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1. Definitions and Classifications
Domains and subclasses are terms used similarly in the literature of survey
sampling to denote divisions, usually partitions, both of the population
and of the sample for separate estimation. Let us take advantage of that
redundancy: let domains denote subpopulations, and let subclasses refer
to their reflected subdivisions in the sample.

Estimates are required for a diversity of domains and the types of
domains should influence the choices both of design and of estimation. A
classification of three types of domains is therefore desirable, and I
suggest the following terminology for them.

(a) There are design domains for which separate samples have been
planned, designed and selected; their combination forms the entire sample,
usually as a weighted sum of independent samples. For example: major
regions or urban and rural domains, where these are composed of entire
strata of primary sampling units; also geographical or alphabetical div
isions when names are so selected individually from appropriately ordered
listings.

(b) At the other extreme are cross-classes which cut across the sample
designs, across strata, and across sampling units. These are the most
commonly used kinds of domains and subclasses; e.g. age, sex, occupation,
education and income classes, behaviour and attitude types, etc. They have
not been separated into design domains because information was not
available on these variables, or because they seemed less important than
others, or because they were forgotten.

(c) Between the two extremes, but less commonly used than the two
dominant types, are mixed domains of diverse kinds; they have not been
separated by the design, but they tend to concentrate unevenly in the
sampling units or in strata. For example: occupations such as fishermen,
farming specialties, miners and lumberjacks, which are segregated by
natural forces; or ethnic groups segregated by social forces; in both cases
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the segregation may be prevalant but neither complete nor available as
auxiliary data for design.

The sizes of domains also influence the choice of methods for design and
estimation; hence a cross-classification of the above types with classes
based on sizes of domains also seems useful. This classification is stated
roughly to orders of magnitudes, with descriptive names assigned for ready
reference.

(1) Major domains comprise perhaps -,(0 of the population or more.
Examples: major regions for design domains, and 10-year age groups or
major occupational categories for cross-classes. For major domains
reasonable estimates can be produced from probability samples with
standard methods and essentially without bias; but variances are increased
for cross-classes, and their estimation requires special attention, as in
sections 2 and 3. Furthermore designing adequate sample sizes for them
may lead to conflicts (section 7).

(2) Minor domains comprise perhaps from 1'0 to Ito of the population.
Examples: populations of the 50 states of the USA or the 63 counties in the
UK, or single years of age or two-fold classifications of major domains;
like occupation by education; or regions (designed) by education (cross
class). (See Table I at end of article.)

(3) Mini-domains comprise perhaps from Ito to 10\0 or even to 10-6-00 of
the population. Examples: populations of the over 3 000 counties of the
USA, or the 625 parliamentary districts in the UK, or a three-fold classifi
cation of age by occupation by education. For mini-domains usually (and
often for minor domains also) the sample bases are too small for any
usable reliability, hence standard methods of estimation are inadequate.
New methods are needed and these are mentioned in section 8, and
discussed by Purcell and Kish (1980).

Rare types, comprising less than 10-6-00 in the population are problems
for which samples of an entire population are useless, and separate lists
and methods are needed (Kish, 1965, section 11.4).

Domain means Yc= Yc/xc, the means for subclasses (c), are estimates most
frequently used and most developed, and our discussion focuses on them,
although some of it is relevant for other estimates. Differences (compari
sons) ofpairs of subclass means Yc- Yb= yclxc- vslx» also represent most
common uses of data from sample surveys and are noted. The denominators
Xc, Xb of subclasses used in practice have several common characteristics:

(a) They generally represent count variables of the sample sizes of sub
classes: 0, 1 variables denoting (non) membership in a specified subclass
(domain). They may be unweighted n's or weighted counts. They may also
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be other variables at times (e.g. live births per total births of women), and
most analyses can deal with these also, perhaps with some modification.

(b) They denote two partitions (non-overlapping) based on two cate
gories of the same variable. This feature can be used for simplifying some
computing programs. If, on the contrary, they are overlapping categories,
or one includes the other, or if they are subclasses from different variables,
special care, notation and variance computations are needed and feasible.

(c) The pair of subclasses may be exhaustive partitions (xc +Xb = x for the
entire sample), but often they are only two of k partitions, hence the pair
represents two out of k(k -1)/2 possible pairs.

(d) Usually they are random variables, especially when they are cross
classes, even if the total sample size were fixed. This feature has conse
quences for the variances.

The numerators Yc, Yb represent the same variable for the pair. For
proportions (percentages) they are analogous subsets of the count variables
in the denominators. These features may be used for simpler computing.

The above represent what are commonly understood by domain and
subclass means and differences (comparisons). It is helpful not to confuse
them with other statistics, as has been done in some non-practical writing:
(1) A proportion of x-!x of the entire sample is not a subclass (domain);
"shares" is a good name for these. (2) A difference (xc - xb)lx based on the
entire sample is not a comparison of domains, but a difference of shares.
(3) Nobody uses comparisons Yclxc- yslz« based on different variables,
hence they need no name. (4) Domains are not synonymous with strata, but
they are often confused. Admittedly, it is useful to use strata to create
design domains when we can; but usually strata can be made much more
numerous than design domains. For example, we may use two selections
per stratum, but would need perhaps ten or more of those strata to create
stable bases for domains. Thus strata may be more numerous than design
domains by orders of magnitude. Cross-classes are numerous but they cut
across strata (and across each other).

2. Overview of Domain Effects

Sampling literature, theory and methods on design and on analysis all deal
principally with entire samples selected to represent some specified popula
tion. Within that setting we take a brief overview of diverse effects that
arise as subclasses of the sample are used for inferences about correspond
ing domains of the population. Our principal interest is in major cross
classes because they are of principal use and because these broad remarks
are most pertinent to them. Selecting subclass members from a sample has
the effect of assigning zero values to all variables of non-members. Hence

211



the effects are similar to non-members appearing as blanks in the frame
during the selection process. More details are given and indicated in later
sections, together with some justification and references for the sweeping
generalizations boldly presented here.

A. Selection probabilities are preserved for individual elements in sub
classes. The probabilities Pi assigned to member elements are unaffected by
the zero values assigned to all variables of non-members in creating sub
classes. This should be obvious but needs stating. Assigned weights
proportional to 1jPt are also used for the subclasses.

B. Sample sizes become highly variable for cross-classes. Zero for
all non-members have the same effect as blanks in the selection pro
cess. These will be noted for stratum sizes (3) and for cluster sizes (4). Size
variations also arise for the entire sample from imprecise measures of size
and from non-responses; but as cross-classes become smaller the variability
increases greatly as size controls become lost.

C. Estimates of means and totals retain their forms for subclasses. The
unbiased nature of simple totals '2:,YjjPj is retained with the undisturbed
selection probability (A). The ratio means retain their sturdy consistency
until the variability of size (B) in the denominator becomes too high for
small cross-classes (section 5).

D. Variancesofmeans and totals become greatly affected with decreaseof
size in subclasses. Here we attempt a summary of separate treatments for
stratified element sampling (section 3) and cluster sampling (section 4).
For design domains the effects arise from the decreased sizes, especially in
cluster sampling where the precision of variance estimates depends on
numbers of primary selections.

For cross-classes drastic effects,due to loss of controls represented by the
sample design, arise in three distinct ways. (a) The variances depend on
pairwise joint probabilities of selection of elements. The sample designs
represent controls over those joint probabilities, and in cross-classes those
controls tend to be lost. Hence the design effects approach 1, and variances
for self-weighting means of cross-classes approach those of simple random
sampling, that is s2jn. The approaches are from below 1 as the gains of
proportionate stratified sampling are lost (section 3), and from above 1 as
the losses of cluster sampling are regained (section 4). (b) For differences
of means of cross-classes the approach toward deft = 1 is more rapid than
for the means alone; this is true for the deft> 1 in cluster sampling, and in
proportionate sampling deft = 1 is virtually attained in practice. (c) Some
of those losses from the gains of stratification can be regained with post
stratification and ratio estimation; but the auxiliary data are often not
available at the detail needed for small domains (sections 3 and 8). (d) The

212



controls introduced with measures of size in PPS selection tend to be
weakened to the extent that those measures have less relevance for the
cross-classes. This loss occurs first to the extent that members and non
members of cross-classes are randomly distributed in clusters. But the loss
is worse to the degree that the clustering of the domains differ from that of
the population. (e) Optimal allocation for the entire population can be very
different from those for diverse domains. For many cross-classes it may be
close enough, but for many other domains it may be far from optimal and
even counterproductive (Kish, 1961, 1965, 4.5C)

E. Computing estimates for totals, means and their variances can be done
by assigning zero values to all non-members of the subclass, with needed
modifications for sample size. However, more convenient and economic
procedures can also be used usually, omitting the non-members from
computations.

F. Designs for domains induce conflicts with the entire sample and with
each other. Conflicts arise in allocating sample sizes and rates to provide
adequate sample bases for diverse design domains. This can be further
complicated by considerations of optimal allocations to strata. Further
more diverse sampling rates for cross-classes can require some screening
procedure that may be expensive. Thus reducing variances for some dom
ains can often increase variances for the entire sample and for most other
domains (section 7).

G. Estimates for small domains require special techniques (section 8).
These can improve estimates for minor domains; and they may facilitate
estimates for mini-domains which would not be feasible at all from the
sample alone. They may be used even for major domains, although their
estimates can also be made from the sample alone.

3. Stratified Sampling of Elements

In this section we assume simple random selection (s.r.s.) of elements
within strata. Estimates for design domains present no new problems be
cause we use the usual formulae of stratified element sampling, provided
that the domains' sample sizes n« are large enough for stable estimates.
When the domain contains a single stratum we are back to simple random
sampling.

However, domains are often cross-classes and the presence of non
members as blank selections loosens the control of stratification over
sample sizes. In the hth stratum s.r.s. selection of nh from Nh elements with
fh=nh!Nh yields a sample size ms«; this number is a dichotomous variable
with expectation fhMch and variance (1-fh)nhMch(1- MCh); here Mch is
the size and MCh= Mch!Nh the proportion of domain members. The
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effects of this variation in increased variances of cross-class means, totals
and differences we note below. They have been first described as "domains
that cut across strata" by Yates (1953, sections 9.1-9.5) then by others
(Cochran, 1963, 1977; Kish, 1961, 1965).

The increases in the cross-class variances arise essentially because of the
factors Fh=l/fh=Nh/l1h in the estimates, based on the entire population,
instead of Meh/meh for the subclass. This amounts to using for stratum
weights Weh= Fhmeh/'i:.Fhmeh instead of Weh = Meh/'i:.Meh. When Weh
values can be found and used for post-stratification (or ratio estimation,
section 8), the increases in variances noted below can be avoided.

The most drastic effect is on the variance of the simple estimate of the
cross-class aggregate:

with

Here meh = madn» the cross-class proportion and .Yeh = 'i:.Yeht!meh the sample
mean in the sample from the hth stratum. The element variance is denoted by

2 I ~ ~ ( -)2 m-»- 1 2V ch. = -~ "",mell Yeili - Yeh = ~··--Seil

meh meh
(3.2)

In the discussion below the distinctions between Seil2 and Veh 2 and the
factors I1h/(l1h -1) and (meh -1)/mell are neglected in order to concentrate
on main issues. From the given estimates of variances the population
variances can be constructed by substituting population parameters for
sample statistics. The references above and others quoted in them give the
formulae and derivations. These derivations depend on using zeros for all
values for the (nh - mell) non-members of cross-class c. Computing formulae
can also be based on this feature. But it is usually more convenient to omit
non-members and is meaningful to do so in the discussions below.

We must note in the brackets of (3.1) that the element relvariance
Veh2/Yeh2 is increased by (1- meil). This increase approaches unity for small
cross-classes and would be a drastic increase, but it is usually avoided in
practice by using other estimators, such as 'i:.MehYell when the Meil are
known.
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(3.5)

The estimates for the mean of a cross-class and for its variance are
denoted by

and

Here t eh2= Veh2+ (Yeh- yc)2=:2::meh (Yehi- )'e)2/mell, the element variance
containing both the within and between stratum components, thus com
puted as if without stratification. Thus for small cross-classes (meh) the
element variances are increased by most of the gains from stratification
(3.3), and tend to approach the variances without stratification (3.4).
Hence the gains due to proportionate stratification tend to vanish for small
subclasses.

This tendency is even stronger for differences of means of cross-classes,
where a good approximation for most empirical situations can be given by:

( - -) x' (1 1:) [weh2tell2 Wbh
2tbh 2]

var Ye-Yb =':"h -Jh ---+---
ma. mm.

For proportionate sampling the variances for differences ofcross-class means
tends to become as if unstratified s.r.s. Furthermore, this also happens to
ordinary k x m chi-square tests which can be regarded as combinations of
such difference. (See Kish, 1961, 1965, section 4.5,1969; Kish and Frankel,
1974.)

In the special case when each domain is confined to a single stratum, the
situation for differences (3.5) and for means (3.3) reverts essentially to
familiar formulae for s.r.s., because with Yeh = Ye the second terms in the
brackets disappear. But the increased variances for cross-classes for the
simple estimate for totals (3.1) remain.

Our attention has been focused on cross-classes from proportionate
sampling. What happens with optimal allocation to strata? For design
domains separate optimal allocations may sometimes be feasible. But for
cross-classes the situation is usually laden with confusing conflicts of
multipurpose design (section 7). The effects of optimal allocation for the
total sample can have opposite effects on different types of cross-classes
(Kish, 1961, 1969). For some domains the gains are "inherited" in the
cross-classes; perhaps even enhanced for some domains; for example
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allocations by economic ratings may be inherited for age cross-classes, and
even enhanced for cross-classes based on education and occupation. But
for other types of domains losses may often result (Kish, 1961, 1969).

4. Cluster Sampling

The effects of domains in cluster sampling are drastic, but often neglected
in the literature, in the designs of actual samples and in computing sam
pling errors. Yet we can limit ourselves to a brief discussion here and rely
on some recent discussions for details and data (Kish, 1969; Kish and
Frankel, 1974; Kish et al., 1976; Verma et al., 1980). We concentrate on
how the effects of clustering on the variances of domain means and of
differences of means differ from the effects on the variances of means of the
entire sample. We know that typically the homogeneity of survey variables
in sample clusters induce increases in their variances compared to those that
an s.r.s. of the same size (n) would yield; this increase can be estimated by
the design effects: as the ratios deft 2 of actual variance/s.r.s, variance; and
the latter is S2/n for means.

The sample variances depend on the nature of the variables and on their
distributions in the population. These differ greatly and (contrary to
widespread superstition) very large differences - ten- and hundred-fold
have been found frequently in the increases of variances for different
variables from the same data base. These differences urge the computation
of variances and deft 2 for most of the important survey variables. The
sample variances also depend on the nature of the sample design: on the
kind, size, numbers and stratification of sampling units used in the various
stages of sampling, especially on the sizes of sample clusters achieved. In
addition the variances often contain increases due to inverviewer variances,
when effects are clustered in the sampling units.

Large-scale computation of variances must depend on simplifications,
and commonly the overall variances are computed from "primary selec
tions", which have also been called "ultimate clusters". These consist of the
sample elements in units selected in the primary stage of selection; these are
usually highly stratified, and computations are often based on "paired
selections" from strata.

Design domains, such as regions, contain primary selections in separated
strata, hence separate computations for each are feasible. They cause prob
lems because they may be too numerous for separate computations and
presentations; also because the number of primary selections, hence
degrees of freedom, become small and this paucity results in unstable
estimates of variances. For these reasons it may be better to use pooled
estimates of variance for regions if these are somewhat similar in com-
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position. However some domains - for example, the rural, the urban and
metropolitan domains - may represent very different amounts of cluster
ing, due to divers population distributions and to different selection
methods, hence separate computations may be necessary. Differences
between means of design domains, since they represent independent
samples without covariances, should have variances that are the sums of
the pairs of variances.

Cross-classes, which are most frequent, tend to cut across all strata and
all clusters, hence to reduce the effects of clustering in drastic and fairly
predictable manner. Creating cross-classes produces two principal effects
on the sizes of sample clusters: it reduces their average sizes and it in
creases their relative variability. If the average sample size in a primary
selections is b=nja, the average sample size for the cross-class is be=m/a=
Meb, where Me=Mc/N, the proportion of the subclass among the N
population elements. However, there exists a fair amount of variation in
the sample sizes even for cross-classes like age, and sex and other demo
graphic variables. For socio-economic cross-classes, like income and
occupation, the variability is even greater, because of their partially
clustered distributions. The controls exercised over subsample sizes
(though stratification, PPS, etc.) tend to break down, less or more, for
cross-classes.

The important effects of cross-classes on the design effects have been
given elsewhere with details and data, but they should be summarized
briefly here. Denote the design effects in the entire sample generally as
deft2=[1+roh(b-1)] for specified survey variables, and these will vary
greatly between variables. The synthetic roh here summarizes the effects of
several stages of clustering (with stratification, etc.) and averages them over
the diverse parts of the sample. The design effects in the cross-classes can
be denoted as defte2= [l +rohe(be-1)]: and these tend to

(4.1)

That is the rohs for the cross-classes tend to be similar to roh for the entire
sample for the same survey variable, hence deft2 tends to be reduced as
the crossclassproportion Medecreases. There tends to be a slight increase for
small cross-classes and slightly more for those that are less truly cross
classes, such as socio-economic classes. But these increases pale to insig
nificance compared to differences of roh between survey variables, to
decreases in be compared to b, and to differences between diverse sizes of
be; also often relative to sampling fluctuations of computed values of defte2.

The relationships seem to stand up best fortunately when most needed: for
larger values of defte2, due to larger values of roh and of be. They should
not be used for values of be near 1, when they are less needed. In a word:
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rob is much more "portable" for different cross-classes of a survey variable
than deft-, because it excludes the variations in be.

For differences of pairs of cross-class means also a useful empirical rule
has been found in numerous computations from large varieties of data:

Se2 Sb2 _ _ _ _
~+~ <var(Ye-Yb) < var(Ye)+ var(Yb) (4.2)
n« nb

Covariances 2cOV(YCYb) reduce the effects of the cross-class variances, but
the variance remains greater than the sum of S.LS. variances for the means.
Results, though subject to sampling fluctuations, fall generally between the
two extremes (which are often assumed naively), more often nearer the
lower than the higher extreme. The covariances represent welcome and
important reductions of the effects of clusters in sample designs.

5. Computing Sampling Errors

The importance of domain means and of their differences for survey
analysis complicates greatly the task of computing and even more the
challenge of presenting sampling errors. Each sample typically obtains data
on many survey variables. Presenting errors on all variables for all relevant
domains would involve typically a two-dimensional complexity, and another
dimension would be added for differences between domain means. Those
who have attempted to deal with these complexities have used several
simplifications for computing and generalizations for presenting the
results (Kish et al., 1976, Verma et al., 1980). These are the motives for the
generalizations in the other sections and we shall use them for the dis
cussions below. These generalizations, like models usually, involve risks,
but without some such brave effort sampling errors are bound to suffer
from continuation of the prevailing neglect.

For proportionate stratified element sampling it may suffice to compute
variances for all important variables for the entire sample. Seldom are the
gains of proportionate sampling large; but if the gains are large for some
variables (as shown by deft values well below 1) it may be strategically wise
to add computations for critical design domains. However for means of
cross-classes the generalizations can probably provide adequate guidance
without further computations. For differences of cross-class means the
approach to s.r.s, (deft 2 = 1) can probably be accepted. For disproportion
ate stratified sampling (optimal allocation) the situation is too complex for
brief comments here.

Cluster sampling deserves a more careful treatment, but for simplicity
assume self-weighting samples based on epsem selection of elements.
First we emphasize computing variance and deft values for the entire
sample for means of most of the important and critical variables because
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of great variability of those values between variables. Ten-fold and
even higher variations in the values of deft 2 are not uncommon for large
clusters. These occur because roh values often range for different variables
in the same sample from zero to 0'2 and sample clusters of 100 would yield
deft2=20=[1+0'2(IQO-l)]; with sample clusters averaging 10 that varia
tion would be three-fold. Thus (deft2-1 +roh) can vary in proportion to
the cluster size.

For design domains, especially those -like urban and rural domains
which may have distinct values of deft, the variances may need separate
computations. Here especially we need the caution of computing CV(x),
the coefficient of variation for the denominators of ratio means. This
should be done routinely for variances of all ratio means; values over 0·1
or 0·2 signal danger for the approximations used for ratio means and for
their variances.

Cross-classes are frequently used and important. We have the model
defte2= [1+rohe(bc-l)] to deal with them; but caution dictates checking
the approximation roh, = roh, especially for variables with larger values of
roh and deft, where departures could cause greater differences in values of
defte2•

For differences of cross-class means the variance computations can be
combined into the same program with those for the means themselves.
Here the models are subject to wider ranges and doubts, hence there is
more need for empirical data and verification. It will be useful to publicize
more methodological work on sampling errors for domain means and for
their differences.

Sampling errors for analytical statistics from complex samples is an area
in great need of further development, but too vast and complicated for a
brief treatment here, beyond this mention of its relation to differences
between pairs of cross-class means (Kish and Frankel, 1974).

6. Domain Considerations in Design

Treatments of design in the sampling literature concentrate almost wholly
on the entire sample, whereas surveys often have domain statistics as
principal purposes. Hence some explicit remarks are needed here, although
they will remain brief and general, and although they appear implicitly in
the preceding sections and in the next section.

Sample size is often dominated implicitly by domain considerations.
Remarks have often been made that sample sizes are frequently too large,
and expensive, that sampling precision is too good, compared both to large
unknown biases of observation (response and non-response) and to the
needs of the user. But the actual fate of surveys is to appear too small, too
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imprecise when it comes to analyses of domain means and of their differ
ences.

In addition to numbers of elements, the numbers of selected units,
especially numbers of primary selections, can become critical for design
domains in clustered samples. For better estimates for design domains the
sample may need more sampling units, more spreading, smaller sample
c1usters(o) than is warranted by the entire sample. On the contrary, cross
class means justify smaller clusters. Design domains should also affect the
choice of stratification. They are likely do so implicitly in frequent practice,
but explicit planning may help. It is useful and efficient to relate strata to
domains, although they need not and cannot coincide always.

In proportionate element sampling cross-classes raise no new problems.
We know that the usually modest gains of proportionate sampling tend to
diminish for cross-class means, and to vanish for their differences.However
the costs of proportionate stratification are often so small that we can use
them in any case for the entire sample and for design domains.

The most important consideration here may be the sizes of sample
clusters when cross-classes and differences are the principal purposes. For
these we should consider using larger sample clusters in fewer sampling
units, when they result in cost savings that will buy more elements and
more precision for the cross-classes. However, the number of sampling
units must be large enough for stable variances.

The effects of weighting on domains need more consideration than they
can receive here, especially since our discussions tend to assume self
weighting samples. Weights for disproportionate sampling (optimal alloca
tion for the entire sample or for some design domains) may have diverse
effects on cross-classes, some of them harmful (section 2). But weights may
also be introduced for ratio- or post-stratification estimation. These may
also have distinct effects on cross-classes; they may reduce selection biases,
but also increase sampling variances which are often proportionately
greater for subclasses than for the entire sample.

7. Multipurpose Design

This much neglected subject can receive no adequate treatment here,
although its relevance for domains in sampling is paramount. But even in a
brief treatment we can go well beyond the question "What is the principal
statistic the sample must produce?" Displaying a single y or f and its
"desired precision" is misleading for most survey samples.

First, most samples must produce many survey variables that can have
very different variances. Hence producing a "needed" sample size would be
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largely fictitious. These distortions are not too painful if the principal
survey variables are proportions within the range 0·2--0·8, where the
element variances (PQ) fall within a narrow range; and if design effects
do not introduce broad ranges for the variances.

However, even then means for domains and for their differences, con
sidered as principal purposes, introduce conflicts into designs of sample
sizes. Conflicts arise in other aspects of design, expecially in cluster samp
ling, where the numbers and sizes of sampling units for diverse stages of
selection must also be considered.

A potential source of serious conflict, often unrecognized, arises from
increased sample sizes or sampling rates assigned to improve estimates for
some domain(s). When viewed from the increased total cost of the sample,
this can often decrease the efficiency for estimates based on the entire
sample, also for most of the other domains.

Several ingredients are needed for some rational solutions to these con
flicts. First, foremost and most difficult are the non-technical obstacles to
obtaining a mere listing of principal objectives, with some weighting of
their importance; and to go beyond that to realistic specifiedprecisions does
not seem usually possible. Second, data on cost factors are not usually
available in the needed detail, but these seldom vary critically. Third, data
on variances are needed, but I believe (contrary to common supposition)
that these are more easily guessed and modelled than the above (e.g. Kish,
1965,section 4.5C). Finally all of the above need to be put together in some
acceptable formulation for a rational solution to the conflicts.

This last is a challenge for future research, but I am optimistic that
reasonable solutions can be devised, with the aid of computers, provided
that needs, the first requirement above, can be determined. Even some of
the solutions now available would be helpful. It seems fairly clear that
"some compromise is better than none. But optimal allocation ... is con
siderably better" still (Kish, 1976, section 7.6).

8. Small Domain Estimation

Estimation for minor domains and for mini-domains has become recently
a favourite subject of research. Needs, research, data and computing
facilities combine to account for recent advances. These have some of their
roots in demographic projections of statistical offices, and others in ratio
estimation and in "synthetic methods". The needs and possibilities for
minor domains and for mini-domains are neither entirely similar nor
entirely different. Furthermore, some can also be found useful for major
domains (as ratio estimation is now). This topic is treated by Purcell at this
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conference, and by others; for references to these see Purcell and Kish
(1979, 1980).

Table 1
Classification by types and sizes ofdomains/subclasses with examples

Sizes

Types
1 1/10
Major domains Minor domains

1/100 1/1000 or 1/10000
Mini domains

Design domains 5 Major regions 50 States of USA 3000 Counties of Rare
USA items

City sizes 63 Counties of UK 525 parI. dts in UK
22 Provinces

Mixed domains Partial segregation: ethnics, resources, etc.
Mixed types: regions x education

Cross-classes

5 year age
groups

Major occupa
tions

Income classes

Single years of
age

Occupation x
education

Years of age x
income

Age x education x
income
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