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Abstract

Transformations are an important aspect of data analysis. In this work we explore the impact of
data transformation on the analysis of high-throughput -omics data. Specifically, we explore two
applications where data transformation plays an important role. The first application is estimating
cell types using gene expression data. Here we develop dtangle, a method that carefully considers
scale transformations when estimating cell type proportion estimates. This method broadly out-
performs existing deconvolution methods in a comprehensive meta-analysis. Secondly, we explore
the role of simple data transformations for the analysis of microenvironment microarray data. In
this section we look at simple data transformations and how they interact with visualization, dis-
covery of latent effects, and data integration. We find that simple transformations applied alone or
in sequence can make salient important aspects of the data.
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Chapter 1

Introduction

1.1 Background, Motivation, and Overview of What is Accom-
plished in This Work

Recent and widespread adoption of high-throughput bio-technology has produced an abundance of
data in fields like genomics, metabolomics, proteomics, and others. Collectively known as high-
throughput “-omics” all of these fields use high-throughput experiments to investigate the role of
bio-molecules in tissue and cell-level processes. These experiments are called “high-throughput”
because they allow a large number of simultaneous measurements. For example, RNA-sequencing
is used to simultaneously assay tens-of-thousands of mRNA transcripts. Similarly, microenviron-
ment microarrays can study the interaction between a cell line and thousands of microenvironments
in parallel.

An important consideration in the analysis of such high-throughput data is the choice of scale.
Often, transforming data to another scale can benefit analysis. For example, a scale transformation
might make application of methods more robust. Similarly, it might help emphasize the important
variation in the data. In this work we will explore two cases where the careful application of scale
transformations can enhance the analysis of high-throughput -omics data. Those two cases are

1. estimating cell types from genomic data,

2. discovery of latent effects in microenvironment microarray data.

These two applications encompass Chapters 2 and 3, respectively. In the remainder of this section
we will briefly introduce these topics and summarize our findings.

In Chapter 2 we introduce dtangle, a method for estimating cell type proportions from mi-
croarray and bulk RNA-seq data. This problem is known as cell type deconvolution. While data
scale has generally been explored in the context of genomic data this discussion has not been fully
imported into the literature of estimating cell type proportions. Our method dtangle approaches es-
timating unknown cell types through the lens of data scale. The method proposes a mixing model
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of the biological process on a linear scale but then fits the model on a logarithmic scale. These
dual scales combine a plausible biological model on the linear scale with a robust fitting procedure
on the log scale. Broadly, we find that dtangle out-performs existing deconvolution methods in a
comprehensive meta-analysis of methods over real and simulated data. Finally, in an application
on gene expressions from patients with Lyme disease, we demonstrate that dtangle’s estimates are
consistent with previous findings. Supplementary information for dtangle is contained in Chapter
5.

In Chapter 3 we consider scale transformations of microenvironment microarray (MEMA)
data. Our aim is to explore how these transformations enhance visualization and discovery of
latent technical and biological effects. We focus our exploration on three transformations: (1) a
Gaussianizining non-linear scale change, (2) a robust z-score transformation, and (3) a transforma-
tion to remove outliers. We find that the first and third transformations help ameliorate misleading
effects of skewness and outliers. They consequently make prominent other important effects in the
data. We also find that the second transformation, a robust z-score, makes integration of features
simple. Altogether, These three transformations individually and in sequence help make salient
important latent effects. Supplementary information for this work is contained in Chapter 6.
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Chapter 2

dtangle: Accurate and Robust Cell Type Deconvolution

2.1 Abstract

Motivation: Cell type composition of tissues is important in many biological processes. To help
understand cell type composition using gene expression data, methods of estimating (deconvolv-
ing) cell type proportions have been developed. Such estimates are often used to adjust for con-
founding effects of cell type in differential expression analysis (DEA).
Results: We propose dtangle, a new cell type deconvolution method. dtangle works on a range of
DNA microarray and bulk RNA-seq platforms. It estimates cell type proportions using publicly
available, often cross-platform, reference data. We evaluate dtangle on eleven benchmark data sets
showing that dtangle is competitive with published deconvolution methods, is robust to outliers
and selection of tuning parameters, and is fast. As a case study, we investigate the human immune
response to Lyme disease. dtangle’s estimates reveal a temporal trend consistent with previous
findings and are important covariates for DEA across disease status.
Availability: dtangle is on CRAN (cran.r-project.org/package=dtangle) or github (dtangle.github.io).

2.2 Introduction

Complex organisms have a vast collection of specialized cell types. The presence and interaction
of these cell types is important to understanding many biological processes. For example, shifts
in the relative composition of cell types is important to developmental processes of organisms in-
cluding embryogenesis, morphogensis, cell differentiation and growth [Lu et al., 2003]. Likewise,
understanding the presence or absence of cell types is of direct etiological interest for many dis-
eases and dysfunctions [Newman et al., 2015; Abbas et al., 2009; Altboum et al., 2014; Lu et al.,
2003]. For example, changes in glial populations in brain tissue are characteristic of Alzheimer’s
disease [Mohammadi et al., 2015]. Similarly, white blood cell composition can be indicative of
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acute cellular rejection of transplanted kidneys [Shen-Orr et al., 2010]. Cell type composition is
also important in tumorigenic processes. It has been shown that heterogeneity of tumors cells is
implicated in the metastatic potential of cancer [Marusyk and Polyak, 2011; Lu et al., 2003].

Given the importance of understanding cell type composition, several methods to estimate cell
type proportions using high-throughput gene profiling experiments have been developed. Known
as “cell type deconvolution”, these methods have been successfully employed in a variety of ap-
plications. Deconvolution algorithms have been used to study cell type compositional changes in
patients in clinical studies [Newman et al., 2015; Abbas et al., 2009; Gong et al., 2011; Altboum
et al., 2014; Bowling et al., 2017]. In these studies, estimating constituent cell types of carefully
selected tissues reveals important cell type compositional dynamics of diseases. Similarly, such
gene expression deconvolution has been posited as useful for clinical cell type monitoring, for
example, by tracking patients’ leukocytes [Newman et al., 2015]. Finally, estimating cell type pro-
portions is important for deconfounding differential expression analysis. In differential expression
studies detecting gene expression differences within each cell type is confounded by changes in
the cell type composition across the factor of interest. For example, diseases will simultaneously
affect changes in gene expression within each cell type and through compositional changes in the
tissues. Including estimated proportions of cell types to account for this confounding has been
shown to improve differential expression analysis [Capurro et al., 2015; Hagenauer et al., 2016].

We present dtangle, a new deconvolution method that is accurate, robust, and simple to com-
pute. It estimates cell type proportions using biologically plausible models of high throughput
profiling technology. We compare dtangle to other methods on 11 benchmark data sets. These
data sets include many different cell types, profiling technologies, and cover realistic scenarios
like batch effects, mixed technologies, and third party references. Analysis of this data shows that
dtangle out-competes existing methods in a broad range of applications.

2.3 Materials and Methods

dtangle requires two pieces of external knowledge: (1) reference data and (2) marker genes. First,
dtangle requires auxiliary gene expression reference data for each cell type (e.g. from GEO [Edgar,
2002]). Second, dtangle requires marker genes for each cell type. A gene is defined as marker of a
cell type if it is predominantly expressed by that type. dtangle can determine marker genes using
the reference data or they may be specified by the user.

dtangle’s approach is built on a biologically appropriate linear mixing model of linear-scale
expressions but robustly fitting the model using log-transformed data and thus sets it apart from
other deconvolution methods.
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2.3.1 The dtangle Estimator

In this section we describe the mathematical form of dtangle’s estimator. Intuition for the estimator
follows in subsequent sections. Assume we have a mixture sample of K cell types. Let Y ∈
RN be the (base-2) log-scale expression measurements of this mixture sample and p1, . . . , pK be
the mixing proportions of the cell types. For k = 1, . . . , K assume that there are νk reference
samples of cell type k and let Zkr ∈ RN be the log-scale expressions of the rth type k reference.
Furthermore, let Gk ⊂ {1, . . . , N} be the set of type k marker genes. These marker gene sets are
mutually disjoint.

Let gk = |Gk| and define YGk
= 1

gk

∑
n∈Gk

Yn and ZGk
= 1

gkνk

∑
n∈Gk

∑νk
r=1 Zkrn to be the

average of all type k marker genes across the mixture and reference samples, respectively. Define
Dkt = 1

γ

((
YGk
− YGt

)
−
(
ZGk
− ZGt

))
and Dk = (Dk1, . . . , DkK). The value Dkt is a normal-

ized measure of the type k marker genes’ expression over the type t markers’ expressions in the
mixture. Precisely, Dkt is the average difference of marker expressions, YGk

− YGt , baseline nor-
malized by their average difference across the references, ZGk

− ZGt , and adjusted by γ, a term
we discuss in detail later. We estimate pk by mapping Dk ∈ RK into the unit interval [0, 1] by a
multivariate logistic function Lk : RK → [0, 1]. Precisely, for x ∈ RK let Lk(x) = 1/(1+

∑
t6=k 2−xt)

and estimate pk as
p̂k = Lk(Dk) (2.1)

(see Supplementary section 5.1 for details). This definition ensures that p̂k ≥ 0 and
∑K

k=1 p̂k = 1.

2.3.2 Motivation and Model

Let us first define some terminology. Measured expressions are determined by a gene expression
profiling (GEP) technology by measuring the amount of mRNA transcribed from each gene. Typi-
cally these measured expressions are further summarized, e.g. by MAS or RMA, and normalized,
e.g. quantile or TPM normalization. We call these processed measurements the “measured gene
expressions.” Often, they are transformed by a logarithm to produce “log-scale” measured ex-
pressions, otherwise, they are “linear-scale”. We call the true, yet unobserved, amount of mRNA
transcribed from each gene the “actual expression” of the gene. This actual gene expression can
also be considered on the linear-scale or the log-scale. (See Supplementary Figure 5.1 for a graph-
ical representation of these relationships.) Given these definitions, the statistical modeling that
yields the dtangle estimator ( Equation 2.1 ) is as follows.

First we posit that actual expressions mix linearly on the linear-scale. If ηkn is the actual
linear-scale expression of the nth gene in a sample of type k cells and ηn is the actual linear-scale
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expression in the mixture, then dtangle assumes

ηn =
K∑
k=1

pkηkn. (2.2)

This assumption is simply that the total amount of mRNA in a mixture is the sum amount from
each cell type.

Second, dtangle assumes that log-scale measured expressions are well modeled as linear in
log-scale actual expressions. Statistically,

Yn = µ+ θn + γ log2 (ηn) + εn

Zkrn = α + θn + γ log2 (ηkn) + εkrn
(2.3)

for n = 1, . . . , N, r = 1, . . . , νk, k = 1, . . . , K. (Recall the Y ′s and Z ′s are on the log-scale and
the η′s are not.) We assume uncorrelated errors ε with zero mean and finite variance.

Equation 2.3 models several important features of the transformation from actual to measured
expressions by the GEP technology. First, µ and α model the samples’ and references’ mean mea-
sured expressions. This accounts for experimental features like quantity of mRNA or sequencing
depth (for RNA-seq). We assume the references have been normalized (e.g. quantile normalized
or mean centered) so that they share an intercept α. Second, θn accounts for gene-specific effects
like length biases in RNA-seq or probe affinities in microarrays. Intuitively, γ is a factor to ac-
count for imperfect mRNA quantification. Ideally, γ = 1 meaning, on the linear-scale, increasing
actual expression always leads to a proportional increase in measured expression. For RNA-seq
we find γ ≈ 1, however for microarray technology a γ slightly smaller than 1 helps account for
saturation and attenuation of the intensity measurements for lowly and highly expressed genes (see
Supplementary section 5.1). While such measuring imperfections are well-known, dtangle is the
only existing method to account for them.

Finally, dtangle assumes marker genes are (approximately) expressed by only one cell type. If
n is a marker gene for cell type k (n ∈ Gk), this implies

η`n = 0 for all ` 6= k. (2.4)

(This is an approximation. See Supplementary section 5.2.3 for further discussion.)
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Combining Equation 2.2 with Equation 2.3 and Equation 2.4 we have

Dkt =
1

γ

((
YGk
− YGt

)
−
(
ZGk
− ZGt

))
= log2 (pk/pt) + δ

≈ log2 (pk/pt)

(2.5)

where δ is a function of the ε’s and δ → 0 as gk, gt → ∞ (for details see Supplementary Section
5.3). Thus assuming the approximation in Equation 2.5 holds for all t then

Dk ≈ (log2 (pk/p1) , . . . , log2 (pk/pK))

and so Lk(Dk) ≈ pk.

2.3.3 Relationship of dtangle to other deconvolution methods

The area of “cell type deconvolution” encompasses several related inference problems. However,
every deconvolution problem includes three main components: (1) measured expressions from
mixture samples, (2) measured expressions from reference samples of each cell type, and (3) the
proportion each mixture sample is comprised of each cell type. Typically it is always assumed that
(1) is known. The deconvolution problem is then estimating either: (a) the mixing proportions,
given the reference expressions, (b) the reference expressions given the mixing proportions, or (c)
the proportions and the references jointly. All three problems are considered instances of decon-
volution. dtangle most closely resembles problem (a), of estimating unknown mixing proportions
given measured expressions from the mixture and references. In Section 2.4 we compare dtangle
to methods solving both (a) and (c) since they both estimate the proportions. Problem (a), called
“partial deconvolution” [Gaujoux, 2013], is typically solved as a regression or penalized regres-
sion problem [Abbas et al., 2009; Gong et al., 2011; Lu et al., 2003; Wang et al., 2006; Qiao et al.,
2012; Altboum et al., 2014; Newman et al., 2015; Valencia et al., 2017], problem (c), called “full
deconvolution”, is usually accomplished by non-negative matrix factorization [Venet et al., 2001;
Repsilber et al., 2010; Gaujoux and Seoighe, 2012; Zhong et al., 2013].

2.3.3.1 Scale: Interpretability, Robustness, and Efficiency

Existing methods to solve problems (a), (b) or (c) are based on a common linear mixing model.
LetX ∈ RS×N be the S mixture samples’N linear measured expressions, M ∈ RS×K so thatMsk

is the percentage of type k cells in sample s, and U ∈ RK×N so that the K rows of U are reference
expressions of the K cell types. Existing methods presume a linear mixing model on either the
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linear scale,
X ≈MU, (2.6a)

or the logarithmic scale,
log(X) ≈M log(U). (2.6b)

They then solve for (a) M , (b) U (equiv. log(U)) or (c) both, presuming the other components are
known.

Both Equation 2.6a and Equation 2.6b have advantages and drawbacks. Equation 2.6a is
a physically plausible linear mixing model of linear measured expressions. It posits that mRNA
from a sample of cells is the sum of the mRNA from each cell. While plausible, fitting this
model on the linear-scale is non-robust and statistically inefficient. The highly-skewed data means
the fit is unduly influenced by data in the tail of the distribution [Li et al., 2016]. Furthermore,
since the variance of gene expressions typically scales with their mean, regression approaches
are sub-optimal [Li et al., 2016]. In contrast, Equation 2.6b models a linear mixture of log
expressions. This approach is more robust since the log transformation ameliorates the skewness
and heteroskedasticity. However Equation 2.6b is not physically plausible. It implicitly assumes
that the mRNA in a mixture sample is the product (not sum) of the mRNA from each cell.

dtangle’s approach is to take advantage of the beneficial aspects of each scale while avoiding
their problems. Firstly, dtangle is based on a biologically plausible linear mixing model of linear-
scale actual expressions ( Equation 2.2 ). Second, dtangle’s linear model between actual and
measured expression ( Equation 2.3 ) and definition of Dkt ( Equation 2.5 ) are on the log-scale.
This makes dtangle robust and statistically efficient. dtangle only transforms into the linear-scale
in its final step robustly exponentiating after averaging, not before.

Similar to Equation 2.6a dtangle uses a plausible and interpretable physical model of mixing
( Equation 2.2 ). However dtangle robustly averages log-scale expressions ( Equation 2.5 ) and
thus has robust character similar to fitting using Equation 2.6b . Supplementary section 5.2.2 uses
simulations to explore these points in more depth.

2.4 Results

2.4.1 Benchmarking

To evaluate dtangle we compare it to eight other deconvolution algorithms (Supplementary Ta-
ble 5.1). Six methods are accessed through the CellMix R package [Gaujoux, 2013]. We also
compare to CIBERSORT and EPIC as they are recent and powerful methods [Newman et al.,
2015; Valencia et al., 2017]. We only compare dtangle against methods that estimate cell type
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proportions from gene expression data for arbitrary cell types. We do not compare to methods
like xCell [Aran et al., 2017] which produce enrichment scores and not percentages. We also do
not compare against the many deconvolution methods for methylation data or fully-unsupervised
methods whose cell types have to be inferred with further post-hoc analysis e.g. CAM [Wang
et al., 2016]. Furthermore, we do not compare against methods that only estimate cell type propor-
tions from a very specific subset of cells or only in the context of a specific problem, for example,
immune cell infiltration of tumors by methods like TIMER [Li et al., 2016].

Like dtangle, all methods require marker genes. However four “full” deconvolution methods
we analyze require only marker genes and do not explicitly require reference data. Nonetheless,
we find marker genes through DEA on the reference data and so, in one way or another, all meth-
ods use reference data. There are several “completely unsupervised” deconvolution methods in
the literature (e.g. Wang et al. [2016]) that require neither markers nor references. However their
estimates are difficult to interpret biologically unless reference data is used post-hoc to map pro-
portions to cell types. For this reason we do not compare to such methods. Finally, while full
deconvolution algorithms also estimate type-specific expressions profiles, we only compare dtan-
gle to their estimated mixing proportions as this is what dtangle estimates.

We choose marker genes for deconvolution following Abbas et al. [2009]. First we restrict
analysis to genes in the the highest quartile of variance. We then rank genes by p-value using a
t-test between the reference expressions of the two most highly expressed cell types. For each cell
type, the 10% of genes with lowest p-values are designated markers.

Note that many genes selected as markers using this approach do not exactly satisfy Equa-
tion 2.4 . Further filtering the set of marker genes to attempt to ensure they satisfy Equation 2.4
could potentially improve the performance of dtangle. However, in our analysis we nonetheless
follow the method of Abbas et al. [2009] without any further filtering to ensure that the method of
marker selection is not biased in favor of dtangle. The exact same set of marker genes are used for
each algorithm.

2.4.2 Data Sets Compared

We compare dtangle to the eight other algorithms across eleven benchmarking data sets (Supple-
mentary Table 5.2). The true mixing proportions are known for each data set either because the
experiment was conducted by mixing each cell type in known proportions or because an indepen-
dent physical sorting technique, like flow cytometry, was used to estimate the proportions. Most
data sets include their own cell type references.

For the RNA-seq data we TPM normalize, transform as one plus the read count. For the
microarray data we quantile normalize on a logarithmic scale. All data is re-exponentiated so it is
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on the linear-scale for algorithms that require it. Pre-processing code is available in the dtangle.data
R package available at dtangle.github.io.

2.4.3 Microarray Data

2.4.3.1 Mixture Experiments With References

We consider five microarray mixture experiments: data sets Abbas, Kuhn, Gong, Shi and Shen-Orr
(Supplementary Table 5.2). For each algorithm we estimate the mixing proportions in each data
set. We evaluate the algorithms’ accuracy in terms of absolute error of estimated proportions from
true proportions and by Pearson correlation and R2 of the estimates against the truth for each cell
type. dtangle has the lowest median error, second lowest mean error, and the highest mean and
median correlation and R2 across the data sets (Supplementary Figure 5.4). Furthermore dtangle
has the lowest variability for both absolute error, correlation, and R2. This meta-analysis shows
that for the microarray mixture experiments dtangle is the most accurate algorithm but it is also one
of the most consistently accurate algorithms. For each data set supplementary boxplots of error,
correlation, R2, as well as scatter plots may be found in Supplementary Figures 5.13, 5.15, 5.16,
5.22, 5.23.

We highlight comparisons between dtangle, CIBERSORT, and EPIC on two data sets where
dtangle performs worst and best relative to other algorithms (Figure 2.1a and Figure 2.1b). For the
Gong data blood and breast tissue were mixed in known proportions. While dtangle does poorly
relative to other deconvolution algorithms it still performs quite well. The estimated mixing pro-
portions are still highly correlated with the truth (see Supplementary Figure 5.15). Conversely, the
Shen-Orr data is from a microarray mixture experiment where rat liver, brain and lung cDNA were
mixed in known proportions. Here, dtangle performs as well or better than the other algorithms
(Figure 2.1b, Supplementary Figure 5.22). dtangle performs on par with a strong algorithm like
CIBERSORT and out-performs a method like EPIC.

2.4.3.2 Mixtures Without References

In practice pure reference samples of each cell type are not typically generated along with the
mixed samples to be deconvolved. In this case existing reference data for each of the cell types to
deconvolved must be procured. Typically these pure reference samples are collected from reposi-
tories like GEO.

The Becht data set is a mixture experiment where cDNA from the HCT116 colorectal carci-
noma line and various leukocytes (NK, B, neutrophils, T, and monocytes) were mixed in known
quantities and analyzed with an Affymetrix microarray. Unlike previous data sets no reference
data was produced as part of the mixture experiment. Like the authors we use publicly available
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Figure 2.1: Scatter plots of dtangle, CIBERSORT, and EPIC on the Kuhn, Shen-Orr and Becht
datasets. Each point is a particular cell type in a sample.

expression data from GEO as references for each cell type. In total there are 776 samples gathered
from GEO which we use to create reference profiles for the six cell types. On this data dtangle
performs as well or better than strong methods like CIBERSORT and EPIC (Figure 2.1c, Supple-
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mentary Figure 5.14). dtangle has commensurate mean/median error, correlation and R2 as these
methods.

2.4.3.3 Performance evaluation with flow cytometry based cell sorting

Mixture experiments are only a surrogate for cell mixtures found in organisms. Realistically,
deconvolution methodology is applied to complex tissue extracted from an organism. Such tissue
will be a mixture of many cell types (more types than in a typical mixture experiment) and the
cell types will have complex inter-cellular interactions modifying their gene expressions. The
difficulties in estimating cell type proportions from such complex tissue is likely only partially
explored by a mixture experiment.

The Newman follicular lymphoma (FL) data was generated by taking lymph node biopsy sam-
ples and enumerating immune cell sub-types using flow cytometry [Newman et al., 2015]. This
process identified 3 leukocyte types (B, CD4 T and CD8 T) in various proportions across samples
from 14 patients. As cell type expression reference data we use the same reference data used to
create the LM22 reference by Newman et al. [2015]. It contains gene expressions of 22 white
blood cell types as references. Similar to Newman et al. [2015] we group these 22 types into 12.

The Newman peripheral blood mononuclear cells (PBMC) data was generated from blood
samples from twenty adults where the proportions of nine types of leukocytes were determined
by flow cytometry. We again use the same data to create references as used to create the LM22
data set [Newman et al., 2015]. dtangle compares well with other deconvolution methods on these
two data sets (Supplementary Figure 5.19, 5.20). For the Newman PBMC data set dtangle has the
highest average correlation and lowest average error. For the Newman FL data dtangle has the
highest average correlation however the overall accuracy suffers somewhat because of biases in
the CD4T and B cell types. This may be due to the large number of cell types making it difficult
for our markers to distinguish among them.

To investigate the effect of marker gene selection we re-analyze both the Newman FL and
PBMC data sets using the exact LM22 signature matrix used in Newman et al. [2015] (see Supple-
mentary Figure 5.25, 5.26). The LM22 signature matrix is a highly curated set of marker genes for
22 PBMCs developed by Newman et al. [2015]. The results largely remain the same however the
biases largely disappear for dtangle. In particular, dtangle is across the board the best performing
method on the Newman PBMC data and dtangle has the highest average correlation and R2 for
the Newman FL data. This further underlines the fact that choosing references and markers is an
important component of deconvolution and needs to be considered carefully.
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2.4.4 RNA-seq

We also investigate the performance of deconvolution methods on RNA-seq mixture experiments
(Supplementary Figure 5.5). The Liu and Parsons data sets are RNA-seq mixture experiments with
internal reference data. The Linsley data set is a realistic data set of leukocytes extracted from
patients where the true proportions are determined by flow-cytometry and external references are
used. dtangle, CIBERSORT, EPIC and LS Fit seem to be the best algorithms across the RNA-seq
data sets. For each data set supplementary boxplots of error, correlation, R2, as well as scatter
plots may be found in Supplementary Figures 5.17, 5.18, 5.21.

2.4.5 Meta-analysis

We compare dtangle to the other algorithms in a meta-analysis (Figure 2.2). dtangle has the lowest
median error and second lowest mean error of all methods. Similarly dtangle has the highest mean
and median correlation and R2 across datasets. Thus dtangle’s approach is a general purpose cell
type deconvolution algorithm that works well across many technologies and tissue types. Even
if we first logarithmically transform the data and then modify the other methods so that they fit
using log-scale expressions dtangle still performs strongly. Indeed, after this transformation dtan-
gle does better, it has the lowest mean/median error, and highest mean/median correlation and R2

(see Supplementary Figure 5.3). This shows that even if we make robust enhancements to existing
deconvolution methods dtangle still broadly out-performs existing approaches. (Note that using
log-scale data for the other methods is for illustrative purposes only. We do not generally recom-
mend it as the models and associated software of many of the other methods like CIBERSORT and
EPIC explicitly require linear scale expressions. For our analysis we had to modify their code to
allow log-scale expressions.)

2.4.6 Robustness to marker selection

Thus far we have been selecting marker genes by, among the top 25% most variable genes in
the references, ranking marker genes following Abbas et al. [2009] with a t-test p-value between
the top two most expressed cell types for each gene and selecting the top 10% of differentially
expressed genes.. To analyze the sensitivity of dtangle to how the markers are ranked we consider
another way of ranking marker genes. This second method looks, for each gene, at the ratio of
the mean expression for each cell type to the sum of the mean expressions of the gene by all other
cell types. We call the Abbas method “p-value” and call this latter approach “Ratio.” While we
recommend this latter method for dtangle, thus far we have used the p-value ranking so as to be
conservatively fair in our comparison.

13



●
●

●●●●●●
●

● ●●●●●●● ●

−0.5

0.0

0.5

1.0

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

C
or

re
la

tio
n

Correlation by Deconvolution MethodA

●

●

●
●●●●●

●

● ●●●●●●● ●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

R
−s

qu
ar

ed

R−squared by Deconvolution MethodB

●

●
●●●

●
●●

●

●

●●

●
●●●

●
●

0.0

0.2

0.4

0.6

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

M
ea

n 
E

rr
or

Mean Error by Deconvolution MethodC

Dataset ● ●
Abbas
Becht
Gong

Kuhn
Linsley
Liu

Newman FL
Newman PBMC
Parsons

Shen−Orr
Shi
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In Figure 2.3 we look at the grand error mean of each algorithm across all data sets for a range
of marker tuning parameters. We compare partial deconvolution algorithms as they are the most
competitive with dtangle. dtangle is robust to the way markers are ranked (p-value or Ratio) and
ranking threshold (quantile cutoff) determining the number of markers to use. In Supplementary
Figure 5.6, 5.7, and 5.8 we include similar plots looking at the median error, and mean and median
correlation and R2 for all data sets, microarray data sets, and RNA-seq data sets. Looking these
various metrics, we see that Q. Prog and EPIC (and sometimes LS Fit and CIBERSORT) appear
sensitive to the quantile cutoff and to which ranking method is chosen (p-value or Ratio). Across
all metrics, dtangle is consistently competitive with existing methods and is not as sensitive to
small changes in such tuning parameters.

Marker gene selection also influences computational time. For each data set we timed all

14



algorithms across a range of quantile cutoffs using p-value ranking (Supplementary Figure 5.9).
dtangle is consistently the fastest algorithm. It is between one and four orders of magnitude faster
than other algorithms regardless of what quantile cutoff is used.

2.4.7 Application To Lyme Disease

To demonstrate dtangle on a biological problem we consider RNA-seq data of PBMCs from Lyme
disease patients [Bouquet et al., 2016]. To better understand persistent Lyme symptoms (e.g.
fatigue or arthritis) it is of interest to understand the progression of the human immune response
to Lyme [Bouquet et al., 2016]. To this end Bouquet et al. measure gene expression in a subset of
white blood cells (PBMCs). PBMCs of 28 patients were collected at the point of diagnosis (V1),
after a 3-week course of doxycycline (V2) and 6 months later (V5). PBMCs from 13 matched
controls were also collected (C).

We use dtangle to estimate, for each sample, the cell type proportions of nine types of PBMCs
(B, dendritic, macrophages, mast, monocytes, NK, CD4 T, CD8 T and gamma-delta T). We use as
reference the LM22 data set from Newman et al. [2015], choosing the top 10% of differentially ex-
pressed genes for each cell type as markers. We find that the phagocytes (dendritic, macrophages,
mast and monocytes) make up a larger percentage of the patients’ PBMCs earlier, rather than later,
in the infection (Supplementary Figure 5.27). We see a large difference between the control group
and V1 and decreasing differences between the controls and V2 and V5. Natural killer (NK) cells
follow this same pattern.

The estimated cell type percentages agree with the current understanding of Lyme. The initial
infection induces an immune response where fast-acting phagocytes are recruited to attack the
foreign bacteria [Dame et al., 2007]. This agrees with dtangle’s estimates of a relatively large
percentage phagocytes early in the infection that decreases with time. Phagocytes decrease in
numbers once the bacteria has been cleared and they are no longer needed. Furthermore, NK cells
follow the same pattern. This agrees with work from Horowitz et al. [2012] showing NK cells are
rapidly activated by cytokines after a bacterial infection.

In Bouquet et al. [2016] the authors seek to find genes that are differentially expressed among
the groups (V1, V2, V5 and C). Following Bouquet et al. [2016] we compare the control group to
V1, V2 and V5 and find that there are 399 genes that are differentially expressed in the intersection
of each of the three comparisons. This was done controlling for a FDR of 0.05 by the Benjamini-
Hochberg procedure.

As this previous differential expression analysis was not corrected for cell type proportions
we expect to find genes that are correlated with cell type. We add in covariates to account for
composition of fast-acting cell types (phagocyte and NK). After doing so we only find 158 genes
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differentially expressed in the same comparison. Thus the cell type composition changes the results
of the analysis greatly. dtangle is one tool practitioners can use to help tease apart histological
changes in cell composition from changes in gene expression within particular cell types.

2.5 Discussion

dtangle is a simple and robust deconvolution estimator. It is a closed-form estimator deriving from
plausible biological modeling. Our meta-analyses show that dtangle is a robust and accurate, typ-
ically performing better than eight of the best existing methods across eleven diverse data sets. It
can accurately deconvolve cell types using microarray and RNA-seq technology and is very fast to
compute where other methods are not. Furthermore it is consistent with standard physical sorting
methods like flow cytometry on realistic complex clinical tissue. Finally, dtangle has competitive
accuracy when dealing with realistic data sets where the reference samples are obtained from pub-
licly available repositories. dtangle works well even when these reference data sets were created
using a different profiling technology. This points to scRNA-seq data as a promising source for
references.

dtangle has some of the same limitations as other algorithms. Primarily, it is necessary that
the cell types comprising each sample be known in advance and that reference data is available.
Furthermore dtangle needs to find marker genes for each cell type. This can be potentially difficult
if there are many cell types or the cell types are closely related. Nonetheless, dtangle seems to
perform well in many situations. We will continue to develop dtangle to overcome some of these
challenges to broaden its utility.
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Chapter 3

Transformations of Microenvironment Microarray Data
Improves Discovery and Integration of Latent Effects

3.1 Abstract

Motivation: The microenvironment of cells is broadly defined as their immediate physical and
bio-chemical surroundings. This microenvironment is an important component of many funda-
mental cell and tissue level processes and is implicated in many diseases and dysfunctions. Thus
understanding the interaction of cells with their microenvironment can further not only basic re-
search but also aid the discovery of therapeutic agents. To study the microenvironment of cells, a
new image-based cell-profiling technology called the microenvironment microarray (MEMA) has
seen recent success. The relatively new nature of this technology calls for a detailed exploration of
appropriate transformations for processing MEMA data.
Results: We study several simple ways of transforming MEMA data. We find that Gaussianiz-
ing the data and removing outliers can enhance visualization and discovery of latent technical and
biological effects. Furthermore, a robust z-score transformation allows recovery common latent
effects through an equitable integration of features. In summary, we see that the individual and
sequential application of these transformations has the potential to benefit exploratory analyses.
Availability: All results and code used for analysis is available at umich.box.com/v/mematransformation

3.2 Introduction

The microenvironment of a cell encompasses its immediate physical and bio-chemical surround-
ings. This includes, for example, the adjacent extra cellular matrix (ECM), surrounding cells,
ligands like hormones, cytokines, chemokines, growth factors, and much more. These microenvi-
ronmental components modify cellular behavior through a host of different mechanisms. Accord-
ingly, the interaction of cells with their microenvironment is a component of many cell and tissue
level processes [Lin et al., 2012]. For example, the extra-cellular matrix has been long known to

17



regulate cellular functions like adhesion, migration, proliferation and differentiation [Teti, 1992].
The microenvironment is also implicated in the development, progression, and ultimately treatment
of many diseases and dysfunctions. For example, it has been posited that communication between
B-cells and their proximate stromal cells can promote malignant B-cell growth and drug resistance
[Burger et al., 2009]. Similarly, towards the goal of understanding therapeutic efficacy, it has re-
cently been shown that the microenvironment of HER2-positive breast cancer cells is implicated in
drug response [Watson et al., 2018]. Thus a better understanding of the microenvironment benefits
not only basic research but also furthers an understanding of the interaction between therapeutic
agents and regulatory behavior.

To study the microenvironment, a powerful technology called the Microenvironment Microar-
ray (MEMA) has seen recent success. The technology, first developed by Mark LaBarge at
Lawrence Berkeley National Laboratory, allows the study of several thousand combinations of mi-
croenvironmental factors on molecular and biological endpoints. This is done via high-throughput
image-based cell profiling technology. Specifically, a MEMA consists of a plastic substrate divided
into several partitioned “wells.” Each well contains an array of several hundred ∼300µm “spots.”
Added to each spot is a collection of several hundred cells and a pair of microenvironmental per-
turbagens. This perturbagen pair consists of an insoluble extra-cellular matrix protein (ECMp) and
a soluble ligand. The ECMps are added specifically to spots, while the ligands are added generally
to the buffer solutions in wells. (The soluble ligands cannot be localized to a single spot.) Thus
the cells in a spot interact with an ECMp specific to their spot and a ligand common to their well.
After adding these perturbagens the cells are allowed to grow for 72 hours. Subsequently, the cells
are immunofluorescently stained and imaged with high-content fluorescent microscopy.

The fluorescent microscopy images are used to quantify biological endpoints of interest like cell
proliferation, differentiation, or apoptosis. Specifically, we quantify the endpoints using features
we extract from the images. Typically, several hundred features are extracted from each image.
These features cover a wide range of cellular aspects like stain intensity, cell count, morphological
characteristics, and many more. The number of features extracted is largely a product of the
sophistication of the image analysis software and the level of detail requested. Thus it is relatively
easy to generate large amounts of data from MEMAs. While this plethora of data presents new
opportunities for discovery it also necessitates a fresh methodological discussion. Towards this
goal, this paper will systematically explore simple and robust methods for processing MEMA
data. Our goal is to share the processing steps for MEMA data that we have found to enhance
visualization, integration, and the discovery of important biological and technical effects.
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3.3 Materials and Methods

In this section we will briefly describe the structure of MEMA data, outline our steps for processing
the data, and motivate why these steps enhance visualization, integration, and discovery of latent
biological and technical effects.

3.3.1 Structure of MEMA Data

In this paper we work with microenvironment microarray data from the Microenvironment Per-
turbagen (MEP) LINCS Center at the Oregon Health and Science University. The data is acces-
sible through Synapse with identifiers syn10155286, syn10155292 and syn10155282 [Syn, 2018].
In total we analyze 24 MEMAs of human epithelial mammary tissue (MCF10A). The 24 MEMAs
come in three batches of eight plates. Each MEMA plate is divided evenly into eight wells. Each
well contains 700 spots in a 20 by 35 grid. Cells are added to the spots along with a spot-specific
ECMp. Afterwards, a buffer solution containing a specific ligand is added to each well. The pat-
tern of ECMps is identical across all wells however a (potentially) different ligand is added to each
well. After incubating the cells for 72 hours they are fluorescently stained, imaged, and cell-level
features are extracted with image analysis software. For the analysis in this paper, we work with
spot-level features (median summarized cell-level features). For each image feature we have a data
matrix of 192 wells (3 batches × 8 plates × 8 wells) by 700 spots.

3.3.2 Robust Re-scaling

To process these feature matrices we follow three sequential steps:

Three-step Robust Re-scaling (RR)
Step 1: (G) robustly “Gaussianize” the data,
Step 2: (Z) convert the data to robust z-scores,
Step 3: (O) remove outliers.

We will briefly look at these steps in more detail. The (G) step transforms the data using
a Box-Cox-like procedure. It first estimates a Gaussianizing transformation column-wise across
the feature matrix. It separately optimizes over families of power and inverse hyperbolic sine
transformations to make each column of the feature matrix as normal as possible. The procedure
then chooses the median transformation across columns and applies this transformation element-
wise to the feature matrix. The second step (Z) is basically a z-score transformation. The (Z)
step subtracts (element-wise) a global mean from the feature matrix and divides the feature matrix
(element-wise) by a global estimate of the standard deviation. Finally, after the (Z) step, the outlier
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removal procedure (O) simply thresholds the z-scores and marks as missing anything beyond four
standard deviations. A full mathematical description of these steps is found in Section 6.1. In the
remainder of this section we will motivate (1) why these steps help discovery of important latent
effects in the data and (2) how this processing improves data integration.

3.3.2.1 Discovery of Important Latent Effects

An important component in the analysis of MEMA data is the discovery of latent technical and bi-
ological effects. We may be interested in such latent effects for their own sake or may be interested
in removing them if they are unwanted. Examples of latent technical effects include batch across
plates or wells and spatial effects within wells. Biological effects include, for example, differences
in biological endpoints due to ECMps or ligands. Discovery of latent effects is typically done
through visual inspection of plots or quantitative analysis like PCA. Unfortunately, such methods
are often misled by prominent yet uninteresting aspects of the data.

As an example of how analyses like PCA can be misled, consider using PCA to identify groups
in skewed data. Assume we have data that is the union of two highly skewed groups. If the group
means are separated by a small distance (relative to their tail lengths) then the group difference
will likely be over-shadowed by the long tails. In this case, PCA will identify the tail skewness,
not the group difference, as the most prominent variation. To illustrate this point, in Figure 3.1
we display two plots from simulated data comprised of two log-normal groups. While we can see
from Figure 3.1 (A) that the (un-transformed) log-normal data is well described the first several
PCs, Figure 3.1 (B) shows that these same PCs do not well capture the group effect. However these
plots show the converse that if we first log-transform the data. While we might need more PCs to
describe the over-all data after a log transformation these first several PCs capture the group effect
quite well. Broadly, these results are a product of the data skewness. Capturing the group effect
is easier after a log transformation because the data no longer has a long distracting tail. The PCs
from the skewed data are capturing skewness, not group effects. After log-transformation, this is
no longer a problem.

As motivated by the previous example, we want to attenuate the influence of prominent, yet
uninteresting, variation. Our processing steps described in Section 3.3.2 attempt to ameliorate
the effects of two commonly encountered, and potentially misleading, aspects of MEMA data.
Those aspects are (1) skewness in measurement scales and (2) anomalous outliers. By anomalous
outliers we mean extremely unusual data points that are not informative of much beyond their
own uniqueness. Often, these outliers are errors in the data collection or processing pipeline. For
example, several blank spots are typically included on a MEMA for alignment purposes. If these
spots are accidentally included in analysis they will almost certainly be anomalous.

To guard our analysis against un-interesting variation we follow the three robust re-scaling
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Figure 3.1: (A) The percentage of cumulative variance captured by first k principal components for
both un-transformed data and log-transformed data. (B) The mean squared canonical correlations
between the grouping factor and the first k principal components.

steps (G), (Z) and (O) outlined in Section 3.3.2. The (G) step is used to prevent a feature’s nat-
urally long-tailed measurement scale from dominating analysis. This is done by monotonically
transforming the data to reduce skewness. Specifically, we apply a robust Box-Cox-like procedure
to “Gaussianize” the data and make the feature’s distribution approximately bell-shaped. This is
what the log transformation does in Figure 3.1. It takes the skewed log-normal distribution and
makes it approximately normal. Unfortunately, processing MEMA data is not as simple as log
transforming all features. MEMAs produce hundreds of features with many different distribu-
tions. The appropriate Gaussianizing transformation will potentially be very different from feature
to feature. It might even be best to use transformations in different families from one feature to
the next. Since there are too many features to determine by-hand an appropriate Gaussianizing
transformation, our (G) step automatically chooses one which works well.

We call this (G) procedure “robust” because it distinguishes between a distribution that is fun-
damentally skewed and one which simply has a few anomalous outliers. It attempts to find a
transformation to reduce the skewness of the bulk of the data without being influenced by extreme
points. These extreme outliers are instead removed by the combined (Z) and (O) steps. To remove
the outliers, first the (Z) step converts the data to z-scores using robust estimates of the mean and
standard deviation. Subsequently, the (O) step designates any entry of the feature matrix bigger in
magnitude than four an outlier and marks it as missing (effectively removing it).

The (G), (Z), and (O) steps attempt to enhance analysis while minimizing changes to the data.
The Gaussianizing transformation is made only to rectify a fundamentally skewed distribution, not
to reign in outliers. Conversely, outliers are identified only after a de-skewing transformation has
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been made. Thus points are removed only if they are truly anomalous. In turn, this enhances the
prominence of informative points that are large but otherwise obscured by uninformative outliers.

3.3.2.2 Integrating Features

In addition to improving the recovery of latent effects in individual features, we are also interested
in integrating information across features to recover common latent effects. To extract a common
set of latent effects from a collection of feature matrices we use a PCA-like approach. This method
captures common latent effects across a collection of features using the eigenvectors of the fea-
tures’ average left and right Gram matrices. We call these eigenvectors the left and right average
singular vectors (ASVs). A precise mathematical description of this is contained in Section 6.2. An
important component of integration in this way is a careful consideration of the different features’
scales. Here, the (G), (Z) and (O) processing steps are helpful. These steps (especially (G) and (Z))
robustly transform the data so that all the features are on a commensurate scale. This allows us to
use a simple arithmetic mean of Gram matrices to equitably integrate information across features.

3.4 Results

3.4.1 Features and Transformations Considered

The MEMA plates we analyze are grown, stained and imaged in three separate processing batches.
A different set of stains is used in each batch. Those sets are: (1) “SS1” (containing stains DAPI,
Actin, CellMask and MitoTracker), (2) “SS2noH3” (containing stains DAPI, Fibrillarin and EdU),
and (3) “SS3” (containing stains DAPI, KRT5, KRT19 and CellMask). Because each of these
three processing batches use a different staining set we will refer to these batches as the “staining
batches” and identify them with the staining set used in each batch. However it should be noted
that these three batches are three separate experiments run at three different times. Nonetheless,
aside from the staining set, the experimental conditions were made as identical as possible across
the three experiments.

In total there are 108 different image features extracted from the MEMAs. Since different
staining sets are used for different MEMAs not all features are extracted for all MEMAs. There
are 55 features extracted in at least two of the staining batches and 21 features that are extracted
from all three batches. We will primarily focus on four features:

1. cell area (“Cells CP AreaShape Area”)

2. cell compactness (“Cells CP AreaShape Compactness”)
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3. spot cell count (“Spot PA SpotCellCount”)

4. total cytoplasm DAPI intensity (“Cytoplasm CP Intensity IntegratedIntensity Dapi”).

We choose these four example features because they represent several different feature types.
The first two example features are morphological traits of cells, the third feature is the number
of cells, and the last feature is an intensity measurement in the cytoplasm of the cells. Where
possible, we will include compact summaries of the results for all features. We have deposited the
full results for all features at umich.box.com/v/mematransformation

To explore the effects of our the three processing steps (G), (Z) and (O), we will consider five
different transformations of our feature matrices. These transformations are:

1. no transformation, denoted (NT),

2. the (G) step only

3. the (Z) step only

4. the (O) step only

5. the full three-step sequential application of (G), (Z), and (O) denoted (RR) for “robust re-
scaling.”

3.4.2 Visualization

3.4.2.1 Density Plots

A typical first step in exploratory analysis is data visualization. Simple data visualizations can
succinctly summarize the broad nature of the data and inform qualitative analyses. In Figure 3.2
we plot the density of cell area for our five transformations. The colored densities correspond to
staining batches. The black line is the density of all data combined. Notice in Figure 3.2 that the
density of the un-transformed data (NT) largely just reflects that the data has a long tail. The same
can be said for the z-score transformation (Z). Conversely, we see that the other processing steps
make the staining batches obvious. Both removing outliers (O) and Gaussianization (G) nicely
highlight the two staining batches. These transformations de-emphasize the data’s long tail and
favor the group difference. Notice however that while removing outliers does help, the remaining
data is still fundamentally skewed. Similarly, while the (G) step makes the bulk of the data normal
it leaves several low outliers. Both of these issues partially obscure the groups we wish to discover.
We can ameliorate these issues by combining the (G) and (O) steps in the (RR) transformation.
We can see in the (RR) plot that the staining batches have been separated into two groups that are
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Figure 3.2: Density of elements of cell area feature matrix. Black density is all elements combined.
Colored densities are the densities for the two staining batches. Subplots are for five processing
transformations of this matrix: (NT) no transformation, (G) Gaussianization, (Z) z-score, (O)
outlier removal, (RR) the three-step (G), (Z), and (O), robust re-scaling.

commensurately shaped and approximately normal. Thus while the (G) and (O) transformations
are individually useful, their combination separates the groups more nicely.

In Figure 6.1 we display similar plots to Figure 3.2 but for the other three example features.
Largely we see the same behavior of the five transformations. The plots of the un-transformed data
(NT) and z-transformed data (Z) largely highlight the distributions’ tails. However the (G) and (O)
steps help recover the staining batches. The combination of these steps in the (RR) transformation
highlights them further. In Figures 6.2, 6.3 and 6.4 we display density plots similar to Figure 6.1
but highlight the densities of the different wells, plates, and ligands instead of the staining batches.
These plots exhibit similar, albeit more attenuated, behavior. In summary, the (G) and (O) steps
and their combination in the (RR) transformation focuses the data on aspects like staining batch,
plate or ligand rather than just picking up the distribution’s tail.
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3.4.2.2 Heat-maps

Another way to visualize the MEMA data is through heat-maps. Heat-maps can be useful for
discovering spatial effects and assessing the quality of data. As an example, consider visualizing
cell area by plotting a heat-map of all spots over all plates. In Figure 3.3 we display a single
well from this heat-map across the five transformations. (The full heat-map may be found in
Figure 6.5.) The colors in the heat-map are selected so that spots are more blue if they are close
to the minimum cell area, red if they are close to the maximum, and white if they are close to
half-way between. Dark grey spots are omitted according to the MEMA design. The green spots
in these plots are missing. These spots are missing either due to experimental error or because they
have been removed as part of analysis.

NT G Z O RR

Figure 3.3: Heat map of a single well across the five transformations (NT), (G), (Z), (O), (RR).

NT G Z O RR

Figure 3.4: Similar to Figure 3.3 but focusing on a different well.

This figure shows that producing the heat-map using un-transformed data (NT) or z-transformed
data (Z) is not very informative. The skewness and outliers ensure that a the bulk of data points
are assigned a tiny range of colors. Thus the plots are essentially a single color. Conversely, the
heat-maps of the (G) and (O) transformed data is much more informative. We can start to see a
slight spatial effect between the left and bottom edges and the rest of the well. We can also see
a non-spatial effect where certain spots are much different than their surroundings. We will see

25



in Section 3.4.5 that this is a biological effect of the ECMps NID1 and ELN. Finally, when we
combine the (G) and (O) steps with the (Z) step we get the (RR) plot. The combination of these
steps really highlights the spatial effect within the well. It also highlights the non-spatial effect
manifested as several deep blue spots in the mostly red upper-right of the well.

In Figure 3.4 we display a similar heat-map but focus on a different well. We see similar
behavior when looking at this well as the previous. The (G) and (O) transformations reveal a big
spatial difference between the lower left and the rest of the well. This spatial difference is also seen
in the (RR) transformation. Notice however, that the number of points removed (in green) using
the (RR) transformation is much different than the number removing using just the (O) step. The
difference here is driven by the scale at which outliers are thresholded. The (O) step thresholds
outliers on the original scale, the (RR) transformation removes outliers on a Gaussianized scale.
Notice that the (RR) transformation removes points according to the spatial pattern. Essentially,
this transformation highlights the spatial pattern and identifies these points as being poor quality
and thus fit for removal. On the other hand, while the (O) transformation highlights the spatial
pattern it does not remove the points. It is likely that this spatial pattern is not biological, but an
unwanted technical effect and thus its removal with the (RR) transformation is prudent. It follows
that the (RR) transformation (which identifies outliers on a Gaussianized scale) is better able to
detect points that should be removed. This suggests that a simple z-score thresholding procedure
for removing outliers works better on a Gaussianized scale than not.

In addition to revealing within-well effects these transformations can also highlight batch ef-
fects between, for example, plates, wells, or staining sets. In Figure 3.5 we show the heat-map of
cell area for eight wells across the (NT), (G), (O) and (RR) transformations. (The (Z) transforma-
tion looks identical to (NT).) The top four wells in each sub-plot are from the first staining batch,
the bottom four wells are from the second. Nonetheless, we see little indication of batch in the
(NT) plot. It is solidly red. We start to see a hint of a batch effect when looking at the (G) and
(O) heat-maps. The bottom of the (G) heat-map is lighter blue than the top, and the top of the (O)
heat-map is lighter red than the bottom. This batch effect is even more prominent in the heat-map
made from the (RR) transformed data. In this sub-plot see solid-blue in the top batch and mostly
red in the bottom batch. In addition to highlighting the batch, we again plainly see spatial patterns
within the wells. This is visible in the (O) and (G) plots too, but most prominent in the (RR) plot.

Finally, let’s revisit the interaction between outlier removal and scale. Notice that the number
of removed points (in green) in the (O) plot is quite high. Conversely, if we Gaussianize first
before removing outliers (as in the (RR) plot) we remove many fewer points using the same outlier
thresholding procedure. This indicates that many points that are identified as outliers by the (O)
step alone probably aren’t points that should be removed. Instead, these points are symptomatic
of a fundamentally skewed distribution of data as we saw in the (O) plot in Figure 3.2. Thus we
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Figure 3.5: Heat map of a eight wells across the five transformations (NT), (G), (Z), (O), (RR).
Top row of each subplot is from first staining batch. Bottom row is from second staining batch.
Colors are more blue if they are close to the minimum, red if they are close to the maximum, and
white if they are close to half-way between. Green spots are missing. Dark grey spots are omitted
according to the MEMA design.

suggest (as in our three-step (RR) transformation) to first Gaussianize the data and then remove
outliers. We can see from Figure 3.5 that this allows us to recover the spatial and batch effects
without removing too many points. This in conjunction with Figure 3.4 shows that thresholding
outliers on a Gaussianized scale does a better job at removing points if and only if they should be
removed.

3.4.3 Recovering Technical Effects Across Wells

An important class of analyses for MEMA data are those seeking to discover latent effects. La-
tent effects are important for several reasons. First, they may be of direct scientific interest. For
example, we may find effects relating to ECMps or ligands. Often, however, the latent effects
are unwanted. These effects may be, for example, a technical artifact of the data collection or
processing. Indeed we have already seen that the staining batch in our MEMA data can be qualita-
tively identified through heat-maps (see Figure 3.5). Unfortunately, such batch effects are common
in high-throughput biological experiments like MEMAs. Furthermore, these kinds of effects are
often large and obscure the biological variation in which we are interested. Indeed it is not uncom-
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mon for the first order effects in high-throughput data to be technical batches.
In the case of unwanted latent effects, identifying them helps us attenuate their influence on

analysis. For example, we can project them out of the data. Typically latent effects are discov-
ered using the singular value decomposition (SVD) also known as principal components analysis
(PCA). In this section we will explore how our three-step (RR) transformation helps in the re-
covery of interesting latent effects using the SVD. To aid this exploration, we will focus on the
very prominent staining batch effect. We saw in Figure 3.5 that the staining batch was visible by
eye using the (G), (O) and (RR) transformations. To assess how well we can recover the staining
batch using the SVD, we will mask the true (known) staining batches from analysis and use the
SVD to re-discover them. We can then measure the efficacy of this re-discovery by correlating the
discovered latent effects with the true known batches.

In Figure 3.6 we plot the mean of the squared canonical correlations (CCs) between the first k
principal components (left singular vectors) and the staining batch dummy variables. We vary k
across the x-axis from 1 to 192. This is done for our four example features and our five transformed
versions of those features. From this figure we can see that simple data transformations have the
potential greatly to enhance discovery of the staining batch. Consider the CC plots of cell area
feature and total DAPI intensity feature in Figure 3.6. As compared with no transformation (NT),
these plots shows that the (G) and (O) steps increase how much of the staining batch is captured by
the first several PCs. The (G) and (O) steps attenuate the non-informative tails of the distributions
and focus the PCs on the differences across the staining batches. Unfortunately, the (G) and (O)
steps alone are not a universal solution across features. For example, in the cell count plot we
don’t see much improvement over (NT) by removing outliers (O). Presumably this is because
there are not many true outliers in the data. Instead the data is probably just a bit skewed. Thus
removing extreme points doesn’t fundamentally have much effect on the distribution of the data.
Worse, as seen in the cell compactness feature, spuriously removing extreme points can actually
be detrimental to recovering the batch effect. This likely happens because the (O) step is removing
informative points. This is a very real danger when removing outliers by thresholding skewed
data. Similarly, the (G) step is not always the best approach by itself (see the area and compactness
plots). The Gaussianization method used in the (G) step is robust to outliers. Thus this step will
attenuate the effects of some truly misleading outliers.

Nonetheless, when we combine the (G) and (O) steps sequentially we see excellent perfor-
mance across the board. In all four panels of Figure 3.6 we see that the three-step (RR) transfor-
mation performs as well or better than any of the other transformations. Indeed the (RR) trans-
formation always identifies the staining batch much more quickly than no transformation (NT).
Even for the area feature, where the un-transformed data already recovers the batch well, the (RR)
processing steps still slightly improves batch discovery. These improvements come from the (RR)
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Figure 3.6: Mean of the squared canonical correlations between the first k principal components
and the staining batch dummy variables.

transformation’s attenuation of skewness and outliers in the data. The (RR) transformation reduces
the effects this misleading variation using a carefully selected sequence of the (G), (Z), and (O)
steps that first reduce skewness, if necessary, and then removes outliers, if any.

To show that the (RR) transformation generally improves results, we summarize batch recovery
for all features and all transformations in Figure 3.7. In this plot, we calculate the area under the
CC curves (AUC) for each feature. We order the features left to right by the difference in the AUC
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between (RR) and (NT). Broadly, we see the same behavior in Figure 3.7 as displayed in Figure 3.6.
While we can find individual cases where the (G) and (O) steps individually might be beneficial
there are also cases where they are detrimental. However combining these steps in (RR) seems to
generally improve recovery of the staining batch. Sometimes we see a substantial improvement
using the (RR) transformation. Rarely do we see that (RR) is detrimental. In the rare cases where
(RR) is not optimal, it is only marginally worse than any of the alternative transformations.
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Figure 3.7: Grand mean of the squared canonical correlations across number of components (k).
Canonical correlation is calculated between the first k principal components and the staining batch
dummy variables.

To explore recovery of other latent effects besides stain, in Figures 6.9 - 6.14 we display similar
CC and AUC plots for the recovery of plate, well, and ligand effects. While these effects are not
as prominent, we still see that the (RR) transformation improves recovery of these latent effects
without being detrimental.
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3.4.4 Data Integration for Discovering Between-Well Effects

The plethora of features that can be extracted from MEMA images presents a good opportunity for
data integration. One way we are interested in integrating features is by combining them to better
recover common latent effects. In this section we will explore recovering latent effect through data
integration. We will do this using the left average singular vectors (ASVs) as described in Section
3.3.2.2.

In the left panel of Figure 3.8 we plot the mean squared canonical correlations between the first
k left ASVs and the staining batch. We vary k from 1 to 192. These ASVs are calculated using
the 21 features that are measured across all MEMAs. As previously, we include lines for all five
processing transformations (NT), (G), (Z), (O) and (RR).
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Figure 3.8: Mean of the squared canonical correlations between the first k principal components
and the staining batch dummy variables. Principal components come integration of (Left) the 21
features that are measured across all MEMAs, and, (Right) among those 21, the five with the
highest leverage points.

The first striking feature of this figure is how quickly and strongly the (Z) and (RR) transfor-
mations are able to recover the staining batch effect. The AUC for these curves is in excess of
.95 which, looking at Figure 3.7, means it recovers the staining batch better than the majority of
the features individually. This demonstrates the power of the ASVs for identifying common latent
effects. When we average the Gram matrices to calculate the ASVs the feature-specific effects are
“averaged-out” while the common effects like staining batch are amplified. This makes identifying
these strong, common batch effects easy.
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In addition to how strongly the staining batch is recovered, it is notable that the (Z) and (RR)
transformations recover the batch significantly better than the other processing options (O), (G),
and (NT). This happens because we find the ASVs by element-wise averaging Gram matrices
across features. If these Gram matrices are on vastly different scales (as in (NT), (G), and (O))
then their average will be biased towards the feature(s) with the largest values. This bias will not
consider the information from all features equally but will arbitrarily weight the information by
the features’ scales. To equitably integrate information across features, all feature matrices should
have values in a similar range before averaging. This is precisely what is done by the (Z) step.
This step converts the disparate scales all to z-scores. Thus the values in the Gram matrices will
be commensurate and we can integrate them with a simple average.

Finally, it is notable in the left panel of Figure 3.8 that the (RR) and (Z) transformations do
approximately as well as each other. This happens because the Gram matrix averaging conveys
some of the same benefits as the (G) and (O) steps. While outliers or skewness might affect
individual Gram matrices such effects will have less influence on the average of the Gram matrices.
Thus the (G) and (O) steps are less critical. The problems they solve are naturally attenuated by
the averaging. This is true so long as we do not have either (1) a small number of features or (2)
features that share systematic skewness or outliers. To illustrate this, consider the plot in the right
panel of Figure 3.8. Here, we mimic the left plot but calculate the ASVs using only five features
with several extremely high-leverage points. In this plot we see a separation between the (Z) and
(RR) transformations. This is the case because there is benefit to the (G) and (O) steps since the
average is over a small number of features. In any case, including (G) and (O) steps does not
seem to hurt the analysis and thus we still recommend the full three-step (RR) transformation for
integrating features in this manner. Finally, we note that a similar, but attenuated, story can be told
for integrating data to recover other effects like plate, well and ligand. These results are shown in
Figures 6.15 - 6.17.

3.4.5 Discovering Biological and Spatial Effects within Wells

A primary goal in the analysis of MEMA data is the discovery of important biological effects.
Much the same way that the left singular vectors (PCs) revealed latent effects across the wells,
plates, and staining batches the right singular vectors (RSVs) reveal interesting variation across
the spots in each well. In Figure 3.9 we display a scatter plot of the elements first two RSVs of
total cytoplasmic DAPI intensity. This is done for each of the five transformations (NT), (G), (Z),
(O) and (RR). The color and shape of the points indicate to which ECMp the RSV component
corresponds.

The first thing to notice in Figure 3.9 is the striking separation between the ECMps ELN and
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NID1, and the rest. This effect manifests because the cells in the ELN and NID1 spots have
difficulty adhering to the MEMA substrate. Notice the cell count heat-map in Figure 6.7 shows
that the cell count in the ELN and NID1 spots are significantly lower than other spots. While
this ELN-NID1 effect is present in the un-transformed data, we can see from Figure 3.9 that the
(G), (O) and (RR) transformations reveal the effect better. The first RSV from the un-transformed
data does capture the effect however the second RSV seems to almost entirely be focused on
explaining a single anomalous CDH8 spot. Conversely, the transformations of (G), (O) and (RR)
are not distracted by this outlier spot. Indeed, they not only separate NID1 and ELN from the other
ECMps but they also separate the effects of ELN and NID1 from each other. This is especially
prominent in the three-step (RR) transformation.
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Figure 3.9: Scatter plot of elements of top two right singular vectors against each other for the total
cytoplasmic DAPI intensity feature. Shape and color indicate ECMp of the spot corresponding to
the elements of the singular vector.

To explore this further, in Figure 3.10 we plot heat-maps of the first three RSVs for cytoplasmic
DAPI intensity. This is done across all five transformations. We again see the effect of NID1
and ELN in these heat-maps. This effect manifests as the isolated points contrasting with their
immediate surroundings. However what we can see in these plots that we cannot see in Figure 3.9
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Figure 3.10: Heat map of elements of top three right singular vectors for the total cytoplasmic
DAPI intensity feature.

is the spatial patterns captured by the RSVs. In Figure 3.10 we see a very strong spatial pattern
differentiating the top of the well from the bottom. This is most visible for the (G), (O) and (RR)
transformations. Notably, we do not identify this effect with the (NT) and (Z) transformations.
Instead, their second and third RSVs are entirely capturing outlying points. Likely, this spatial
effect is an unwanted technical artifact from the experiment. Nonetheless, it is important to identify
such an effect so that we can be sure to properly account for it.

Looking at the RSVs of the other three example features largely tells a similar story. In Figures
6.19 - 6.23 we display similar scatter plots and heat-maps for the other example features. These
plots show that the (G) and (O) steps, and their combination in the (RR) transformation, help reveal
important latent spatial and biological effects.

3.4.6 Data Integration for Discovering Within-Well Effects

In section 3.4.4 we saw that data integration helped make salient important between-well effects.
In a similar fashion, the average right singular vectors (ASVs) help bring out within-well effects.
In Figure 3.11 we plot the first two right ASVs against each other. As previously, we use color
and shape of the points to indicate ECMp. The results here mimic what we saw in our previous
data integration effort. The (Z) and (RR) transformations equitably integrate information from
all features and thus help bring out important latent effects. In Figure 3.11 we can see that these
right ASVs are highlighting the ELN-NID1 effect. On the other hand the (NT), (G) and (O)
transformations do not properly adjust the features’ scales and so they do not capture this common
latent effect.

34



Right Singular Values, Color by Ecmp

K

i
●

i

VK
mY m

m

X

Y
W x

●
I

j dj
cx

J

r
Q

i

Wt
●

J

x
W Cr

d

t
●

●
x

T

W

●
d

Q
C

●

o
Gn

A

b

n

v
l

yv

bDl
b mG

HK
L H

o
V

y
D

A
H

u

i
m

●
●

K Yu Y
XK

Y
Y

m

V

u
●

Q
W

QTr
d

W
ix

●j
● t

T
C● r

T
T

t
●

J
WdJ J

●j
●H y

y

a L
l

b

n G

L
D A

o
l

L

L
K

a

Av
I

v
Ab

cGn
G A

Y
I

i

X

X

u●K m
I ●

Y

c

It
dx J c

t

T

●K ●
x T

r
j

●●
●

●

CW
j

●
x

●

r
j●

W
T ●

x b
G L

v
ao

va L
A

l
n

a D

A

n

H

G

uo

l
n

a

L
Go

V

●
u

X

c
Y

● i
u

c

V m
●

W

Q
T

●

Q
j

Q

C●T
●

rC
j

●

J
T

d
jC

●
●

J
rW

●
j

j
d

●

Q
d

H

y

L
H

y
o

n
y

D
Da

L

o
lD

o

n
n

L b
n

Hl

Av
n

V b
Gy

bI Y
V

X

I
K

● X

u
K

●uI
Ic i

u

X
I r C

● t
cC●

● C J
● XCTr

●
J

x
●

●● Q
J

t r
●

t● JQ W
t

l D
v

D
HD AlD

L l
H

a

vH
cy

oa A
Vy o● u

YV
m
cY

m

c IV
X

uK
c X

X

C● ●V
j

t

●
d

ux
t●

V J
T

●
Q

x
●

Q

t
J

●
C

●

●
r
T●r dd

Q
●D H

v
a

n G
b

o
a lLa

y
b

G

y
A

D
a

iL AG
l

ib

yv i
I K

i
●

i
VK

m

Y

m
m

X

YWx

● I
dj c

j
Jr

Q i
W

t●

W
Crd t
●●

x xT●
●
dQ

C
●●

oG
v
v Abn onl

y o
b

D

l
b

m

G

H
K
LvH

aV
yD

G

H

K

i

●

i

V

K

m

Y
m

m

X

Y

W

x

●

I

j

d
j

c

x

J

rQ

i

W

t

●J

x

W
C

r

d

t

●

●

x

T

W

●

d

Q

C

●

o

G

n

A

b

n

v

l

y

v

b

D

l

b mG

H

K

L

H

o

V

y

D

A

H

u

i

m

●

●

K

Y
u

Y

X

K

Y

Y

m
V

u

●
Q

W

Q
T

r

d

W

i

x

●
j

● t

T
C

●

r

T

T

t
●

J

W
dJ J
●

j

●

H
y

y
a

L

l

b

n G

L

D

A

o

l

L

L

K

a

A

v

I

v

A

b

c

G

n

G

A

Y

I

i

X

X

u
●

K m

I ●

Y

c

I
t

d

x
J

c

t

T

●
K ●

x

T

r

j

●

●

●

●

C
W

j

●

x

●

r

j

●

W

T
●

x

b

G

L

v

a

o

v

a

L

Al

n
a

D

An
H

G

u

o

l

n

a

L

Go

V

●

u

X

c

Y

●

i

u

c

V m

●

W

Q

T

●
Q

j

Q

C●

T
●

r

C
j

●

JT

d

j C

●

●J

r

W

●

j

j

d

●

Q

d

H

y

L

H

y

o

n

y

D

D

a

L

o

l
D

o

n

n

L

b

n Hl

A

v

n

V

b

Gy b

I

Y

V

X

I

K

●

X

u

K

●uI

I
c

i

u

XI rC

● t

cC●

●

C

J

●

X

C
T

r

●

J

x

●

●

●

Q

J

t

r

●

t

●

J
Q

W

t

l

D

v

D

HD A

l
D

L

l

H

a

vH

c

y oa
A

V
yo●

u

Y
V m

c

Y

m

c
I

V

X

uK

c

X
X

C
●

●V
jt

●

d

uxt

●

V

J

T

●

Q

x

●

Q

t

J

●

C

●

●

r

T
●r d

d

Q

●

D

H

v

a
n

G

b

o

a l
L

a

y
b

G

y

A

D

a

i

L
A

G

l

i
b

y

v
i

I

K

i

●

i

V

K

m

Y

m

m

X

Y
W

x

●

I

d

j

c

j

J

r

Q i

W

t

●

W

C

r

d

t

●

●

x
x

T
●

●

d
Q

C

●

●
o

G

v

v
A

b

n
o

n

l

y o

b

D

l

b

m
G

H

K

Lv
H

aV

y

D

G

H

K

i

●

i

V

K

m
Y

m

m

X

Y

W
x

●

I

j
d

j

c
x

J

r

Q

i

W
t

●

J

x

W C
r

d

t

●

●

x

T

W

●

d

Q

C

●

o

G
n

A

b

n

v

l

y
v

b
D

l

b mG

H
K

L
H

o

V

y

D

A

H

u

i

m

●

●

K
Y

u
Y

XK

Y
Y

m

V

u

●

Q

W

QT
r

d

W

i
x

●j

●t

T
C

●
r

T

T

t

●

J

W
d

J J

●j

●Hy

y

a
L

l

b

n G

L

D A

o

l

L

L

K

a

A
v

I

v

A
b

c

Gn

G A

Y

I

i

X

X

u●
K m

I ●

Y

c

I
t

d
x

J
c

t

T

●K ●

x
T

r

j

●

●

●

●

CW

j

●

x
●

r

j
● W

T
●

x
b

G
L

v

a
o

v
a

L
A

l

n

a
D

A

n

H

G

u
o

l

n

a

L

G
o

V

●

u

X

c

Y

●

i

u

c

V m

●

W

Q

T

●

Q

j

Q

C●T

●

r

C

j

●

J

T

d

j

C

●

●

J

r
W

●

j

j

d

●

Q
d

H

y

L

H
y

o

n

y

D

Da

L

o

l
D

o

n

n

L
b

n

Hl

A
v

n

V b

Gy

b
I Y

V

X

I

K

● X

u

K

●
uI

Ic i

u

X

I r
C

●
t

c
C●

● C J
● X

CT

r

●

J

x

●

●
●

Q

J
t r

●

t● JQ
W

t

l D

v

D

HD
A

l

D

L
l

H

a

vH

c
y

oa A

Vy
o●

u
YV

m

c
Y

m

c
I

V

X

u
K

c X

X

C●
●

V

j

t

●

d

u
x

t●

V J

T

●

Q

x

●

Q

t

J

●

C

●

●

r
T

●r dd

Q

●D
H

v

a

n
G

b

o

a l
L

a

y

b

G

y

A

D

a

iL

A
G

l

ib

y
v

i
I

K

i

●

i

V
K

m

Y

m

m

X

YW
x

●
I

dj
c

j

J
r

Q
i

W

t●

W

C
r

d
t

●
●

x xT
●

●

d
Q

C

●●

o
G

v

v A
b

n o
n

l
y o

b

D

l

b

m

G

H

K

Lv
H

aV
y

D

G

H

K
i

● i

V
K

m
Ym

m

X

Y
W

x

●

I

jd
j

cx

J

r
Q

i
W t●

J

xW

C

r

d

t●

●
x

T

W
● d

Q

C

●

o

G

n

A

b

n

v
l

y

v

b

D

l

b

m

G
H

K

L
H
o

V

y
D

A

H

u

i

m ●

●

K Y u
Y

X

K
Y

Y

m

V

u ●

QW

Q

T
r
d

W

i

x
●

j

●

t

T

C

● rT
T

t
●

JW

d

J

J

●

j

●

H

y

y

a
L

l
b

n
GL

D

A

o

lL

L

K
a

AvI
vA

b

c

G

n G

A

Y
Ii

X
X

u
●

K
m

I
●

Y

c

I

t

d

x

J

c
tT

●
K

●

xT

r

j

●

●

●

●

C
W j

●
x

●r

j ● W
T

●

x

b

G
Lv

a

o v a
L

A

l

n

a
D

A

n
H
G

u

o
l n

a

L

G o

V

●

u

X

c
Y

●

i

u

c

V

m
●

W QT

● Q
j

Q

C
● T

●

r

C

j

●

J

Tdj

C
●
●

J

r

W

●

j
j d

●

Q

d

H

yL

H

y

o

n y

D
D

a

L

o
l

D

o

n
n

L

bn

H

lA

v

n

V
b

Gy

b I

Y
V

X

I

K

●

X

uK

●

u
I

I
c

i

u

X

I
r

C

●
t

c

C

●

●C J

●

X

C

T

r

●

J
x●

●
●

Q
J

t r
●
t

●

J

QW

t

l D

v

D
H

D
A

l
DL

l
H

a
v

H

c
y

o

a

A
V

y

o

●

u
Y
V

m

c
Y m

c

I
V

X

u

K
c

X X

C

●
●V

j

t
●

d ux

t

●

VJ

T

●Q

x
●

Q
t

J

●C●
●

rT

●r

d

d
Q

●

DH
v

a

n Gb o

a

l

L a

yb

G

y
A
D a i

L

A

G l i

b
y

v

i I
K

i

●

i
V

K

m

Y
m

m

X

Y

W

x
● I

d
j c
j

J

r

Q
i

W

t

●

W

C

rd
t

●

●
x

x T
●

●
dQ

C

●

●

oG

v

v

A
b

n on

l

y

o
b

D

lb m
GH

K L
v

H

a
Vy
DG

H

Ki

●
i

V
K

m

Y
m

m

X

YW

x

●

I

j
d

j
cx

J

r
Q

i

W

t

●J

x

WC

r

d

t
●

●

x

T
W

●

d

Q
C ●

o

G

n

A

b

n

v

l

y

v

b

D

l

b

m G

HK

LH

o

V

y

D

A

Hu

i

m

●

●

K

Y

uY

X

K

YY m

V

u

●

Q
W

Q

T
r
d

W

i

x

●

j

●

t

T

C

●

r

T

T

t
●

J

W

d J

J

●

j

●

H

y

y

a
L

l

b
n

GL

D

A

o

lL L

K

a

A

v

I v

A

b

c

G n

G

A

Y

I

i

X

X

u

●

K

m

I

●

Y

c
I

t

d

x

J

c

t

T

●

K ●

x

T

r

j

●
●

●

●

C

W

j

●

x
●

r

j

●

W

T

●

x

b

G

L

v

a

o

v
a

L

A

l

n

a
D
A

n

H G

uo

l
n

a

L

G o

V

●

u

X

c
Y ●

i

u
c

V

m ●

W Q

T
●

Q

j

Q

C

● T

●

r

C
j

●

J

T
d

j
C

●

●
J

r

W

●

j
j

d

●

Q

d

H

yL

H

y

o

n
y

D
D

a

L
o

lD

o

n
n

L

b

n

H

lA

v

n

V
b

G

y b
I

YV X

I

K

●
Xu

K
● uI

I
c

i

u X

I

r
C

●

t

c

C

●

●

C

J ●
X

C

T

r

●

J

x
●

●
●

Q
J
t

r

●

t

●

J

Q

W

t

l
D

v

D

H

D

Al

D

L
lH

a
v

H
c y

o

a

A V
y

o

●

u
Y

V

m

c
Y

m
c I

V

X

u

K

c

X

X

C

●

●

V
j

t

●

d u

x

t●

V

J
T

●
Q

x
●

Q

t

J

●

C●●

r
T

●r

d

d
Q

●

DH

v

a

n
G

b

o

a

l

L a
y

b

G

yAD

a
i

L

A

G l

ib
y

v

i I
K

i

●

i

V

K

m

Y m

m

X

Y

W

x
●I

dj c
jJ

r

Q
i

W

t
●

W

C

r
dt

●

●
x

x

T

●

● dQ

C
●

●

o

G
v

v

A

b

n on

l

y

o
b

D

l

b m

G

H
K

L
v

H

a

Vy

D

G

H

Remove Outliers Robust Re−scaling

No Transform Robust Gaussianization Robust z−score

−0.040 −0.036 −0.032 −0.04 −0.03 −0.02 −0.01

−0.040 −0.036 −0.032 −0.040 −0.036 −0.032 −0.04 −0.03 −0.02 −0.01
−0.10

−0.05

0.00

0.05

0.0

0.1

0.2

−0.05

0.00

0.05

0.10

0.0

0.2

0.4

0.6

−0.10

−0.05

0.00

0.05

X1

X
2

ecmp

o

K

y

L

●

l

G

D

a

H

n

b

v

A

r

t

●

Q

C

●

●

W

●

j

J

d

T

x

X

Y

I

V

u

i

m

c

ALCAM|1

BCAN|1

BGN

CD44|1

CDH1|1

CDH15

CDH20

CDH3|1

CDH6|1

CDH8

CEACAM6

COL1

COL23A1|1

COL2A1|2

COL3A1|1

COL4

COL5A1

DCN|A

DSG2

ECM1|1

ELN|3

FBN1

FN1|1

GAP43|1

HA<500kDa

HA>500kDa

ICAM1

ITGA10B1

ITGA2B1

ITGA3B1

ITGA4B1

ITGA6B4

ITGA9B1

ITGAMB2

ITGAVB6

LAMB1

Laminin3B32

LUM

NID1|1

OMD

PECAM1|Long

POSTN|1

SPARC

SPP1|A

THBS1|1

TNC|1

VCAM1|1

VTN

ASVD

Figure 3.11: Scatter plot of elements of top two right ASVs calculated over 21 features measured
on all MEMAs. Shape and color indicate ECMp of the spot corresponding to the elements of the
singular vector.

Finally, we display heat-maps for the the first three right ASVs in Figure 3.12. While the (G)
and (O) transformations did not pick up the ELN-NID1 effect, we can see from this figure that
they do capture spatial effects within the wells. The only transformation that does not strongly
pick up the spatial effects well is (NT). The right ASVs for this un-transformed data seem to be
mostly picking up a single outlier. On the other hand, the (G), (Z), (O), and (RR) transformations
seem to pick up two interesting spatial effects. The first effect is a top versus bottom effect, and the
second effect is a middle versus top/bottom edge spatial effect. Nonetheless, while the (G) and (O)
transformation do pick up the spatial effects we still recommend the (Z) or (RR) transformation for
recovering latent effects from the ASVs. These transformations will properly allow integration of
features so as to pick up common effects within the wells. The (G) and (O) transformations are just
picking up the spatial effects because they happen to capture a feature with similar spatial effects.
Conversely, the (Z) and (RR) transformations help recover both important biological effects and
shared within-well spatial effects.
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NT G Z
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Figure 3.12: Heat-map of top three right ASVs calculated over 21 features measured on all
MEMAs.

3.5 Discussion

The microenvironment of cells is an important component of many cell and tissue level processes.
Studying cellular microenvironment not only furthers a fundamental understanding of these pro-
cesses but also helps us understand the interaction of the microenvironment with disease-targeting
therapies. In this paper we have explored the effects of several simple processing steps on the
analysis of MEMA data. We have considered not transforming data (NT), Gaussianizing data (G),
z-scoring data (Z), removing outliers (O), and a three-step sequence (G), (Z), then (O) that robustly
re-scales (RR) the data. Broadly, our analysis of these transformations is as follows.

First we found that un-transformed feature data is often encumbered by skewed measurement
scales, outliers, or both. These aspects can obscure important effects in the data and this hin-
ders discovery of interesting latent effects through qualitative visualizations like heat-maps and
quantitative analysis like PCA. In pursuit of attenuating such effects, we saw that both the (G)
and (O) transformations were helpful. The (O) transformation simply discards data outside of
a conservative threshold. Often this transformation enhances analysis by removing influential but
uninformative measurements. Unfortunately the simple threshold sometimes fails to properly iden-
tify outliers. If the data is highly skewed, informative points might be spuriously removed. This
can be detrimental to analysis. Conversely, if the data is too compact, the thresholding can fail to
detect misleading data that probably should be removed. Another way to deal with such problems
is Gaussianize the data. This is what our Gaussianizing transformation (G) does. Like the (O)
transformation, we saw that reducing skewness by Gaussianizing the data can make interesting
latent effects prominent. This happens because the (G) transformation attenuates the influence
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of the data’s tail. However to make the transformation robust, our (G) step largely ignores ex-
treme outliers. Thus the effects from these outliers are still potentially problematic after the (G)
transformation.

Many of the problems with applying the (G) and (O) transformations individually are resolved
by combining the two steps. We see this in the (RR) transformation where (G) and (O) are the first
and last steps, respectively. First the (G) step is applied which non-linearly transforms measure-
ments to reduce data skewness in the body of the distribution. After this transformation, any points
which appear to be anomalously outlying are removed using the (O) step. The order of these two
steps is important. By first applying the (G) transformation and following with the (O) step we
attempt to minimize the changes made to the data. The (G) step transforms the data only if the
distribution is fundamentally skewed. The (G) step does not apply a strong non-linear transforma-
tion simply to ameliorate the effects of outliers. Instead, these outliers are dealt with simply by
discarding points beyond a conservative threshold. In this way only the few outlying points are
changed. While one might consider first removing the outliers before a Gaussianizing transforma-
tion, accurately identifying points that should be removed depends critically on the data scale. The
preemptive Gaussianization means we are less likely to spuriously identify points in the tail of a
skewed distribution as outliers. Thus the (O) step in tandem the (G) step helps identify and remove
only true outliers that are not accounted for in the (G) step.

Finally, in this paper we looked at a z-score transformation (Z) alone and as part of the (RR)
transformation. We saw that transforming feature matrices with a robust z-score allowed them to
be straight-forwardly integrated. This integration allowed us to extract important latent effects like
staining batch from a simple arithmetic average of Gram matrices. The (Z) transformation is crucial
for this data integration because it puts the values in the Gram matrices on commensurate scales
so that an arithmetic average equitably integrates them. Furthermore we saw that the averaging of
Gram matrices conveys some of the same benefits as the (G) and (O) transformations. Specifically,
the averaging dampens the effects of anomalous outliers and skewed distributions. Nonetheless,
we also saw that the (G) and (O) transformations do not tend to harm this analysis. Moreover,
these (G) and (O) transformations can still convey benefits when the number of feature integrated
is small or there exist systematic skewness or outliers across features.

In conclusion, we saw that a combination of a Gaussianizing transformation (G), z-score trans-
formation (Z), and removal of outliers (O) can improve visualization and discovery of biological
and technical latent effects in both individual features and when integrating features. The appli-
cation of each of these transformation alone and sequentially has the potential to make salient
important effects in the data. Conversely, these transformation rarely have a negative effect on
analysis. For these reasons we believe that such transformations are generally advisable for the
analysis and integration of MEMA data. More broadly, the robust nature of these transformations
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suggests that they may prove beneficial for processing data from other image-based cell profiling
technologies.
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Chapter 4

Summary and Conclusions

4.1 Major Conclusions of This Work

In this work we have carefully considered the role that scale transformations play in the analysis
of high-throughput -omics data. In this section we will briefly summarize those results.

In Chapter 2 we looked at the dtangle estimator for cell type proportions. Here we showed
that a combination of a plausible biological model on the linear scale with a fitting procedure
using log-scale data produces a powerful cell type estimator. The dtangle estimator broadly out-
performed existing cell type deconvolution methods across eleven bench-mark data sets. These
data sets included a wide range of cell types, technologies, and many more experimental factors.
Not only does dtangle perform as well or better than existing method, it is also very robust to out-
liers in the data and tuning parameters. In addition, we explored the role of scale in deconvolution
methods through a large number of simulations. We also applied dtangle to real gene expression
data from Lyme disease patients and showed that dtangle produces results consistent with existing
knowledge.

In Chapter 3 we looked at the role of transformations in the analysis of microenvironment mi-
croarray data. Here we explored a Gaussianizing transformation, a z-score transformation, and
a step to remove outliers. We observed that the Gaussianizing and outlier removal steps can im-
prove visualizations and recovery of important latent effects by attenuating the effects of skewed
measurement scales and outliers. We also saw that their sequential application can produce a pow-
erful transformation towards this end. In addition to these two transformations, we looked at a
z-score transformation. This transformation was crucial in the proper integration of MEMA fea-
tures. The z-score transformation allowed features on very different scales to be integrated using
a simple averaging of Gram matrices. This allowed the strong recovery of important latent effects
shared across features. By averaging the Gram matrices the effects of outliers and skewed data
could largely be ameliorated. However the Gaussianizing and outlier-removal steps were poten-
tially beneficial if there were a small number of features being integrated or systematic skewness
or outliers. In any case, these transformations were not harmful.
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The unifying thread across these projects is the importance of data scale in analysis. In Chapter
2 we showed that the scales used to model and fit the data can impact the efficacy with which cell
types can be estimated. Furthermore, in Chapter 3 we showed that simple scale transformations can
enhance visualization, recovery of important biological and technical latent effects, and integration
of MEMA image features. Both of these project underline the fact that simple data transformations
combined with a careful consideration of data scale has the potential to greatly enhance analysis.

4.2 Future Work

We can see several ways forward from these projects. For dtangle we see a potential of research in
the following directions:

1. application to DNA methylation data

2. relaxation of the marker gene assumption using optimization

3. Box-Cox-like transformations in lieu of a log-transformation

4. exploring the effects of data normalization techniques and deconvolution

5. removing unwanted variation as part of dtangle.

In the pursuit of the analysis of MEMA data we presently have the two following lines of inquiry
we would like to explore:

1. delving into feature integration and imputation of unknown features using known features

2. looking at the interaction between transformations and adjustments for unwanted variation.
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Chapter 5

Supplement: dtangle

5.1 Assessing The Relationship Between Actual and Measured
Expression

One of the main components of dtangle’s approach is a linear model relating actual gene expression
to measured gene expression. To explore its plausibility, we consider this linear model’s application
to Affymetrix DNA microarray data and Illumina RNA-seq data.

5.1.1 Microarray Data

To explore the relationship between the amount of transcripts and the measured expression from
microarray technology we consider the Latin Square data set from Affymetrix [Irizarry et al.,
2003]. This data set was created by hybridizing a solution of complex human background mRNA
with 42 transcripts spiked in at concentrations ranging from 0.125pM to 512pM. The spike-ins
were done with 3 technical replicates of 14 hybridization experiments in a Latin square design.
This data set lets us explore the relationship between measured expression and abundance of the
transcripts because for each of the spiked-in transcripts we know both the expression measured by
the array and the amount in which the transcript was spiked in.

The expression as measured by the microarray is best explained by a logistic fit in the spike-
in amount (Supplementary Figure 5.28a). However the linear fit that dtangle assumes does quite
well. The logistic fit has a slightly smaller R2 than the linear fit however there are several reasons
we choose to model the relationship between spike-in amount and measured expression as linear.
Firstly, the linear model is much simpler than the logistic model and has almost as good of a fit.
For the linear model R2 = 0.957 while for the logistic least squares fit we have R2 = 0.992.
Thus we gain relatively little for using the more complex model. Furthermore, the simplicity of
the linear fit can also be thought of as a regularization of the logistic model. The non-linearity
of the logistic curve means it is a very unstable model for measured expressions on both the high
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and low ends. That is, its inverse is undefined at or beyond these points. If the logistic model
is used to estimate the true gene transcriptional abundance from measured expression data then
small changes in measured expression might correspond to large changes in predicted amount.
Indeed, the logistic curve will fail completely for measured expressions above its maximum or
below its minimum. The linear model can be thought of as a regularized model between these
two quantities. It ensures that a linear change in measured expression will only ever effect a linear
change in amount. While there is probably a true non-linear relationship between the expression
measured by microarrays and the amounts of transcripts in the samples, a linear fit does quite well
at approximating this relationship and is a regularized model for the truth.

5.1.2 RNA-seq

Another reason we favor linear modeling of the relationship between amount and measured ex-
pression is because it is not only reasonable for microarray technology but a reasonable model
for RNA-seq. To explore how our model interacts with RNA-seq technology we consider data
from the Sequencing Quality Control project [SEQC Consortium, 2015]. These data are available
on GEO with accession GSE47774. Here we look at RNA-seq analysis run on Ambion ERCC
Spike-In Control Mix 1 using Illumina HiSeq technology. The ERCC spike-in control mix con-
tains 92 transcripts spiked-in at known concentrations. Hence this data set allows us to look at the
relationship between measured expression and amount because both are known.

For this data the measured expression values (log2 of the read count plus one) are well approxi-
mated by a linear relationship to the spike-in concentration amount (Supplementary Figure 5.28b).
Unlike the previously discussed microarray data the RNA-seq data does not seem well approxi-
mated by a logistic fit. For a simple linear regression we find R2 = 0.955 and so a linear fit seems
reasonable.

5.1.3 Estimating The Slope

We have thus seen that both microarray and RNA-seq measured gene expressions are well modeled
as linear (on the log-scale) in the actual expressions. For the RNA-seq data we find that the slope
of the linear relationship is approximately one. However for microarray data the relationship is
better modeled as linear with a slope slightly smaller than one. Doing so will help account for the
true logistic relationship that is affected by saturation and attenuation of the measured expressions
at the low and high ends.

We denote the slope of this relationship as γ in our model and replace it with its estimate γ̂
when estimating the cell type proportions using dtangle. The value of γ̂ in dtangle’s algorithm
may be set by the user if desired. However a pre-set value of γ̂ will be used by default if none
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is supplied. If γ̂ is not specified by the user, one need only specify the type of technology as
either probe-level microarray, gene-level microarray, or RNA-seq. From here a default value of γ̂
is chosen. These default values are estimated from spike-in experiments like those just discussed.
For both RNA-seq and microarray spike-in data we fit regression models of measured expression
on spike-in amount. These are the linear models seen in in the previous sections. We then take
the median value of all the estimates of the slopes from each gene’s regression model. These form
the estimate of γ̂. This is done for the RNA-seq data (on the log2 of the counts plus one) and
microarray data (at the RMA-summarized gene level and raw log2 probe-level). These estimates
set the default values for γ̂ at .452 for probe-level microarrays, .699 for gene-level microarrays, and
.943 for RNA-seq data. For other applications or situations lacking intuition for γ we recommend
setting γ to one.

5.1.3.1 Slope Sensitivity

In order to evaluate the sensitivity of dtangle to changes in γ̂ we conduct a meta-analysis of dtangle
over many values for γ̂ (Supplementary Figure 5.10, 5.11, 5.12). dtangle seems to perform poorly
if γ̂ is less than 0.5. However for γ̂ above about 0.5 dtangle is not particularly sensitive to the
parameter. In any case dtangle seems robust to changes in γ̂ with best performance when γ̂ is
between 0.5 and 1.

5.2 Investigations Using Simulated Mixtures

To further investigate the role of robust scales, marker genes, cell type co-linearity, and the ac-
curacy of dtangle we investigated the performance of deconvolution methods on a wide range of
simulated data.

5.2.1 Methods and Data

Broadly, the data simulation approach we take is to generate a matrix U ∈ RK×N of K reference
cell type profiles across N genes, and a matrix M ∈ RS×K of K cell type mixing proportions
across S samples and take their product (with some noise) to form a mixture gene expression
matrix X ∈ RS×N . We simulate data using both Gaussian and Poisson error at the log and linear
scales, respectively, so that

1. in the Gaussian case X def
= exp(log(MU) + E) where Emn

iid∼ N(0, fσ), σ = sd(log(1 +

vec(U)), and f is a multiplicative error factor controlling the level of noise

2. and in the Poisson case we let Ymn
iid∼ Pois((MU)mn).
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The Gaussian error model will simulate data with character similar microarray data while the
Poisson model will simulate data that more closely resembles RNA-seq.

We generate M with the following structure

M = (IK | IK | R)′

where the S − 2K columns of R are uniformly drawn from the (K − 1)-dimensional probability
simplex. This structure of M means that the first 2K rows of X are just the references U with
some error. These first rows of X are thus used as the reference data for deconvolution.

To generate U we follow two broad schemes. We will call the first the “artificial cell type”
scheme and the second the “real cell type” scheme.

5.2.1.1 Artificial Cell Type Mixtures

The artificial cell type references were simulated as follows. First we generated a baseline profile
B ∈ RN by taking the un-normalized read counts from the Parsons data set and gene-wise taking
the median across the 39 samples for each of the N = 23459 genes. This baseline profile was then
perturbed to create reference profiles for K = 3 artificial cell types as follows.

Let ρ ∈ (0, 1) be the percentage of N genes that are markers of some cell type. Then let
Gk ⊂ {1, . . . , N} be a set of bNρ/Kc randomly selected type k marker genes. These genes are
randomly selected among those genes in the top quartile of expression in B so that the Gk are
mutually disjoint. We then form U through the following two steps:

1. make each reference profile a copy of B,

U ← 1K ⊗B

2. for each cell type k set the expression level of marker genes Gk to some small value µ ∈ R
for all reference profiles other than the type k reference,

Utn = µ for all n ∈ Gk, t 6= k and k = 1, . . . , K.

This scheme ensures that each cell type k has some set of marker genesGk that are highly expressed
in the type k reference (they are among the top 25% of overall expression) but lowly expressed in
all other cell type references (at a low expression level µ).
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5.2.1.2 Real Cell Type Mixtures

Our scheme to generate “real” cell type references is much simpler. We let U be the reference of
an existing data set. We use references from the Parsons or Linsley data in our simulations. Given
the data set (Parsons or Linsley), we let the kth row of U be the median of the reference profiles for
the kth cell type in the data set. For both the Parsons and Linsley data K = 3, while N = 23459

for the Parsons data and N = 21421 for the Linsley.

The artificial cell type simulations are useful because they allow us control over many simula-
tion parameters. In addition to controlling the noise level f in the Gaussian case, we can control
the percentage of actual marker genes ρ, and the expression level of marker genes in other cell
types µ. On the other hand the real cell type simulations are interesting because they are more
realistic than the artificially created cell types but also because they allow us to investigate realistic
situations where the cell types are very different (Parsons) and very similar (Linsley).

In all cases after X has been generated the data is TPM normalized and analyzed using pre-
cisely the same procedure as described in the main body of this paper treating the first 2K rows of
X as reference samples of the K cell types. Notably we do not reveal the true marker genes to the
deconvolution methods in the case of the artificial cell type simulations.

We evaluated the performance of dtangle, the four other partial deconvolution algorithms
(CIBERSORT, EPIC, LS Fit, and Q Prog) and a simple linear regression approach, on this simu-
lated data. For all methods other than dtangle we evaluated the algorithms using both the linear
scale data as generated, and logarithmically transforming the data using a base-2 logarithm of one
plus the expression. Importantly, the other partial deconvolution methods do not fit using log scale
data. For example, CIBERSORT’s code explicitly forces data to be on a linear scale and EPIC uses
linear-scale TPM-transformed read counts. Nonetheless, it will be instructive to look at these meth-
ods using both linear and log-scale expressions. We do not do this similar comparison for dtangle
because its approach does not fall nicely into either category, it combines both scales. Hence such
a comparison does not make sense for dtangle. Instead we put dtangle in its own hybrid category.

The simple regression approach, mentioned above, simply estimates M by regressing the mix-
ture samples’ expressions onto the reference expressions. This is done using both linear and log-
scale expressions. We included this regression approach because it serves as an easily understand-
able baseline against which we may compare other methods.

5.2.2 Scale and Robustness

In Supplementary Figure 5.29 we plot boxplots of error and correlation along with scatter plots
of estimates against true mixing proportions showing the performance of dtangle, the four partial
deconvolution methods, and the linear regression approach, on artificial cell type simulated data
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with a low level of Gaussian error. We display these plots of the methods using both linear and
log-scale expressions. The data was simulated so that 15% of the genes were markers (ρ = .15),
the marker genes were only expressed by the cell type they mark (µ = 0), and the added Gaussian
error is 2.5% of the typical variance among expressions (f = .025). We plot similar figures
using the Poisson error structure and the same values of ρ and µ in Supplementary Figure 5.34.
Similarly we plots these figures for the real cell type mixtures using the Parsons data (Gaussian
error: Supplementary Figure 5.38, Poisson error: Supplementary Figure 5.41) and the Linsley data
(Gaussian error: Supplementary Figure 5.43, Poisson error: Supplementary Figure 5.46). The
same value of f is used for the real cell type simulations with Gaussian error.

We can see from all of these figures that broadly dtangle out-performs other methods but also
that the other partial deconvolution methods tend to perform better deconvolving linear scale ex-
pressions than the log-scale expressions. This makes sense because our data has been simulated
as a linear mixture of linear scale expressions and since the simulation error in these figures is
small (f = .025 in for the Gaussian simulations). The simulated data follows exactly the model
presumed by these methods.

We argue that while a linear mixing of linear expressions is a plausible model, it is not robust.
To show that this is true we adjust our simulations in two ways. First, we look at the same Gaussian
simulations but change the error factor f from 2.5% to 75% (i.e. f = .75). The same plots with
a high level of Gaussian error are Supplementary Figure 5.30, 5.39, 5.44. While dtangle still out-
performs other methods, we see now that the other partial deconvolution algorithms perform better
using log-scale expressions than linear scale expressions. Notably the data has still been generated
using a linear mixing model of linear expressions, we have only increased the Gaussian error. Yet
the log-scale expressions give a better fit even though the model is mis-specified fitting with log-
scale expressions. The reason the log-scale expressions give a better fit in the high-error situation
is because the logarithmic transformation attenuates the effects of the highly skewed data and the
undue influence of points in the tail of the data.

A similar situation occurs if we leave the error low (f = .025 for Gaussian simulations) but
add outliers to the data. For both the Gaussian and Poisson error structure we simulate data as
previously described but then add five random outliers to each of the reference profiles in X . The
value of these outlying points is set (on the log-scale) as 1.25 times the largest observation before
adding any outliers. We plot similar figures for each of the simulations after adding outliers (see
Supplementary Figure 5.31, 5.35, 5.40, 5.42, 5.45, 5.47). Largely the results are the same as the
high-error Gaussian case. We see that the other partial deconvolution algorithms perform better
after a logarithmic transformation since this ameliorates the effects of the outliers. Notably dtangle
is relatively unperturbed by the outliers. This is because dtangle robustly combines expressions on
a log-scale before averaging. Furthermore dtangle’s averaging approach is not highly influenced by
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a single outlying point. In contrast, the outlying point becomes a high-leverage point for the other
regression-like partial deconvolution approaches and thus is highly-influential on the estimates.
This effect of outliers is also seen very prominently in the Shen-Orr dataset. In this dataset, as in
the simulations, dtangle’s robust approach of working with log-scale expressions but using a linear
mixing model of linear expressions does exceptionally well. The other deconvolution algorithms
are completely misled by an outlier.

5.2.3 Marker Genes

5.2.3.1 Marker Gene Expression

A central feature of dtangle’s approach its use of marker genes. Broadly, we define a marker gene
as one which is expressed predominantly in only one cell type. All deconvolution methods seem
to benefit from marker genes. Typically, they are used to sub-set the data on which the model
is fit. dtangle has a unique use of marker genes and rigorously defines marker genes as only
being expressed in one cell type. Nonetheless, we realize that this assumption is a mathematical
approximation to the truth and so it is worth investigating what happens to dtangle when it is
violated.

To investigate this we simulate data according to our artificial cell type simulation scheme with
ρ = .15 so that 15% of the genes are marker of some cell type and using both a Gaussian error
structure (f = .025) and a Poisson error structure. We then vary the expression of marker genes in
other cell types µ. In Supplementary Figure 5.33 and Supplementary Figure 5.37 we plot (A) the
absolute error and (B) correlation of dtangle’s estimates from the truth varying the value of µ from
the minimum of the data to letting µ be the maximum of the data. We plot the error or correlation
on the y-axis and set µ to be the qth quantile of the data varrying q along the x-axis.

In either case we see that as we increase the value of µ, and as it gets further from our math-
ematical assumption that µ = 0, the error of dtangle increases. However this increase is very
slow. Indeed, the marker genes do not need to have a true expression of µ = 0 in all other cell
types. So long as the expression of marker genes in other cell types is in, say, the bottom 25% of
all gene expression dtangle does very well. Thus dtangle seems quite robust to this marker gene
assumption.

5.2.3.2 Number of Marker Genes and Co-linearity

For all deconvolution algorithms, including dtangle, it is important to find a good set of marker
genes. In real data, the primary reason it can be difficult to find marker genes is some combination
of (1) that there are many cell types we wish to deconvolve and (2) the cell types we wish to
deconvolve are closely related. This follows because our definition of a marker gene is a gene that

47



is highly expressed in only one cell type. Thus the more cell types we have, the harder it is to find
a gene is that expressed highly in only one of the cell types. Similarly, if the cell types we wish to
deconvolve a closely related and their expression profiles are highly co-linear then finding genes
highly expressed in one cell type but not the others is difficult.

To explore the performance of dtangle in situations where marker genes are hard to identify
we simulate according to our artificial cell type scheme and vary the percentage of genes that are
markers of some cell type (ρ). For a Gaussian error structure we plot in Supplementary Figure 5.32
the (A) error or (B) correlation of dtangle’s estimates against the true mixing proportions, on the
y-axis, against the percentage of marker genes in the data (ρ), on the x-axis. We vary ρ from 0.01

to 0.2. We plot a similar plot in Supplementary Figure 5.36 using the Poisson error structure. What
we can see from these two figures is that dtangle’s performance only suffers drastically when less
than about 2-3% of the genes are good markers of a cell type. So long as at least 3-5% of the genes
in the data are markers of some type dtangle does quite well.

To explore this issue further we also revisit the results from the real cell type mixture sim-
ulations, Supplementary Figure 5.38-5.47. In these simulations we simulated mixtures of using
the references from the Parsons and Linsley data sets. The Parsons data set is a mixture of three
very distinct cell types: Brain, Liver and Muscle. On the other hand the Linsley data set is a mix-
ture of three closely related white blood cell classes: Lymphocytes, Monocytes, and Neutrophils.
It should be relatively easy to find marker genes for the Parsons data set, because the cell types
are very distinct, and relatively more difficult to find marker genes for the simulated mixture of
closely-related white blood cells using the Linsley reference data. While we do see that dtangle
has relatively more trouble deconvolving the Linsley-derived simulations than the Parsons-derived
simulations, e.g. compare Supplementary Figure 5.38 to Supplementary Figure 5.43, dtangle still
does well over-all. Indeed dtangle still out-performs the other partial deconvolution methods.

Over all we see that dtangle, like other deconvolution algorithms, will suffer if there are almost
no marker genes of the cell types. However dtangle is quite robust and works well with as few as
a couple of percent of the genes being marker of some cell type.

5.2.4 Other Remarks

5.2.4.1 Accuracy as a Function of the Truth

We see from all of these simulations that the accuracy of dtangle’s estimates do not seem to depend
strongly on the true mixing proportion. That is, dtangle estimates accurately when the true mixing
proportion is close to zero and when the true mixing proportion is close to one.
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5.2.4.2 Gamma

The simulations we have explored in this section follow a linear mixing model of linear expres-
sions. This is a simplification of the model that dtangle posits. It is simplified because dtangle’s
model also includes an adjustment term γ. Hence simulations strictly according to dtangle’s model
would posit a linear mixing of slightly transformed linear expressions. We chose to simulate linear
mixing on a linear scale because this is the model assumed by other deconvolution algorithms.
Thus our simulations should be a fair analysis of these other deconvolution algorithms because
it follows their model, not dtangle’s. Effectively, we have simulated data assuming γ = 1. This
shows that dtangle works quite well even when γ is not required in the model.

5.3 The Mathematics of dtangle

Assume we have a mixture sample of K cell types. Let Y ∈ RN be the (base-2) log-scale expres-
sion measurements of this mixture sample and p1, . . . , pK be the mixing proportions of the cell
types. For k = 1, . . . , K assume that there are νk reference samples of cell type k and let Zkr ∈ RN

be the log-scale expressions of the rth type k reference. Furthermore, let Gk ⊂ {1, . . . , N} be the
set of type k marker genes. We require that these marker gene sets are mutually disjoint.

Let gk = |Gk| and define YGk
= 1

gk

∑
n∈Gk

Yn and ZGk
= 1

gkνk

∑
n∈Gk

∑νk
r=1 Zkrn to be the

average of all type k marker genes across the mixture and reference samples, respectively. Finally,
denote our “adjustment term” as γ ≈ 1.

Let ηkn be the actual linear-scale expression of the nth gene in a sample of type k cells and ηn
be the actual linear-scale expression in the mixture, then dtangle assumes these actual expressions
mix linearly,

ηn =
K∑
k=1

pkηkn. (5.1)

Furthermore dtangle assumes that the measured log-scale expressions are linear in the actual log-
scale expressions,

Yn = µ+ θn + γ log2 (ηn) + εn

Zkrn = α + θn + γ log2 (ηkn) + εkrn.
(5.2)

and that marker genes are (approximately) expressed by only one cell type so that if n is a marker
gene for cell type k (n ∈ Gk) then

η`n = 0 for all ` 6= k. (5.3)
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Combining Equation 5.1 , Equation 5.2 and Equation 5.3 we then have that for n ∈ Gk,

Yn = µ+ θn + γ log2 (pkηkn) + εn

= µ+ θn + γ log2 (pk) + γ log2 (ηkn) + εn

Zkrn = α + θn + γ log2 (ηkn) + εkrn.

(5.4)

So for n ∈ Gk we have

YGk
= µ+ θGk

+ γ log2 (pk) + γlog2 (ηGk
) + εGk

ZGk
= α + θGk

+ γlog2 (ηGk
) + εGk

.
(5.5)

where
θGk

=
1

gk

∑
n∈Gk

θn

log2 (ηGk
) =

1

gk

∑
n∈Gk

log2(ηkn)

εGk
=

1

gk

∑
n∈Gk

εn

εGk
=

1

gkνk

∑
n∈Gk

νk∑
r=1

εkrn.

This means
YGk
− YGt = γ log2 (pk/pt)

+ θGk
− θGt + γlog2 (ηGk

)− γlog2 (ηGt)

+ εGk
− εGt

ZGk
− ZGt = θGk

− θGt + γlog2 (ηGk
)− γlog2 (ηGt)

+ εGk
− εGt

(5.6)

and so
Dkt =

1

γ

((
YGk
− YGt

)
−
(
ZGk
− ZGt

))
= log2 (pk/pt) + δ

(5.7)

where δ = 1
γ

(
εGk
− εGk

− εGt + εGt

)
.

Now as gk →∞ for all k then δ → 0 and so for a reasonably large number of marker genes

Dkt ≈ log2 (pk/pt)
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and so since Dk = (Dk1, . . . , DkK) then

Dk ≈ (log2 (pk/p1) , . . . , log2 (pk/pK))

and so if Lk(x) = 1/(1+
∑

t6=k 2−xt) then

Lk(Dk) ≈ pk

and so the dtangle estimator Lk(Dk) approximates pk.
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Scale Actual Expr. (Unobserved)

Linear mRNA amount

Log log2(mRNA amount)

GEP tech.

	
Scale Measured Expr. (Observed)

Linear gene expr. measurement

Log log2(gene expr. measurement)

Figure 5.1: Measured expressions (log or linear) arise from a measurement process on the actual
expressions (log or linear).

Deconvolution Methods

Name Citation

dtangle (This publication)


Partial

CIBERSORT [Newman et al., 2015]

EPIC [Valencia et al., 2017]

LS Fit [Abbas et al., 2009]

Q. Prog [Gong et al., 2011]

deconf [Repsilber et al., 2010]


Full
DSA [Zhong et al., 2013]

ssFrobenius [Gaujoux and Seoighe, 2012]

ssKL [Gaujoux and Seoighe, 2012]

Table 5.1: Nine deconvolution algorithms we compare.
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Table 5.2: Benchmark data sets on which we compare deconvolution algorithms. The accession key is for
GEO (or in the case of Parsons, ENA). The technology producing the data is either “ma” for microarray or
“seq” for RNA-seq. The column “Truth” distinguishes between mixture experiments “mix” or data where
the truth is known from flow cytometry “ctyo.” The number of gene expression measurements made by
the technology is the column “Genes” and the number of unknown heterogeneous samples deconvolved
is the column “Samples.” The column “Reference” lists the number of samples in the reference data along
with the designation of “internal” if the pure reference samples were created part and parcel with the mixture
experiment or “external” if the reference samples were collected from external data sources (typically GEO).
The column “Cell Types” lists the number of cell types in the mixture samples and provides a description of
the cell types along with the species from which the cell types come (in the column “Species”).
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Figure 5.2: Boxplots of all deconvolution methods across all data-sets. Top 10% of the 25% of
most variable genes are used as marker genes used for deconvolution. Marker genes determined
by median differences across reference samples. Slope (γ) for dtangle determined automatically
by data-type. (A) For each cell type the correlation of the true mixing proportions against the esti-
mated mixing proportions is calculated. If the s.d. of the estimates is zero, we say the correlation is
zero. If the s.d. of the true proportions is zero we do not calculate the correlation. Each point is the
median of the correlations across cell types. We calculate this median correlation for each data-set
and each deconvolution method. (B) Similar to (A) except using R2 instead of correlation. (C) is
similar to (A) but using grand means instead of correlation. For each cell type the absolute value of
the error of the estimated mixing proportions from the true mixing proportions is calculated. Each
point is the mean of the errors across cell types. We calculate this mean for each data-set and each
deconvolution method.
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Meta Boxplots: logarithmic
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Figure 5.3: Similar to Figure 5.2 but applying methods to log transformed data.

Meta Boxplots: Microarray
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Figure 5.4: Similar to Figure 5.2 but only comparing microarray data-sets.
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Meta Boxplots: RNA-seq
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Figure 5.5: Similar to Figure 5.2 but only comparing RNA-seq data-sets.
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Meta by Quantile
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Figure 5.6: Partial deconvolution methods performance (y-axis) by number of marker genes (quan-
tile, x-axis). Slope (γ) for dtangle determined automatically by data-type. Top q% of top 25% of
most variable genes used for deconvolution where q varies over the x-axis from 1% to 15% (in in-
crements of 1%). Marker genes determined by p-value (Left) and ratio of the linear expression of
each type to the expression in all other types (Right). The y-axis is the grand (A) mean or (B) me-
dian (over data-sets and cell types) of the absolute error of the true proportions from the estimated
proportions, or the grand (C) mean or (D) median of the R2 or correlations (E, F) of the estimated
proportions against the true proportions. The correlation is zero if the s.d. of the estimates is zero
and the correlation is not computed if the s.d. of the true proportions is zero. One line is plotted
for each partial deconvolution method. Error ribbons displaying 95% confidence intervals.
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Meta by Quantile: Microarray
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Figure 5.7: Similar to Figure 5.6 except only comparing microarray datasets.
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Meta by Quantile: Seq
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Figure 5.8: Similar to Figure 5.6 except only comparing RNA-seq datasets.
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Efficiency by Quantile
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Figure 5.9: Mean of log10 of time (in minutes) each algorithm took to deconvolve all data sets.
Maximum and minimum value envelope is included.
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Meta by Slope
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Figure 5.10: dtangle performance (y-axis) by slope (γ) varrying over x-axis from 0.25 to 2 (in
increments of 0.05). Marker genes determined by p-value (Left) and ratio of the linear expression
of each type to the expression in all other types (Right). The y-axis is the grand (A) mean or
(B) median (over data-sets and cell types) of the absolute error of the true proportions from the
estimated proportions, or the grand (C) mean or (D) median of the correlations of the estimated
proportions against the true proportions. The correlation is zero if the s.d. of the estimates is zero
and the correlation is not computed if the s.d. of the true proportions is zero. One line is plotted
for four choices of number of markers using only the top 1%, 5%, 10% or 15% of top 25% most
variables genes as markers. Error ribbons displaying 95% confidence intervals.

61



Meta by Slope: Microarray
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Figure 5.11: Similar to Figure 5.10 but only comparing microarray data-sets.
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Meta by Slope: RNA-seq
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Figure 5.12: Similar to Figure 5.10 but only comparing RNA-seq data-sets.
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Dataset: Abbas
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Figure 5.13: Deconvolution methods performance on Abbas data-set. Slope (γ) for dtangle de-
termined automatically by data-type. Top 10% of marker genes among the 25% most variable
genes are used for deconvolution. Marker genes determined by median differences across refer-
ence samples. (A) Boxplots of error for each algorithm. y-axis is the absolute value of the error of
the estimates from the true mixing proportions. Black line is the median absolute error, grey line
is the mean absolute error. (B) Boxplots of correlation. For each cell type the correlation of the
true mixing proportions against the estimated mixing proportions is calculated. If the s.d. of the
estimates is zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not
calculate the correlation. (C) Simlar to (B) but using R2 instead of correlation. (D) Scatter plots of
estimated mixing proportions again true mixing proportions for dtangle, CIBERSORT and EPIC.
Orange line is a 45◦ line through zero.
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Dataset: Becht
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Figure 5.14: Similar to Figure 5.13 but for the Becht data-set.
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Dataset: Gong
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Figure 5.15: Similar to Figure 5.13 but for the Gong data-set.
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Dataset: Kuhn
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Figure 5.16: Similar to Figure 5.13 but for the Kuhn data-set.
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Dataset: Linsley
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Figure 5.17: Similar to Figure 5.13 but for the Linsley data-set.
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Dataset: Liu

●
●
●●

●
●●

●●●●
●●
●●
●
●●
●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●
●

●
●

●

●●●
●●●

●●●
●●●●

●●●●
●●

●●●
●
●●●●●●●

●
●●●●●

●●
●
●●

●●
●

●●
●

●●

●
●●●

●
●

●

●
●

●
●●

●●
●●

●●

●●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconv.Method

E
rr

or

●HCC827 NCI−H1975

LiuA

●

●●●

●●

●● ●

−1.0

−0.5

0.0

0.5

1.0

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

C
or

re
la

tio
n

Cell.Type ●HCC827 NCI−H1975

LiuB

●

●●●

●
●

●●
●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

R
−s

qu
ar

ed

Cell.Type ●HCC827 NCI−H1975

LiuC

0.00

0.25

0.50

0.75

1.00

0.00
0.25

0.50
0.75

1.00

Truth

E
st

im
at

e

Cell
Type

HCC827 NCI−H1975

Deconv
Method

dtangle CIBERSORT EPIC

LiuD

label=paperplots:datasets:Liuall

Figure 5.18: Similar to Figure 5.13 but for the Liu data-set.
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Dataset: Newman PBMC
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Figure 5.19: Similar to Figure 5.13 but for the Newman PBMC data-set.
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Dataset: Newman FL
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Figure 5.20: Similar to Figure 5.13 but for the Newman FL data-set.
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Dataset: Parsons
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Figure 5.21: Similar to Figure 5.13 but for the Parsons data-set.
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Dataset: Shen-Orr
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Figure 5.22: Similar to Figure 5.13 but for the Shen-Orr data-set.
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Dataset: Shi
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Figure 5.23: Similar to Figure 5.13 but for the Shi data-set.
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Dataset: Shen-Orr With/Without Outliers
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Figure 5.24: (A-D) same as Figure 5.22. (E-H) same as (A-D) but with outliers removed.
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Dataset: Newman PBMC

●

●

●

●

●
● ●

●

●●

●

●

●●

●

●

●●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●●●

●●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●●
●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●●●●

●
●

●

●

●
●

●

● ●

●

●

●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconv.Method

E
rr

or

●B CD4 CD8 Gamma Monocytes NK

Newman PBMCA

●

●

●
●●

●●● ●

−1.0

−0.5

0.0

0.5

1.0

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

C
or

re
la

tio
n

Cell.Type ●B CD4 CD8 Gamma Monocytes NK

Newman PBMCB

●

●

●

●●
●●

●
●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

R
−s

qu
ar

ed

Cell.Type ●B CD4 CD8 Gamma Monocytes NK

Newman PBMCC

0.00

0.25

0.50

0.75

1.00

0.00
0.25

0.50
0.75

1.00

Truth

E
st

im
at

e

Deconv
Method

dtangle CIBERSORT EPIC

Cell
Type

B CD4 CD8 Gamma Monocytes NK

Newman PBMCD

label=newmanmarkersplots:datasets:NewmanPBMCall

Figure 5.25: Same as Figure 5.19 but using references, mixtures samples, and marker genes di-
rectly from Newman paper supplement.
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Dataset: Newman FL
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Figure 5.26: Same as Figure 5.20 but using references and marker genes directly from Newman
paper supplement.
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Lyme Disease Example
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Figure 5.27: Estimated cell type proportions over time.
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(a) log2 measured expression versus log2 concentration of a probe for gene TNFRSF1B. The rela-
tionship is approximated well by a linear model. While we have plotted amount against measured
expression for one particular gene the results are generalizable to all genes. Points are plotted
for the 13 experiments where the gene is spiked-in at a amount above zero and for each of the
three technical replicates of each experiment. Along with the data points are plotted a linear and
logistic least squares fit. The linear fit is a simple linear regression of measured expression on
amount and the logistic fit is the least squares fit of a generalized logistic function of the form
β0 + β1/ (1 + exp (β2x+ β3)).
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(b) log2 measured expression versus log2 concentration of ERCC spike-in controls in RNA-seq
data. This relationship is highly linear. A linear least squares regression fit is plotted as a line.

Figure 5.28: Plots of actual v. measured expression.
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Simulation: Artificial Cell Type with Low Gaussian Error
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Figure 5.29: Partial deconvolution methods performance on simulated gaussian data with low error.
Computation for methods other than dtangle was done for data both on the log2 scale and the linear
un-transformed scale. Slope (γ) for dtangle is set to one. Top 10% of 25% most variable genes
used for deconvolution. Marker genes determined by median differences across reference samples.
(A) Boxplots of error for each algorithm. y-axis is the absolute value of the error of the estimates
from the true mixing proportions. Black line is the median absolute error, grey line is the mean
absolute error. (B) Boxplots of correlation. For each cell type the correlation of the true mixing
proportions against the estimated mixing proportions is calculated. If the s.d. of the estimates is
zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not calculate
the correlation. (C) Scatter plots of estimated mixing proportions again true mixing proportions
for dtangle, CIBERSORT and EPIC. Orange line is a 45◦ line through zero.
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Simulation: Artificial Cell Type with High Gaussian Error
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Figure 5.30: Similar to Figure 5.29 but with a high error variance used in simulation.
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Simulation: Artificial Cell Type with Low Gaussian Error and Outliers
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Figure 5.31: Similar to Figure 5.29 but with outliers added to the simulated data.
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Simulation: Artificial Cell Type with Gaussian Error by Number of Marker Genes
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Figure 5.32: Accuracy of dtangle by the number of marker genes present in gaussian simulated
data with low error variance. y-axis is accuracy measured by (A) grand mean of the absolute value
of the error of the true proportions from the estiamted proportions and (B) mean correlation within
each cell type. The x-axis is the percentage of the data set that is comprised of marker genes as
defined by dtangle.
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Simulation: Artificial Cell Type with Gaussian Error by Marker Gene Expression
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Figure 5.33: Accuracy of dtangle by expression level of marker genes in gaussian simulated data
with low error variance. y-axis is accuracy measured by (A) grand mean of the absolute value of
the error of the true proportions from the estiamted proportions and (B) mean correlation within
each cell type. The x-axis is the quantile of the over-all data at which marker genes are expressed
in all other cell types.
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Simulation: Artificial Cell Type with Poisson Error
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Figure 5.34: Similar to Figure 5.29 but using a poisson error.
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Simulation: Artificial Cell Type with Poisson Error and Outliers
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Figure 5.35: Similar to Figure 5.34 but with outliers added to the simulated data.
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Simulation: Simple Poisson Error by Number of Marker Genes
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Figure 5.36: Similar to Figure 5.32 but using a poisson error.
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Simulation: Simple Poisson Error by Marker Gene Expression
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Figure 5.37: Similar to Figure 5.33 but using a poisson error.
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Simulation: Parsons with Low Gaussian Error
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Figure 5.38: Similar to Figure 5.29 but simulation was done by in-silico mixtures of reference cell
type profiles from the Parsons data set.
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Simulation: Parsons with High Gaussian Error
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Figure 5.39: Similar to Figure 5.38 but with a high error variance used in simulation.

90



Simulation: Parsons with Low Gaussian Error and Outliers
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Figure 5.40: Similar to Figure 5.38 but with outliers added to the simulated data.
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Simulation: Parsons with Poisson Error
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Figure 5.41: Similar to Figure 5.38 but using poisson error.
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Simulation: Parsons with Poisson Error and Outliers
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Figure 5.42: Similar to Figure 5.41 but with outliers added to the simulated data.
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Simulation: Linsley with Low Gaussian Error
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Figure 5.43: Similar to Figure 5.29 but simulation was done by in-silico mixtures of reference cell
type profiles from the Linsley data set.
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Simulation: Linsley with High Gaussian Error
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Figure 5.44: Similar to Figure 5.43 but with a high error variance used in simulation.
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Simulation: Linsley with Low Gaussian Error and Outliers
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Figure 5.45: Similar to Figure 5.43 but with outliers added to the simulated data.
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Simulation: Linsley with Poisson Error
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Figure 5.46: Similar to Figure 5.43 but using poisson error.
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Simulation: Linsley with Poisson Error and Outliers
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Figure 5.47: Similar to Figure 5.46 but with outliers added to the simulated data.
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Chapter 6

Supplement: MEMA Transformations

6.1 Robust Re-scaling Mathematics

In this section we expound upon the mathematical details of our three transformation steps (G),
(Z), and (O). In brief, the three steps are:

1. (G) a robust Gaussianizing non-linear scale change,

2. (Z) a robust z-score transformation

3. (O) an outlier removal step.

In the following sections we will discuss each step in detail.

6.1.1 (G) Gaussianizing non-linear scale change.

Let Y ∈ RM×N be a data matrix. Let T be an indexed family T = {Tλ | λ ∈ Λ} of differentiable,
monotonic, functions Tλ : Sλ → R on some Sλ ⊆ R. In this manuscript we choose T =

{(sign(y)|y|λ − 1)/λ, λ ∈ R} ∪ {asinh(λy)/λ, λ ≥ 0} however many reasonable choices of
parameterized families are available. Let λ̂ be an estimate of the value of λ ∈ Λ that makes of
Tλ (Y ) as normally distributed as possible among all Tλ ∈ T . We estimate this value through
a robust Box-Cox-like procedure [Box and Cox, 1964]. Essentially this procedure is to estiamte
λ̂ = medianjλ̂j where λ̂j is the Box-Cox transformation parameter estimate using the jth column
of Y . The specifics for estimating λ are as follows.

Define Y∗j as the jth column of Y , and

ν∗j = T−1
λ (Y∗j) , equiv. Y∗j = Tλ (ν∗j) . (6.1)

If we assume that λ makes ν∗j approximately distributed N(µj, σ
2
j ) then we can estimate it using

the traditional Box-Cox approach through maximizing the likelihood. Define Lj(λ) to be the
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profile likelihood (over µ and σ) for λ based upon Y∗j and let

λ̂j = arg max
λ∈Λ

Lj(λ)

be the MLE. Typically, for some S the space of possible parameters Λ is a non-null subset of RS .
In this case, we define λ̂ as

λ̂ = medianjλ̂j.

Unfortunately, the estimate of λ̂ is more complicated if Λ is a null set. This typically arises when
the parameterized family T is the union of two families. For example, consider the family

T = {xα | α ∈ R} ∪ {exp(βx) | β ∈ R}.

If we define Λ = {0, 1} × R this family may be equivalently parameterized as

T = {λ1x
λ2 + (1− λ1) exp(λ2x) | (λ1, λ2) ∈ Λ}.

To deal with this case, we split Λ into two spaces: its discrete coordinates and its continuous co-
ordinates. For the discrete coordinates we define λ̂ as the mode over the λ̂j . For the continuous
coordinates we use the median as before. Specifically, assume that Λ may be written as the Carte-
sian product of a discrete space ΛD and a continuous space ΛC so that Λ = ΛD × ΛC . In our
example above, ΛD = {0, 1} and ΛC = R. In a similar fashion we can decompose each λ̂j as
λ̂j = (λ̂Dj , λ̂

C
j ). Given these decompositions, define

λ̂D = modejλ̂Dj

and then let Λ|D =
{
λ̂D
}
×ΛC . The space Λ|D is simply the space Λ with the discrete coordinates

fixed at the mode of their column-wise estimates. Finally, if we define

λ̃j = arg max
λ∈Λ|D

Lj(λ)

then, similar to the continuous case, we let

λ̂ = medianjλ̃j.

Finally, the Gaussianized version of Y is

T−1

λ̂
(Y ).
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6.1.2 (Z) Standardizing z-score.

If Y ∈ RM×N is a data matrix we define the robust z-score version of Y as follows. Let Ỹ be a
(q = 0.001) winsorized version of Y . Then let

µ̂ =
1
′
M Ỹ 1N
MN

and σ̂ =

√
1
′
M Ỹ

21N

MN

where Ỹ 2 is an element-wise exponential. Finally, then the robust z-score version of Y is

Y − µ̂
σ̂

where the subtraction and division are element-wise.

6.1.3 (O) Outlier removal.

Again let Y ∈ RM×N be our data matrix. Our outlier removal step is a simple thresholding
procedure. First let Z be the robust z-scored version of Y according to the previous section. We
then define [Y ] as version of Y with outliers removed so that[Y ]ij = Yij, |Zij| ≤ 4

[Y ]ij = NA, |Zij| > 4

where “NA” denotes a missing value.

6.2 Average and Missing Singular Vectors

First let us define a product for matrices with missing values. Let A ∈ Rm×n and B ∈ Rn×k be
two matrices with (potentially) missing values. Define A0 and B0 as the matrices A and B with
missing values replaced by zeros, respectively. Furthermore define A1 and B1 so that (A1)ij =

1{Aij is not missing} and similarly for B1. Define the “missing product” A · B for two matrices
as A · B = n(A0B0 � A1B1) where � is element-wise “Hadamard” division of matrices. This is
well-defined so long as none of the entries of A1B1 are zero. If there are no missing values this
product is exactly the normal matrix product.

We will now define left and right singular vectors for a matrix with missing values. Let Y ∈
RM×N be a matrix with missing values. We define the missing left Gram matrix of Y as GL(Y ) =

Y ·Y ′ and the missing right Gram matrix of Y asGR(Y ) = Y ′ ·Y.While symmetric, these missing
Gram matrices may not be positive semi-definite (PSD). Let Π+ be the function that projects a
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real symmetric matrix onto the space of PSD matrices. If A ∈ Rm×m is a symmetric matrix with
eigen-decomposition A = QDQ′ then A+

def
= Π+(A) = QD+Q

′ where (D+)ij = max(Dij, 0).
Define GL

+(Y ) = Π+(GL(Y )) and GR
+(Y ) = Π+(GR(Y )) as the PSD missing left and right

Gram matrices. Let GL
+(Y ) and GR

+(Y ) have the eigen-decompositions GL
+(Y ) = UDLU

′ and
GR

+(Y ) = V DRV
′. We call U the missing left singular vectors of Y and V the missing right

singular vectors of Y . If there are no missing values U and V are precisely the normal left and
right singular vectors of Y .

Let {Y (p)}Pp=1 be a collection of P different feature matrices each with (potentially different)
missing values. Define the left and right average missing Gram matrices as

GL =
1

P

P∑
i=1

GL
(
Y (p)

)
and GR =

1

P

P∑
i=1

GR
(
Y (p)

)
.

Similarly define the left and right PSD average missing Gram matrices as

GL
+ = Π+GL and GR

+ = Π+GR.

Let the eigen-decompositions of GL
+ and GR

+ be GL
+ = UDLU

′ and GR
+ = V DRV

′. We call
U the left average singular vectors (ASVs) and V the right average singular values (ASVs). If
P = 1 these reduce to the right and left missing singular vectors.
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Figure 6.2: Similar to Figure 6.1 except colors indicate well.
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Figure 6.3: Similar to Figure 6.1 except colors indicate plate.
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Figure 6.4: Similar to Figure 6.1 except colors indicate ligand.
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Figure 6.5: The next series of plots are heat-maps of MEMA plates across the five transformations
(NT), (G), (Z), (O), (RR). Rows of each plot are the staining three batches. Colors are more blue if
they are close to the minimum, red if they are close to the maximum, and white if they are close to
half-way between. Green spots are missing. Dark grey spots are omitted according to the MEMA
design.
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Figure 6.6: Similar to Figure 6.5 but for compactness.
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Figure 6.7: Similar to Figure 6.5 but for cell count.
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Figure 6.8: Similar to Figure 6.5 for for DAPI intensity.
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Figure 6.9: Mean of the squared canonical correlations between the first k principal components
and the plate batch indicator variables.
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Figure 6.10: Grand mean of the squared canonical correlations across number of components (k).
Canonical correlation is calculated between the first k principal components and the plate indicator
variables.
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Figure 6.11: Similar to Figure 6.9 except correlation with well batch indicators.
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Figure 6.12: Similar to Figure 6.10 except correlation with well batch indicators.
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Figure 6.13: Similar to Figure 6.9 except correlation with ligand batch indicators.

115



●●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

C
yt

op
la

sm
_C

P
_I

nt
en

si
ty

_I
nt

eg
ra

te
dI

nt
en

si
ty

_D
ap

i

C
el

ls
_C

P
_A

re
aS

ha
pe

_C
om

pa
ct

ne
ss

C
el

ls
_C

P
_A

re
aS

ha
pe

_A
re

a

S
po

t_
PA

_S
po

tC
el

lC
ou

nt

Variable

A
U

C

Transformation

●
NT
G
Z
O
RR

AUC by Variable (over first 192)

Figure 6.14: Similar to Figure 6.10 except correlation with well batch indicators.
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Figure 6.15: Mean of the squared canonical correlations between the first k principal components
and the plate indicator variables. Principal components come from integration of the 21 features
that are measured across all MEMAs.

117



0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

Num. PCs (k)

M
ea

n 
of

 S
qu

ar
ed

 C
an

on
ic

al
 C

or
s.

Transformation
NT
G
Z
O
RR

ASVD: Mean of Squared Can. Cors. between Batch and First k PCs

Figure 6.16: Similar to Figure 6.15 but calculating correlation with well indicators.
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Figure 6.17: Similar to Figure 6.15 but calculating correlation with ligand indicators.
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Figure 6.18: Heat map of elements of top ten right singular vectors for the cell area feature.
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Figure 6.19: Similar to Figure 6.18 but for cell count feature.
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Figure 6.20: Similar to Figure 6.18 but for cell count feature.
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Right Singular Values, Color by Ecmp
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Figure 6.21: Scatter plot of elements of top two right singular vectors against each other for the
cell area feature. Shape and color indicate ECMp of the spot corresponding to the elements of the
singular vector.
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Right Singular Values, Color by Ecmp
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Figure 6.22: Similar to Figure 6.21 but for cell compactness feature.
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Figure 6.23: Similar to Figure 6.21 but for cell count feature.
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Figure 6.24: Heat-map of top ten right ASVs calculated over 21 features measured on all MEMAs.
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