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 Tropical cyclones can significantly damage the electrical power system, so an accurate 

spatiotemporal forecast of outages prior to landfall can help utilities to optimize the power 

restoration process. The purpose of this paper is enhance the predictive accuracy of the 

Spatially Generalized Hurricane Outage Prediction Model (SGHOPM) developed by Guikema et 

al. (2014). In this version of the SGHOPM, we introduce a new two-step prediction procedure 

and increase the number of predictor variables. The first model step predicts whether or not 

outages will occur in each location and the second step predicts the number of outages. The 

Guikema et al. (2014) SGHOPM environmental variables were limited to the wind 

characteristics (speed and duration of strong winds) of the tropical cyclones. This version of the 

model adds elevation, land cover, soil, precipitation, and vegetation characteristics in each 

location. Our results demonstrate that the use of a new two-step outage prediction model and 

inclusion of these additional environmental variables increases the overall accuracy of the 

SGHOPM by ~17%.  
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1. INTRODUCTION  

 Severe weather events, such as hurricanes, cause widespread and prolonged power 

outages. A key part of preparing for, and responding to, hurricanes is requesting and 

positioning resources in advance of a storm. This decision has a significant impact on how 

long it takes to restore power, as well as the cost of the restoration effort. Forecasts of the 

number and locations of outages can help utilities balance the high cost of external resources 

with the need to have enough resources to restore power quickly. Previous work has been 

done on power outage forecasting for high wind events, especially for hurricanes. Past efforts 

include Reed
(1)

, where a linear regression model was developed for estimating power outages 

during wind storms in Seattle. Liu et al.
(2,3)

 used generalized linear models (GLMs) and 

generalized linear mixed models to estimate outages during hurricanes, and in follow-up 

work by Han et al.
(4,5)

 generalized additive models were used. Nateghi et al.
(6)

 built on this 

previous work by employing a Random Forest model
(7)

 to achieve higher predictive accuracy. 

All of these models used a wide range of input variables, including data about the power 

system, hurricane winds, land use, topographic information, soil moisture levels, and other 

geographic and climatological factors. These models provide strong predictive accuracy in 

the utility service area for which they were developed, supporting improved utility decision-

making. However, these models do not provide outage estimates for areas outside of the 

utility service area and they are not available to emergency and risk management personnel in 

local, state, and federal governments.  

 Guikema et al.
(8)

 developed a spatially-generalized hurricane power outage prediction 

model, building on Nateghi et al.
(6)

. This model can be used anywhere along the U.S. 

coastline because it is based on publicly available information. However, one limitation of 

the Guikema et al.
(8)

 model is that it uses a greatly simplified set of input variables 

(population, maximum 3-sec wind gust, and duration of sustained winds exceeding 20 m sec
-
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1
) as compared to the utility-specific models (e.g., Nateghi et al.

(6)
). This leads to lower 

predictive accuracy relative to the utility-specific models. 

 The purpose of this paper is to improve the predictive accuracy of the Spatially 

Generalized Hurricane Outage Prediction Model (SGHOPM) first introduced in Guikema et 

al.
(8)

 by adding more explanatory variables, specifically: elevation, land cover, root zone 

depth, precipitation, soil moisture, and tree characteristics. The value of these additional 

variables is evaluated by quantifying the reduction in error relative to the Guikema et al.
(8)

 

version of the SGHOPM (hereafter called the baseline model). Several different combinations 

of explanatory variables were explored using a cross-validation procedure to determine the 

ideal covariate set for predicting outages in the Random Forest model. 

 In addition to adding more variables, this paper introduces a two-stage version of the 

SGHOPM. The two-stage approach to hurricane outage modeling was introduced by 

Guikema and Quiring
(9)

 to account for the zero-inflation of datasets that is characteristic of 

past outage events. Traditional statistical methods for dealing with zero-inflation, such as 

zero-inflated Poisson and zero-inflated negative binomial regressions, are unlikely to handle 

the complexity of factors contributing to non-outages in hurricanes
(9)

. Instead of traditional 

statistical models, Guikema and Quiring
(9)

 improved the accuracy of outage predictions using 

a two-stage classification tree/regression model approach. The first stage of the Guikema and 

Quiring
(9)

 “tree-GAM” model fits a classification tree to predict a zero or non-zero response 

and the second stage makes a quantitative prediction of outages using a generalized additive 

model (GAM). The use of classification trees provides an improved assessment of power 

system responses to explanatory variable thresholds (i.e., maximum wind speed at which are 

poles are likely to be blown over) compared to traditional models
(9)

. In this paper, the first 

stage of the two-stage SGHOPM makes a prediction with only two outcomes using a Random 

Forest classification model: (1) zero outages or (2) one or more outages. The second stage of 
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the model determines the number of outages using a Random Forest regression model, 

conditional on the first stage of the model predicting an outcome of one or more outages. 

 This paper is organized as follows. A description of the data is provided in Section 2. 

Section 3 provides an overview of the SGHOPM model and the methodology for selecting 

the best set of covariates is described in Section 4. Section 5 presents the results and Section 

6 examines the influence of individual variables on outage predictions. 

 

2. DATA AND METHODS 

2.1. Data 

 Census tracts are used as the spatial unit of analysis in this paper. Population data are 

used as a proxy for the number of utility customers because the SGHOPM only uses 

publically available sources of data. The SGHOPM predicts the fraction of the population 

that will lose power (fractional outages) in each census tract.  

 The SGHOPM is developed and trained using the gridded outage data from a private 

utility company who wishes to remain anonymous. Their service area covers parts of three 

states in the southeastern U.S. Outage data from six tropical cyclones (TCs) are used in this 

paper: Opal (1995), Danny (1997), Georges (1998), Ivan (2004), Dennis (2005), and Katrina 

(2005). 

 The explanatory variables that are evaluated in this study can be divided into two 

categories. One category contains variables related to geographic and environmental 

characteristics that are invariant (static) in time. These variables include various measures of 

topography, land cover, tree characteristics, and soil characteristics in each census tract. The 

second category contains variables that are time-dependent (dynamic) and represent the 

antecedent conditions when a TC makes landfall. These variables include various measures 

of soil moisture and precipitation.  
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 All of these variables originate from different sources and each has a different spatial 

resolution. The data for the static variables are available at a high resolution, so these data 

were re-scaled to census tracts by identifying the census tract centroid that is closest to the 

grid cell. The soil moisture and precipitation data used are at a coarser resolution than most 

census tracts, so they are re-scaled to the census tracts using spatial interpolation. The 

remainder of Section 2 provides a description of all of the predictor variables that are 

considered for inclusion in the SGHOPM (Table 1). 

   

2.2. Response variable 

 The response variable  in the SGHOPM is the fraction of outages for a given census 

tract i; fractional outages are more useful than the total number of outages due to the 

variability in census tract populations
(10)

. In training the SGHOPM, both the number of 

customers and number of customers without power (which will be referred to as outages in 

the rest of the paper
1
) from the utility-specific data were used to compute fractional outages. 

In some instances, the number of customer outages reported in the utility’s outage 

management system exceeded the number of customers in the utility dataset as discussed in 

Guikema et al.
(11)

. When this occurred, the number of outages was set to the number of 

customers.  

 

2.3. Baseline explanatory variables 

 Guikema et al.
(8)

 developed a SGHOPM that used only three variables: census tract 

population, the maximum 3-sec wind gust, and duration of sustained winds exceeding 20 m 

sec
-1

. This 3-variable version of the SGHOPM is referred to as the baseline model. The only 

                                                             
1 We define the term outages in this paper as the number of customer meters without power. 
Therefore a “customer” is really a customer meter. 

ˆ
iY
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difference is that the baseline model used in this paper uses population density rather than 

total population because a normalized population metric (density) is more appropriate for 

determining fractional outages. 

   

2.4. Static explanatory variables 

 The static variables that are used include various measures of topography, land cover, tree 

characteristics, and soil characteristics. The value of including topographical characteristics 

in utility-specific power outages models was initially demonstrated by Guikema et al.
(12)

 and 

explored in more depth by Quiring et al.
(13)

. The topographical variables are derived from a 

global 30-arcsecond digital elevation model (DEM) produced by the United States 

Geological Survey (see Danielson and Gesch
(14)

 for details) and they include: mean elevation 

(Xi, elev_mean), median elevation (Xi, elev_median), standard deviation of elevation (Xi, elev_stdev), 

minimum elevation (Xi, elev_min), and maximum elevation (Xi, elev_max).   

 Davidson et al.
(15)

 found that the inclusion of land cover (LC) types improved the 

accuracy of hurricane-related outage predictions. Quiring et al.
(13)

 demonstrated that LC 

variables are particularly useful when utility-specific asset data (e.g., number of poles, 

transformers, etc.) is not available because certain LC variables can serve as proxies for these 

data. The LC data used in this paper are from the National Land Cover Database 2011 

(NLCD 2011; see Homer et al.
(16)

 for details). There are 8 major land cover classes in the 

NLCD 2011, based on the Anderson
(17)

 classification system. The fractional coverage of these 

8 LC types was determined for each census tract (i): water LC (Xi, LC_water), developed LC (Xi, 

LC_developed), barren LC (Xi, LC_barren), forest LC (Xi, LC_forest), scrub LC (Xi, LC_scrub), grassland 

LC (Xi, LC_grassland), pasture LC (Xi, LC_pasture), and wetlands LC (Xi, LC_wetlands).  

 A variety of tree/vegetation-related variables have been used in previous outage 

prediction modeling. For example, Guikema et al.
(18)

 and Nateghi et al.
(6)

 incorporated a 
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measure of tree trimming frequency, and Lui et al.
(2)

 and Madeira
(19)

 included variables 

related to specific tree species. All of these previous projects found that the inclusion of 

vegetation information can significantly enhance model performance.  

 This paper is the first to incorporate tree species data and tree characteristics such as type 

of root system, depth of the root system, tree diameter, tree height, density of the wood, 

hardness of the wood, and the crushing strength of the wood. The tree species data are from 

the 2012 National Insect and Disease Risk Map (NIDRM; Krist et al.
(20)

). The NIDRM 

identifies a single, dominant tree species in each 240 m grid cell
(19)

. There are a total of 217 

tree species in our region. The eight tree-related variables that are considered in this study 

are: fractional area of a census tract (i) covered by trees (Xi, treed), percentage of trees with a 

deep root system (Xi, deep), percentage of trees with a taproot system (Xi, taproot), maximum tree 

species height (Xi, hgt), maximum tree species diameter at breast height (Xi, dbh), tree density 

(Xi, density), Janka Hardness scale (Xi, janka), and crushing strength (Xi, crushing). Details on the tree 

species variables used in this study, and the source of the data, are provided in Table 2 (Van 

Dersal et al.
(21)

; Burns and Honkala
(22)

; Stoecklein
(23)

; US Forest Service Tree List
(24)

).   

 Root zone (RZ) depths are derived from the USDA Gridded Soil Survey Geographic 

(gSSURGO) which is available at 30 m resolution. The root zone is characterized as the 

depth within the soil column that crop roots can effectively extract water (Soil Survey 

Staff
(25)

). Based on Dobos et al.
(27)

, the maximum RZ depth in gSSURGO is 1.5 m. Quiring et 

al.
(13)

 used a related metric, the depth to bedrock, to characterize the effective depth of the 

soil layer. The three RZ depth metrics used in this study (mean RZ depth (Xi, RZ_mean), 

majority RZ depth (Xi, RZ_majority), and median RZ depth (Xi, RZ_median)) are based on a summary 

of all the 30 m gSSURGO grid cells that are within each census tract. Because of the high 

resolution of the gSSURGO dataset, it was first re-scaled to the same 240 m resolution as the 

tree species data, using the majority value from 64 gSSURGO grid cells. 



 

                                                                                                                                                                

 
This article is protected by copyright. All rights reserved. 
 

 

2.4. Dynamic variables 

 The dynamic soil moisture and precipitation variables represent moisture conditions 3 

days prior to landfall. The 3-day lag was chosen because when the SGHOPM is used for 

operational forecasts of power outages, these forecasts are typically initialized 3 to 5 days in 

advance of landfall. Soil moisture and precipitation have been shown to be important for 

power outage modeling because wetter soils can increase the likelihood that trees and utility 

poles will be uprooted/fail in strong winds (Han et al.
(4)

; Quiring et al.
(6)

). 

 Both the precipitation and soil moisture are from the North America Land Data 

Assimilation System Phase 2 (NLDAS-2) which contains modeled parameters (including soil 

moisture) and forcing variables (including precipitation). These data are available at 1/8
th

 

degree spatial resolution and at an hourly temporal resolution from January 1979-present. 

NLDAS-2 contains three different land-surface models (MOSAIC, NOAH, and VIC). In this 

study we use soil moisture data from the VIC model (Liang et al.
(28)

) because of its past 

performance in accurately assessing variations in soil moisture (Han et al.
(4,5)

; Guikema et 

al.
(8,12)

). 

 VIC-derived soil moisture is estimated for three layers: 0 – 10 cm (Xi, soil1), 10 – 40 cm 

(Xi, soil2), and 40 – 100 cm (Xi, soil3). When the soil layers did not match these standard depths, 

the volumetric moisture content was converted to these standard depths using a simple linear 

interpolation. Rather than using the fractional soil moisture values used in past studies (Han 

et al.
(4,5)

; Guikema et al.
(12)

), all soil moisture data in this paper were converted to percentiles 

based on the historical cumulative distribution function (CDF). The soil moisture CDFs used 

36 years of historical data from 1979 through 2014 to compute non-parametric L-moment 

ratios (see Hosking and Wallis
(29)

 for details) that were transformed to Pearson Type III 

distribution parameters. This approach differs from that used by the Climate Prediction 
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Center (CPC), which uses an empirically derived historical distribution (Andreadis et al.
(30)

; 

Mo et al.
(31)

). 

 Precipitation is represented using the Standardized Precipitation Index (SPI). The SPI 

uses a CDF to normalize precipitation for a given time period using historical precipitation 

data (McKee et al.
(32)

; Guttman
(33)

; Heim
(34)

). We use Pearson Type III to fit the CDF, which 

is consistent with Han et al.
(4,5)

. Five different SPI time-scales were used to represent short-

term (1-month (Xi, SPI1), medium-term (3-month (Xi, SPI3), 6-month (Xi, SPI6), and long-term 

(12-month (Xi, SPI12), and 24-month (Xi, SPI24)) moisture conditions in each census tract. 

 The NLDAS-2 data were rescaled to census tracts by interpolating data from the four 

nearest NLDAS-2 grid cells to the census tract centroid using inverse distance weighting. 

NLDAS-2 soil moisture and precipitation were interpolated to census tracts prior to 

computing the soil moisture percentiles and SPI.  

 The 1200 UTC soil moisture data were used to fill a daily time series at each census tract 

from 1 Jan 1979 – 31 Dec 2014. The hourly precipitation were aggregated to daily data. 

Pearson Type III parameters were computed for all three soil layers and five SPI time scales 

for each census tract and calendar date (i.e., 30 Jul). 

  

3. Model Background 

3.1. Random Forest model 

 The SGHOPM is a non-parametric ensemble data mining model that is based on the 

Random Forest method created by Breiman
(7)

. Random Forest models are insensitive to 

outliers and noise (Hastie et al.
(35)

) and have been proven to make accurate outage predictions 

(e.g., Nateghi et al.
(6)

). The SGHOPM is coded in the open-source R programming language, 

calling on the “randomForest” library for model computations and can be run on any modern 

computer. The Random Forest technique fits a large number (K) of regression trees, each 
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time using a bootstrapped sample from a training data set (Guikema et al.
(8)

). At each branch 

in the regression tree, the data are recursively partitioned into two groups based on a subset of 

the covariates until the number of terminal nodes reaches a specified value (Hastie et al.
(35)

). 

The independence of each individual tree within the forest is improved by randomly sampling 

the training data before training a given tree and randomly selecting the set of covariates 

allowed to be used at each tree branch (Nateghi et al.
(6)

). Therefore, the set of K trees (in this 

paper K = 500) are approximately uncorrelated and unbiased (Guikema et al.
(8)

). For each 

tree, the predictive power of each variable is computed using the out-of-bag sample for that 

tree (Hastie et al.
(35)

). The final prediction, given a set of input covariates, is the average of 

the individual tree predictions. 

 

3.2. Cross-Validation Testing 

 We seek to minimize the prediction error of the SGHOPM model through the addition of 

explanatory variables to the baseline variables used by Guikema et al.
(8)

. Most regression 

models are built to optimize goodness-of-fit for the data used to train the model, and adding 

more variables increases model performance. However, this does not optimize the predictive 

power of the model. Random forest is powerful as a predictive tool because model 

development is based on the predictive performance of independent, out-of-bag samples 

Hastie et al.
(35)

. 

 A holdout cross-validation analysis technique was used to assess the predictive power of 

each set of potential covariates in the SGHOPM, based on the same methodology as Nateghi 

et al.
(6)

. Given a set of n census tracts, we holdout 20% of the data, using random sampling 

without replacement, and train the model using the remaining 80%. We then test the out-of-

sample predictive accuracy of the model using the 20% of data not used to train the model. 
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We repeat this process N times (in this paper N = 30), each time using different data in the 

training and validation groups. 

 Each training set uses 5,023 grid-cell–storm combinations (performance of the power 

system in one grid cell in one TC), which is 80% of the overall data set. Both the training and 

holdout groups can have data from the same TC (or the same census tract). This allows for a 

robust evaluation of each set of covariates. Model performance for a given set of covariates is 

measured by the percent improvement in mean absolute error (MAE) as compared to the 

Guikema et al.
(8)

 version of the SGHOPM. It is important to note that population density, 

maximum wind gust, and duration of strong winds are included in every set of covariates that 

are evaluated. 

 

4. Model Development and Testing  

4.1. Overview 

 The overall procedure for choice of explanatory variables began with testing covariate 

sets within each variable type (topography, land cover, tree characteristics, soil 

characteristics, SPI, and soil moisture). Each group of variables were evaluated using a 30-

fold cross-validation procedure to determine the three explanatory variables with the lowest 

predictive error. A second 30-fold cross-validation was used to evaluate whether adding these 

three variables reduced the model error as compared to the baseline covariate set. 

 For each variable type (i.e., topography), numerous covariate sets were tested to 

determine the combination of variables that provided the largest improvement over the 

baseline model. The result was six different combinations of variables, one for each of the six 

variable types, which minimized MAE. These six variable combinations were then blended, 

with each blend containing variables of two or more types (i.e., a blend of dynamic variables 

contains SPI and soil moisture variables). Three types of blends used were (1) a blend of all 
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the static variable types, (2) a blend of the two dynamic variables, and (3) a blend of all six 

variable types. Additionally, “reduced” blends were formed using no more than three 

individual variables for each variable type. Overall, there were 12 main covariate sets tested, 

six using a single variable type and six using blends of two or more different variable types.  

 

4.2. Random Forest Response Variable 

 One of the challenges in predicting power outages is the large number of locations with 

no outages (i.e., zero inflation; Guikema and Quiring
(9)

). For example, approximately 30% of 

the census tracts in the training dataset have zero outages (Fig. 2), a percentage that remains 

consistent even in the cross-validation training datasets. However, the predicted fractional 

outage is rarely zero. Therefore, in this paper the prediction is done in two phases. First, we 

train a Random Forest model to predict whether or not outages will occur in a census tract (

= 0 or = 1), this is called the Binary Classification (BC) model. Second, we predict the 

fractional outage prediction (0 <  ≤ 1) if = 1 using a separate Non-Zero Outage (NOZE) 

model. If = 0, then  = 0, regardless of the NOZE prediction . This is the same 

approach that was used in Guikema and Quiring
(9)

, except they used a classification tree for 

the BC portion and a Generalized Additive Model (GAM) for the NOZE portion. In this 

paper we have use a Random Forest model for both steps. 

 There can be a different set of optimal covariates in each model, and the BC model was 

tested independently of the NOZE model. The BC Random Forest model response ( ) is 

either a zero or one. Therefore, census tracts in the training dataset with observed non-zero 

outage fractions were assigned ci values of 1. The first choice in the model development was 

determining if the training dataset used to build the NOZE Random Forest model should 

include census tracts with zero outages. A testing procedure deemed that it was better to use 

îc îc

ˆ
if îc

îc ˆ
if

ˆ
iY

îc
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all the training data (fi ≥ 0) in the NOZE model rather than just the subset of training data 

with observed fractional outages (fi > 0). 

 

4.3. Binary Classification (BC) Model 

 Adopting a two-stage modeling process, without adding additional variables, improves 

model performance by almost 4% (standard deviation of 0.78% in the 30 holdouts) as 

compared to Guikema et al.
(8)

. Using the reduction in MAE relative to the Guikema et al.
(8)

 

model as the performance metric, the BC model with an optimized covariate set improves the 

model by over 9% (standard deviation of 1.19%; Table 3). Several sets of covariates were 

evaluated to determine the optimal set of covariates for the BC model. After determining the 

set of variables within each group having the most predictive power, the best variables within 

each variable group were combined in an additional cross-validation procedure testing 

procedure. Performance of the six covariate set blends used in the BC model were compared 

to simpler covariate sets (Table 3); these included one variable of each type and the baseline 

variables. In general, using a larger number of covariates improves the performance of the 

BC model. Our results indicate that the BC performs best when using all of the static variable 

types (Table 3). In 20 of the 30 repetitions, the static covariate set (Table 2) outperformed the 

other 13 covariate sets.  

  

4.4. Non-zero Outage (NOZE) Model 

 The purpose of the NOZE model is to predict how many outages will occur in the census 

tracks that were identified as experiencing storm impacts by the BC model. As with the BC 

model, we evaluate each of the variable types to determine which variables should be 

included in the final, optimal set of covariates (Table 4). The test results indicate that the 

optimal NOZE model covariate set contains 23 variables and that multiple variables from 
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each group are included in the optimal model (Table 2). Overall, there is a 17.3% 

improvement in the performance of the two-step SGHOPM with an enhanced set of 

covariates as compared to the Guikema et al.
(8)

 model. 

 

5. Model application to previous tropical cyclones 

 After completing the holdout testing procedures, the SGHOPM was used to forecast 

outages for each of the six TCs with available data in a storm-specific holdout procedure. 

Rather than randomly withholding 20% of the data across all storms as done in Section 4, a 

storm-specific holdout was used (i.e., withhold all data from a single storm and use data from 

the remaining storms to train the model). 

 The two-step SGHOPM developed in this paper does poorly in comparison to other 

models in the storm-specific holdout testing (Table 5). Using two different NOZE model 

covariate sets, each prediction of number of outages was plotted as a function of the observed 

number of outages, using data from all six storms (Fig. 3). It is apparent that the storm-

specific model predictions made using the covariate set found optimal in Section 4 

systematically underestimates total outages when both the observed and predicted values are 

non-zero (Fig. 3a). Removing the dynamic variables from that covariate set improves the 

accuracy of the storm-specific predictions (Fig. 3b), however, there is still a systematic 

underestimation of predicted outages. In addition, the slope of the non-zero outage pairs (fi 

and  both non-zero) is less than one, indicating that the variance in the predicted values is 

less than the observed variance. The ratio of the variance of the predicted outages to the 

variance of the actual outages can be denoted as Rvar = var(  × Pi) / var(fi × Pi), where Pi is 

the census tract population. Rvar = 0.52  for NOZE model using baseline plus the set of static 

variables and Rvar = 0.37 for the Guikema et al.
(8)

 model (Table 5). These Rvar values include 

the locations with no outages and there are fewer locations with no outages in the predictions 

ˆ
if

ˆ
if
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than in the observations. The BC model using only baseline variables predicted that no 

outages would occur in 15.7% of census tracts, compared to 18.2% using the covariate set 

with additional variables; both of these values are well below the observed frequency of 

30.0%. This is one of the reasons that variance of the predictions is much less than the 

observed.  

 For each covariate set used to build a NOZE model, the ratio of the model prediction 

variance relative to the observed outage variance (Rvar) was also computed using only non-

zero outage pairs. A comparison using non-zero outage pairs gives a better idea of the NOZE 

model influence on variance and the results indicate a reduction in model variance relative to 

the observed outages for both the baseline (Rvar = 0.34) and static (Rvar = 0.48) versions of the 

NOZE model (Table 5). Although the predicted variance is much lower than the observed, 

the two-step SGHOPM used in this paper is an improvement over Guikema et al.
(8)

.  

 The total number of outages (summed over all census tracts) predicted over all six storms 

compares favorably to the observed outages (Fig. 4a). The inclusion of additional covariates 

generally increases the number of model outages predicted, with the exception of the 

antecedent precipitation variables (e.g., SPI). Model performance is highly variable when 

viewed on a storm-by-storm basis (Fig. 4b). The model performed better for the three storms 

(Opal, Ivan, and Katrina) with the largest values of observed outages. This agrees with our 

previous work which shows that the SGHOPM does well when there are strong storms that 

have large impacts on the power system, but the performance is more uneven for smaller 

storms Quiring et al.
(13)

. 

 Figure 5 compares the Guikema et al.
(8)

 model to the two-step version of the SGHOPM 

developed in this paper. At each census tract in our domain, the total number of model-

predicted outages was summed over all six storms and this quantity was compared to the 

summation of observed outages (Fig. 5). In over 71% of the census tracts, the two-step 



 

                                                                                                                                                                

 
This article is protected by copyright. All rights reserved. 
 

SGHOPM outperformed the Guikema et al.
(8)

 model. The mean accuracy of the outage 

predictions across the six storms improved by >25% in more than two-fifths of the census 

tracts; only 10% of census tracts had a decrease in accuracy of >25%. Much of this 

improvement is due to adopting a two-phase modeling approach. 

 In 113 of the 994 census tracts, there were zero total outages for all six storms. The BC 

model correctly predicted zero outages for 78 of these census tracts (nearly 70%); in these 

same 78 census tracts, the Guikema et al.
(8)

 model predicted over 315,000 outages. Fig. 5 also 

shows that outage predictions tend to be more accurate in census tracts that experience more 

outages (i.e., tracts with more than 10,000 observed outages over the six storms). This shows 

that the model performs better in places that experience more outages and for stronger 

storms.  

 

6. Partial dependence of response variable to covariates 

6.1 Variable Importance 

 Every Random Forest model measures variable importance (VI), which is computed as 

the data are recursively split into two groups at each node using a subset of the explanatory 

variables. For a given covariate set, each explanatory variable VI value represents its 

usefulness in splitting the data at each node. A “pure” node does a better job partitioning the 

response variable than an “impure” node. For classification models (e.g., BC model), VI is 

measured by the average decrease in the Gini index g (Liaw
(36)

), which is a measure of node 

impurity. For a regression model (e.g., NOZE model), VI is measured by the average 

decrease in the residual sum of squares. 

 Table 6 shows VI for all the explanatory variables used in the optimal BC model 

covariate set. It is common practice to normalize VI by giving the most important variable a 

score of 100 (in our case maximum wind gust). As expected based on our previous work, the 
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duration of strong winds is important. The variable with the second highest VI score in the 

BC model is the density of wood (i.e., a trait that is tree-species specific). Further analysis 

indicates that the mean of the average density 
0  for census tracts with no observed outages 

is 604.0, whereas 
1 = 614.0 in census tracts with at least one observed outage. Based on a 

difference of means test, this is a statistically significant difference (p-value < 0.001). The 

wood density variable may be indicative of the relative mixture of softwoods and hardwoods 

within each census tract. It appears that softwood species tend to be associated with locations 

that experience lower fractional outages. This may be because softwoods are more flexible 

and therefore bend, but do not break, under strong winds. 

 Other important variables are those related to topography, which include the mean, 

median, maximum, and minimum elevation of census tracts. Elevation may serve as a proxy 

for the proximity to the coastline. Census tracts that are located closer to the coast are likely 

to experience higher wind speeds and therefore are associated with more outages. An 

additional consideration is that regions with higher elevation may leave trees more exposed to 

the impacts of high winds (Chapman
(37)

), thus leading to more outages. 

 In the NOZE model, the two baseline variables related to the TC winds have the highest 

VI scores (Table 7), with population density ranked the fourth most important. Aside from 

the three baseline variables, the six highest VI scores belong to variables describing 

antecedent SPI and soil moisture. The VI scores are confirmation of the importance of the 

dynamic variables in making fractional outage predictions. 

 

6.2 Partial Dependence 

 Partial dependence plots are used to illustrate the marginal contribution of a single 

explanatory variable to the Random Forest model response with the rest of the explanatory 

variables averaged out Nateghi et al.
(6)

. Whereas VI is a single metric, partial dependence 
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plots show changes in the response variable as a continuous function of a single explanatory 

variable value. Partial dependence plots for the eight explanatory variables that were 

identified as important in the holdout testing are shown in Fig. 6. 

 The partial dependence plots for the three baseline variables (Figs. 6a-c) have similar 

shape, with a sudden increase in predicted outages at lower values that asymptotes at larger 

values. More specifically, there is a large spike in outages when maximum winds are above 

20 m sec
-1

 (Fig. 6a). There is a significant increase in predicted outages when strong winds (≥ 

20 m sec
-1

) last 4 hours or more relative to shorter durations (Fig. 6b). The fractional outage 

prediction increases sharply with population density (Fig. 6c) at values < 800 customers km
-2

, 

with a more gradual increase at larger values of population density. 

 Partial dependence plots are shown for three dynamic variables, which are the layer 1 

(Fig. 6d) and layer 2 (Fig. 6e) soil moisture percentiles and the 12-month SPI (Fig. 6f). The 

two soil moisture plots show that soil moisture has little explanatory power in drier soils. 

However, the partial dependence increases in wetter soils. In general, the stability of soil 

decreases with increasing wetness Quiring et al.
(13)

, leading to an increased susceptibility of 

trees in saturated soils being uprooted. The 12-month SPI plot (Fig. 6f) seems to contradict 

these findings because it shows that there is a dramatic increase in outages when Xi, SPI12 ≤ -1 

(which should be associated with drier soils). However, negative 12-month SPI values are 

indicative of longer-term drought stress on trees, which can lead to weakening and increased 

susceptibility to being damaged (Guikema et al.
(8)

). Near-surface soil moisture (layer 1 and 2) 

is not necessarily strongly correlated with long-term drought conditions. Based on analysis of 

the partial dependence plots for the dynamic variables, trees are most susceptible to being 

blown down by strong winds when there are very wet shallow soils in regions where trees 

have been weakened by long-term drought conditions.  
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 Average wood density (Fig. 6g) was the static variable with the highest VI score in the 

NOZE model and, as mentioned previously, it was important in the BC model. In general, 

predicted outages increase as census tracts have tree species with higher wood density, 

particularly when Xi, density > 650 kg m
-3

. Loblolly pine (570 kg m
-3

) is by far the most 

prevalent species in our testing region and despite its lower wood density, it is more 

susceptible to being wind-thrown than other pines. This likely accounts for the increase in 

predicted outages with decreasing wood density values when Xi, density is below 600 kg m
-3

. 

  Topographic variables were relatively unimportant in the NOZE model compared to the 

other baseline and dynamic variables (Table 7). However, the partial dependence plot for 

maximum elevation (Fig. 6h) shows that at very low elevations (< 50 m), there is an increase 

in outages followed by a sharp decrease to a minimum around 100 m. This suggests that 

topographic variables may be proxies for distance to the coast. At elevations > 100 m, there is 

a gradual increase in outages, consistent with the findings of Chapman
(37)

. 

 

7. Summary and Conclusions 

 Our results demonstrate that the inclusion of more variables and the use of a new two-step 

outage prediction model increases the overall accuracy of the SGHOPM by ~17%. 

Approximately, half of this improvement (~9%) is due to adopting the two-step outage 

prediction model. In the first step, the BC model makes a categorical outage occurrence/non-

occurrence prediction and then the NOZE model is used to predict the number of outages. 

The addition of the BC model helps address the zero inflation issue in the outage data. These 

improvements are important because power outages due to landfalling tropical cyclones can 

be expensive and difficult for utility providers to handle. Providing an accurate spatial 

forecast of outages prior to landfall can help utility companies with resource allocation and 

power restoration. 
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 One way to assess the value of the different types of variables that we considered for 

inclusion in the SGHOPM is to compare the improvement in model performance when that 

variable type is added to the baseline model. The mean improvement in model performance 

shows that for the BC model the most valuable variables (Table 3), in order of importance, 

are: tree characteristics, SPI, soil moisture, land cover, topography, and root zone depth. For 

the NOZE model the most valuable variables (Table 4), in order of importance, are: SPI, soil 

moisture, tree characteristics, land cover, topography, and root zone depth. Therefore, it is 

clear that the inclusion of tree characteristics and antecedent meteorological conditions (SPI 

and soil moisture) are valuable and significantly improve the accuracy of the SGHOPM. 

Land cover and topography variables are also useful, but to a lesser extent, and the inclusion 

of root zone depth had a minimal impact on the model. 

 We have demonstrated that while the three variables used in the Guikema et al.
(8)

 version 

of the SGHOPM are the most important for modeling power outages, the inclusion of 

information on elevation, land cover, soil, precipitation, and vegetation characteristics 

improves the predictive accuracy. The static variables (elevation, land cover, soil, and 

vegetation characteristics) provide a general and invariant assessment of power failure 

vulnerability for each census tract. In particular, the tree characteristics help to identify 

locations that are susceptible to outages due to the density and type of trees present. The 

dynamic variables (precipitation and soil moisture) determine how antecedent meteorological 

conditions either increase or decrease the vulnerability of trees being wind-thrown and 

leading to outages. The results suggest that wetter soils reduce soil stability, which in turn 

increases the probability of trees being blow over. In addition, long-term precipitation deficits 

associated with drought conditions also weaken the trees and therefore are associated with 

increased outages. 
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TABLES 

Table 1. Summary of the variables used in the SGHOPM. Variables shown in bold-italics are 

used in the optimal BC model covariate set (26 total) and the variables that are underlined are 

used in the optimal NOZE model covariate set (25 total).  
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Table 2. Eight tree characteristics from the National Insect and Disease Risk Map (NIDRM) 

dataset (light gray background). The NIDRM data were re-scaled to census tracts by aggregating 

all NIDRM grid cells within each census tract (dark gray background). Information about each 

individual tree species was compiled from the following sources: (1) Van Dersal 1938(20), (2) 

Burns and Honkala 1990a(21), (3) Burns and Honkala 1990b(22), (4) Stoecklein 2001(23), (5) US 

Forest Service Tree List 2015(24), and (6) Wood Database 2015(25). 

Variable 

NIDRM level (240 m 

resolution) 
Census Tract Level 

Metric 
Data 

Source 

Model 

Variable 
Model Variable Description 

1 Trees  
Trees or no 

trees? 

1,2,3,4,5 

Xtreed, i Percentage covered by trees 

2 Taproot Taproot or not? Xtaproot, i 
Percentage with taprooted 

species 

3 
Rooting 

depth 

Deep or 

shallow rooted 

species? 

Xdeep, i 
Percentage with deep-rooted 

species 

4 
Tree 

Height 

Species 

Maximum 

6 

Xhgt, i 

Census tract average 

5 

Diamete

r at 

Breast 

Height 

Xdbh, i 

6 
Wood 

Density 

Species 

Average 

Xdensity, i 

7 

Janka 

Hardnes

s 

Xjanka, i 

8 

Crushin

g 

Strengt

h 

Xcrushing, i 

 

Table 3. Performance metrics for the 14 different covariate sets that were evaluated to 

determine the optimal set of explanatory variables in the BC model. Improvement the reduction 

in MAE relative to the Guikema et al.(8) NOZE-only model and is based on 30 replicates. Decrease 

in root mean square error is in parentheses next to model improvement. 
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No BC Model 14 0 0.00% (0.00%) 0.00% 

Baseline 13 0 3.74% (-1.69%) 0.70% 

Elevation 11 0 5.84% (-0.80%) 1.16% 

Land Cover 10 0 6.62% (-0.29%) 1.33% 

Root Zone 12 0 3.88% (-1.14%) 0.67% 

Soil Moisture 9 0 6.66% (-0.84%) 0.92% 

SPI 5 2 7.73% (-0.08%) 1.20% 

Trees 6 0 7.60% (0.26%) 1.20% 

Static 1 18 9.04% (0.44%) 1.36% 

Static Reduced 2 2 8.47% (0.11%) 1.51% 

Dynamic 4 2 7.88% (-0.14%) 1.08% 

Dynamic Reduced 7 1 7.56% (-0.29%) 0.98% 

Full 3 4 8.24% (0.58%) 1.03% 

Full Reduced 8 1 7.53% (0.03%) 1.12% 
 

Table 4. Performance metrics for the 15 different covariate sets that were evaluated to 

determine the optimal set of explanatory variables in the NOZE model. Improvement is the 

reduction in MAE relative to the Guikema et al.(8) NOZE-only model and is based on 30 

replicates. The BC covariate set uses variables that are in bold-italics in Table 1 unless 

otherwise noted. Decrease in root mean square error is in parentheses next to model 

improvement. 
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NOZE Covariate Sets 
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Baseline (No BC Model) 14 0 0.00% (0.00%) 0.00% 

Baseline 13 0 8.84% (0.37%) 1.23% 

Elevation 11 0 11.35% (3.51%) 1.57% 

Land Cover 10 0 11.80% (3.96%) 1.73% 

Root Zone 12 0 9.90% (1.73%) 1.39% 

Soil Moisture 8 0 12.78% (3.25%) 1.78% 

SPI 5 2 15.74% (4.17%) 1.71% 

Trees 9 0 12.08% (4.53%) 1.79% 

Static 7 0 13.66% (5.47%) 1.72% 

Static Reduced 6 0 13.99% (5.78%) 1.71% 

Dynamic 3 1 15.91% (4.33%) 1.95% 

Dynamic Reduced 4 2 15.85% (4.55%) 1.96% 

Full 1 15 16.75% (6.88%) 1.72% 

Full Reduced 2 10 16.62% (6.77%) 1.78% 
 

Table 5. Performance metrics for the 16 different NOZE model covariate sets based on the 

storm-specific holdout testing. Improvement is the reduction in MAE relative to the Guikema et 

al.(8) NOZE-only model. The BC covariate set uses variables that are in bold-italics in Table 1 

unless otherwise noted. 
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R
a
n
k
 

V
a
lu

e
 

R
a
n
k
 

V
a
lu

e
 

Baseline (No BC Model) 9 0.00% 10 0.36 

Baseline (BC Model w/ only 

Baseline) 12 -1.32% 7 0.40 

Baseline 7 8.36% 8 0.39 

Elevation 1 11.76% 4 0.42 

Land Cover 3 10.15% 5 0.41 

Root Zone Depth 2 11.42% 9 0.38 

Soil Moisture 14 -3.84% 6 0.40 

SPI 13 -2.48% 15 0.27 

Trees 6 9.72% 3 0.48 

Static 5 9.95% 1 0.51 

Static Reduced 4 10.03% 2 0.49 

Dynamic 8 0.68% 14 0.28 

Dynamic Reduced 15 -4.79% 11 0.33 

Full 11 -0.87% 13 0.32 

Full Reduced 10 -0.84% 12 0.33 
 

Table 6. Variable importance in the BC model, originally measured as the decrease in the Gini 

index (g). 

Rank Type Variable VI 

1 Baseline Max Wind Speed 100.00 

2 Tree Average Wood Density 89.63 

3 Baseline Strong Winds Duration 87.19 

4 Elevation Mean Elevation 85.77 

5 Elevation Max Elevation 76.54 

6 Elevation Median Elevation 71.91 

7 Tree Average Crushing Strength 59.14 

8 Elevation Min Elevation 57.99 

9 Land Cover Wetlands Land Cover 55.14 

10 Tree Percentage Taproot 51.66 

11 Baseline Population Density 47.85 

12 Tree Percentage Deep 44.85 

13 Elevation Elevation Stdev 42.04 

14 Land Cover Developed Land Cover 41.83 

15 Tree Average Max Tree Height 39.09 

16 Land Cover Scrub Land Cover 37.78 
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17 Tree Average Janka Hardness 36.99 

18 Land Cover Barren Land Cover 31.23 

19 Land Cover Pasture Land Cover 30.28 

20 Land Cover Forest Land Cover 29.15 

21 Tree Average Maximum DBH 28.26 

22 Tree Grassland Land Cover 26.84 

23 Root Zone Depth Root Zone Mean Depth 26.70 

24 Land Cover Water Land Cover 25.98 

25 Tree Percentage Treed 24.61 

26 Root Zone Depth Root Zone Majority Depth 1.10 

 

 

Table 7. Variable importance in the NOZE model, originally measured as the residual sum of 

squares. 

Rank Type Variable VI 

1 Baseline Max Wind Speed 100.00 

2 Baseline Strong Winds Duration 87.45 

3 SPI SPI12 70.16 

4 Baseline Population Density 41.05 

5 Soil Moisture Soil CDF 2 38.54 

6 Soil Moisture Soil CDF 1 38.42 

7 SPI SPI3 37.75 

8 SPI SPI24 35.69 

9 SPI SPI6 33.33 

10 Tree Average Wood Density 33.01 

11 Soil Moisture Soil CDF 3 30.38 

12 SPI SPI1 30.32 

13 Land Cover Wetlands Land Cover 28.69 

14 Elevation Max Elevation 27.63 

15 Tree Percentage Deep 26.83 

16 Tree Percentage Taproot 26.83 

17 Root Zone Depth Root Zone Mean Depth 26.58 

18 Tree Average Janka Hardness 26.20 

19 Tree Average Max Tree Height 25.73 

20 Land Cover Forest Land Cover 24.52 

21 Tree Percentage Treed 23.64 

22 Land Cover Grassland Land Cover 22.89 
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23 Elevation Median Elevation 22.19 

24 Tree Average Crushing Strength 22.14 

25 Tree Average Maximum DBH 6.76 

 

FIGURES 

 

Fig. 1.  Histogram showing of observed fractional outages in the utility company dataset. 

 
 

(a)    
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(b)    

Fig. 2. Scatter plots of total predicted versus observed outages based on the two-step SGHOPM: 

(a) NOZE model using baseline + all additional variable types, and (b) NOZE model using 

baseline + all static variables. The perfect prediction line (1:1) is plotted for reference. 
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(a)  

(b)  

Fig. 3. (a) Predicted number of outages (summed for all census tracts) for different covariate 

sets in the NOZE model. (b) Predicted number of outages using the NOZE model with the 

covariate set including baseline plus static variables for each storm-specific holdout. 
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Fig. 4. Comparison of model performance for the Guikema et al. (2014) and two-step model 

versions of the SGHOPM (colors) for all six storms in our study. The comparison metric is the 

percentage decrease in MAE of the “better” model relative to the other. The total number of 

observed outages for all six storms is denoted by the given patterns. 
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(c)  (d) 
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(e)  (f) 
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(g)  (h) 

 

Fig. 5. Partial dependent plots for variables identified as being important in the holdout 

evaluations: (a) maximum wind gust (m s-1), (b) duration of strong winds (hours), (c) 

population density (people km-2), (d) soil moisture percentile in layer 1 (0 to 10 cm), (e) soil 

moisture percentile in layer 2 (10 to 40 cm), (f) 12-month Standardized Precipitation Index 

(SPI), (g) Average dried wood density (kg m-3), and (h) maximum elevation (m).  

 

 


