
A Personalization of Readmission Risk

Utilizing the prediction model proposed in Helm et al. (2016), one can personalize the time to

develop the condition curve. This would be done by first developing a population based model

and then applying transfer learning to personalize the predictions to each individual patient

(using a Weibull regression to estimate a survival model for time-to-readmission).

The risk factors include socio-demographic, hospital admission and stay characteristics. For

the purpose of illustration, we took three personalized risk profiles (high, medium and low) from

Helm et al. (2016) and solved for optimal 2-checkup polices. The following table shows the

improvements in detection probability upon current practice for high, medium, and low patients

from Helm et al. (2016)’s risk profiles. The relative improvements were similar to Table 1, with

a better improvement seen on high risk patients.

Table A.1: Comparison against current practice for high, medium, and low risk patients

Risk Time of Time Detection Probability
of First between Optimal Current Relative
Readmission Checkup Checkups 2-Checkup Practice Improvement
High(72%) 4.9 3.5 0.30 0.17 77.4%
Medium(18%) 6.3 4.1 0.24 0.16 51.9%
Low(4%) 6.5 4.2 0.24 0.16 49.7%
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B Model Notation and Parameters

Table B.1: Model Notation and Parameters

ρ The random variable representing time-to-readmission (time
between discharge and readmission) given no checkups

gρ(·) The probability density function of τ
D Delay-time, i.e., the length of time prior to τ that the illness

was detectable by a checkup; this is equivalent to the amount of
time that a patient is in the ill state

f(·) The probability density function of D; accordingly, F (·) is the
cumulative distribution function of D

δ The time when the condition developed, i.e., when the illness is
first detectable by a checkup

gδ(·) The probability density function of δ
ti The time when checkup i is performed
T The latest time following discharge that readmissions are

tracked until; thus, this also represents the latest time during
which a checkup can be placed

m The number of different checkup methods available
yij ∈ {0, 1} An indicator variable that denotes whether checkup method

j ∈ {1, ...,m} is used at ti
rj ∈ [0, 1] The detection rate of checkup method j, i.e. if checkup

method j is performed when a patient is ill, then the checkup
will detect the illness with probability rj

r(i) ∈ [0, 1] The detection rate of the checkup employed at ti ∀ i ∈ {1, ...,n}
wj ∈ N The maximum number of times checkup method j can be used
Π = (t1, ..., tn A checkup policy
, y11, ..., ynm)
NΠ
i ∈ {0, 1} An indicator variable that denotes whether or not an illness is

detected at ti given policy Π
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C Solution Approach

initialization
Generate 200 solutions1 according to the recursive construction described in Proposition 1. Each of

the 200 initial seeds is generated assuming a deterministic delay-time randomly sampled from the true
delay-time distribution; t← 1
while Not converged 2 or t ≤ 200 or gradient norm ≤ 10−5 do

1. Keep the top 25 fittest solutions and eliminate the rest 175 solutions
2. Randomly mate solutions from the 25 solutions to generate 175 offspring solutions
3. Mutate 20 randomly selected solutions by randomly permuting the timing
4. Apply 5 iterations of gradient ascent to each solution
5. t← t+ 1

end
Note:
1 : A solution, for a n−checkup problem, is a n dimensional vector. For example, n = 2, (t1, t2) is a valid
solution where t is the timing of checkups. The fitness of a solution is its detection probability (i.e. the
objective value).

2 : We say the algorithm converged if the change in population average fitness is less than 10−5 from t to
t+ 1.

Algorithm 1: Solution procedure
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D Example of Non-concave Objective Function

Figure D.1: Objective value for one checkup
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Figure D.2: Objective value for two checkups
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E Multi-modal Distribution

In this appendix, we test the robustness of our model under a multi-modal distribution. We

created a counter-factual time-to-develop the condition distribution by simulating the time-to-

develop the condition of 63 patients according to the fitted gamma distribution presented in

Section 5.1. Then, patients that may have been readmitted on day-12 but were not (possibly

due to the current practice of following up with patients on day 12) were added to the cohort.

We simulated 24 patients who developed a condition prior to day-12 based on the exponential

delay-time distribution. A Gaussian Kernel Density Estimator (KDE) with bandwidth 0.8 was

used to fit the time-to-develop the condition distribution curve. The KDE distribution is shown

in Figure E.1.

Figure E.1: The counter-factual multi-modal distribution created by a Gaussian Kernel Density Estimator
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We studied the sequencing and timing of checkups. Solving for optimal n-checkup (n =

4, ..., 10) sequencing and timing under a multi-modal distribution, we found that the insights on

sequencing and timing developed under the unimodality assumption of Proposition 1 did not

hold in the multi-modal case as perfect checkups were no longer placed consecutively. However,

the policies were still robust to the sequencing of checkups: the gaps between the worst-case and

the best-case sequences for all policies in this test suite (4 to 10 checkups consisting of 3 office

visits and 1 to 7 phone calls) were between 0.9% and 1.5%. Moreover, as can be seen in Table

G, the optimal detection probabilities of these policies were close to the ones obtained using the

original gamma distribution.

Table E.1: Comparison of optimal detection probabilities and gaps between worst and best detection probabilities

Checkup Policy (P=Phone Call, O=Office Visit) 1P3O 2P3O 3P3O 4P3O 5P3O 6P3O 7P3O

Optimal Detection Probabilities
Original Gamma 0.40 0.43 0.46 0.48 0.50 0.52 0.54

KDE 0.39 0.42 0.45 0.47 0.50 0.51 0.53

Gaps b/t Worst and Best Cases
Original Gamma 0.2% 0.3% 0.4% 0.5% 0.4% 0.3% 0.4%

KDE 1.2% 1.2% 1.3 % 1.5% 1.1% 0.9% 1.2%

As the detection rate increased, we noticed that imperfect checkups were centered around

each mode and placed closer together. However, increasing the detection rate did not necessarily

widen the overall coverage area. Since the checkups were scattered to cover the prominent modes,

the overall coverage area was dictated by the separation of the modes.

46



F Proof of Lemmas and Remarks

Proof of Lemma 1. An increase in r causes the LHS of Eq. (25) to become smaller than the RHS,

so t∗1 is no longer optimal. After simple algebraic manipulation of Eq. (25), r can be expressed

in terms of t∗1 as:

r(t∗1) =
gδ(t

∗
1)−

∫ t∗1
0
gδ(k)f(t∗1 − k) dk

gδ(t∗1)
[
1− F (t∗2 − t∗1)

]
=

1

1− F (t∗2 − t∗1)
−
∫ t∗1

0
gδ(k)f(t∗1 − k) dk

gδ(t∗1)[1− F (t∗2 − t∗1)]
(F.1)

Differentiating this function with respect to t∗1 yields

∂r

∂t∗1
= − f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]2
−
∫ t∗1

0
gδ(k)f ′(t∗1 − k) dk + gδ(t

∗
1)f(0)

gδ(t∗1)[1− F (t∗2 − t∗1)]

+
f(t∗2 − t∗1)

∫ t∗1
0
gδ(k)f(t∗1 − k) dk

gδ(t∗1)[1− F (t∗2 − t∗1)]2
+
g′δ(t

∗
1)
∫ t∗1

0
gδ(k)f(t∗1 − k) dk

gδ(t∗1)2[1− F (t∗2 − t∗1)]
(F.2)

Then, notice the following:

gρ(t
∗
1) =

∫ t∗1

0

gδ(k)f(t∗1 − k) dk (F.3)

g′ρ(t
∗
1) =

∫ t∗1

0

gδ(k)f ′(t∗1 − k) dk + gδ(t
∗
1)f(0) (F.4)

We are interested in the situation where the derivative in Eq. (F.2) is non-positive. Plugging

Eq. (F.3) and (F.4) into Eq. (F.2), this is equivalent to saying:

0 ≥ − f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]2
−

g′ρ(t
∗
1)

gδ(t∗1)[1− F (t∗2 − t∗1)]
+

f(t∗2 − t∗1)gρ(t
∗
1)

gδ(t∗1)[1− F (t∗2 − t∗1)]2
+

g′δ(t
∗
1)gρ(t

∗
1)

gδ(t∗1)2[1− F (t∗2 − t∗1)]
(F.5)

Combining like terms, we have

0 ≥ f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]2

(gρ(t∗1)

gδ(t∗1)
− 1
)

+
1

gδ(t∗1)[1− F (t∗2 − t∗1)]

(g′δ(t∗1)gρ(t
∗
1)

gδ(t∗1)
− g′ρ(t∗1)

)
(F.6)

=⇒ f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]

(
1− gρ(t

∗
1)

gδ(t∗1)

)
≥ 1

gδ(t∗1)

(g′δ(t∗1)gρ(t
∗
1)

gδ(t∗1)
− g′ρ(t∗1)

)
(F.7)

Multiplying both sides by gδ(t
∗
1) yields(

gδ(t
∗
1)− gρ(t∗1)

) f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]
≥ g′δ(t

∗
1)gρ(t

∗
1)

gδ(t∗1)
− g′ρ(t∗1) (F.8)

From Eq. (25), it follows that gρ(t
∗
1) ≤ gδ(t

∗
1). Then, the LHS of Eq. (F.8) is positive. Hence,

it is sufficient to show that the RHS of Eq. (F.8) is negative. That is, it is sufficient that

g′δ(t
∗
1)gρ(t

∗
1)

gδ(t∗1)
≤ g′ρ(t

∗
1) ⇐⇒ g′δ(t

∗
1)

gδ(t∗1)
≤
g′ρ(t

∗
1)

gρ(t∗1)
(F.9)
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The above inequality holds as a result of the delayed readmission log-likelihood inequality, which

completes our proof. �

Proof of Lemma 2.

∂

∂t

(
gρ(t)

gδ(t)

)
=
gδ(t)g

′
ρ(t)− gρ(t)g′δ(t)
g2
δ (t)

(F.10)

=

g′ρ(t)

gρ(t)
− g′δ(t)

gδ(t)

g2
δ (t)

gρ(t)gδ(t)

≥ 0 (F.11)

The last inequality follows from the delayed readmission log-likelihood inequality. �

Proof of Remark 7.

For Erlang-exponential distributions, Eq. (25) and (26) (FONCs) become:

et2(k − t1)− e−t1kr =0 (F.12)

rt1
k =t2

k − kt2k−1 (F.13)

Suppose r increases to r + ε, from Theorem 1, we know that t1 moves to t1 − x,x > 0.

Suppose t2 moves to t2 − y, y > 0, at the new optimum, Eq. (26) becomes:

rt1
k =t2

k − kt2k−1 (F.14)

(r + ε)(t1 − x)k =(t2 − y)k − k(t2 − y)k−1 (F.15)

For k = 1, we have

(r + ε)x = y − εt1 (F.16)

We would like to express x− y as a function of r and ε then put lower and upper bounds on

it.

Lower bound: One trivial lower bound is x− y ≥ 0 (result of Theorem 1)

(r + ε)x− y = εt1 (F.17)

⇔ (r + ε)x− (r + ε)y ≥ εt1 > 0 (F.18)

Upper bound: From Eq. (F.12) we know t1 < k = 1. Also, we know that x ≤ t1.

So

(r + ε)x− y = εt1 (F.19)

−y = εt1 − (r + ε)x (F.20)

x− y = x− (r + ε)x+ εt1 (F.21)

x− y ≤ (1− r − ε)t1 + εtk ≤ (1− r) (F.22)
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For k ≥ 2:

(t2 − k)tk−1
2 = rt1t

k−1
1 (F.23)

Since t2 > t1 and k ≥ 2, we have tk−1
2 ≥ tk−1

1 . Then

t2 − k ≤ rt1 ≤ rk (since t1 < k) (F.24)

t2 ≤ (r + 1)k (F.25)

Now we bound t1.

et2(k − t1)− e−t1kr = 0 (F.26)

(k − t1)− e−t1kr ≤ 0 (F.27)

(k − t1)− kr ≤ 0 (F.28)

(1− r)k − t1 ≤ 0 (F.29)

t1 ≥ (1− r)k (F.30)

The bounds for t1 and t2 at the new equilibrium (i.e. t1 − x and t2 − y are optimal for t+ ε):

t2 − y ≤ (1 + r + ε)k (F.31)

x− t1 ≤ −(1− r − ε)k (F.32)

Combine the two inequalities, we have

x− y − t1 + t2 ≤ 2(r + ε)k (F.33)

Therefore, the desired upper and lower bounds are

0 ≤ x− y ≤ 2(r + ε)k (F.34)

�
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G Different Patient Types

In this appendix, we provide an initial analysis on how incorporating both readmitted and non-

readmitted could impact the performance of our model. We do acknowledge that due to limited

data, our analysis might not represent a more general population. However, we believe that the

analysis in this appendix provides further insights on the performance of our model.

At our partner hospital, current practice is to place a phone call on day 2 and an office visit

on day 12 after discharge. These checkups could bias the data and results as there could be

endogeneity induced by current checkup practice. We considered four types of patients in our

chart review cohort: (1) patients who were not going to be readmitted regardless of checkups and

intervention (non-readmit-able patients), (2) patients whose 30-day readmissions were detected

and prevented by the day-2 and the day-12 checkups, (3) patients whose 30-day readmissions

could have been prevented if the checkups were placed on days other than day-2 or day-12, and (4)

patients who were going to be readmitted regardless of checkups and intervention (unavoidable

readmissions).

To include all four types of patients, we went back to the chart review data set, which contained

327 cystectomy patients who underwent cystectomy at our collaborating hospital. We believe

that the cohort of 327 patients included the four types of patients. Out of the 327 patients, 63

developed post-surgical conditions that lead to a 30-day readmission. The 63 patients included in

our original analyses included type 3 and type 4 patients. The remaining 327−63 = 264 patients

included type-1 and type 2 patients, which were not readmitted and therefore not included in

our original analysis.

Of the remaining 264 patients, 236 of them developed a condition at some point in their

post-discharge recovery. The 264 − 236 = 28 patients that never developed a condition were

considered to be type 1 (not going to be readmitted regardless of monitoring policy). Of the

236 patients that developed a condition at some point, 24 patients were found to have had

a condition detected on either the day-2 or the day-12 checkups as recorded on the medical

chart. These 24 patients could have either (1) developed a non-readmission causing condition

(reason 1) or (2) could have developed a readmission-causing condition that was mitigated by

the checkups (reason 2). However, we do not have sufficient data to distinguish between the

two reasons. Let q denote the proportion of reason 2 patients among the 24 patients. These

patient could be considered as type 2 patients. We could estimate this proportion by looking

at those 236 − 24 = 212 patients who developed a condition but were not detected on day 2 or

day 12 by the current follow-up protocol. Out of those 212 patients, 63 patients (63/212 = 30%)

were readmitted. This means that if we assume that the characteristics of those 24 patients

are same as the population (212 patients), and that the checkups are perfect inspections that

can prevent readmissions with probability one, then q can be estimated to be 30%. In reality, q

may be smaller than 30% (if the checkups are not perfect) and it may not prevent readmissions
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with probability one; or q could be greater than 30% if patients who are found sick on day-2

and day-12 are more likely to be readmitted than the population average is. Another way to

estimate q is to use the national average readmission rate of cystectomy (which was observed to

be 24% in the SID database). We conducted sensitivity analyses around the proportion of type

2 patients at q = 25%, 50%, 75%, and 100%. Gamma distributions were fitted to these cohorts

with q = 25%, 50%, 75%, and 100% of the 24 patients added.

Finally, we took the checkup policies obtained using the original gamma distribution (types 3

and 4 only) and computed their objective values (suboptimal) by plugging the computed policies

into the gamma distributions that included patients (simulated by adding q = 25%, 50%, 75%,

and 100% of the 24 patients) type 2 patients. We then computed the difference in objective values

between the suboptimal objective values and the optimal objective values (using the distribution

that included type 2 patients as our testbed) for checkup policies consisting of 1 to 3 office visits

and 1 to 7 phone calls. As seen in the following table, by ignoring types 1 and 2 patients, the

detection probabilities degraded by at most 3.5%. The most likely value of q, according to our

estimation, would be around 24%, which shows at worst a very small difference of 0.54% between

the original checkup policy (from our simpler model containing only types 3 and 4 patients) and

the true optimal. We believe that the small observed differences are sufficient to demonstrate

that the results from our simpler analysis with only types 3 and 4 patients should still be valid.

51



Table G.1: Difference in detection probabilities

q 1 Phone Call 2 Phone Calls 3 Phone Calls 4 Phone Calls

1 Office Visit

25% −0.42% −0.46% −0.48% −0.49%
50% −1.16% −1.25% −1.24% −1.24%
75% −1.96% −2.15% −2.20% −2.24%

100% −2.64% −2.90% −2.98% −3.05%

2 Office Visits

25% −0.51% −0.54% −0.54% −0.51%
50% −1.34% −1.45% −1.40% −1.27%
75% −2.34% −2.51% −2.47% −2.33%

100% −3.17% −3.39% −3.33% −3.16%

3 Office Visits

25% −0.49% −0.53% −0.52% −0.53%
50% −1.17% −1.32% −1.26% −1.26%
75% −2.22% −2.41% −2.37% −2.39%

100% −3.04% −3.28% −3.22% −3.25%

Table continued

q 5 Phone Calls 6 Phone Calls 7 Phone Calls

1 Office Visit

25% −0.49% −0.49% −0.50%
50% −1.22% −1.18% −1.24%
75% −2.24% −2.22% −2.28%

100% −3.04% −3.02% −3.09%

2 Office Visits

25% −0.51% −0.53% −0.52%
50% −1.24% −1.34% −1.29%
75% −2.31% −2.42% −2.38%

100% −3.14% −3.27% −3.23%

3 Office Visits

25% −0.49% −0.49% −0.54%
50% −1.11% −1.14% −1.38%
75% −2.20% −2.22% −2.49%

100% −3.02% −3.04% −3.37%
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H Unimodality Assumption in Six Other Major Surgeries

From the State Inpatient Databases (SID), we extracted the readmission records of patients who

had the following common abdominal and chest surgeries in 2009 and 2010: Abdominal Aortic

Aneurysm Repair (AAA), Esophagectomy, Pancreatectomy, Aortic Calve Replacement (AVR),

Coronary Artery Bypass Grafting (CABG), and Lung Resection. Note that these probability

density curves are parameterized using readmitted patient only, and they appear to be unimodal.

Figure H.1: Time-to-readmission and time-to-develop the condition distributions for six major abdominal and
chest surgeries

53



I Inverse Laplace Transform

Clinical data used to parametrize the delay-time models is limited in the fact that time-to-develop

the condition is currently not recorded in any databases known to the authors. The historical

data most readily available is the time-to-readmission. To obtain data on the delay-time, which

is also to the best of our knowledge not recorded in any major clinical data bases, we conducted

a study of 327 medical records and extracted data on how long the patient had been feeling ill

before returning to the hospital based on triage notes upon readmission. However, given the time-

to-readmission distribution and the delay-time distribution, we can obtain the time-to-develop

the condition probability density on larger databases by applying the inverse Laplace transform.

Recall that the time-to-readmission, ρ, is the summation of the time-to-develop the condition

δ and the delay-time D, i.e., ρ = δ + D. Since δ and D are assumed to be independent, the

Laplace transform of ρ, L{gρ(x)}(s), is equivalent to the product of the Laplace transforms of δ

and D, i.e., L{gδ(x)}(s) and L{f(x)}(s).

L{gδ(x)}(s)L{f(x)}(s) = L{gρ(x)}(s) (I.1)

Dividing both sides by L{f(x)}(s), we get the following expression for the Laplace transform of

the time-to-develop the condition, denoted by G(s):

L{gδ(x)}(s) =
L{gρ(x)}(s)
L{f(x)}(s)

=: G(s) (I.2)

Applying the inverse Laplace transform L−1{·} to both sides of Eq. (I.2), we obtain the

probability density function of the time-to-develop the condition:

gδ(x) = L−1{G(s)}(x) (I.3)

The inverse Laplace transform yields closed-form solutions for certain gρ(·)-f(·) pairs such as

Erlang-exponential and normal-normal. Given arbitrary gρ(·) and f(·), a closed-form solution

may not exist. In such cases, numerical algoyourithms for inverse Laplace transform (Avdis and

Whitt (2007), Rizzardi (1995), Lyness and Giunta (1986)) can be implemented.
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J Checkup Quantity vs Quality

In this appendix, we present the computations used to compare, in 10-checkup policies, the

effectiveness of increasing the phone call detection rate vs. the effectiveness of upgrading one

existing phone call to an office visit.

We start by computing the detection probability as a function of the detection rate of the

phone calls. Table J.1 shows the detection probabilities. Notice that the values in Table J.1

correspond to points in Figure 9.

Table J.1: Detection probabilities of 10 checkup policies with 0-3 office visits, detection rate = 0.2, 0.4, 0.6, 0.8, 1

# of
Office
Visits

Phone Call
Detection

Rate
0.2 0.4 0.6 0.8 1

0 0.22 0.30 0.37 0.43 0.64
1 0.37 0.41 0.45 0.49 0.64
2 0.48 0.50 0.52 0.54 0.64
3 0.56 0.57 0.58 0.59 0.64

We then estimate the improvement in detection probability achieved by upgrading an existing

phone call to an office visit. Results are shown in Table J.2.

Table J.2: Improvement in detection probabilities achieved by upgrading a phone call to an office visit

# of
Office
Visits

Phone Call
Detection

Rate
0.2 0.4 0.6 0.8

0→ 1 0.14 0.11 0.08 0.06
1→ 2 0.11 0.09 0.07 0.05
2→ 3 0.09 0.08 0.06 0.05

Next, we estimate the improvement in detection probability achieved by increasing the detec-

tion rate of the phone calls. Results are shown in Table J.3. Notice that the values in Table J.3

should be interpreted as the improvement achieved per 20% increase.
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Table J.3: Improvement of detection probabilities when increasing detection rates by 20%

# of
Office
Visits

Phone Call
Detection

Rate
0.2→ 0.4 0.4→ 0.6 0.6→ 0.8

0 0.08 0.07 0.06
1 0.05 0.04 0.03
2 0.02 0.02 0.02

In both Tables J.2 and J.3, greater marginal benefits are observed when the detection rate of

phone calls is low and the number of office visits is small.

Finally, we compute the relative effectiveness of increasing the phone call detection rate by

20% with respect to upgrading an existing phone call to an office visit. A relative effectiveness

of 100% means that increasing the phone call detection rate by 20% is as effective as upgrading

a phone call to an office visit. Table J.4 shows the result.

Table J.4: Relative effectiveness of increasing phone call detection rate with respect to replacement of a phone
call with an office visit

# of
Office
Visits

Phone Call
Detection

Rate
0.2→ 0.4 0.4→ 0.6 0.6→ 0.8

0→ 1 58% 63% 70%
1→ 2 41% 46% 50%
2→ 3 35% 29% 31%

It is worth noting that as the number of office visits increases, we need a greater improvement

in phone call detection rate to match the effect of upgrading from an existing phone call to an

office visit. This is, in part, because we keep the total number of checkups fixed at 10, thus more

office visits means fewer phone calls and therefore the impact of increasing phone call detection

rates is muted. On average, increasing the phone call detection rate by 20% is as effective as

upgrading 0.47 existing phone calls to an office visit in terms of detection probability.
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K Description of Validation Method 2

This appendix describes Method 2 to validate the optimal checkup policies involving the use of

actual readmission times for patients from the out-sample data set and calculating the probability

that their delay-time was long enough to be detected by a checkup that occurred before the

actual readmission time. This approach assumes independence between delay-time and time-to-

readmission. Let T be the time that the patient was actually readmitted (in the data). The

detection probability, D̂, can then be calculated using the following formula. Let N = argmaxn :

tn ≤ T .

D̂ =r1 · (1− F (T − t1)) (K.1)

+
N∑
α=2

(
rα ·

(
α−1∏
β=1

(1− rβ)

)
· (1− F (T − t1))

)
(K.2)

+
N∑
α=3

(
α−1∑
β=2

(
rα ·

α−1∏
γ=β

(1− rγ) · (F (T − tβ−1)− F (T − tβ))

))
(K.3)

+
N∑
α=2

(rα · (F (T − tα−1)− F (T − tα))) (K.4)

where the four summands collectively represent the total probability of detecting the patient as ill

during every scheduled checkup. In particular, the first summand (K.1) represents the probability

that the patient enters the ill state before the first checkup and is successfully identified as ill

during the first checkup. The second summand (K.2) represents the probability that the patient

becomes ill before the first checkup, but checkups 1 through (α − 1) fail to properly detect

the patient condition and checkup α ∈ {2, ...,N} successfully identifies the patient as ill. The

third summand (K.3) represents the probability that the patient becomes ill between checkups

(β − 1) and β for β ∈ {2, ..., (α − 1)}, but is not properly identified as being ill until checkup

α ∈ {3, ...,N}. The fourth summand (K.4) represents the probability that the patient enters

the ill state between checkups (α − 1) and α, and is immediately identified as being ill during

checkup α ∈ {2, ...,N}.
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L Validation Results Using Method 1

The following table shows the absolute optimality gaps of the 2010 policies applied on 2009

patients using Method 1.

Table L.1: Absolute optimality gap for 2009 SID patients using n-checkup policies with 0-3 perfect checkups that
were parameterized using 2010 SID patients

# of
Office
Visits

Total # of
Checkups

1 2 3 4 5 6 7 8 9 10

0 1.4% 2.1% 2.4% 2.7% 2.9% 2.6% 2.9% 2.9% 2.7% 2.9%
1 2.4% 2.7% 2.9% 3.0% 2.8% 2.9% 2.8% 2.9% 2.8% 2.8%
2 N/A 3.0% 3.1% 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 2.6%
3 N/A N/A 3.2% 3.0% 3.2% 3.1% 2.9% 2.9% 2.8% 2.6%
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M Switching Training and Testing Set

This appendix shows the results when the training and testing sets are switched (i.e., 2009 SID

for training, 2010 SID for testing).

Figure M.1: Fitted time-to-readmission and recovered time-to-develop the condition for 2009 SID patients

Figure M.2: Detection probability of checkup policies with 0-3 perfect checkups for 2009 SID patients. This figure
would replace Figure 8 if training and testing sets were switched

Figure M.3: Detection probability of checkup policies with 0-3 perfect checkups (developed using 2009 SID
patients) tested on 2010 SID patients (Method 1). This figure would replace Figure 10 if training and testing sets
were switched
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