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Abstract
Extracellular amyloid plaques are characteristics of Alzheimer's disease (AD). The amyloid

plaques mainly consist of amyloid-β (abeta) fragments. Extracellular biomolecules play a key

role in abeta aggregation and subsequent plaque formation during AD. Among them, extra-

cellular enzymes are known to induce abeta aggregation by catalyzing the crosslinking

of abeta proteins. Although several therapeutic strategies have been studied to combat

AD, studies to treat extracellular enzymes mediated abeta aggregation and toxicity is

not explored in detail yet. Here we study the potential of osmolyte molecules l-proline

and betaine to inhibit the abeta aggregation and toxicity promoted by extracellular

enzymes transglutaminase and lysyl oxidase in vitro. Results reveal that l-proline and

betaine have the potential to inhibit extracellular matrix enzymes mediated abeta aggrega-

tion/fibril formation and toxicity and oxidative stress in brain endothelial cells. Hence

osmolytes could have the potential to modulate the effects of extracellular molecules dur-

ing AD.
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1 | INTRODUCTION

Alzheimer's disease is a neurological disorder that affects around 10%

of the population of age over 65, that costs billions of dollars world-

wide. The disease is characterized by senile plaques and neurofibrillary

tangles in the brain tissue.[1–4] The plaques are predominantly com-

posed of the amyloid plaques containing 39-42 residues peptide

termed beta-amyloid peptide (abeta), produced by the proteolysis of

beta-amyloid precursor protein in soluble form.[5,6] Among the several

abeta fragments generated during this proteolysis process, the

42-amino acids version (abeta 42) had shown to be found in high

amount in amyloid plaques, and have aggregation tendency.[1,5] The

amino acid residues 29-42 consists a cluster of nonpolar amino acids

that could play a role in the amyloid formation.[2,7]

Several extracellular matrix factors play a role in promoting and

stabilizing abeta aggregation.[8–10] Among them extracellular enzymes

are one of the key constituents found colocalized with abeta aggre-

gates.[9] Extracellular enzymes transglutaminase (TG), and lysyl

oxidase (LOX) are known to crosslink the extracellular matrix and

modulate the extracellular matrix (ECM) during diseases.[9,11,12]

Recent studies report that both TG, and LOX have been observed in

Alzheimer's disease brain tissues.[11,13–15] Transglutaminase is

believed to contribute to Alzheimer's pathology by either directly

binding to abeta, or modulating the abeta cascade and neurotoxicity

by crosslinking the ECM.[16] The result is the production of neurotoxic

and protease resistant abeta. Lysyl oxidase, which is known to play a

major role in collagen crosslinking also believe to contribute to abeta

pathology in a similar manner.[11]

Here, in this article, we study the effect of extracellular enzymes

transglutaminase and lysyloxidase on the aggregation of abeta

(1-42) peptide. In addition, we study the potential of natural osmo-

lytes betaine and l-proline in inhibiting transglutaminase and lysyl

oxidase mediated aggregation and fibrillization. Proline and betaine

are known to influence protein solvation, prevent aggregation, and

misfolding.[17] Further, recently it has been shown they have inhibi-

tory potential on human serum albumin, and insulin aggregation/
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fibril formation.[18,19] Hence, they could have inhibitory effect on

extracellular enzyme mediated abeta aggregation. The studies were

carried out using thioflavin T (ThT), dynamic light scattering (DLS),

atomic force microscopy (AFM), transmission electron microscopy

(TEM), cell toxicity assay (XTT), and oxidative stress assays. The

results show that transglutaminase (TG), and LOX promote the

aggregation and fibrillization of abeta peptide, oxidative stress, and

toxicity. Further, betaine (B) and l-proline (LP) inhibited the effect of

TG and LOX induced abeta peptide aggregation/fibrillization, oxida-

tive stress, and toxicity.

2 | MATERIALS AND METHODS

2.1 | Materials

Abeta peptide (1-42), ultra pure (1,1,1,3,3,3-Hexafluoro-2-propanol

[HFIP] treated), is purchased from rPeptide. Transglutaminase

(TG) was purchased from either modernized pantry LLC or Ajino-

moto. Human Lysyl oxidase peptide (LOX- [EDTSCDYGYHRRFA])

was custom synthesized from Genscript. L-proline (LP) and betaine

(B), and all other chemicals were purchased from Sigma Aldrich

(St. Louis, MO).

2.2 | Stock solutions preparation

A 1 mg of abeta peptide (1-42) was dissolved in 500 μL HFIP. Then,

the solution was aliquoted into 10 vials (100 μg/vial), and was kept in

a chemical hood for complete evaporation of HFIP overnight. One vial

of abeta peptide was dissolved in 500 μL HCl (10 mM) and 10 μL of

DMSO to get a final concentration of 48 μM (stock). For transglutami-

nase (TG) 5% of solution was freshly prepared by dissolving 50 mg/

mL in water (pH 7), and LOX stock solution (10 mM) was prepared by

dissolving in water (pH 7). Betaine (B) and L-proline (LP) were either

dissolved in water (pH 7) or dissolved in HCl (10 mM) and DMSO to a

final concentration of 10 M.

2.3 | Thioflavin-T (ThT) fluorescence measurement

For the ThT measurement aggregation study, 50 μL of 48 μM abeta

peptide (1-42) was dissolved in 10 mM HCl and 2% DMSO, with and

without TG or LOX at (0.025, 0.05, 0.01, 0.1 w/v%), and B or LP of

100 mM final concentrations to make the final working solution. The

samples were kept to aggregate for 24 hours in an incubator at 37�C.

Next, 100 μM concentration of ThT solution was prepared in 50 mM

Tris buffer, pH 8. The aggregated abeta samples (5 μL) were then

mixed with 90 μL of the ThT solution, and the ThT fluorescence was

measured using a spectramax M3 spectrophotometer at 440/482 nm

excitation and emission. Aggregation end points were measured at

24 and 48 hours. Three independent experiments were done and the

average readings were obtained.

2.4 | AFM

AFM images were obtained using Hitachi AFM5100N in the lab.

Abeta peptide (48 μM) was aggregated in the presence of 0.1% TG

or LOX, and with and without the small molecule drugs betaine and

l-proline for 24 hours. Then, 5 μL of the solutions were spotted on

freshly cleaved mica and kept to dry before imaging. Tapping mode

was used to image the samples, and AFM tips (Nanosensor, CA),

with a resonance frequency of 45-115 kHz was used. The average

length and width of the cantilever is 225 and 28 μm, and the force

constant of the tip is 0.5-9.5 N m−1. A scan area of 1 × 1 or

5 × 5 μm is imaged for at least two different samples of each

condition.

2.5 | TEM

Peptide samples were aggregated in the presence of TG or LOX, and

with and without osmolytes betaine and l-proline for 24 hours as

described in the AFM sample preparation. Then, 5 μL of the solutions

were spotted on holy carbon grids and stained with phosphotungstic

acid. TEM images were obtained using JEOL JEM 1400 microscope in

the MIL facility at UM-Ann Arbor, MI.

2.6 | DLS

For the DLS measurements, samples were prepared under similar con-

ditions used for the AFM and TEM study. The measurements were

carried out in a Malvern zetasizer instrument in the lab. At least three

independent experiment samples were measured and the zeta aver-

age size measurements were obtained.

2.7 | DCFH-DA assay

The effect of oxidative stress of abeta peptide, in the presence of

extracellular enzymes, and small molecule drugs on human brain

microvascular endothelial cells (hBMVEC) was studied by DCFH-DA

assay. Quantifying oxidative stress by 2,7-dichlorodihydrofluorescein

(DCFH)-based fluorescent probes has been widely reported.[20,21] For

the study, hBMVEC cells were used. The cells were kindly provided

by Dr. Kalyan Kondapalli at UM-Dearborn, and were cultured in

medium containing M-199, supplemented with 10% FBS, and 5% Pen-

Strep according to the standard protocol. For this experiment,

2 × 104 cells/well were cultured in a 96 well plate for 24 hours over-

night. Cells were then treated with final concentrations of abeta pep-

tide (2 μM), TG or LOX (0.005%), and the small molecule osmolyte

drugs (5 mM), and subsequently were incubated for 48 hours. DCFH-

DA assay fluorescence was performed at 485/535 nm, excitation and

emission. Three independent DCFH-DA experiments were performed

and the average readings were obtained.

2.8 | CellROX

As a complementary method to DCFH-DA assay, CellROX experi-

ment, which was widely used assay to determine oxidative stress, was

performed as per manufacturer's (Thermofisher scientific, Waltham,

MA) protocol. Briefly, human brain microvascular endothelial cells

(hBMVEC) were cultured in eight well at 1 × 104 cells/well. Then,

after 24 hours, abeta, abeta+LOX, abeta+ TG, with and without beta-

ine, and l-proline were added to the cells at similar concentrations

reported in the DCFH-DA assay method. After 48 hours of treatment,
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CellROX green was added at 5 μM concentration for 30 minutes.

Cells were then fixed with formaldehyde and imaged using Nikon A1

confocal microscope.

2.9 | Immunofluorescence

hBMVEC cells were cultured in eight well chambers at 2 × 104 cell

density, and abeta with and without extracellular enzymes, and osmo-

lytes were added to the wells. Cells were then incubated for 48 hours.

Immunostaining of ZO-1 (purchased from cell signaling technology)

was performed following standard staining protocol. Immunofluores-

cence images of tight junctions were obtained using a Nikon A-1

spectral confocal microscope at the UM-Ann Arbor microscopy image

analysis laboratory (MIL), and images were obtained for two different

samples of each condition.

2.10 | Cell toxicity assay

The toxicity of Aβ (1-42) fibrils in the presence of extracellular

enzymes and osmolytes on human brain microvascular endothelial

cells (hBMVEC) was studied by alamar blue assay. Cells were cul-

tured at 2 × 104 cells/well in a 96 well plate overnight. For the tox-

icity study, abeta with and without extracellular enzymes and small

molecule drugs were prepared in 100 mM NaCl and 100 mM of

NaHPO4 buffer, at pH 7. Because of the high concentrations tested

in the cells, abeta was dissolved in buffer solution instead of DMSO

and HCl mixture used for the ThT and oxidative stress experiments.

Cells were treated with, abeta peptide concentrations (2.5, 5, 10,

and 12.5 μM), with and without, TG (0.02%), LOX (0.02%) and small

molecule drugs (2 mM), and subsequently were incubated for

48 hours. The Alamar blue assay was analyzed by the fluorescent

dye indicator resazurin at 570/590 nm excitation/emission accord-

ing to the manufacturer's protocol using a M3 spectramax

spectrophotometer.

2.11 | Statistical analysis

In this study, each experiment was conducted at least 3 times, and

they are presented as mean � SE of the mean (SEM). P values were

determined from the results of at least three independent experi-

ments. Statistical significance was computed using either by student

t test or by analysis of variance (ANOVA) followed by Tukey's HSD

post hoc analysis test. **P < .01, and *P < .05 are considered as

significance.

3 | RESULTS AND DISCUSSION

Here in this study, we tested the influence of extracellular enzymes,

and osmolyte molecules on abeta aggregation, fibril formation, and

oxidative stress. The aggregation studies were analyzed by

thioflavin T, AFM, TEM, and DLS measurements. First, we tested

whether TG and LOX promote aggregation of the abeta peptides by

thioflavin T assay. For the thioflavin T study, 45 μM of abeta peptide

samples aggregated in the presence of three different concentrations

of TG and LOX to see the inhibitory effects. The thioflavin T

measurements of abeta aggregation show that the both TG and LOX

significantly promote abeta aggregation at 0.1 % w v−1 concentrations

(Figure 1A,B). Based on the ThT fluorescence, we chose 0.1% of TG

and LOX concentrations for the subsequent inhibition studies with

the osmolyte molecules. Both l-proline and betaine at 100 mM of

concentrations inhibits the extracellular enzymes mediated abeta

aggregation (Figure 2A,B).

The findings were further corroborated with AFM and TEM

images and DLS measurements. From Figure 3 it can be seen from the

AFM images that TG and LOX promote fibrillar morphology of abeta.

When aggregated in the presence of l-proline or betaine less fibril or

aggregation was observed (Figure 3). Similar observations were

observed from TEM images (Figure 4). As can be seen, abeta peptides

when treated with TG and LOX showed more aggregates/fibrillar

structures, whereas in the presence of TG or LOX, very few aggre-

gates/fibrils were observed. DLS measurements were also in agree-

ment with the ThT, AFM, and TEM observations. Figure 5A,B reveals

an increase in size of the abeta peptide aggregates when treated with

LOX or TG. The average aggregate sizes were reduced in the presence

of osmolytes. The aggregations studies indicate that the extracellular

enzymes do play a role in abeta aggregation, and the effect could be

significantly reduced in the presence of osmolytes betaine and l-

proline.

Studies report that abeta aggregates causes oxidative stress by

interacting with the cell lipid membrane, leading to free radical chain

reactions and ultimately oxidative stress.[22,23] To determine whether

abeta, with and without the extracellular enzymes and small molecules

exhibit oxidative stress, next we performed oxidative stress measure-

ments with DCFH-DA and CellROX assays. For the study, human

brain microvascular endothelial cells (hBMVEC) were used. First, we

tested the effect of TG and LOX induced oxidative stress by DCFH-

DA assay. As can be seen from Figure 6A, transglutaminase indeed

promote oxidative stress of abeta aggregates. The oxidative stress

effects were significantly inhibited in the presence of l-proline and

betaine (Figure 6A). Similar observations were found with lysyl oxi-

dase treated samples. Cells treated with abeta and lysyl oxidase exhib-

ited enhanced oxidative stress. When treated with the osmolytes

significant inhibition in the oxidative stress was observed (Figure 6B).

Next, CellROX green staining experiments were performed to further

confirm the findings. As depicted in Figure 7, TG and LOX significantly

increase the oxidative stress evidenced by the increase in fluores-

cence. Further, in agreement with the DCFH-DA assay, the oxidative

stress seems to be inhibited with betaine and l-proline as evidenced

by the low CellROX signal. Betaine and l-proline are known to reduce

oxidative stress.[24,25] And from this study, it is also revealed that they

also have the ability to reduce the oxidative stress in the presence of

extracellular enzymes.

Abeta aggregation is also known to induce endothelial dysfunc-

tion, and disruption of blood brain barrier.[26,27] To assess whether

abeta and extracellular enzymes play a role in blood brain barrier dam-

age, we performed immunofluorescence staining of ZO-1. The cyto-

plasmic accessory protein ZO-1, under normal conditions distribute

continuously around the cell membrane.[28] However, in the presence

of abeta, it has been shown that the tight junctions were disrupted,

and broken ZO-1 links were observed.[28] Similarly, in this study as

ISMAIL ET AL. 3 of 9



can be seen from Figure 6, when the cells were treated with abeta

alone or abeta with TG/LOX, the ZO-1 staining is diffused compared

to the control cells without any treatment. Moreover, when the cells

were co-treated with osmolytes betaine of l-proline, significant resto-

ration of cell junctions were observed (Figure 8). The results indicate

that the osmolytes could have the capability to mitigate the blood

brain barrier damage because of abeta aggregation. This finding is in

corroboration with that of oxidative stress findings, where increase in

the oxidative stress was observed in the presence of extracellular

enzymes, while it was significantly inhibited when treated with small

molecule drugs.

Finally, we tested the toxicity effects of abeta with and without

extracellular enzymes and small osmolyte molecules. One of the major

effects of abeta aggregation is cellular toxicity and death,[29,30] hence

it is important to study the abeta aggregation effects on cell viability.

For the toxicity study, we used human brain microvascular endothelial

cells (hBMVEC). Cells were treated with abeta and combination of the

enzymes and drugs for 48 hours, and XTT assay was performed. As

can be seen from Figure 9, at higher concentrations of abeta signifi-

cant toxicity was observed (Figure 9A). The toxicity was further

increased in the presence of TG or LOX, and with the treatment of

osmolytes drug molecules, it was reduced significantly. The study

shows that the abeta toxicity is, influenced by the extracellular

enzymes. Further, the results show the potential of osmolytes betaine

and l-proline in inhibiting the endothelial cell toxicity induced by abeta

aggregation due to TG and LOX.

In this article, we have shown that extracellular enzymes transglu-

taminase and lysysl oxidase have the potential to promote aggregation

of abeta peptide, which in turn contributes to oxidative stress and tox-

icity in normal brain endothelial cells. TG and LOX are known to cross-

link extracellular proteins and have been known to contribute to

diseases by modulating the extracellular matrix properties.[31] Further,

recent findings show that TG and LOX enzymes have been found

colocalized in Alzheimer's disease patients.[11,32] They may either have

a direct or indirect effect, or both on abeta aggregation and subse-

quent amyloid formation, leading to AD. In the case of a direct effect,

they may play a role either in the abeta-abeta association/nucleation

via acting as a template, or by crosslinking the abeta proteins similar

to their extracellular proteins crosslinking mechanisms. On the other

hand if it is an indirect effect, by crosslinking and forming a highly

dense ECM matrix, they may promote abeta accumulation in the ECM

parenchyma, thereby preventing abeta clearance. This will in turn will

lead to, abeta nucleation, aggregation, and subsequent amyloid plaque

FIGURE 1 Thioflavin-T fluorescence measurements of abeta peptide aggregation with and without extracellular enzymes. (A) Abeta peptide

(45 μM) aggregation in the presence of 0.1%, 0.05%, and 0.01% transglutaminase (TG) concentrations. (B) Abeta peptide (45 μM) aggregation, in
the presence of 0.001%, 0.01%, and 0.1% of lysyl oxidase (LOX) concentrations. ThT fluorescence measurements indicate that the abeta
aggregation is promoted in the presence of extracellular enzymes. Data with significance compared to abeta are represented as *P < .05
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FIGURE 3 Morphology of abeta peptide (45 μM) aggregation in the presence of TG, LOX, and osmolytes l-proline and betaine, imaged by atomic

force microscopy. The images reveal abeta aggregation/fibrillization is promoted in the presence of TG and LOX, and inhibited in the presence of
l-proline. Scale bar 100 nm

FIGURE 2 Thioflavin-T fluorescence measurements of abeta peptide aggregation with and without extracellular enzymes and osmolytes.

(A) Abeta peptide (45 μM) aggregation in the presence of 0.1% transglutaminase and 100 mM of osmolytes l-proline and betaine. (B) Abeta
peptide (45 μM) aggregation in the presence of 0.1% lysyl oxidase, and 100 mM of osmolytes l-proline or betaine. ThT fluorescence
measurements indicate that the abeta aggregation is modulated by the presence of extracellular enzymes and osmolytes. Data with significance
are represented as **P < .01 and *P < .05
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formation. From our in vitro experiments, the results suggest the

enzymes could have a direct influence on abeta aggregation. How-

ever, to understand the complete mechanism, detail studies have to

be performed both in vitro, and in cellular environment under relevant

physiological conditions mimicking the normal and Alzheimer's disease

states.

Further, our studies show osmolytes l-proline and betaine sig-

nificantly inhibited the extracellular enzymes mediated aggregation.

Osmolytes are known to protect protein from stressful conditions,

and has been shown that several osmolytes have the ability to pre-

vent or inhibit protein aggregation.[33,34] The studies report that

osmolytes modulate the solvation state of the amyloidogenic pro-

tein or peptides thereby affecting the aggregation pathway. The

small molecules proline and betaine investigated here, known to

have chaperone like properties, as well as antioxidative proper-

ties.[34,35] Proline has been shown to protect oxidative stress by

scavenging reactive oxygen species by forming stable free radicals

adducts of proline.[25] A recent study on betaine, when cotreated

with Rotenone (a pesticide known to induce reactive oxygen spe-

cies), revealed neuroprotective and antioxidant properties in PC12

cells, by inhibiting mitochondrial superoxide generation.[36] In the

current study, both proline and betaine seems to exhibit both chap-

erone and antioxidant-like properties as seen from significant inhibi-

tion in aggregation, and oxidative stress when abeta is aggregated in

the presence of these osmolytes.

4 | CONCLUSIONS

Here, we show that extracellular enzymes have the capability to

influence the abeta peptides aggregation, fibrillization, and oxidative

stress in vitro. Extracellular enzymes have been shown to colocalize

with amyloid plaques, and subsequently crosslink them and prevent

them from degradation. This in turn leads to excessive oxidative

stress and neuronal death. This article’s study shows that in the

presence of osmolytes, the extracellular enzymes mediated

FIGURE 4 Transmission electron microscopy images of abeta peptide (45 μM) aggregation in the presence of TG, LOX, and osmolytes LP and

B. The images reveal abeta aggregation/fibrillization is promoted in the presence of TG and LOX, and inhibited in the presence of l-proline, and
betaine, in agreement with AFM images. Scale bar 100 nm

FIGURE 5 DLS measurements abeta peptide (45 μM) aggregation in

the presence of TG, LOX, and osmolytes LP and B. The size
measurements show size increase of abeta aggregation/fibrillization in
the presence of TG and LOX. Decrease in the size of the aggregates
was observed in the presence of l-proline and betaine
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FIGURE 6 Effect of abeta induced oxidative stress on hBMVEC with and without extracellular enzymes and small molecules. (A) Oxidative stress

induced by Abeta peptide (2 μM) in the presence of transglutaminase (0.005%), and osmolytes l-proline and betaine at 5 mM cocentrations.
(B) Oxidative stress induced by Abeta peptide (2 μM) in the presence of lysyl oxidase peptide (0.005%) and osmolytes l-proline and betaine of
5 mM concentrations. Oxidative stress is significantly reduced in the presence of osmolytes

FIGURE 7 Effect of abeta-induced oxidative stress on hBMVEC with and without extracellular enzymes and small molecules, imaged by CellROX

green fluorescence. Oxidative stress significantly increased in the presence of abeta, TG, and LOX, while the presence of osmolytes seems to
significantly reduce the oxidative stress. Scale bar 10 μm
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aggregation and oxidative stress of abeta peptide could be mini-

mized. Osmolytes are known to favor compact protein conformation

thereby preventing protein aggregation.[37] Here, l-proline and beta-

ine may have preferentially hydrated the abeta peptide, and subse-

quently prevented peptide-peptide interaction and aggregation. The

proof of principle study reported here reveals that the osmolytes

have the ability to prevent the aggregation due to extracellular

enzymes. Hence, the application of osmolytes could be applied to

inhibit or prevent extracellular enzymes mediated aggregation/fibril-

lization and oxidative stress, and potential long-term neuronal toxic-

ity effects.
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FIGURE 8 Blood brain barrier damage induced by abeta peptide (2 μM) aggregation in the presence of transglutaminase and osmolytes l-proline

and betaine, visualized by tight junction protein ZO-1. Tight junction is significantly restored in the presence of osmolytes. Scale bar 10 μm

FIGURE 9 Assessment of toxicity effect of abeta peptide aggregates with and without extracellular enzymes and osmolytes in human brain

microvascular endothelial cells. (A) Effect of abeta concentration, (B) effect of TG (0.02%) and osmolytes (20 mM) on the toxicity, and (C) effect of
LOX (0.02%) and osmolytes (20 mM) on the cell toxicity. Significant difference in toxicity is observed when abeta is treated with TG or LOX, and
the toxicity effects were inhibited by l-proline and betaine
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