Amar 2007; Polak et al., 2013; Polak et al., 2009; Saadi-Thiers et al., 2013; Wilensky et 

al., 2005). Moreover, animal models with physiological complications have been 

extensively utilized to develop new treatment modalities with more effective therapeutic 

strategies, inquiry host-pathogen interactions, study the effects of surgical interventions, 

and evaluate the intrinsic effects of periodontal infection or inflammation on systemic 

conditions (de Molon et al., 2014b; de Molon et al., 2013; de Molon et al., 2016b; Graves 

et al., 2008; Graves et al., 2012; Matsuda et al., 2015).  
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Among the various methods employed to mimic periodontitis in animals, the most 

commonly used model is ligature-induction (de Molon et al., 2014b; de Molon et al., 

2013; de Molon et al., 2016b; Pirih et al., 2015; Wong et al., 2017). The placement of a 

silk ligature throughout the cervical region of mandibular or maxillary molar teeth leads 

to bacterial colonization, stimulating a great accumulation of biofilm, resulting in 

symptoms of disease similar to those observed in a clinical situation, such as apical 

epithelial migration and bone loss (de Molon et al., 2016b; Klausen 1991; Saadi-Thiers et 

al., 2013). According to previously published studies in which ligatures are used 

(Cavagni et al., 2016; de Molon et al., 2014b; de Molon et al., 2016b; de Souza et al., 

2011; Nogueira et al., 2017; Nogueira et al., 2014), connective tissue and bone loss 

predictably occurs over a period of 7 to 15 days in rats and mice. This feature is due to 

the presence of bacterial species around and within the silk thread, which leads to 

increased bone destruction in the early stages of disease. A previous report (Bezerra et al., 

2002) showed that ligatures did not induce significant bone resorption in germ-free rats 

and that bacteria accumulation around the thread played an important role in the disease 

progression (Matsuda et al., 2015). Furthermore, traumatic injury during the pathogenesis 

of the ligature model has been described in the literature, especially when mouse models 

are utilized (Abe and Hajishengallis 2013). 

 Different data from the literature that directly explore and compare the 

characteristics of ligature-induced periodontitis during the initial stage of disease are 
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scarce. Here, our aim was to better characterize the ligature-induced periodontal disease 

model in rats at radiographic (μCT), histologic and gene expression of putative pro-

inflammatory cytokines in the gingival tissues to more closely investigate periodontitis 

progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. MATERIALS AND METHODS 

2.1 Animal care 
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The experimental protocol (#13/2007) was handled according to the guidelines of the 

University of Michigan Institutional Animal Care and Use Committee (IACUC), and all 

animals received humane care conforms to the ARRIVE (Animal Research: Reporting of 

In Vivo Experiments) guidelines (Kilkenny et al., 2012). Rats were kept in the animal 

facilities under similar conditions (humidity 60%, temperature-controlled 22 ± 2°C, and 

12-hour light/dark cycle). All rats were housed in standard cages in groups of two 

animals, and water and food were provided ad libitum. A total of 60 two-month-old male 

Sprague-Dawley rats, with average body weights between 180 and 200 g were randomly, 

by means of a raffle method, divided into two groups: an untreated control group and a 

ligature-induced periodontal disease group. 

 

2.2 Induction of periodontal disease 

All animals in the ligature-induced group were anesthetized with an inhalation method 

using isoflurane (Baxter Healthcare, Deerfield, IL, USA) for periodontal disease 

induction. The ligatures were placed using a sterilized silk thread (Ethicon, Johnson & 

Johnson, Somerville, NJ) tied around the cervix of the first and second maxillary molars 

in an “8” shape, knotted at the palatal surface of the second molar (Fig. 1A-C). To 

facilitate ligature placement, a slightly separation in the interproximal area between 1st 

and 2nd molars with the aid of a periodontal probe (Hu‑ Friedy, Chicago, IL, USA) was 

performed. In all animals, the ligature was inspected every other day and repositioned if 
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necessary to maintain the ligature during the entire experimental period. Ligatures were 

maintained in position during the whole experimental period. 

2.3 Maxillae dissection and analyses 

At each time point following periodontitis induction, five rats each from the control and 

experimental group were euthanized per CO2 overdose. The maxilla from each animal 

was dissected and then hemisected. One half of each maxilla sample was submitted for 

alveolar bone level measurements via micro-computed tomography (µCT), after which 

these were utilized for routine histologic processing for descriptive histological analysis. 

For the other half maxilla, the gingival tissues around the 1st and 2nd maxillary molars 

were gently removed for extraction of total RNA for reverse transcription and qPCR. 

Following gingival tissue dissection, bone samples were immersed in 3% hydrogen 

peroxide for 24 h to facilitate the removal of all remaining soft tissue. Samples were then 

kept in ethanol (70%) until its use for macroscopic evaluation of bone loss. 

 

2.4 Macroscopic analysis of bone resorption 

The bone resorption area in the buccal and palatal surface of the 1st and 2nd maxillary 

molars was macroscopically measured. Briefly, bone samples were removed from the 

70% ethanol, dried, submerged for 5 min in methylene blue (0.7 g/L). The samples were 

then washed with water to eliminate the additional methylene blue stain. Digital 

photographs of the buccal and palatal surfaces of the stained samples were obtained with 

a stereomicroscope (Leica Microsystems, Wetzlar, Germany) (20x magnification). The 
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distance from the cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) was 

measured at 6 different sites per tooth (mesio-distal, disto-mesial, buccal-palatal and 

palatal-buccal regions) and mean values were used. Images from methylene blue-stained 

samples were measured using appropriate software for 2D-image analysis (Image Pro-

Plus 5.1, Rockville, MD, USA) by a blinded and calibrated examiner (JAC), as 

previously described (de Souza et al., 2011). Measurements were performed at baseline, 

and 7, 14 and 21 days after periodontal disease induction. 

 

2.5 Micro-computed tomography scanning  

Dissected maxillae were carefully harvested, fixed in paraformaldehyde (4%) for 2 days, 

and stored in ethanol (70%) before μCT scanning. Bone samples were then washed in 

distilled water and stored in 0.9% saline solution overnight for rehydration. The maxillae 

were scanned with 18µm3 voxel-size by a high-resolution μCT imaging system (GE 

Healthcare, London, ON, Canada). For sample reconstruction, an analysis software 

(Microview Analysis+ v.2.1.2, GE Healthcare, USA) was utilized and the specific 

parameters used were employed as described elsewhere (Cirelli et al., 2009). The linear 

bone loss were evaluated by two independent and calibrated examiners, and the 

measurements were determined from the CEJ to the ABC at the palatal surface of the 

mesio- and disto-palatal roots of the maxillary 1st and 2nd molar teeth (Fig. 3), as 

previously described (de Molon et al., 2014a; de Molon et al., 2016a; de Molon et al., 
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2015). The linear measurements resulted in an average value, which was used to define 

the distance from the CEJ to ABC in millimeters. 

 

2.6 Histologic processing and descriptive analysis 

After µCT scanning, the maxilla samples were decalcified in 10% 

ethylenediaminetetraacetic acid (EDTA), pH 8.0 for 5-6 weeks at room temperature. 

Samples were paraffin-embedded and 5 μm-thick sections were obtained in the mesio-

distal direction. Samples were stained with hematoxylin and eosin (H&E) for histologic 

descriptive analysis and were evaluated by a blinded, and calibrated examiner.  

2.7 Quantitative PCR (qPCR) 

Total RNA was extracted from the gingival palatal tissue biopsies collected from the 

mesial aspect of the 1st molar to the distal site of the 2nd molar, as previously described 

(Cirelli et al., 2009). Briefly, RNA purification was achieved using a RNeasy Mini Kit 

complemented with RNase- Free DNase Set (Qiagen, Valencia, CA, USA), according to 

the manufacturer’s instructions. Then, a spectrophotometer (BioMate 3, Rochester, NY, 

USA) was used to measured the purity and quantity of total RNA by evaluating the 

absorbance at 260 nm and the 260/280 nm ratios, respectively. After the confirmation of 

the total RNA integrity, cDNA was synthesized by reverse transcription (RT) of 400 ng 

total RNA in a reverse transcriptase reaction (High capacity cDNA synthesis kit, Applied 

Biosystems), according to the manufacturer protocol.  
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Real-time, qPCR was performed by means of Real Time PCR System (ABI Prism 

7500 StepOne Plus, Applied Biosystems, CA, USA) using TaqMan Gene Expression 

Assays (Applied Biosystems, CA, USA). The reaction was performed following the 

manufacturer’s instruction. The determination of the levels of gene expression was 

performed using the cycle threshold (Ct) method and normalized to the GAPDH 

(housekeeping gene). The results are represented as the mean ± SD mRNA expression 

from triplicate measurements normalized using the internal control GAPDH, as 

previously described (Cirelli et al., 2009; de Molon et al., 2014b). The target gene, ABI 

ID no., and reporter probe sequence of each specific TaqMan Gene Expression Assay 

(Applied Biosystems, Foster City, CA, USA) are described in Table 1. 

 

 

2.8 Statistics 

GraphPad Prism Software (La Jolla, CA, USA) was used to analyze the raw data. Group 

measurements were expressed as the mean and standard deviation (SD). Statistical 

significance was assessed using one-way analysis of variance (ANOVA) followed by the 

Tukey’s post-hoc test for multiple comparisons among groups to determine the presence 

of any significant difference. A significance level of 5% was used.   
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3. RESULTS 

3.1 Macroscopic bone resorption analysis 

To investigate whether periodontal disease led to bone resorption for the entire 

experimental period, macroscopic bone loss measurements were performed using 

methylene blue-stained maxillae samples (2A-H) at baseline (no ligature) and after 7, 14 
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and 21 days of periodontitis induction (Fig. 2I). Increased bone resorption was 

predominantly noted after 7 days of disease induction until the 14th day period (Fig. 2I). 

Significant bone resorption was observed from baseline until 14 days after ligature 

placement in the interproximal area measured in the distal aspect of the 1st molar (p < 

0.001) and mesial aspect of the 2nd molar (p < 0.0001). After 21 days, statistically 

significant differences in bone loss were also noted when compared to the baseline and 7 

day time points. Interestingly, no significant differences in linear bone loss were found 

between 14 and 21 days (Fig. 2I), which suggests that periodontal disease tends to 

stabilize during the late periods, characterizing a chronic inflammatory disease.  

 

3.2 Micro-computed tomography analysis 

To further characterize the progression of periodontal disease induced by ligatures, μCT 

scanning was performed after the end of the experimental periods and linear 

measurements were made (Fig. 3). To quantitate bone loss, the CEJ to ABC distance was 

measured (Fig. 4). No statistically significant differences were found between control and 

ligature groups at the mesial side of the 1st molar, throughout the experimental periods 

(Fig. 4A). However, statistically significant differences in bone resorption were found at 

the distal side of the 2nd molar and within the interproximal area between the 1st and 2nd 

molars, 3 days after ligature placement compared to the untreated control group (p < 

0.05). Progressive bone resorption was evidenced until the 14-day time point, which 
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represents an acute form of the disease (Fig 4D). On the other hand, a slight decrease in 

bone loss was noted after 15 days of ligature placement, which was sustained until the 

end of the experimental period of 21 days (Fig. 4B-C). This situation represents a chronic 

characteristic of the disease without significant alveolar bone loss progression (Fig. 4D). 

Statistically significant differences in bone loss were evident between the control group 

and the experimental group until the end of the 21-day period (p < 0.05).  

 

3.3 Histological analysis 

To evaluate histologic features of periodontitis, sagittal sections were obtained in the 

middle of the 1st and 2nd molar crowns and analysis were performed in the furcation and 

interproximal area after a period of 1, 3 and 5 days. All untreated control rats showed 

normal alveolar bone and marginal epithelium, and an absence of inflammatory infiltrate 

(data not shown). In the experimental group, inflammatory infiltrate (black arrows) was 

evident 1 day after ligature placement in the furcation and in the interproximal area (Fig. 

5A-C). Remarkably, bone loss was detected in the ligature group after 1 day of ligature 

placement represented by an increased distance from the furcation top to the ABC. These 

findings were maintained 3 and 5 days after disease induction. Collectively, changes in 

the experimental group included an intense infiltration of inflammatory cells, disrupted 

epithelial integrity at the dentogingival junction, connective tissue attachment loss, and 
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alveolar bone resorption characterized by an increase in the distance between the CEJ to 

ABC (Fig. 5 A-I). 

3.4 qPCR 

To assess the expression of proinflammatory cytokines in the periodontal tissues, qPCR 

was performed after the end of the experimental period. As expected, significant 

increases in the mRNA expression of Interleukin-6, Interleukin-1β, and Tumor Necrosis 

Factor-α were observed during the early periods of the disease; 1 (p < 0.01) and 3 (p < 

0.05) days after ligature placement (Fig 6A, C, E). Accordingly, the mRNA expression of 

receptor activator of nuclear factor-k B ligand (RANKL), and osteoprotegerin (OPG) was 

more pronounced in the early periods of the disease (3 and 5 days) with statistically 

significant differences in the expression of RANK-L and OPG after 3 (p < 0.05) and 5 

days (p < 0.01) (Fig. 6G-H). After 1 week of disease induction, statistically significant 

increases in the expression of IL-6 and IL-1β were also noted (Fig. 6B, D) (p < 0.01). No 

differences were found for TNF-α after 1 week of disease (Fig. 6F). In the later periods of 

evaluation (14-21 days), no statistically significant differences were found for all the 

cytokines evaluated (Fig. 6B, D, F). The ratio of RANK-L/OPG was also evaluated and 

increased ratio in the 3 (p < 0.01) and 5 days period (p < 0.05) after periodontitis 

induction was observed (Fig 6I). 
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4. DISCUSSION 

Major progress in the understanding of periodontitis pathogenesis has been made since 

experimental models of PD were first introduced in dental research. However, important 

gaps in our knowledge still exist related to the ligature-induced periodontitis model. A 

strategy to overcome these gaps is the extensive effort of research groups to better 

characterize animal models that closely mimic how periodontitis presents in human 

beings, assisting in the selection of the most appropriate animal model to be used in 

preclinical studies according to their objective (de Molon et al., 2014b; de Molon et al., 

2016b; Graves et al., 2008; Graves et al., 2012; Hiyari et al., 2015; Hiyari et al., 2018b; 

Li and Amar 2007; Pirih et al., 2015; Polak et al., 2009; Saadi-Thiers et al., 2013; 

Wilensky et al., 2005; Wong et al., 2017). 

 Experimental models for periodontitis in rats and mice have been very beneficial 

and important to examine various biologic hypotheses in physiological complications and 

reproduce the radiographic, clinical, molecular and histologic features of human 

periodontitis (Anbinder et al., 2016; Cavagni et al., 2016; de Aquino et al., 2014; de 
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Molon et al., 2014b; de Molon et al., 2016b; Graves et al., 2008; Graves et al., 2012). 

Animal models of PD allow for studying cellular and molecular mechanisms as well as 

biological mediators involved during the establishment and progression of the disease 

and provide valuable information on host–microbial interactions and inflammation 

(Anbinder et al., 2016; Cavagni et al., 2016; de Aquino et al., 2014; de Molon et al., 

2014b; de Molon et al., 2016b; de Souza et al., 2011; Graves et al., 2008; Matsuda et al., 

2015; Mizuno et al., 2015; Nogueira et al., 2014). At this point, ligature-induced PD has 

been frequently used in periodontal research due to the involvement of live microbes 

naturally existent in animal species with distinct virulence features including toxins, 

pathogen-associated molecular patterns (PAMPs) and products of the microbial 

metabolism (de Souza et al., 2011). However, the variability of the results found in the 

literature with regard to this model hinders a definitive conclusion about the true 

characteristics (initiation and progression) of the disease.   

Therefore, using the ligature-induced periodontitis model in rats, we addressed the 

host response at morphometric, radiographic, histologic and molecular levels in the 

beginning stages of the disease through the end of the 21-day experimental period. Our 

results indicate that the ligature model leads to progressive alveolar bone resorption, 

suggesting two distinctive phases: (1) an acute phase (0-14 days) and (2) a chronic phase 

(15-21 days). Furthermore, the ligature-induced PD model in an “8” shape placed around 
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the first and second maxillary molars offers a reliable model with site-specific epithelial 

downgrowth, inflammatory cell infiltration, and time-dependent alveolar bone resorption. 

The need to more accurately reflect the clinical reality has led researchers to 

better characterize existing animal models (de Molon et al., 2014b; de Molon et al., 2013; 

de Molon et al., 2016b; Graves et al., 2008; Graves et al., 2012). In this effort, we used 

different methodologies to describe the ligature model specifically during the early stages 

of the disease. Histologic analysis revealed that 1 day after ligature placement, evidence 

of bone resorption in the furcation and interproximal regions were noted in the ligated 

animals. The distance from the furcation top to the ABC increased, which denotes 

increased bone loss. Since bone resorption in the ligature model is dependent on the 

presence of oral microorganisms (Abe and Hajishengallis 2013; Bezerra et al., 2002; 

Klausen 1991; Matsuda et al., 2015), this finding can be attributed to the trauma caused 

during the ligature placement (Abe and Hajishengallis 2013). Although μCT analysis had 

no statistically significant differences in bone resorption within the first 3 days of disease, 

5 days after ligature placement, a statistically significant increase in bone resorption was 

noted radiographically for the experimental group, which increased over time until the 

14th day. Importantly, after 14 days of periodontitis a slightly decrease in the amount of 

bone resorption was evidenced in the interproximal and distal region of the second molar. 

These results suggest that ligature-induced periodontal disease leads to two distinct 

phases: an acute phase with progressive destruction of the periodontal tissues (0 to 14 
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days) followed by a chronic phase characterized by a cessation of the periodontal 

inflammation and tissue breakdown. This profile change of ligature-induced bone loss 

could be potentially explained because, as a consequence of alveolar bone resorption, 

periodontal tissues tend to migrate to a more apical position to recuperate the biologic 

space, diminishing the disease severity over time (de Molon et al., 2014b; de Molon et al., 

2016b). However, in this study, the ligature was displayed further apically, every 3 days, 

to keep the silk thread in close contact with the periodontal tissue, and consequently 

maintain the inflammation. 

In an effort to maintain the disease severity over time, previous studies (Li and 

Amar 2007; Saadi-Thiers et al., 2013; Yuan et al., 2011) suggest the incubation of live 

pathogenic microorganisms into the thread, which could lead to an exacerbation of the 

disease intensity. Microorganisms adhered to the ligature produce several virulence 

factors, such as PAMPs including some toxins, which might result in a more complex 

host response, affecting the profile of proinflammatory mediators, and periodontal tissue 

destruction (de Souza et al., 2011). Additionally, a previous study (Anbinder et al., 2016) 

utilized ligature placement around the first maxillary molar associated with an oral 

gavage model using Porphyromonas gingivalis to increase the disease severity. 

Furthermore, the ligature was repositioned apically to sustain the thread in intimate 

contact with the marginal gingiva. The authors concluded that this model was suitable 

when advanced bone loss is expected and maintained over time. 
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Here, mRNA levels of cytokines and other molecules involved in 

osteoclastogenesis were assessed in order to determine the inflammatory nature of the 

disease at a molecular level. The interaction between cytokines and their antagonists will 

regulate the extent and severity of bone breakdown and tissue destruction mediated by 

increased levels of IL-1β, IL-6, TNF-α, and RANKL. We found in the diseased tissues, 

already at 1 and 3-days of ligature placement that periodontal disease significantly 

upregulated mRNA expression levels of proinflammatory cytokines IL-1β, IL-6, and 

TNF-α compared to the non-ligated animals. IL-1β and IL-6 levels were also elevated 1 

week after disease induction but no differences were found 2 and 3 weeks after 

periodontitis induction for mRNA expression of the cytokines evaluated.  

The binding between RANKL to RANK expressed on osteoclast precursors is the 

primary event for osteoclasts activation. The effects of RANKL are regulated by 

osteoprotegerin (OPG) that inhibits bone resorption by preventing the interaction of 

RANK and RANKL (Takayanagi et al., 2002). Alterations in the balance between 

RANKL and OPG protein expression of define the pathogenesis of several metabolic 

bone diseases, such as periodontitis. In this context, RANK-L and OPG expression were 

significantly higher 3 and 5 days after ligature placement. These findings closely 

resemble observations made by previous studies (de Molon et al., 2014b; de Souza et al., 

2011; Matsuda et al., 2015; Saadi-Thiers et al., 2013) in which increased expression of 

proinflammatory cytokines were noted in the tissue of animals with periodontal disease. 
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The increased microbial burden related with the conversion from health status to 

periodontal disease might also lead to elevated mRNA expression levels of 

proinflammatory cytokines (de Souza et al., 2011). 

An important consideration should be mentioned when interpreting the results of 

the present investigation. As our focus was mainly in the early stages of disease 

progression, we evaluated different time points among the analyses. In this regard, 

histological, radiographic and gene expression of pro-inflammatory cytokines were 

investigated in the early phase of disease (after 1, 3 and 5 days). Macroscopic, 

radiographic, and RT-qPCR analyses were also performed in the late stages of disease 

progression. Histological analysis was not performed in the late stages of disease because 

there are already available data characterizing the chronic phase of the disease. 

 

5. CONCLUSIONS 

In summary, our findings in rats provide experimental evidence that ligature-induced 

periodontal disease offers a consistent model with connective tissue downgrowth, 

inflammatory cell infiltration, and alveolar bone resorption. Indeed, we showed for the 

first time, that ligature placement could lead to bone resorption within 24 hours, and two 

distinct phases were characterized when ligatures are used: an acute phase, with 

progressive inflammation and bone breakdown, followed by a chronic phase, 

characterized by absence of significant progression of bone loss. Furthermore, the gene 
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expression of IL-6, IL-1β, TNF-α, RANK-L and OPG were highly increased during the 

progress of periodontal disease especially in the early periods. 
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FIGURE LEGENDS 

Figure 1. A - Schematic representation of ligature placement around the 1st and 2nd 

maxillary molars in an “8” shape and knotted at the palatal surface of the second molar. 

Ligatures were kept in position during the entire experimental period and were checked 

every other day and repositioned if necessary. B-C – Macroscopic views of the molars 

showing the ligature in placement after (B) soft tissue removal, and the alveolar bone loss 

induced by the ligature around both molars (C). 

 

Figure 2. A-D – Representative samples stained with methylene blue in a palatal (A, C, E, 

G) and buccal (B, D, F, H) view at baseline and after 7, 14 and 21 days of ligature 

placement. Digital images of the buccal and palatal surfaces of the samples were obtained 

with a stereomicroscope with 20x magnification. The distance from the CEJ to the ABC 

was measured at 6 different sites per tooth (mesio-distal, disto-mesial, buccal-palatal and 

palatal-buccal regions) and mean values were used. I – Linear measurements in the distal 
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area of the 1st molar, mesial aspect of the 2nd molar and within the interproximal area. 

†Statistically significantly different, p < 0.001.  *Statistically significantly different, p < 

0.0001. Data represent the mean ± SD. 

 

Figure 3. Representative 3D images showing in detail the linear measurements 

performed for each sample. The distance between the cemento-enamel junction (CEJ) to 

the alveolar bone crest (ABC) was measured in the mesial region of the first molar and 

distal region of the second molar. 

 

Figure 4. Quantification of the μCT linear measurements. Linear bone loss evaluation in 

the mesial aspect of the first molar (A), distal aspect of the second molar (B) and 

interproximal area between the first and the second molars (C). The distance from the 

CEJ to the ABC was measured at the palatal surface of the mesio- and disto-palatal roots 

of the maxillary 1st and 2nd molar teeth. Characterization of the two different phases of 

the disease (D). *Statistically significantly different, p < 0.05. Data represent the mean ± 

SD. 

 

Figure 5. Representative histological sections of the experimental groups after 

periodontitis induction at 1, 3, and 5 days (A, D, G) within the furcation region (B, E, H) 

and in the interproximal (C, F, I) areas. Samples were paraffin-embedded and 5 μm-thick 
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sections were obtained in the mesio-distal direction and were stained with H&E for 

descriptive histologic analysis. Black arrows point to inflammatory infiltrate in the 

connective tissue and the blue arrows point to the alveolar bone crest. 

 

Figure 6. qPCR for mRNA expression during the course of the experimental periodontal 

disease for proinflammatory cytokines IL-6 (A, B), IL-1β (C, D) and TNF-α (E, F), and 

proteins involved in osteoclastogenesis RANKL (G) and OPG (H), and the ratio between 

RANK-L and OPG (I). Gene expression levels were normalized to the housekeeping 

gene, GAPDH. *Statistically significant difference = p < 0.05. **Statistically significant 

difference = p < 0.01. Data are represented as the mean values ± SD. 

 

 

Table Legends 

Table 1. Inventoried TaqMan Primers and probe. 
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Table 1 – Inventoried TaqMan Primers and probe. 

 
 
Target Gene ABI ID no Reporter Probe Sequence  

    
IL -1 β   Rn00580432_m1    CATAAGCCAACAAGTGGTATTCTCC  
    
IL-6 Rn00561420_m1    GAGAAAAGAGTTGTGCAATGGCAAT  
    
TNF-α                Rn99999017_ m1      CACACTCAGATCATCTTCTCAAAAC 

 
RANK-L    Rn00589289_m1      TGCCGACATCCCATCGGGTTCCCAT 
 
OPG                Rn00563499_m1      GCTGTGCACTCCTGGTGTTCTTGGA 
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