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ABSTRACT

NYC Optimal Transport and Ridesharing

by

Jiahui Ji

Supervisor: Dr. Long Nguyen

The motivation of this paper is the hope to enhance travel efficiency, reduce en-

ergy consumption and greenhouse gas emission. We first focus on the optimal

transport problem and approaches. Sinkhorn’s algorithm is applied with two sep-

arate assumptions of locations, discrete and semi-discrete. The next chapter fo-

cuses on the problem of ridesharing. Trip duration time is predicted by some

regression models. It also introduces a dynamic ridesharing problem, which pulls

certain trip-satisfying criterion together. Then a statistical model of shared rides

and individual trips is described, with parameter estimations made from the fre-

quentest approach. The last chapter concludes with the exploration of the above

two problems, lists some limitations in the model, and provides some future work

suggestions.
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CHAPTER 1

Introduction

1.1 Motivation

New York is one of the most populous cities in the world. In order to serve the transportation
need of 8.5 million people, complex public transportation systems are built. Taxi, serving
as an easy and convenient transportation mode, is an important supplement of public
transportation. On record, there are around 12 million trip records for yellow taxi and 1.5
million for the green taxi each month, which means on average there are approximately
45,000 taxi users daily in the city. An analysis of large quantities of trip record data could
help learn the taxi demand distribution, big trends of traffic flow, traveling behaviors of
passengers, cost and profit of taxi companies, etc. Further, the result could potentially
assist with decision-making for taxi companies and the government to provide better public
transportation.

With such large amount of taxi trips, two aspects of concerns are brought to my attention.
One is the travel efficiency of taxis. Since the overall demand from passengers is greater
than the available taxis and drivers, each taxi must travel around in the city a lot to pick
up and drop off passengers distributed everywhere. Even though green taxis only pick
up passengers in certain boroughs, the total active area is still quite large. When the last
drop-off location is far from the next pick-up location, the taxi has to travel vacantly for a
relatively long time, which is a waste of time and resources. It would be ideal to connect
the trips which one’s starting time and location are close to the other one’s ending time
and location, so that one taxi could serve both of them back to back. It is also a common
phenomenon in cities that in some areas taxis fall in short with a high volume of requests,
but in other areas, taxis are waiting for requests or running vacantly. A good strategy is
needed to distribute taxis in geographical and time-space appropriately, according to the
demand level.

Another aspect is the energy consumption and environmental impact of motor vehicles.
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From the Energy Consumption Estimates table on the U.S. Energy Information Administra-
tion website [12], New York is ranked #5 among all the states on petroleum consumption in
2015. More than three-fourths of petroleum products consumed in New York are used in the
transportation sector. Accompanied by the great amount of petroleum use is the greenhouse
gas (i.e.CO2) emission. In figure 1.1, fuel combustion from transportation alone contributes
to over 40% of the total CO2 emission from all the sectors. And those CO2 accounts for
83% of total greenhouse gases. From figure 1.2, the proportion of greenhouse gas emission
from transportation in the entire U.S. is only 28%, but the percentage in New York is 34%,
suggesting the emission from transportation in New York is more intensive than in most
other states.

Figure 1.1: 2014 CO2 Emissions from Fuel Combustion by End Use Sector (Includes Net
Imports of Electricity)[8]

Figure 1.2: 2014 GHG Emissions by Sector: New York State and U.S.[8]

The statistics and figures reflect how much energy is consumed and greenhouse gas
is generated by transportation in New York, in comparison with other states. There is no
specific information on what proportion of consumption or emission comes from taxis.
However, we realize that the impact of NYC motor vehicles on the environment is serious,
and we hope to reduce it by decreasing unnecessary travelings in the city. It might be
difficult to do with public transportation like subway, buses, since the travel plan is fixed. It
is more possible to realize with taxis, because there is high flexibility in the travel plan.
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1.2 Problems and Approaches

Motivated by the two concerns discussed above, I mainly addressed Optimal Transport

and Ridesharing problem in this paper. Both of the problems aim at providing a better
transportation plan than the current trip records. The proposed transportation plan shall have
higher efficiency in riding passengers, less waiting time on both sides (passenger and driver),
less vacant traveling and operational cost.

Chapter 2 mainly talks about Optimal Transport. It is the study that deals with the
allocation of resources [9]. Considering the available taxis as resources, we are trying
to allocate them to specific geological areas to meet passenger demands. With some
techniques associated with the optimal transport theory, it is possible to compute the desired
transportation plan.

Assume the drop-off and pick-up locations are spaces with some density distribution. I
want to find the mapping from drop-off to pick-up locations that achieves minimum total
cost. The algorithm for computing total cost is adapted from the paper "Sinkhorn Distances:
Lightspeed Computation of Optimal Transportation Distances", where an entropy term
added to the minimization. Two separate assumptions are made: one assumes both the
drop-off and pick-up locations are discrete, and the other deals with the case where drop-off
location is considered as a continuous variable, while the pickup location remains discrete.
For different assumptions, I use a different method to work with the location data obtained
from data sets. Then I visualize the transportation plan resulted from each approach.

Chapter 3 is about the Ridesharing problem. Taxi ride-sharing is an environmental-
friendly and economic way of traveling. From the society’s perspective, more taxi rides
shared means that there are smaller traffic amount on the road, especially during rush hours.
It helps to ease the problem of traffic congestion, particularly in big cities. Shorter total
traveling distance brings decreased gasoline consumption and greenhouse gas emissions,
which is beneficial for saving energy and improving the quality of the environment. From
individual’s point of view, typically sharing a ride with someone does not cause too much
additional travel time, but could save a big portion of their taxi fare. Less traffic on the road
also helps them to get to their destination faster. During busy time or at busy areas, even
getting a taxi to ride is difficult. Ridesharing allows people to get taxis much easier.

We see that ridesharing is a promising approach. However, in reality, carpooling with
someone is far less convenient than hailing a taxi directly on street. There are so many
ongoing rides happening every minute from all over the place. Finding an optimal one going
in the similar direction to join could be quite challenging. In the chapter, a simple ride
searching criterion is proposed to pair up distinct trips that could be shared in practice. Then

3



from a modeling perspective, a statistical model is described to fit the trip data and simulate
potential shared trips information.

In both of the problems, I utilized some statistical tools, such as kmeans, kernel density
estimation, and many statistical distributions (multivariate Gaussian, Poisson, exponential,
Dirichlet, etc). The R packages are of great use to the application of those techniques.
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CHAPTER 2

Optimal Transport

2.1 Data Overview

The data of interest comes from the NYC Taxi & Limousine Commission website.[7] The
data set includes information about three types of trips in New York City: yellow, green and
FHV. The yellow taxi provides transportation for passengers in all five boroughs via street
hails. Green taxi also called "Boro taxi" is affiliated with the Boro Taxi program. It can be
dispatched to pick up passengers in northern Manhattan, the Bronx, Queens, Brooklyn and
Staten Island and at the airports, but may not be available for street hails except Manhattan.
All data is provided in csv format, each sheet containing the trip information for one month
between 2009 and 2017.

We are mainly interested in yellow and green taxi trips, both of which have almost the
same variables about trip time, location, fare, etc. However, the yellow trip data sets are
much larger than the green data sets with more than 12 million trip records for each month,
while the green data sheet only has around 1.5 million records. It is much easier to work
with green trip data.

Before the middle of 2016, all the drop-off and pick-up locations are recorded as the
exact longitude and latitude. Since July 2016, the drop-off and pick-up locations are recorded
as locationID, which refers to specific Borough, zone, and service zone information.
To work directly with the location points, it is preferred to have the longitude and latitude
values. 2015 is the most recent year that all data sheets recorded location using longitude
and latitude. Therefore, the green trip data of 12 months in the year 2015 are selected to
perform the analysis.

There are 21 variables in each data set: VendorID (indicator of record provider), pickup
datetime, dropoff datetime, Passenger count, Trip distance, pickup longitude, pickup latitude,
RateCodeID (standard rate or other), Store and forward flag (if the trip record was held in
vehicle memory before sending to vendor), dropoff longitude, dropoff latitude, payment
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type (credit or cash or other), fare amount (time and distance fare), Extra (Miscellaneous
extras and surcharges), MTA tax, improvement surcharge, tip amount, tolls amount, total
amount (charged to passengers), and trip type (street hail or dispatch). The variables most
relevant to this study are the date time, longitude and latitude for drop-off and pick-up.

The data visualizing figures only show the result of working with January 2015 green
trip data. It is found that there is not much variation in the distribution of variables between
any two months, and computing for all the data sets is quite slow.

We are firstly interested learning about the geological distribution of drop-off and pick-up
locations on the real map of New York City.
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Figure 2.1: pick-up Density
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Figure 2.2: drop-off Density

In both figures, the scale of location density is shown as the gradient color on the map.
Areas covered by more red color indicate a larger number of trips have drop-off or pick-up
locations around here. In the pick-up figure, the dark red area is in northern Manhattan,
a lighter red area is in northern Brooklyn, western Brooklyn and Queens also show some
pick-up location distribution. The drop-off figure is similar, except that the trip locations are
more intensely distributed in the Manhattan area, and the rest are distributed more sparsely
and uniformly in other areas than in the pick-up figure.

The figure below gives a clearer look at the distinct drop-off and pick-up locations in
terms of longitude & latitude in one plot, marked by red and green color respectively.

We can see that the red points are centralized in three irregular shapes of clusters in
the north, middle part, and southwest. The green points are distributed more loosely and
sparsely, but in Manhattan area, specifically Hell’s Kitchen Midtown, it shows clear street
patterns. The result corresponds to what we got in Figure 1. We may conclude that green
taxi picks up from several neighboring boroughs and drops off mainly in Manhattan.

The data sets include intensive taxi trips, which means there is a great demand for taxis
in New York City. A key question to be asked is how to find an efficient way to distribute
taxis between trips so that the traveling and operational cost would be minimized, while all
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Figure 2.3: Location Points Distribution. The red points represent pick-up locations and
green points represent drop-off locations.

the passengers get the requested rides as soon as possible. I would like to find an optimal
transport plan that provides directions for vehicles from where they drop-off passengers to
where they need to pick-up the next. Optimal means the total distance that vehicles travel is
minimized.

Here is the outline for the rest of this chapter: In Background section 2.2 the problem is
set up in the mathematical context and notations are introduced; the Algorithm section 2.3
gives a detailed explanation of the Sinkhorn-Knopp’s fixed-point iteration algorithm; Sec-
tions 2.4 and 2.5 Discrete Approach and Semi-Discrete Approach talk about the procedure
of performing each approach and their outcomes.

2.2 Background

2.2.1 Data Pre-Processing

The data obtained are individual trip records. The variable "dropoff _ datetime" specifies
the exact time it was dropped off, same for the pickup_datetime. To study the transition
between hours regardless of day and month, we parsed the trips with the same drop-off and
same pick-up hour together. Each dataset contains the trip that was dropped off or picked up
within the same hour. Therefore we obtained 24 data sets for drop-off and 24 data sets for
pick-up.
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2.2.2 Transportation Theory

It is used in mathematics and economics to study the optimal transportation and allocation
of resources.[9] The problem was formalized by the French mathematician Gaspard Monge
in 1781. In the 1920s, A.N. Tolstoi was one of the first to study the transportation problem
mathematically. Major advances were made in the field during World War II by mathe-
matician and economist Leonid Kantorovich.Consequently, the problem as it is stated is
sometimes known as the Monge–Kantorovich transportation problem. Since our problem
also deals with the allocation of resources and trying to find an optimal solution, we decided
to work on this approach.

Monge and Kantorovich Problem Let X and Y be two metric spaces, c be a measurable
function on X and Y, µ, ν be the probability density on X and Y, aim to find a map T:
X → Y that the following function is minimized [9]:

∫
X

c(x, T (x))dµ(x) (2.1)

T (x) is constrained by T (µ) = ν. Here T is the mapping that transfers some density in X
to Y. Since we want the total X to be transferred to exactly Y, the constraint is set. c(x, T (x)

evaluates the transportation cost between x and T (x) where x is one unit of mapping. To
get the total cost, take the integral on the entire X.

2.2.3 Notations

• Mass Distribution r, c
Assume drop-off and pick-up locations are two continuous space with various location
points. At each point, we could count how many vehicles are at or around this location.
The proportion of vehicles over the total vehicles at the same time is the density or
mass for this location point. Hence obtain a mass distribution for drop-off location
called r and one for pick-up location called c. r and c are vectors with the same
length as the number of locations involved in each distribution. Note that since each
component of r and c is a proportion, the sum of each of them is 1.

• Cost Matrix M
In the transportation problem, cost refers to the travel distance. The cost matrix M
is an m× n matrix, where m is the length of r and n is the length of c. The rows of
M indicate drop-off locations and columns indicate pick-up ones. Each entry of M is

8



the pair-wise distance from a drop-off location to a pick-up location. e.g. Mij is the
distance between location i and location j.

• Mass Transfer Matrix P
P is also anm×nmatrix denoting the mass transfer from drop-off to pick-up locations.
The rows of P indicate drop-off locations and columns indicate pick-up ones. Pij is
the mass that is transferred from location i to location j. For each drop-off location,
the mass is the sum of mass transferred to all pick-up locations. Therefore the row
sums of P should equal to the drop-off mass distribution vector r. For each pick-up
location, the mass comes from the mass of all the drop-off locations, therefore the
column sums of P equal to the pick-up mass distribution c. Since both the sum of r
and sum of c is 1, can see that sum of P is also 1.

• Entropy Constraint h(P)
This is a term not directly related to the problem. However, computing Sinkhorn’s
distance requires the term to be part of minimization. Entropy is a measure of
randomness in the variable. The larger h(P) is, the more random or diffuse the mass
transfer plan would be. The smaller h(P), the more set or directed the plan is. More
mathematical interpretation of entropy is discussed in the Algorithm section.

2.2.4 Problem Setup

We want to find the optimal transportation plan between r and c given some fixed cost M.
Now that we have the mass transfer matrix P, the cost matrix M for a unit of the mass
transfer, so the total cost will be the dot product between P and M. The total cost:

〈P,M〉 =
∑
i,j

pijmij (2.2)

Define U(r, c) =
{
P ∈ Rm×n|P1m = r, P T1n = c

}
U(r, c) is the set of all the P that

satisfy the row sums of P match r, column sums of P match c. P should only map from mass
distribution r to c. The optimal transportation plan means the minimum cost, so our desired
total cost is defined [2]:

dM(r, c) = minP∈U(r,c) 〈P,M〉 (2.3)

The desired P achieves above. The modification of the setup is done in the next section.
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2.3 Algorithm

2.3.1 Entropy Regularization

2.3.1.1 Entropy and Kullback-Leibler divergence

Entropy is a measure of randomness in the variable. When entropy is maximized, the change
of variable becomes uniform. When it is minimized, the variable has a set way of changing
or moving.

For a vector r ∈
∑

m, its entropy h(r) = −
∑m

i=1 ri log ri

For a matrix P ∈ U(r, c), its entropy h(P ) = −
∑m

i=1

∑n
j=1 pi,j log pij

Kullback-Leibler divergence (called KL) is defined as follows [2] :
Let P, Q ∈ U(r, c), then KL(P ||Q) =

∑
ij pij log

pij
qij

An intuitive way to think of KL is how much randomness P has diverged from Q. In our
problem, Q = rcT which indicates the plan where each trip is independent of one another,
or the mass transfer is completely random. KL(P ||Q) is the reduced randomness of P
comparing to the maximized randomness.

To draw connections between KL(P ||rcT ) and the individual entropy of P, r and c, we
could actually show

KL(P ||rcT ) = −h(P ) + h(r) + h(c) (2.4)

Proof:

KL(P ||rcT ) =
∑
ij

pij log
pij
ricj

=
∑
i,j

pij log pij −
∑
ij

pij log(ricj)

= −h(P )− (
∑
ij

pij log ri +
∑
ij

pij log cj Notice
∑
j

pij = ri,
∑
i

pij = cj

= −h(P )− (
∑
i

ri log ri +
∑
j

cj log cj)

= −h(P ) + h(r) + h(c)
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2.3.1.2 KL Threshold

Now, We want to limit KL(P ||rcT ) to a certain threshold α (by the concavity of entropy) to
make a small divergence. By doing so, the entropy of P is still sufficiently large:

KL(P ||rcT ) ≤ α⇔ −h(P ) + h(r) + h(c) ≤ α (2.5)

Define again the set of P that satisfies the mapping criteria [2]:

Uα(r, c) =
{
P ∈ U(r, c)|KL(P ||rcT ) ≤ α or h(P ) ≥ h(r) + h(c)− α

}
(2.6)

This makes sure that the set of P in U(r, c) have sufficient entropy with respect to h(r)

and h(c).

2.3.1.3 Include Threshold in Minimization

The reason why an upper bound is given to KL(P ||rcT ) is to ensure the degree of random-
ness in P. Retrieve that the value measures how much less entropy P is comparing to the
complete randomness or freedom to move. The larger this difference is, the less entropy P
will have, the more trips are dependent on one other. The optimal plan we want should not
be too restricted but to maintain a minimal degree of freedom for individual trips. Thus we
add a threshold to the minimization problem.

Using the notions above, incorporate the entropy constraint α to alter our original
problem. The previous dM(r, c) becomes [2]:

dM,α(r, c) = minp∈Uα(r,c) 〈P,M〉 (2.7)

This result is called Sinkhorn Distance. The P has to be selected from the subset with an
entropy constraint. The new dM,α(r, c) is a more desired total cost.

For each α, can uniquely find a λ so that

dλM(r, c) =
〈
P λ,M

〉
, P λ = argminP∈U(r,c) 〈P,M〉 −

1

λ
h(P ) (2.8)

Each λ gives a solution of of P; as λ approaches infinity, P λ = argminP∈U(r,c) 〈P,M〉
To find the minimum value of dλM(r, c), take the derivative with respect to P:
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∂

∂pij
(
1

λ

∑
i,j

pij log pij + pijmij) =
∑ 1

λ
(log pij + 1) +mij = 0

log pij + 1 = −λm_ij

pij = exp(−λmij − 1)

∝ exp(−λmij)

It is clear that the optimal P should be proportional to matrix K = exp(−λM). The
question remains is how to properly scale K to meet the mapping criteria.

2.3.2 Sinkhorn’s Theorem

The theorem is stated as the following:
If A is a n× n matrix with strictly positive elements, then there exist diagonal matrices

D1 and D2 with strictly positive diagonal elements such that D1AD2 is doubly stochastic
[10]

Doubly stochastic matrix refers to a matrix whose rows and columns sums to 1.
The theorem also works for non-square matrices.
Applying to our problem, A = K = exp(−λM), say there are two vectors u and v such

that P λ = diag(u) exp(−λM)diag(v). Then the row sums and column sums of P λ should
match with r and c.

The way to compute vectors u and v is to follow the iterative method in Sinkhorn-
Knopp’s algorithm:

u = r/(K ∗ v) –compute a row scaling u such that row sums of K matches r
v = c/(K ∗ u) –compute a column scaling v such that column sums of K matches c
Update u and v until convergence [3]

2.3.3 Algorithm

The algorithm follows what is in the paper [2] that has been referring to. It takes the values
of r, c,M, λ and gives a result of the total cost and transportation plan associating with λ.

The vector components of mass distribution r and c should be positive. M is scaled by
dividing its maximum component, because the entry values are too large for the loop to
work. Use x to denote the v which needs to be iterated.
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Algorithm 1 Computing dλM with Sinkhorn-Knopp’s iteration

Require: r, c,M , choose a λ
Ensure: dλM , P λ

1: r = r(r > 0); c = c(c > 0); M = M/max(M); K = exp(−λ ∗M)
2: x = rep(1/r, r)
3: while x does not converge do
4: x = diag(1./r) ∗K ∗ (c. ∗ (1./(t(K) ∗ (1./x))))
5: end while
6: u = 1./x; v = c. ∗ (1./(t(K) ∗ u))
7: dλM(r, c) = sum(u. ∗ ((K. ∗M) ∗ v))
8: P λ = diag(u)e−λ∗Mdiag(v)

2.4 Discrete Approach

The discrete approach assumes both the drop-off and pick-up distributions are discrete. We
took the same method to work out the two mass distributions: divide a block of NYC equally
to smaller blocks, and assign each trip to the closest block centroid. The proportion of
vehicles at a drop-off or pick-up hour assigned to a centroid is the mass at that drop-off or
pick-up location.

2.4.1 Steps

1, Choose the central area of NYC, longitude [-74.5, -73], latitude [40,41.2]
2, Divide the area into 200x100 blocks equally
3, Take the centroids of those smaller blocks as our possible mapping locations
4, Assign each drop-off & pick-up point obtained from dataset to its closest centroid in

terms of Euclidean distance
5, The centroids with non-zero mass become the new drop-off & pick-up locations
6, Calculate the mass for each location by counting the number of trips assigned to the

location and diving the total number; obtain two distributions for drop-off & pick-up
7, Calculate the cost matrix for the drop-off and pick-up locations using the function

distVincentyEllipsoid, which gives the spherical pairwise distance between drop-off and
pick-up locations

8, Choose lambda values and compute the total cost dλM for each

2.4.2 Result

By choosing a grid of λ values, plot the dλM curve:
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Figure 2.4: Total cost outcome as λ increases

From the previous derivation

dλM(r, c) =
〈
P λ,M

〉
, P λ = argminP∈U(r,c) 〈P,M〉 −

1

λ
h(P )

From the formula we see that the larger λ is, the less h(P ) is involved in minimization,
hence the result would be closer to only minimizing 〈P,M〉. In the plot, the cost value is
monotone decreasing when λ is starting from some small values, and turned flat at some
point. But we should not choose λ to be close to infinity, because in that way h(P ) could
get large and the plan has high randomness. We want h(P ) to be minimized with the total
cost in some degree so that the plan is directed or set. λ specifies how much randomness
does the plan allow.

On the graph, decide to choose the λ where the curve turns from decreasing trend to flat.
Read from the plot gives λ=500.

2.4.3 Plots and Interpretation

To compare the differences of transport plan computed with different λ’s, I plotted the plans
for λ=500, λ=100, λ=1, λ=0.01.

Each red point represents a drop-off location, and each blue point represents a pick-up
location. The gray area is the overlap of many gray edges connecting red and blue points. If
there are fewer points, the gray edges are more visible.

I made the optimal P which is the mass transfer matrix a giant vector masst, each entry
being the mass transfer from one drop-off to another pick-up location. For each edge or
individual trip plan, the starting and ending points are the associated drop-off and pick-up
locations, while the width of the edge is determined by the value of the corresponding entry
in P. The plots below are not distinguishable. However, by looking at the range of masst
in each plot, we may get some information on the transportation plan.

It is observed that when λ is larger, the associated masst values are bigger. It is
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Figure 2.5: Transportation plot λ = 500 Figure 2.6: Transportation plot λ = 100

Figure 2.7: Transportation plot λ = 1 Figure 2.8: Transportation plot λ = 0.01

because larger λ makes the regularization term h(P ) less involved in minimization, we
are considering less of entropy, so h(P ) is smaller, we have a more directed plan, causing
masst (the mass transferred from one location to another) have larger values.

2.5 Semi-Discrete Approach

For this approach, assume drop-off distribution is continuous, and pick-up distribution is
discrete. So it is a mapping from continuous to discrete space.

The general idea is to sample some drop-off location points from an assumed continuous
distribution, and obtain some new pick-up points from the discrete distribution. Then repeat
the procedures discussed above to get the optimal transport plan.

2.5.1 Kernel Density Estimation

Since we assume the drop-off location to be a continuous random variable, we want to
construct a smooth probability density for it, and sample new data from the density. A
natural selection would be Kernel Density Estimator (KDE). It is a non-parametric method
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to inference the population distribution based on finite sample points. If (x1, x2, . . . xn) are
samples drawn from a continuous density f , then the kernel density estimator is defined as:

f̂ =
1

n

n∑
i=1

Kh(x− xi), Kh(x) =
1

h
K(

x

h
) (2.9)

K is the kernel function placed on each individual point. Usually, the standard normal
function is used for univariate data. The h is the bandwidth parameter, for the Gaussian
kernel case is the variance matrix. The choice of h is flexible, it influences the performance
of f̂ crucially, so there are many research work done about it. Popular methods used are
plug-in selectors, cross-validation selectors, and some adaptive estimation methods such as
balloon estimator and pointwise estimator.

The "ks" (stands for kernel smoothing) package in R has the functionality to compute
kernel estimators and bandwidth selectors by user’s choice, as well as displaying kernel
estimators [4]. Since the sample size is large, I chose the plug-in selector, where the
bandwidth matrix is assumed constant. It ran much faster than the sample point estimator,
where the bandwidth varies with each data point.
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Figure 2.9: Original Dropoff Points and
Contour Plots
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Figure 2.10: KDE Sampled Dropoff
Points

The plot on the left is a mapping of all the drop-off location points. The red curves
show the 25th, 50th, and 75th percentile of highest density regions, coming from the kernel
density estimator. The plot on the right is the mapping of the sampled points drawn from the
kernel function. Comparing to the original points, the samples seem to be more clustered
around where the contour plot is, and the distribution looks more continuous.
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2.5.2 K-Means Clustering

The assumption of pick-up locations are still discrete, but we use a different method to get
the mapping locations and associated mass distribution.

In the previous approach, the pick-up location centers are selected manually with equal
distances on the range of New York City. This method is simple, but the chosen centers do
not represent the most "popular" or "important" pick-up centers. We consider K-means to
find the cluster centers that could best represent the distribution of location points.

Since the number of clusters is not known, I ran kmeans for several k values on all the
pick-up points, and compute each of their total within-cluster sum of squares.

200 400 600 800 1000
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k
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Figure 2.11: Total Within Cluster Sum of Squares in Kmeans

The smaller within-cluster sum of squares means the points are closer to their assigned
centroids, so we want to find a not too large k that minimizes it. By the "elbow" method,
when k=850 the total withinss value is close to the minimum, and the curve is almost
flat (see 2.11). So we set K=850 and run kmeans for the pick-up location points. Then take
the cluster centers as the new pick-up locations to map to, the proportion of original points
assigned to this location as its mass. Now we have a new pick-up density distribution.

2.5.3 Results and Discussion

After getting two new locations and their mass distributions, repeat the algorithm in section
2.3. The results are shown in the following for two different λ.

The two plots below show the result by computing with λ = 1 and λ = 100. Again, the
red points are drop-off and blue points are pick-up locations, the gray line segments are the
mapping directions for each pair of drop-off and pick-up points. The plots only contained
10,000 trips.
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Figure 2.12: Semi-Discrete optimal trans-
port for λ = 1
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Figure 2.13: Semi-Discrete optimal trans-
port for λ = 100

The result looks fairly the same as the previous approach, except that there are a
significantly smaller number of pick-up (blue) points, since we only chose 850 cluster
centers by kmeans. The range of masst from the two plots are slightly different. Notice
that when λ is larger, masst is larger, because the entropy term is less penalized, the
algorithm is likely to yield a more "directed" than "random" plan, thus each transportation
route carries more mass. The conclusion corresponds to what we got from the previous
approach.
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CHAPTER 3

Ridesharing

The goal of this chapter is to provide technical principles for real life ridesharing, based on
the same dataset described in Chapter 2. The available NYC taxi data has a good amount of
trip record information to analyze. I mainly used the green data in August 2015. In the next
section, I will talk about the prediction of travel time from one location to another; Section
3 presents a simple searching criteria to find potential rides to pull together, and the results
applied on part of the data; Section 4 models distinct shared rides with Poisson, Gaussian,
Uniform and Dirichlet distribution, estimates parameters from the original data, and the
simulated data.

3.1 Travel Time Prediction

An important concern in ridesharing is that passengers should not wait for too long. To
know the waiting time, we need not only know the pick-up and drop-off time for each trip,
but need the time traveling from one pick-up location to another. The natural assumption is
that the travel time is positively correlated with the trip distance. However, it is also affected
by how busy the traffic is, which relates to the time of the day, the location of pick-up, etc.

The goal is to build a regression model to predict the travel time given the available
information as accurate as possible. The trip duration is in terms of minutes, calculated
by subtracting the pickup time from the dropoff time of each trip. I manually selected 5
relating variables to include in regression: trip distance, longitude/latitude coordinates of
pickup and drop-off locations; and I also calculated two predictors: the total number of
vehicles (proportion of rides in the hour) and the average speed (miles per minute) in each
hour. My intuition is that the location to pick-up and drop-off passengers significantly affect
the travel time, since the road conditions in different areas could vary; some areas tend to be
busier and have more traffic, so vehicles could not move as fast as on the clear road. The
time of the day also plays a role in determining the travel time in two aspects. The more
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vehicles traveling at the same time, the longer each trip is expected to last; the average speed
in a particular hour directly impacts the travel time. Trip distance is for sure a significant
predictor, usually the longer distance to travel, the more time it takes.

3.1.1 Box-Cox Transformation

The first attempt was to build a linear regression model with all the proposed variables. The
condition of taking the Ordinal Least Squares approach includes that the response variable
follows the Gaussian distribution, and the error variance remains consistent. However, in
the real data, trip duration distribution is skewed to the right (see 3.1), which violates the
Gaussian assumption. I applied a power transform to convert trip duration to normally
distributed.

Figure 3.1: Histogram of original trip du-
ration

Figure 3.2: Box–Cox transformed trip
duration

In linear regression, Box-Cox power transformation is often used to modify the distri-
butional shape of the response variable so that the residuals are more normally distributed.
The general form is [1]:

y(λ) =


yλ−1
λ
, if λ 6= 0

log y, if λ = 0

yλ is the vector of transformed observations, and the parameter λ is chosen by maximum
log-likelihood. The response y is required to be positive, and in this case well satisfied. Here
the selected λ = 0.04. From 3.2, see that after transformation, the response variable trip
duration is approximately normal.

Take the transformed trip duration as a response variable, with variables discussed above
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to fit a linear model. I also added interaction terms between pick-up longitude and latitude,
drop-off longitude and latitude. The result suggests that all the variables are statistically
significant. However, I also found that with the same response, no matter what linear model
to fit by including any irrelevant predictors, the summary statistic gives significantly small
p-values. Usually I rely on the p-value to determine which variables are important, but in
this case, I suspect the p-values have the same functionality. It might be due to the fact
that the response variable is sufficiently normal. I am not sure here and did not proceed
regression with Box-Cox transformed response.

3.1.2 Some Regression Models

I tried some regression methods to model trip duration. To compare their performance, I
randomly split the data into 80% training set and 20% testing set. Fit the models using
training data, and make a prediction on the test data, then calculate the test Mean Square
Error for each model.

3.1.2.1 The Linear Model

The first step was to fit a multiple linear regression model with all the variables described
above. When fitting the model, I added two interaction terms between the pick-up location
coordinates and between the drop-off coordinates, since each pair of coordinates, in reality,
represents one variable. The response variable is still the before-transformation trip duration,
in order to compare the test error with other methods.

The result shows that all the predictors included are significant (with p-values < 2e-16),
and the adjusted R-squared achieved 0.6781. The model fit is considered well.

3.1.2.2 KNN Regression

Then I considered KNN (K Nearest Neighbour) regression. KNN predicts the response by
choosing the closest k data points in the feature space and take the average of their response.
The intuition of choosing KNN is that the closer the features are to one other, (i.e. pick-up
locations are close geographically and travel distances are similar), the more likely the trips
cost the same time.

The question is how to choose the optimal parameter k. When k is too small, the model
is too complex and could cause the problem of overfitting. When k is large, each observation
is trying to find too many points to take an average, the computational cost would be too
large.
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The variables to fit KNN model are the same in the linear model. Usually, people
pre-process the data by centering and scaling before fitting KNN, in order to eliminate the
effect of different measure units of features. Here centering and scaling are not done, except
that I manually scaled up the proportion of rides by 10 to make the value be between 0 and
1, which is on the same scale as speed. I believe the raw Euclidean distance would roughly
represent the difference between two observations in the data in terms of estimating the
trip duration. Even though the location variables are not scaled, it makes sense to apply
Euclidean distance directly on them. The trip distance has a wider range than the other
two variables (proportion of trips and average speed), which means the difference of this
variable in the model would be more dominating, but this variable is also considered more
determining in the prediction of trip duration.

Figure 3.3: Mean Squared Error of training and test data when fitting KNN for different k

In 3.3, The blue curve shows training MSE as k increases, while the red curve shows the
change of test MSE. The blue and red broken lines are the MSE of the linear model. Small
k gives very small training error and large test error; as k increases, the two errors get closer
and closer, eventually converge to an error smaller than the OLS MSE. It suggests that the
performance of KNN model beat the linear model.

3.1.2.3 PCR and PLS

In the linear model, the dimension of predictors is 7. It is a little bit large for regression
and the coefficients are not so stable. I considered applying Principle Component Analysis
(PCA) to the predictors. The technique could well reduce the dimension of original data,
while keeping most of the information.
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The variables are not scaled for the reason above. PCA results suggest that the first
component already captured most of the variance in the data, so choosing the number of
components 1 to fit a Principle Component Regression model, and predict on the test set.

Another regression model tried was Partial Least Squares (PLS). This method uses infor-
mation in the response variable to determine the principal component direction, therefore
the selected PCs could be more useful in prediction.

The optimal number of components is selected by finding the minimum cross-validation
error. It turns out the cv errors are quite similar to 1 through 7 components. Apply the PLS
model to the test data with 1 component, and calculate the MSE.

3.1.3 Comparing Results

The following table shows the test MSE of the four models attempted. The KNN error is
when the number of neighbors k = 25.

Table 3.1: Test MSE for Different Models

Model Test MSE

Linear 32.66209
KNN 25.65012
PCR 35.03213
PLS 35.02993

According to the table 3.1, the test MSE for K-Nearest-Neighbour is the smallest. Both
PCR and PLS are based on the linear model, but with some variable selection or variable
transformation techniques. It makes sense that the error of those three methods is close.
The linear model still outperformed the other two, which means dimension reduction is not
very helpful for prediction; there might be some correlation among variables, so adding
interaction terms could help.

In the following analysis, I chose to use KNN to predict trip duration.

3.2 Dynamic Ridesharing Problem

This section describes a searching mechanism that selects pairs of trips to pull together in
order to save time and travel distance. The basic idea for two trips to go along is that both
their travel windows and trip routes have large enough overlap. Unfortunately, the data does
not tell us the exact trip routes they take. We may only assume the route to be a straight line
from the pick-up to the drop-off location.
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The proposed searching mechanism borrows the idea of dynamic ridesharing problem
defined as follows: "given a fixed number of taxis traveling on a road network and a stream
of queries (i.e. a sequence of queries in ascending order of their birth time), we aim to serve
each query in the stream by dispatching the the taxi which satisfies with minimum additional
incurred travel distance on the road network" [5].

I modified the problem by finding some "candidate" taxis for a particular query first,
based on their geographical locations and birth time, then select the one that minimizes the
passenger waiting time among all the candidate taxis. After pulling all the pairs of selected
trips, calculate how much trip distance is saved with under the ridesharing circumstance.
This modification takes the passenger waiting time into more account. The additional
incurred travel distance will be constrained by the starting and ending locations of the taxi.

3.2.1 Ride Searching Procedures

For this data set, I treated each trip record as a new query or passenger request, and all other
trips as potential taxis to share a ride with. For simplicity, consider the maximum number of
rides to be shared is 2. Assume the pickup time is when the query was made, the pickup and
dropoff time for each trip is its starting and ending time. Before the searching, sort all the
taxi records chronologically by their pick-up time. Take a subset of the data, i.e., a set of
trips T that start within the same hour, and apply steps as follows:

1. For each trip (query) indexed by i in T , select the set of trips that show up (start) after
but no later than 5 minutes of its pick-up time t0;

2. Among all the trips selected by step 1, find the subset of trips that start and end within
500 meters around the starting and ending locations ls, le of trip i respectively;

3. From all the trips selected by step 2, select trip j that minimizes tw, the waiting time
of the query i.

tw = tr + tp − t0 (3.1)

Where tw is how long the trip (query) i needs to wait to join another trip, tr is the start
time of each targeted trip, tp is how long for this trip to travel to ls, predicted by the linear
model described in section 2.2.2, and t0 is the pick-up time of trip i or the birth time of the
query.

4. Pull trip i, trip j together, and take both of them out of the set T . Iterate above from
trip i+ 1.

In figure 3.4, the two centers of the circles represent the pick-up and drop-off locations
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Figure 3.4: A trip instance on NYC map with radius 500m circle around starting and ending
locations

for a random trip. The arrow is pointing to the drop-off point. Each red circle is centered at
the pickup/dropoff point, with radius 500 meters. The green points are the pickup points of
proceeding trips, while the orange points are the dropoff points of proceeding trips. The
figure illustrates the idea of selecting trips that start and end within a certain distance to the
query. We would want to find trips that the corresponding green point fall in the circle on the
right and orange point in the circle on the left. The two has to be satisfied at the same time.

3.2.2 Reduced Trip Distance

Given a sequence of taxi rides, we can apply the searching criteria described above, and find
pairs of rides that can be shared or combined together. Based on the result, calculate how
much travel distance is reduced after sharing.

For each pair of proposed sharing trips r1, r2, calculate the following distance:
l1,1: the distance between the pick-up and drop-off location of r1;
l2,2: the distance between the pick-up and drop-off location of r2;
l1,2: the distance between the pick-up location of r1 and the drop-off location of r2;
l1,2,p: the distance between the pick-up location of r1 and r2;
l1,2,d: the distance between the drop-off location of r1 and r2;
If the rides are not shared, r1 and r2 are going separately, and the total distance of them

would be

lnoshare = l1,1 + l2,2 (3.2)

But if combining the two trips together, we want to find the shortest path possible. Since
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we treat r1 as a passenger request, it does not move until the other ride comes, let r2 first
drive to meet r1 at its starting location. Then choose the smaller one of l1,1 and l1,2 to decide
driving to which of the destinations first. After dropping off one of them, drive to another
destination. The total distance would be represented as:

lshare = l1,2,p +min(l1,1, l1,2) + l1,2,d (3.3)

Then for each pair of shared rides, the travel distance saved is

lsave = lnoshare − lshare (3.4)

3.2.3 An Example

I did an experiment with all the trips starting between 8:00 am and 9:00 am on the same
day. There are 1175 trips occurred in total. Eventually, 46 pairs of trips are selected to pull
together. The total distance of these trips without ridesharing is 263738.6 meters, and the
new total distance traveled is 153376 meters. 41.8% of the travel distance is saved.

The result proves that ridesharing does have an effect of reducing travel amount, therefore
saving more energy and generating less pollution.

3.3 Modeling Shared Rides and Individual Trips

This section introduces a way of statistical modeling for ridesharing problem. The general
idea is to make model assumptions on the existing data, then estimate parameters from a
frequentest approach. Plugging the parameters into the model, and simulate new data, then
estimate the parameters again from the simulated data, compare those new parameters to the
previous ones, see if the model fits data well.

3.3.1 Model Introduction

Assume all the shared rides is a cluster on the space of NYC Θ, with features pickup/dropoff
time, pickup/dropoff locations. We can model the number of cluster centers k by Poisson
distribution, with parameters λ1 and Θ:

k ∼ Poi(λ1vol(Θ)) (3.5)
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λ1 represents the number of trips per unit area. Then conditioning on the number
of shared rides k, we can set a uniform prior distribution for the k pick-up locations
θ1p, θ2p, . . . θkp and pick-up time t1p, t2p, . . . tkp. Suppose the range of pick-up time is from
T1 to T2:

θ1p, θ2p, . . . θkp|k ∼ U(Θ) (3.6)

t1p, t2p, . . . tkp|k ∼ U(T1, T2) (3.7)

Notice that in 3.7, it is discrete uniform distribution, since time is a discrete variable
measured by seconds.

Given a pick-up location θjp ∈ {θ1p, θ2p, . . . θkp} and pick-up time tjp ∈ {t1p, t2p, . . . tkp}
from one of the clusters, we can model the conditional drop-off location θjd and drop-off
time tjd. Since the drop-off time is restricted to be later than pick-up time, the difference
between drop-off and pick-up time is only going to be positive, so we model it by Exponen-
tial distribution with parameters λ2. The drop-off location will be modeled as a Gaussian,
which is centered at the pick-up point θjp with variance Σ1:

θjd|θjp ∼ N (θjp,Σ1) (3.8)

tjd|tjp ∼ Exp(λ2) + tjp (3.9)

Now we have k cluster centers, and assume each cluster has a probability π1, π2, . . . πk,
which follow Dirichlet distribution, with parameter α1, α2, . . . αk

π1, π2, . . . πk|k ∼ Dirk(α1, α2, . . . αk) (3.10)

Each αi corresponds to the probability of the i th cluster center πi. Given a cluster center,
we can sample the pick-up, drop-off locations and times for the individual trips assigned to
it. Suppose there are n taxi trips. For each ride i ∈ {1, 2, . . . n}, first sample a cluster center
zi it could belong to:

zi ∼ Dirk(α1, α2, . . . αk) (3.11)

Then from the distributions described above, with the specified cluster zi, we can obtain
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the pick-up location θzip, drop-off location θzid, pick-up time tzip and drop-off time tzid.
These variables serve as the mean of Gaussian distribution to sample the trip pick-up location
xi, drop-off location yi, pick-up time tpi, and drop-off time tdi. Note that drop-off time has
to be greater than pick-up time, so use a truncated normal for that simulation.

xi ∼ N (θzip,Σz1) (3.12)

yi ∼ N (θzid,Σz2) (3.13)

tpi ∼ N (tzip, σ
2
1) (3.14)

tdi ∼ N (tzid, σ
2
2)1{tdi > tpi} (3.15)

3.3.2 Parameter Estimation

The first step is to get some trip observations during a time interval, apply kmeans to find
their cluster centers. I used all the trips that started during 8-9am on 08/01/2015. Since the
number of clusters k is required to specify in kmeans, I tried a variation of k values between
100 and 500, and selected an optimal one via gap statistic. A method described by [11] is to
compute statistic:

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
(3.16)

Where B(k) and W (k) are between- and within-cluster sum of squares, for k clusters.
The maximum of CH(k) associated with the best k.

The data suggests that the best k value is 250. The volume of Θ is approximated by the
area of New York City that green taxis could appear at. By 3.5, the maximum likelihood
estimation of λ1vol(Θ) is the mean of cluster numbers k, in this case 250. Then get the
estimated result:

λ1 =
k

volΘ
= 1.021117 (3.17)

Then following 3.6 and 3.7, I generated 250 pickup locations and times from the uniform
distribution. For simplicity, the pick-up locations are sampled from the 8-9am trips in
September. T1 and T2 are the earliest and latest pick-up time in the original trip data used
for clustering.

Then the drop-off locations are obtained by sampling from the Gaussian distribution,
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centered at each corresponding pick-up location. The covariance matrix Σ1 is estimated by
the pick-up locations. The following figure shows the sampled locations points. Each plot
contains 250 points which are the number of clusters.

Figure 3.5: Sampled Uniform Pickup
Points

Figure 3.6: Sampled Gaussian Dropoff
Points

To sample the drop-off time, I first estimated the exponential parameter λ2. It is modeling
the difference between the drop-off and pick-up time which is trip duration, so the parameter
is the reciprocal of the trip duration (in minutes) mean:

λ2 =
1

mean(tripdur)
= 0.07813695 (3.18)

The next step is to estimate the Dirichlet parameters. In Minka’s paper [6], it describes a
method to estimate all the αk in terms of moments of the data:

E[πk] =
αk∑
k αk

(3.19)∑
k

αk =
E[π1]− E[π2

1]

E[π2
1]− E[π1]2

(3.20)

πk is the probability of a single trip being assigned to cluster k, and can be estimated by
the proportion of trips in the kth cluster. In order to obtain the first and second moments of
πk, I generated over 100 sets of π1, π2, . . . πk. I extracted 8-9am trips on each day of August
2015, each time randomly sample 500 trips on the same day, assign them to the closest one
of the 250 cluster centers, then calculate the proportion of assigned trips in each cluster as
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πk. The time variables in each sampled data are processed to be around the same range of
time as the cluster centers. By formula 3.20 the result:

∑
k

αk = 570.9403 (3.21)

And the 250 individual αk are calculated by 3.19.

3.3.3 Simulate Data and Compare Parameter Estimation

From the probability distribution of cluster centers, individual trip data (pick-up time/location,
drop-off time/location) could be simulated from normal and truncated normal density, as
described in Section 3.3.1. Then repeat the procedures in Section 3.3.2: apply kmeans
to choose the optimal cluster number k′ = 500; calculate the mean of trip duration in
the simulated data; sample 8-9am trip records through the month, assign them to the 500
new cluster centers and calculate the proportion to estimate the α′ks. Results of the newly
estimated parameters:

λ′1 =
k′

volΘ
= 1.731122 (3.22)

λ′2 =
1

mean(tripdur′)
= 0.07901255 (3.23)∑

k

α′k = 669.2394 (3.24)

The parameters estimated from simulated data are similar to but not very close to the
parameters got previously. This suggests that the model for the trip data makes sense to a
certain degree, but is not a great fit. Ways of improvement are discussed in the next chapter.
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CHAPTER 4

Conclusions and Future Outlook

4.1 Conclusions

In the Optimal Transport chapter, the two approach (discrete and semi-discrete) eventually
give pretty similar results. The difference in visualization is due to the choice of locations
points to plot. The agreement of two approaches might be an indication that the Sinkhorn’s
algorithm could provide valid solutions to the optimal transport problem. It is also possible
that it does not matter which distribution the data points of interest come from, because the
key steps to solve the problems are exactly the same.

In the Ridesharing chapter, one trivial conclusion is that after searching for the rides that
start and end at the same time and around the same area, combining them would actually
save some travel cost. The statistical modeling of shared rides is reasonable, and could be
applied for practical means if the model is additionally perfected.

4.2 Limitations

4.2.1 Sampling Uniform Pickup Points

The pick-up locations of clusters should be uniformly distributed on the New York City
space. Instead of doing uniform sampling, I randomly sampled points from another month
data. However, the actual distribution of pick-up locations is not uniform, some areas have a
distribution of higher density than others. This approach is not valid.

To draw uniform samples, the difficulty is to specify the boundary of the green taxi
pick-up area, since the area is not a regular geometry.
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4.2.2 Sampling Drop-off Points Conditional on Pickup

In 3.8, I used the covariance in the pick-up points as the covariance matrix for this Gaussian
density to sample pick-up points. It is very unlikely to be accurate. Initially, the following
relation is suggested to me:

E ‖x− y‖2 ∼ σ2χ2
2 (4.1)

Where x and y are pick-up and drop-off locations, σ2 is the variance associated with all
the trips whose pick-up and drop-off are in (x, y). The expectation of the l − 2 norm of trip
distance follows the chi-square distribution with a multiplier σ2. If x and y are the location
pairs within each cluster, then the variance of drop-off location given pick-up location is
estimated as:

σ2 =
‖x− y‖2

2n
(4.2)

Then use σ2 multiple by 2x2 identity matrix as the covariance matrix Σ in 3.8, so each
cluster has a Σj . However, when I apply this variance estimation, the resulted drop-off
points are mostly in the water area on NYC map, which is not desired. I need a better way
to make sure the simulated points are within space Θ. For the current analysis, I discard this
approach. Using the variance from pick-up points at least gives the sampled points on land.

Another problem came to me is that even though the sampled drop-off points are on
land, they do not represent the true drop-off area.

Figure 4.1: GReal pick-up Points Figure 4.2: Real drop-off Points

The figures shown here are Distribution of Real Pick-up and Drop-off Points. We can
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see that the there are no pick-up points in lower Manhattan area, but there appear many
drop-off points. If we only sample drop-off points centered at pick-up points, we might not
get anything in this area. Then the simulated data does not correspond to the real case. The
sampling method to simulate drop-off points needs a big improvement.

4.2.3 Stability of Dirichlet Parameters

In 3.20, it only uses the moments of the first cluster probability π1. In the paper [6] it says
using any other πk could also estimate

∑
αk. But I checked the generated data, and found

that the value of
∑
αk varies a lot with different πk. Now it is a question whether the result

I obtained is accurate or not, since it is so unstable.

4.3 Future Directions

4.3.1 Location Coordinates

In the future working with transportation data, I hope to have a better way to treat the
2-dimensional coordinate variable (longitude and latitude) as a one-dimensional variable,
since it would be much easier and more convenient for calculations and model fitting. In
prediction problem, a location being treated as one variable is more desirable because it
contains the full location information, and I expect to have better results in this way.

I found Geohashing to be a good representation of longitude/latitude pairs as geographic
“boxes”. The direct application of Geohash (i.e. calculate the distance between two points)
is not clear to me yet, but I might want to investigate and use more of it in the future.

4.3.2 More Variables and Methods in Trip Duration Prediction

In section 3.1 I only included trip distance, pick-up and drop-off locations, number of trips
in each hour and the average speed per hour in the model. But there are some other variables
that might be associated with duration of a trip. For example, more passenger count could
increase the travel time fixing all other variables, because they might need to be dropped
at different locations and the taxi has to spend some time redirecting and traveling extra
distances. Payment type could also be influential, since paying in cash takes slightly more
time than paying in a credit card. Tip amount is also a potential predictor. If a taxi reaches
to the passenger’s destination faster than expected, it is possible that the passenger gives
more tips. In the future analysis, I would like to include more variables, not limited to the
above 3, to be in the prediction model.
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I would also like to try some tree-based methods in addition to the traditional regression.
I might want to perform bagging, random forest, and boosting. Those methods could also
help do some variable selection as I have more variables.

4.3.3 Bayesian Approach for Parameter Estimation

When estimating the parameters in the model for shared rides, I took a frequentest approach
and estimated them by maximum likelihood. I am also very interested in taking a Bayesian
approach, by applying some MCMC techniques (Gibbs sampling, Metropolis-Hasting).
Then I could estimate parameters from one month of data, and use another month of data to
test the model fit.

4.3.4 Combine of the Two Problems

Essentially, the purpose of both optimal transport and ride share is to efficiently utilize the
available taxis resources to satisfy the demand of passengers. The former deals with the
entire taxi trip at a snapshot of time, while the later looks at individual trips by clusters. I am
looking forward to working on a combination of the two problems, for example, computing
an optimal transport plan for all the shared trips, or pairing up rides to share in the current
macro level optimized transport plan.
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