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 Abstract 

 

Triple-negative breast cancer (TNBC) is characterized by the lack of expression 

of estrogen receptor, progesterone receptor and human epidermal growth factor 

receptor 2. TNBC is the most challenging breast cancer subtype with poor prognosis, 

high metastatic potential, and lack of effective targeted therapies. Currently, 

chemotherapy remains the major strategy to treat TNBC. However, TNBC patients 

with residual disease after chemotherapy have higher risk of relapse and significantly 

worse survival than non-TNBC patients with residual disease. Therefore, there is an 

imperative need to identify novel and effective targeted therapies for TNBC. 

Cancer stem cells, also termed tumor-initiating cells, have been considered 

important targets for cancer treatment due to their high metastatic potential and 

resistance to conventional chemotherapy. In agreement with the inherently aggressive 

clinical behavior of TNBC, emerging evidence has demonstrated that breast cancer 

stem cells (BCSCs) are enriched in TNBC. Therefore, BCSCs serve as ideal 

therapeutic targets for TNBC.  
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This study aims to identify novel therapeutic targets for BCSCs in TNBC. Based 

on the analysis of our unpublished RNA sequencing (RNA-Seq) data and patient data 

sets such as METABRIC and TCGA, we identify several potential oncogenes in 

TNBC. Our study further demonstrates that three of the candidates, namely cell 

division cycle associated 7 (CDCA7), low-density lipoprotein receptor-related protein 

8 (LRP8), and mixed-lineage kinase 4 (MLK4), are functionally important to the 

maintenance of BCSCs in TNBC. The candidate genes are highly expressed in TNBC 

compared to other breast cancer subtypes according to the analysis of TCGA or 

METABRIC datasets. Genetic silencing of the candidate genes in TNBC cell lines 

significantly decreased CD44+/CD24- BCSCs and mammosphere formation in vitro. 

Furthermore, silencing of the genes suppressed both tumor growth and tumorigenesis 

in vivo. By analyzing the RNA-Seq data of the siRNA transfected TNBC cells, we 

found that knockdown of the candidate genes inhibited epithelial-to-mesenchymal 

transition (EMT), an important developmental program that can enrich stemness of 

cancer cells. Immunofluorescence staining of the xenograft tumor biopsies further 

revealed that the candidate gene knockdown decreased the expression of CD44 and 

increased the expression of CD24 and CK8/18, confirming the inhibition of EMT. 

Mechanistically, our RNA-Seq data analysis and experiments reveal that LRP8 and 

CDCA7 are critical to Wnt signaling and PRC2-mediated epithelial gene suppression, 
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respectively. In addition, silencing of CDCA7 and MLK4 significantly dysregulates 

cell cycle of TNBC cells. Collectively, this study has demonstrated the benefits of 

targeting CDCA7, LRP8, and MLK4 to remove BCSCs and suppress tumorigenesis in 

TNBC. Therefore, our study uncovers LRP8, CDCA7, and MLK4 as novel 

therapeutic targets for TNBC.
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Chapter 1  

Introduction  

Breast cancer heterogeneity and subtypes 

With estimated 266,000 new cases diagnosed and 41,000 death in 2018, breast 

cancer has the highest incidence and is the second leading cause of death among 

different types of cancer in female in the United States1. Clinical decisions of breast 

cancer treatment mainly rely on the expression of estrogen receptor (ER), 

progesterone receptor (PR) and the aberrant expression of human epidermal growth 

factor receptor 2 (HER2)2. Accordingly, breast cancer can be classified into three 

major subtypes based on the expression of the three surface markers, namely 

ER-positive, HER2-positive (HER2 gene amplification), and triple-negative breast 

cancer (TNBC)3. The ER-positive breast cancer subtype is the most commonly 

diagnosed breast cancer (65-70%) which displays high expression level of ERα and 

estrogen dependency for growth. The HER2-positive subtype is characterized by the 

amplification of HER2 gene and accounts for 20-25% of all breast cancer cases. 
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TNBC is histologically defined by the lack of expression of ER, PR, and HER2 and 

accounts for 10-15% of all breast cancer cases3.  

Over the past two decades, gene expression profile-based studies have elucidated 

the fact that breast cancer is a heterogenous disease with clinical and molecular 

complexity. To stratify breast cancer subtypes with different molecular signatures, an 

“intrinsic” classification for breast cancer has been developed based on the gene 

expression patterns of clinical breast tumors. Initially, four intrinsic breast cancer 

subtypes (basal-like, HER2-enriched, luminal, and normal-like) displaying distinct 

gene signatures were identified4. Subsequent studies further discovered a new 

Claudin-low subtype5,6 and stratified luminal subtypes into luminal A (ER, 

PR-positive, low Ki67, and HER2-negative) and luminal B (ER, PR-positive, high 

Ki67 and HER2-positive)7,8. Both luminal A and luminal B are characterized by the 

expression of ER-associated genes4,9. As a result, the luminal subtypes correlate well 

with the ER-positive breast cancer. The basal-like molecular subtype is characterized 

by the expression of basal or myoepithelial cells-related genes such as cytokeratin 

(CK) 5, CK6, CK17, and vimentin4,7. Furthermore, the basal-like subtype has been 

found to constitute 70-80% of TNBC and correlates with poor prognosis10-12. 

Claudin-low is a breast cancer subtype with enriched epithelial-to-mesenchymal 

transition (EMT) gene signature and is commonly fall within TNBC5. The intrinsic 
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breast cancer subtypes have been linked to the hierarchy of normal human mammary 

epithelial development; Claudin-low and basal-like subtypes have been associated 

with a less differentiated stem or progenitor cell state contrary to the luminal subtypes 

which recapitulate a more differentiated epithelial cell state (Fig. 1.1)13,14. The 

enrichment of stem-like characteristics in breast cancer has been associated to 

drug-resistance and higher risk of metastasis15-17. 

Current challenges of TNBC 

TNBC is the most challenging subtype to treat due to its inherent aggressiveness 

and lack of targeted therapy. The majority of TNBC cases are composed of invasive 

ductal carcinomas18. TNBC has been associated with more advanced disease stage 

and higher risk of metastasis compared to other breast cancer subtypes19-21. Unlike 

ER-positive and HER2-positive breast cancer, there is no effective targeted therapy 

for the treatment of TNBC. For the ER-positive and HER2-positive breast cancer 

subtypes, cancer cells rely on the signaling transduction of ER or HER2 for growth. 

Therefore, therapeutics targeting ER and HER2 are effective approaches to treat 

ER-positive and HER2-positive breast cancer, respectively. Endocrine therapies such 

as estrogen antagonists and aromatase inhibitors (inhibit estrogen production) are 

available for the treatment of ER-positive breast cancer. For HER2-positive breast 
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cancer, HER2 antibodies and tyrosine kinase inhibitors are effective targeted therapies 

that can block HER2 signaling pathway22. While targeted therapeutic approaches exist 

for ER-positive and HER2-positive breast cancers, no such approaches are available 

for TNBC. Thus, chemotherapy remains the major therapeutic strategy for the 

treatment of TNBC. Although TNBC has better response rate to chemotherapy 

compared to other breast cancer subtypes, the majority of TNBC patients still have 

residual disease post chemotherapy, and these patients are at high risk of distant 

relapse and have worse prognosis than those with non-TNBC and residual disease23-26. 

A recent study has reported that the 5-year survival rate of metastatic breast cancer 

patients is lower than 30% after diagnosis, and eventually all these patients will die 

from the disease27. Given the limited advantages of chemotherapy and the high 

metastatic potential in TNBC, there is an imperative need to identify novel and 

effective targeted therapy for TNBC. 

Cancer stem cells serve as ideal therapeutic targets for TNBC 

 Cancer stem cells (CSCs), also termed tumor initiating cells, are a population of 

cancer cells that display stem cell properties. Over the past two decades, accumulating 

evidence has demonstrated the existence of CSCs and their tumorigenic 

characteristics in different types of cancer, such as leukemia28,29, colorectal 
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cancer30-32, breast cancer15, and brain cancer33. The CSC hypothesis states that CSCs 

can fuel tumor growth and repopulate the heterogeneity of the bulk tumor cells due to 

their unlimited self-renewal ability and differentiability34,35. In addition, CSCs are also 

responsible for drug-resistance36-38 and metastasis39-41 of cancer. Furthermore, a 

growing body of evidence has shown that BCSCs are enriched in TNBC compared to 

other breast cancer subtypes42-45. Given their high metastatic potential and resistance 

to conventional chemotherapy, BCSCs should serve as ideal therapeutic targets for 

TNBC34,46.  

Previous studies have demonstrated that breast cancer stem cells (BCSCs) are 

enriched following chemotherapy, and the enrichment of BCSCs is associated with 

EMT16,17,47,48. EMT is an important developmental program that endows epithelial 

cells to shift to a mesenchymal state with migratory and invasive properties49. In 

cancer, the activation of EMT is also critical for epithelial cancer cells to acquire 

stemness and become more drug-resistant and metastatic50,51. In concordance with the 

inherent aggressiveness of TNBC, the expression of the EMT markers are also 

enriched in TNBC and associated with BCSC characteristics and poor clinical 

outcome52-55. Therefore, targeting EMT is a potential strategy to remove BCSCs from 

TNBC. 

Targeting signaling pathways in BCSCs 
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CSCs utilize various signaling pathways to maintain their survival. Neighboring 

cancer cells or fibroblasts in the tumor microenvironment can secrete signaling 

proteins that create a niche for CSCs. Hence, targeting specific signaling pathways of 

CSCs is a potential therapeutic strategy to eliminate CSCs and thereby prevent cancer 

from relapse and metastasis. This section outlines Notch, Hedgehog, Wnt, TGF-β, and 

HER2 signaling pathways in BCSCs. The mechanisms, potential therapeutic 

applications, and crosstalk of these signaling pathways will be discussed in this 

section. 

Notch signaling 

Notch signaling plays a critical role in regulating cellular proliferation, 

differentiation, apoptosis, and breast development56,57. Aberrant activation of Notch 

pathway has been reported to cause mammary tumors in human and mice58-61. 

Evidence supports that CSCs utilize Notch signaling to undergo self-renewal and 

differentiation62. Recent study has demonstrated that in breast cancer, Notch signaling 

is a positive regulator of the EMT, a state associated with CSCs63; it can also activate 

aldehyde dehydrogenase (ALDH) 1A1 and thereby promote BCSCs64. Thus, Notch 

signaling is considered as a potential therapeutic target for BCSCs. 
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There are five Notch ligands consist of two structurally distinct families: 

Jagged-1, -2 (JAG-1, -2) and Delta-Like-1, -3, and -4 (DLL-1, -3, -4) that bind to four 

Notch receptors (NOTCH 1-4). Notch ligand binding leads to a conformational 

change in the receptor, inducing metalloprotease and γ-secretase cleavage65,66. The 

active Notch intracellular domain (NICD) released by γ-secretase cleavage then 

translocates to the nucleus where it binds to the core binding factor-1 (CBF-1). The 

binding of NICD to CBF-1 releases the negative co-regulatory proteins and recruits 

co-activating proteins, thereby modulating Notch downstream gene expression67-69.  

Inhibiting γ-secretase is the most well-developed approach for Notch targeting 

therapies. The γ-secretase inhibitor (GSI), MK0752 (Merck), has been proved to 

significantly reduce BCSCs in patient-derived xenograft models70 and strongly 

inhibits the expression of Notch target genes in patients71. Other GSIs such as 

RO4929097 (Roche) and PF03084014 (Pfizer), are in clinical trials for metastatic or 

advanced breast cancers. In addition to GSIs, a DLL-4 monoclonal antibody72 and a 

NOTCH 1 monoclonal antibody73 have shown promising results of inhibiting BCSCs 

in preclinical studies. 

Hedgehog signaling 
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During embryogenesis, Hedgehog (Hh) signaling controls cell fate, patterning, 

proliferation and differentiation74. In adult organisms, Hh signaling is also involved in 

stem cell maintenance and tissue homeostasis75. Hyperactivation of the Hh pathway 

has been recognized to cause several types of cancer, including breast cancer76,77. This 

pathway is critical to maintaining CD44+/CD24- BCSCs78. Two of its downstream 

effectors, BMI1 and GLI1, are activated in BCSCs and their overexpression lead to 

tumor growth in mice79. Upregulation of Hh signaling is also correlated with 

metastasis and poor clinical outcome in breast cancer80. Therefore, targeting Hh 

pathway is a potential strategy to remove BCSCs. 

Hh signaling is initiated by the binding between secreted Hh and the 

transmembrane receptor Patched 1 (PTCH1). PTCH1 is a repressor of Smoothened 

(SMO) protein in the absence of Hh. Internalization of Hh-PTCH1 complex can 

release SMO from plasma membrane to primary cilium, resulting in activation of 

zinc-finger transcription factors, GLI1-381,82. GLI1 and GLI2 serve as activators of Hh 

target genes, whereas GLI3 serves as a repressor83. In breast cancer, PTCH1, GLI1, 

and GLI2 are highly expressed in CD44+/CD24- BCSCs in contrast with their low 

expression in bulk tumor cells84.  

Several Hh pathway inhibitors are undergoing clinical trials for breast cancer. 

Vismodegib (Genentech), a competitive SMO antagonist, is given together with 
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Notch signaling inhibitor RO4929097 to patients with metastatic breast cancer. 

Another SMO antagonist, LDE225 (Novartis), is in a clinical trial for triple-negative 

breast cancer. Antagonizing SMO is the primary focus for blocking Hh signaling. 

Other strategies, however, have also demonstrated effective inhibition of Hh 

signaling. For instance, robotnikinin is a small molecule that can bind to extracellular 

Sonic Hh protein and block its signaling85; Hh protein inhibitor (HPI) 1-3 are capable 

of blocking Hh pathway activity by suppressing GLI proteins through different 

mechanisms,; HPI 4 acts by interfering ciliogenesis, which is required for GLI2/GLI3 

formation86. 

Wnt signaling 

Wnt signaling controls lineage specification and maintains pluripotency of 

embryonic stem cells during development87. In adults, this pathway is important for 

regulating tissue self-renewal and homeostasis88. Overexpression of Wnt ligands and 

receptors were observed in breast tumors from patients as well as in breast cancer cell 

lines89-91. Constitutive activation of Wnt signaling affects self-renewal and 

differentiation of mammary stem cells and lead to the establishment of BCSCs92. In 

addition, upregulation of a Wnt receptor, Frizzled (FZD) 7, has been reported to 

enrich the BCSC population of basal-like breast cancer93.  
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The binding of Wnt proteins to FZD transmembrane receptors and low-density 

lipoprotein receptor-related proteins (LRP) drives Wnt signaling. Wnt ligand-receptor 

binding can inactivate the multiprotein destruction complex and thus release the 

transcription factor β-catenin. The free β-catenin can translocate into the nucleus and 

then bind to either the cAMP response element binding protein (CBP) or T-cell 

factor-lymphocyte enhancer factor family (TCF/LEF) to activate Wnt targeted 

genes66,94. 

LGK974 (Novartis), a small molecule that can inhibit Porcupine, which is 

essential to the post-translational maturation of Wnt protein95, is in a clinical trial for 

lobular breast cancer. OMP-18R5 (OncoMed Pharmaceuticals), a monoclonal 

antibody functioned as an FZD receptor blocker, is in clinical development for locally 

recurrent or metastatic breast cancer. Other inhibitors that targeting β-catenin 

includes: (1) CWP232228 (JW Pharmaceutical) which inhibits the protein-protein 

interaction between β-catenin and Tcf96; and (2) OXT-328, which stimulates the 

degradation of β-catenin and its relocation to cell membrane 97.  

In contrast to canonical Wnt signaling which has been reported to induce 

BCSCs, WNT-5A inhibits migration of breast epithelial cells by enhancing cellular 

adhesion. Lack of WNT-5A expression in breast cancer is significantly associated 

with metastasis and poor patient survival98,99. Foxy-5 (Wnt Research AB) is a 
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formylated WNT-5A mimicry that can suppress breast cancer metastasis in vivo100 

and is undergoing a clinical trial for metastatic breast cancer. 

TGF-β signaling 

As an important inducer of EMT, transforming growth factor-β (TGF-β) 

signaling plays a critical role in both embryonic development and cancer progression. 

A growing body of evidence has revealed that EMT enriches CSC population, which 

is responsible for tumorigenesis, drug resistance, and metastasis. Studies about breast 

cancer have shown that TGF-β can enhance migration and invasion in vitro and 

trigger bone metastasis in vivo101-103. Elevated TGF-β signaling in breast cancer tissue 

is also associated with poor prognosis104. Binding of the TGF-β ligands induce the 

dimerization of TGF-βR1 and TGF-βR2, which lead to the phosphorylation of 

SMAD2 and SMAD3 proteins and then form a complex with SMAD4. The complex 

can translocate into the nucleus and then activate mesenchymal gene expression and 

concomitantly suppress epithelial gene expression105.  

Sequestering TGF-β via decoy receptors and blocking the TGF-β receptor kinase 

are the leading strategies to inhibit this signaling pathway. Fresolimumab, for 

instance, is an anti-TGF-β monoclonal antibody that can neutralize all isoforms of 

TGF-β and therefore block the TGF-β signaling pathway. Although TGF-β receptor 
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kinase inhibitors are now mainly tested for different cancer types instead of breast 

cancer, many preclinical studies have demonstrated the effectiveness of kinase 

inhibitors for breast cancer therapy. For instance, SM16, IN-1130, EW-7195, and 

EW-7203 inhibit EMT and lung metastasis in breast cancer models106-109. 

Signaling crosstalk 

There is a growing body of evidence that cancer cells develop drug resistance 

through using a compensatory signaling pathway to divert the dependence from the 

original pathway. For example, Notch-HER2 crosstalk may explain trastuzumab 

resistance in HER2+ breast cancer. It has been reported that HER2 overexpression 

inhibits Notch expression. Therefore, treatment of the HER2 inhibitor trastuzumab 

may activate Notch and its downstream gene expression. Moreover, knockdown or 

inhibition of NOTCH1 can reverse trastuzumab resistance in vitro110. Another study 

showed that the expression of NOTCH1 and NOTCH3 have significant correlation 

with HER2-negative primary breast tumors111. Therefore, simultaneously targeting 

HER2 and Notch pathways may be a potential strategy to prevent cancer recurrence.  

Crosstalk also exists between Hh signaling and Wnt signaling. sFRP-1, induced 

by GLI1 of the Hh pathway, has been reported to inhibit Wnt signaling112. Hh 

signaling was also found to suppress the transcriptional activity of β-catenin113. On 
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the other hand, activation of Hh signaling can activate the Notch-stimulating ligand, 

JAG-2114. This finding reveals that inhibition of Hh signaling may be able to suppress 

JAG-2-mediated Notch signaling activation and concomitantly activate Wnt signaling 

as a compensatory effect115.  

It has come to light that the therapeutic strategy of targeting only one signaling 

pathway may be too simplistic due to the complicated interactions between each 

pathway. As a result, it is important to understand the mechanisms behind the 

signaling crosstalk. Eventually, targeting multiple signaling pathways may provide a 

more efficient approach to eradicate BCSCs. 

Research Objectives 

 TNBC is the most challenging breast cancer subtype with poor clinical prognosis 

compared to other breast cancer subtypes. Given the lack of effective targeted 

therapy, chemotherapy remains the major therapeutic strategy for TNBC, however, 

with limited advantages. BCSCs are enriched and responsible for the drug-resistance 

and metastasis in TNBC. Therefore, the goal of this project aims to identify novel 

therapeutic targets for BCSCs in TNBC. To achieve this goal, we have put forward 

two specific aims, and this dissertation is to report the progress that I have made in 

attempt to address these two aims. 



14 

 

Aim 1: To identify and study potential oncogenes that regulate BCSCs in TNBC 

 METABRIC and TCGA are cancer patient data sets that include more than 2,000 

breast cancer cases in total. BCSC-related gene sets from our unpublished data and 

literatures will be used to examine the gene expression pattern in the data sets to 

identify potential oncogenes in TNBC. Following the data analysis, genetic 

knockdown of the candidate genes using siRNA or doxycycline-inducible shRNA will 

be employed to study the functions of the candidate genes in BCSCs in vitro and in 

vivo.    

Aim 2: To decipher the molecular mechanisms of the candidate genes in 

regulating BCSCs 

 Following the functional validation of the candidate genes, RNA sequencing 

(RNA-Seq) will be conducted to examine the transcriptomic profile changes upon 

knockdown of the candidate genes. Mechanistic studies will focus based on the 

analysis of the RNA-Seq data to understand how the candidate genes regulate the 

stemness in TNBC. 
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Chapter 2  

Interaction between CDCA7-PRC2 regulates epithelial-to-mesenchymal 

transition in triple-negative breast cancer  

Abstract 

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with 

poor prognostic outcome and enriched epithelial-to-mesenchymal (EMT) gene 

signature. Epithelial cancer cells can acquire stemness, metastatic potential, and 

drug-resistance through hijacking the EMT program. Therefore, studying the 

regulation of EMT in TNBC can help decipher the mechanisms underlying the 

aggressiveness of TNBC. In this study, we employed data analysis using METABRIC 

data set and identified Cell Division Cycle Associated 7 (CDCA7) as a novel 

oncogene that regulates EMT in TNBC. Genetic silencing of CDCA7 in TNBC cell 

lines significantly repressed tumor growth via cell cycle arrest and suppressed 

tumorigenesis via EMT inhibition. Mechanistically, CDCA7 is associated with 

polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation on the 
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promoter region of CDH1. Thus, this study illustrates a novel biological function of 

CDCA7 and highlights CDCA7 as a potential therapeutic target for TNBC. 

Introduction 

Triple-negative breast cancer (TNBC) is considered the most challenging 

breast cancer subtype which is characterized by the lack of expression of 

estrogen receptor (ER), progesterone (PR), and human epidermal growth factor 

receptor 2 (HER2)1. TNBC has been associated with worse survival and higher 

risk of distant metastasis compared to other breast cancer subtypes2-5. Currently, 

there is no effective targeted therapy for TNBC. Therefore, chemotherapy 

remains the major treatment option for TNBC. Recent clinical trials have 

demonstrated that TNBC patients exhibit better response rate to neoadjuvant 

chemotherapy than non-TNBC patients6-8. However, TNBC patients with 

residual disease after neoadjuvant chemotherapy are under high risk of relapse 

and have significantly worse survival than non-TNBC patients6,7. The reason for 

the paradox may be due in part to the inherent aggressiveness of TNBC and the 

lack of benefit from effective targeted therapy1, such as endocrine therapy for 

ER-positive breast cancer and HER2 antibodies for HER2-positive breast cancer. 
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Therefore, it is critical to study the mechanism underlying the aggressiveness of 

TNBC and identify the vulnerability of this challenging breast cancer subtype.     

Epithelial-to-mesenchymal transition (EMT) is an important developmental 

program that endows epithelial cells to modify their adhesive characteristics and shift 

them to a mesenchymal cell state with migratory and invasive behavior9. EMT is 

induced by pleiotropic signalings that activate the expression of EMT transcription 

factors (EMT-TFs), which cooperate along with epigenetic modifiers to regulate gene 

expression9,10. Epithelial cancer cells can acquire stem cell characteristics and become 

more metastatic and drug-resistant through the enrichment of the EMT program11,12. 

In addition, EMT has been linked to TNBC and its aggressiveness. Previous studies 

have reported that TNBC has significantly elevated expression of the EMT markers, 

which are also associated with high histological grade of TNBC and poor patient’s 

clinical outcome13-18. Furthermore, the EMT gene signature has also been reported to 

be enriched in chemoresistant TNBC cells19,20, raising the potential of targeting EMT 

signaling to overcome chemoresistance21. 

To study the regulation of EMT in TNBC and to identify potential therapeutic 

targets for TNBC, we examined the expression of a subset of genes upregulated in 

mammary cells undergoing EMT in a breast cancer genomic data set, METABRIC. 

We identified Cell Division Cycle Associated 7 (CDCA7) as a novel oncogene that 
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regulates EMT in TNBC. CDCA7 is a nuclear protein that induces 

transcriptional activity with its C-terminal cysteine-rich region22. CDCA7 

overexpression has been observed in many types of cancer and is related to 

enhanced neoplastic transformation23. In our study, we showed that genetic 

knockdown of CDCA7 reversed the EMT gene signature and significantly 

suppressed stem cell properties and tumorigenesis of TNBC cells. 

Mechanistically, CDCA7 knockdown interrupted polycomb repressive complex 

2 (PRC2)-mediated epithelial gene silencing.   

Results 

CDCA7 has high expression in triple-negative breast cancer 

To identify potential oncogenes related to EMT in TNBC, we selected a 

gene set that included upregulated genes when mammary cells undergoing 

EMT24 and examined their expression across different molecular subtypes25-27 in 

a 2,000 cases breast cancer data set, METABRIC28. We found that several genes, 

including CDCA7, MCM6, and PLCG2, were highly expressed in both 

basal-like and claudin-low subtypes compared to luminal A, luminal B, HER2, 

and normal-like subtypes (Fig. 2.1 and Fig. 2.2a). We chose to focus on CDCA7 

due to its function as a transcription regulator22,29 and its role in sustaining 
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hematopoietic stem cells in vivo30. The hematopoietic lineage has been reported to 

share many hierarchical similarities with mammary gland development31.  

 To confirm the high expression of CDCA7 in TNBC, we analyzed the 

METABRIC data set using different methods of classification. In agreement with the 

analysis using molecular stratification, CDCA7 was also highly expressed in 

pathologically defined TNBC (Fig. 2.2b) and in the integrative cluster 10 (Fig. 2.2c), 

which demonstrated high concordance with the basal-like molecular subtype. In 

addition, almost 50% (34/70) of the cases with copy number gain or amplification on 

the CDCA7 genomic locus was found in the pathologically defined TNBC (data not 

shown). Such copy number alteration accounts to about 12-13% of all basal-like, 

TNBC, and IC10 subtypes and is in a higher frequency than other breast cancer 

subtypes are (Fig. 2.2d-f). Therefore, the elevated expression of CDCA7 in TNBC 

may be partially due to the copy number alteration. We also analyzed the methylation 

status on the CDCA7 locus using TCGA data set. Interestingly, all the basal-like 

tumors had high expression of CDCA7 and were hypomethylated on the CDCA7 

locus (Fig. 2.2g-h), indicating that epigenetic regulations might also contribute to the 

high expression of CDCA7 in TNBC. Lastly, we examined the correlation between 

patient survival and CDCA7 expression. The Kaplan-Meier analysis of the 

METABRIC data set and other breast cancer cohorts32,33 demonstrated that high 
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expression of CDCA7 was a poor prognostic marker for breast cancer patients (Fig. 

2.2i and Fig. 2.3). Interestingly, high expression of CDCA7 was correlated with poor 

patient survival in other types of cancer (Fig. 2.4). 

CDCA7 knockdown suppressed tumor growth via cell cycle arrest 

 To investigate the role of CDCA7 in TNBC cells in vivo, we inoculated SUM149 

cells carrying doxycycline-inducible shRNA targeting CDCA7 (shCDCA7) or control 

shRNA (shControl) (Fig. 2.5) into the inguinal mammary fat pad of female 

NOD/SCID mice. We treated both groups of mice with food containing doxycycline 

and monitored the tumor growth in the mice. After 7 weeks of doxycycline treatment, 

the shCDCA7 group exhibited a significant delay of tumor growth and shrink of 

tumor size compared to the shControl group (Fig. 2.6).  

To study the mechanisms underlying CDCA7 knockdown-induced tumor 

suppression, we performed RNA sequencing (RNA-seq) of SUM149 cells 

treated with control or CDCA7 targeted siRNA. The knockdown of CDCA7 in 

SUM149 resulted in 977 genes with ≥ 2 folds upregulation and 858 genes with ≥ 

2 folds downregulation. We then applied the gene set to pathway analysis and 

gene ontology (GO) analysis using DAVID. Both analyses revealed that 

knockdown of CDCA7 significantly dysregulated mechanisms involved in cell 
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cycle and DNA replication and repair (Fig. 2.7a-b). The interruption of cell cycle by 

CDCA7 knockdown was further confirmed by gene set enrichment analysis (GSEA) 

(Fig. 2.7c) and experimental validation. In the qRT-PCR analysis, the selected genes 

related to cell cycle were significantly downregulated by CDCA7 knockdown in both 

SUM149 and MDA-MB-231 cells (Fig. 2.7d). In addition, we performed cell cycle 

analysis for SUM149 cells and found that CDCA7 knockdown led to a dramatic 

decrease of cell numbers in S and G2 phases whereas an increase of cell numbers in 

G1 phase (Fig. 2.7e-f). Collectively, our data suggest that CDCA7 is a critical gene 

that regulates cell cycle, and that silencing of CDCA7 results in G1 phase arrest and 

thus suppress tumor growth. 

CDCA7 knockdown inhibits EMT gene signature in TNBC 

 CDCA7 is highly expressed in both TNBC and mammary cells undergoing 

EMT. To investigate if the high expression of CDCA7 in TNBC was correlated with 

EMT, we performed a comprehensive GSEA analysis of the RNA-seq data. In 

multiple gene sets, the gene expression pattern of the CDCA7 knockdown cells was 

positively correlated with that of luminal and epithelial cells34,35 (Fig. 2.8a and 2.8b) 

whereas inversely correlated with mammary cells undergoing EMT24 (Fig. 2.8c). In 

addition, the qRT-PCR analysis revealed that CDCA7 knockdown significantly 
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upregulated epithelial gene expression (CDH1, CLDN1, CLDN4, and MUC1) and 

concomitantly downregulated mesenchymal gene expression (VIM) (Fig. 2.8d). The 

results of the GSEA and qRT-PCR indicated that silencing of CDCA7 could inhibit 

EMT gene signature. To further confirm the EMT inhibition caused by CDCA7 

knockdown, we used siRNA and doxycycline-inducible shRNA to knockdown 

CDCA7 in TNBC cell lines and tested the effects of CDCA7 knockdown on 

CD44high/CD24low cell population, which was enriched by EMT11 and was associated 

with both mammary normal stem cells36 and breast cancer stem cells37. In our 

knockdown of CDCA7 in SUM149, HCC1937, and MDA-MB-231 cells, the 

CD44high/CD24low cell population was significantly decreased compared to the 

negative control group (Fig. 2.8e). Next, to confirm CDCA7 knockdown-induced 

EMT inhibition in vivo, we performed immunofluorescent staining (IF) on the 

biopsies of the shControl and shCDCA7 SUM149 xenograft tumors. In agreement 

with the previous results, we found a dramatic increase of CD24 and CK8/18 

expression and a decrease of CD44 expression in the shCDCA7 tumor biopsies 

compared to the shControl group (Fig. 2.8f). 

 In multiple cancer models, EMT has been associated with high metastatic 

potential9. Given the EMT inhibition caused by CDCA7 knockdown, we hypothesized 

that CDCA7 also plays an important role in cancer metastasis. To test the hypothesis, 
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we conducted a cell invasion assay in the CDCA7 knockdown TNBC cell lines. In 

SUM149, HCC1937, and MDA-MB-231, CDCA7 knockdown significantly inhibited 

both invaded and migrated cells (Fig. 2.9a and 2.9b).     

CDCA7 is critical to supporting stemness and tumorigenesis 

EMT is known to endow cells with stem cell properties and invasiveness. To 

investigate the effects of CDCA7 knockdown on the stemness of TNBC cells, we 

performed mammosphere formation assay, which is often used to evaluate the 

self-renewal ability of cancer cells in vitro. Knockdown of CDCA7 significantly 

suppressed secondary mammosphere formation (Fig. 2.10a), indicating that CDCA7 

is an important gene for the maintenance of stemness in cancer cells. To further test 

tumor-initiating ability affected by CDCA7 knockdown, we performed limiting 

dilution assay by reimplanting serial-diluted shControl and shCDCA7 SUM149 

xenograft tumor cells into the mammary fat pad of tumor-free NOD/SCID mice. We 

monitored the tumor initiation of the mice without any treatment for 3 months. As our 

anticipation, silencing of CDCA7 by shRNA in the primary tumor resulted in a 

significant lower tumor-initiating frequency than the shControl group (Fig. 2.10b), 

confirming the critical role of CDCA7 in tumorigenesis.  

CDCA7 is associated with PRC2 to regulate CDH1 expression 
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 Next, we aimed to decipher the molecular mechanism of CDCA7 

knockdown-induced EMT inhibition. EMT is induced by the EMT-TFs, which recruit 

PRC2 to the promoter region of key epithelial genes, such as CDH1, and then 

suppress the gene expression38,39. Previous studies have reported that CDCA7 is 

associated with Enhancer of zeste homolog 2 (EZH2), a subunit of PRC2, and histone 

modification in embryonic stem cells40,41. In addition, the results of our GSEA reveals 

that the gene signature of the CDCA7 knockdown cells strongly correlates with that 

of EZH2 knockdown in MDA-MB-231 cells (Fig. 2.11a) and another gene set 

including PRC2 downstream targets (Fig. 2.11b). Hence, we hypothesized that 

CDCA7 might be involved in PRC2- and the EMT-TFs-mediated CDH1 suppression. 

To test this hypothesis, we performed co-immunoprecipitation (Co-IP) to examine the 

interaction between CDCA7, PRC2 components, and Snail. CDCA7 was tagged by 3x 

Flag and expressed in SUM149 cells. Reciprocal Co-IP of Flag and SUZ12 was 

conducted and EZH2, SUZ12, CDCA7, and Snail were probed. In agreement with our 

hypothesis, CDCA7 was associated with EZH2, SUZ12, and Snail (Fig. 2.11c). 

Furthermore, the results of the chromatin immunoprecipitation (ChIP) revealed that 

CDCA7 knockdown abolished H3K27 trimethylation on the CDH1 promoter region 

(Fig. 2.11d), which was concordance with the elevated expression of CDH1 upon 

CDCA7 knockdown. Collectively, our data suggest that CDCA7 is associated with 
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PRC2 and Snail, and that silencing of CDCA7 inhibits EMT through interrupting 

PRC2-mediated CDH1 suppression.         

Discussion 

Breast cancer is a well-known heterogenous disease. In different breast cancer 

subtypes, TNBC has the worst patient survival due to its inherent aggressiveness and 

the lack of effective targeted therapy. Therefore, it is important to identify novel and 

effective therapeutic targets for the treatment of TNBC. EMT is enriched in TNBC 

and is critical to drug-resistance, metastasis, and tumorigenesis. In this study, we 

scrutinized the expression pattern of the EMT-related genes in the METABRIC data 

set and identified CDCA7 as a novel oncogene in TNBC.  

 The expression of CDCA7 is regulated by c-MYC and E2F122,42,43, both are 

required for orderly completion of cell cycle44-46. CDCA7 itself is periodically 

expressed in the cell cycle with the highest expression at G1 to S phase transition47, 

which is concordant with our finding that silencing of CDCA7 leads to G1 phase 

arrest. In addition to its function in regulating cell cycle, CDCA7 may also be 

involved in the maintenance of normal and cancer stem cells. A recent study has 

demonstrated that CDCA7 is a downstream target of NOTCH in hematopoietic stem 

cells (HSCs) in different species, and that knockdown of CDCA7 significantly 
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induces HSC differentiation in vivo30. Moreover, the expression of CDCA7 is 

upregulated in Lgr5-positive intestinal stem cells48,49. In this study, we demonstrate 

that CDCA7 is critical to maintain the stemness in TNBC cells as evidenced by the 

suppression of mammosphere formation and tumorigenesis in the CDCA7 

knockdown TNBC cells. CDCA7 knockdown also inhibits the EMT gene signature 

and enhances luminal and epithelial gene expression. The luminal gene signature of 

breast cancer has been linked to a more differentiated cell state in normal mammary 

epithelial hierarchy50. Therefore, our study and others’ suggest that CDCA7 may play 

a critical role in stemness-related function in general. 

 Previous studies40,41 and our results have revealed that CDCA7 is associated with 

PRC2 and H3K27 trimethylation. During the activation of EMT, PRC2 play an 

important role in repressing the expression of key epithelial genes such as 

CDH138,39,51. Given the importance of PRC2 in EMT and the association between 

CDCA7 and PRC2, a genome-wide screening to identify CDCA7 target genes will be 

helpful to clarify the role of CDCA7 in PRC2-mediated gene suppression in TNBC. 

Also, a more thorough study will be necessary to understand the molecular 

mechanism of how CDCA7 interact with PRC2 to suppress epithelial gene 

expression.  
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Collectively, our study has demonstrated that silencing of CDCA7 significantly 

inhibited stemness, EMT, and tumorigenesis of TNBC. In addition, CDCA7 

loss-of-function also suppressed tumor growth via cell cycle arrest. Therefore, 

CDCA7 can serve as a potential therapeutic target for TNBC. 

Materials and methods 

Cell lines 

SUM149 was maintained in F12 media (Invitrogen; Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) containing 5% FBS (Gibco; Thermo Fisher Scientific), 1x 

Antibiotic-Antimycotic (Invitrogen), 5 μg/mL of insulin (Gibco), and 1 μg/mL of 

hydrocortison (Sigma-Aldrich, St. Louis, MO, USA). MDA-MB-231 and 

MDA-MB-436 were maintained in DMEM (Invitrogen) containing 10% FBS and 1x 

Antibiotic-Antimycotic. HCC1937 was maintained in RPMI1640 (Invitrogen) 

containing 10% FBS and 1x Antibiotic-Antimycotic. Cells were cultured in a 5% 

CO2 incubator at 37 °C.  

Cloning 

For the doxycycline-inducible shRNA knockdown, oligonucleotides carrying the 

shRNA sequence (Table 2.1) targeting the mRNA of CDCA7 was ligated into AgeI 

and EcoRI digested Tet-pLKO-puro lentiviral vector (a gift from Dmitri 

https://www.thermofisher.com/order/catalog/product/15240062
https://www.thermofisher.com/order/catalog/product/15240062
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Wiederschain, Addgene plasmid # 21915). Tet-pLKO-puro-Scrambled shRNA was 

used as negative control (a gift from Charles Rudin, Addgene plasmid # 47541). Viral 

particles were produced by HEK293 cells co-transfected with the Tet-pLKO-puro 

shRNA construct and the packaging vectors psPAX2 and pMD2.G. For Co-IP assay, 

PCR was performed twice to make a 3xFlag-tagged CDCA7 full length product. 

Briefly, the PCR was conducted using CDCA7 cDNA (GE Healthcare Dharmacon, 

MHS6278-202801798) and primers 3xFlag-CDCA7_F1 and _R. The PCR product 

was then subjected to another PCR using primers 3xFlag-CDCA7_F2 and _R. 

Primers were listed Table 2.1. The full length 3xFlag-tagged CDCA7 was digested 

with NheI and SbfI and then ligated into pLentilox-IRES-Puro (University of 

Michigan, Vector Core). Viral particles were produced with the same method as the 

doxycycline-inducible shRNAs. 

CDCA7 knockdown 

Knockdown of CDCA7 was conducted by siRNA or doxycycline-inducible shRNA. 

For the siRNA knockdown, cells were transfected with CDCA7-targeted siRNA 

(Silencer Select siRNA, Cat. No. s38269, Thermo Fisher Scientific) or AllStar 

negative control siRNA (Cat. No. SI03650318, Qiagen, Palo Alto, CA, USA). The 

transfection was conducted using Lipofectamine RNAiMAX (Invitrogen). To induce 
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shRNA expression in vitro, 100 ng/mL of doxycycline was added to culture medium 

and the medium was changed every 48 hours.  

Immunoblotting 

Protein samples were collected in RIPA buffer containing 5mM EDTA and 1x 

protease inhibitor cocktail (Thermo Fisher Scientific). Proteins were separated by 

SDS-PAGE, transferred onto PVDF membrane, blocked with 5% blocking reagent 

(Bio-Rad, Hercules, CA), and then probed by antibodies (Table 2.2). 

RNA preparation and qRT-PCR 

Trizol (Thermo Fisher Scientific) was used to preserve RNA samples, and Direct-Zol 

(Zymo, Irvine, CA, USA) was used to isolate total RNA from Trizol. Reverse 

transcription was conducted using QuantiTect Reverse Transcription kit (Qiagen). 

Quantitative RT-PCR (qRT-PCR) was carried out using SYBR Green master mix 

(Thermo Fisher Scientific) on a QuantStudio 3 Real-Time PCR System (Thermo 

Fisher Scientific). The expression of YWHAZ was used for normalization. Primers 

used for PCR were listed in Table 2.1. 

Flow Cytometry 

After 5 days of siRNA or shRNA knockdown of CDCA7, cells were stained by CD44 

(BD Biosciences, San Jose, CA, USA) and CD24 (BioLegend, San Diego, CA, USA) 
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antibodies and analyzed by flow cytometer. For cell cycle analysis, cells were stained 

by propidium iodine. 

Mammosphere formation 

Mammosphere formation was performed as previously described52 with minor 

modification. Briefly, 5,000 of dissociated SUM149 or HCC1937 cells were seeded in 

Mammocult (StemCell Technologies, Vancouver, BC, Canada) into ultra-low 

attachment 6-well plates (Corning Inc., Corning, NY, USA). For MDA-MB-231 and 

MDA-MB-436, cells were seeded in Methocult (StemCell Technologies) to prevent 

cell aggregation. After 5-6 days of seeding, primary mammospheres were counted. To 

perform secondary mammosphere formation, primary mammospheres were 

dissociated into single cells by trypsin and filtration through 23G needles. Five 

thousand of the dissociated single cells were then seeded into ultra-low attachment 

6-well plates at a density of 5,000 cells/well without any treatment. 

Cell Migration and Invasion assay 

In vitro cell migration and invasion were conducted using a Matrigel-based transwell 

assay (Corning Inc.). Briefly, cells were seeded in the upper chamber of the transwell 

with serum-free medium. Normal full medium was added as attractant in the bottom 

chamber. After 24 hours of cell culture, the cells were washed twice with PBS, fixed 
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with chilled methanol, and then stained with 0.05% crystal violet. Images were taken 

at 40x magnification in 5 random fields. 

Mouse xenograft model 

All the animal studies were approved by the University Committee on the Use and 

Care of Animals at the University of Michigan. The primary tumor growth and 

secondary reimplantation studies were conducted as previously described53. For the 

primary tumor growth, 5,000 of SUM149 cells carrying doxycycline-inducible control 

or CDCA7 shRNA were injected into the inguinal mammary fat pad of 6-8-week-old 

female NOD/SCID mice (Jackson Laboratory, Bar Harbor, ME, USA). To induce 

shRNA expression, doxycycline diet (625 mg/kg) (Envigo, Haslett, MI, USA) was 

given to the mice when all the implanted mice had palpable tumors. To study the 

effect of CDCA7 knockdown on tumorigenesis, we performed limiting dilution assay 

by implanting serial diluted tumor cells harvested from xenografts. Briefly, tumors 

were harvested from mice treated with doxycycline and then dissociated using Tumor 

Dissociation Kit (Miltenyi Biotec, Auburn, CA, USA). The dissociated tumor cells 

were sorted by flow cytometry using DAPI and H-2Kd (BD Biosciences) 

double-negative gating to obtain live single human cancer cells. The sorted cells were 

then diluted serially and inoculated (2,500, 500 and 100 cells/inoculation) into the 

inguinal mammary fat pad of tumor-free female NOD/SCID mice. Tumor formation 



42 

 

was monitored for 3 months and tumor-initiating frequency was calculated by 

Extreme Limiting Dilution Analysis (ELDA)54. 

Immunofluorescence staining 

Immunofluorescence staining was conducted as previously described53. Briefly, tumor 

slides were deparaffinized and rehydrated. Antigen retrieval was performed by 

incubating tumor slides in citrate buffer (pH=6.0) in a microwave for 10 minutes. The 

slides were treated with chilled Methanol:Acetone (1:1) for 1 minute and then washed 

with PBS. Blocking was conducted using 5% goat serum (Sigma Aldrich) in PBS at 

room temperature for 1 hour. CDCA7 and Cytokeratins 8/18 were probed by primary 

antibodies (Table 2.2) in blocking buffer at 4°C overnight. The slides were washed 3 

times with PBS and then incubated with secondary and direct-conjugated antibodies 

(CD44-BV510, CD24 phycoerythrin, goat anti-rabbit IgG AF647, and goat 

anti-guinea pig IgG DL755) in blocking buffer at 4°C for 6-8 hr. Slides were washed 

three times with PBS, treated with DAPI (Thermo Fisher Scientific) to label nuclei, 

and finally being mounted with coverslips. 

RNA sequencing and data analysis 

RNA extraction was performed using Direct-zol kit (Zymo, Irvine, CA, USA). mRNA 

libraries were prepared using TruSeq (Illumina, Hayward, CA). RNA-Seq was 

conducted using Illumina Hi-Seq 4000 with 50 cycle single ended reads. RNA-Seq 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/keratin-8
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dapi
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reads were mapped to annotated human transcripts in GENCODE55 using Bowtie56. 

Only uniquely mapped reads were used for further analysis. Gene expression were 

estimated as reads/kilobase/million mapped reads (RPKM)57 using rSeq58. edgeR59 

was used to detect differential expressed genes. Genes with FDR value < 0.05 and 

log2(fold change) ≥ 1 were considered significant. Gene ontology and pathway 

analysis were conducted using DAVID60. Gene set enrichment analysis was 

performed using the GSEA software (Broad Institute)61,62. METABRIC data were 

accessed from the cBioPortal for Cancer Genomics website63,64. 

Co-immunoprecipitation 

SUM149 expressing 3xFlag-tagged CDCA7 was used for the Co-IP assay. Cell 

extract was collected by Tris buffer (50 mM Tris, 150 mM NaCl, pH 7.4) containing 

1% Triton X-100 and 1x proteinase inhibitor cocktail (Thermo Fisher Scientific). 

Co-IP was performed by incubating the cell extract with Flag or SUZ12 antibodies for 

2 hours at 4-degree. Normal mouse and rabbit IgG were used as negative control. The 

samples were then transferred into clean tubes containing protein G-conjugated 

Dynabeads (Thermo Fisher Scientific) and incubated for 1 hour at 4-degree. The 

precipitations were washed 3 times with the lysis buffer and then subjected to 1 

mg/mL of 3xFlag peptide (Sigma) or 2x SDS buffer for elution. Antibodies were 

listed in Table 2.2. 
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ChIP-qRT-PCR 

ChIP assay was performed using H3K27me3 antibody (Table 2.2) and MAGnify 

Chromatin Immunoprecipitation System (Thermo Fisher Scientific) following the 

manufacturer’s instruction. The DNA product was subjected to qRT-PCR to analyze 

the H3K27 trimethylation level on the promoter region of CDH1 (Primers listed in 

Table 2.1). 

Statistical analysis  

Two-tailed Student’s t-test was used to compare the statistical difference between two 

groups. One-way ANOVA was used if the comparison involved more than two 

groups. P-value < 0.05 was considered significant. 
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Figure 2.1 Heatmap of 180 EMT-upregulated genes (Sarrio D et al. 2008) across 

the intrinsic breast cancer subtypes in the METABRIC data set  
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Figure 2.2 CDCA7 is highly expressed in TNBC 

(a) The expression of CDCA7 across the intrinsic molecular subtypes of breast cancer 

in the METABRIC data set (Normal: normal-like breast cancer, Lum A: luminal A 

subtype, Lum B: luminal B subtype, CL: claudin-low subtype, Basal: basal-like 

subtype; ****p < 0.0001, One-way ANOVA). (b) The expression of CDCA7 is 

significantly correlated with pathologically defined TNBC (****p < 0.0001, Student’s 

t-Test). (c) The expression of CDCA7 across the integrative clusters in the 

METABRIC data set (****p < 0.0001, One-way ANOVA). (d-f) Percentage of breast 

tumor samples that harbours CDCA7 copy number gain or amplification in breast 

cancer subtypes stratified by (d) intrinsic molecular subtypes, (e) pathologically 

defined TNBC, and (f) intergrative clusters. The data were from the METABRIC data 

set (****p < 0.0001, χ2-test). (g-h) The methylation status on the CDCA7 locus of (g) 

all tumor samples and (h) basal-like only. The methylation data were from TCGA 

data set (Del: deletion). (i) Kaplan-Meier survival analysis of breast cancer patients 

with low or high expression of CDCA7 in the METABRIC data set. 
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Figure 2.3 The correlation between CDCA7 expression and breast cancer patient 

overall survival analyzed by Kaplan-Meier Plotter (Lanczky A et al. 2016)   
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Figure 2.4 The correlation between CDCA7 expression and cancer patient 

overall survival analyzed by PrognoScan (Mizuno H et al. 2009)   

 

 

 

 

 

 

 

 

 



55 

 

 

Figure 2.5 Knockdown of CDCA7 by siRNA or doxycycline (DOX)-inducible 

shRNA in TNBC cell lines 
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Figure 2.6 CDCA7 knockdown suppresses tumor growth 

(a) Tumor growth curve of SUM149 xenografts carrying doxycycline-inducible 

control (shControl, n = 6) or CDCA7-targeting (shCDCA7, n = 5) shRNA in the 

mammary fat pad of female NOD/SCID mice. (b) Tumor weight of SUM149 

xenografts at the end of tumor growth monitoring. The results are expressed as mean 

± SD. ***p < 0.001 (Student’s t-Test). 
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Figure 2.7 CDCA7 knockdown causes cell cycle arrest 

Enrichment of cell cycle and DNA replication-related pathways in (a) Pathway 

analysis and (b) GO analysis of the RNA-Seq data. (c) GSEA analysis of the 

RNA-Seq data. The enrichment plots depicted the correlation between the gene 

signature upon CDCA7 knockdown and cell cycle-related gene sets. (d) Relative 

expression of cell cycle-related genes evaluated by qRT-PCR. YWHAZ was used for 

normalization. (e) Cell cycle analysis of SUM149 cells transfected with siControl or 

siCDCA7. (d-e) The results were expressed as mean ± SD (n = 3). 
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Figure 2.8 CDCA7 regulates the EMT gene expression signature 

(a-c) GSEA analysis of the RNA-Seq data. The enrichment plots depicted the 

correlation between the gene signature upon CDCA7 knockdown and (a) upregulated 

genes in luminal breast cancer cell lines versus the mesenchymal-like ones, (b) 

downregulated genes in basal mammary epithelial cells versus the luminal ones, and 

(c) upregulated genes in mammary epithelial cells undergoing EMT. (d) Relative gene 

expression evaluated by qRT-PCR. CDH1: E-cadherin, CLDN: claudin, MUC1, 

mucin 1, and VIM: vimentin. YWHAZ was used for normalization. (e) Flow 

cytometry analysis of CD44 and CD24 in TNBC cell lines transfected with siControl 

or siCDCA7. (f) Immunofluorescent staining of CDCA7, CD44, CD24, and CK8/18 

on the tumor biopsies from the SUM149 xenografts. (d-e) The results were expressed 

as mean ± SD (n = 3). ****p < 0.0001 (Student’s t-Test).  
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Figure 2.9 CDCA7 knockdown inhibits the metastatic potential of TNBC cells 

(a) Migration and (b) matrigel invasion assay in TNBC cell lines transfected with 

control (siControl) or CDCA7-targeting (siCDCA7) siRNA. The results are expressed 

as mean ± SD (n = 5). **p < 0.01, ****p < 0.0001 (Student’s t-Test). 
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Figure 2.10 CDCA7 mediates the maintenance of stemness in cancer cells 

(a) Primary and secondary mammosphere formation in TNBC cell lines transfected 

with siControl or siCDCA7. The results are expressed as mean ± SD (n = 3). N.S.: not 

significant, *p < 0.05, ***p < 0.001, ****p < 0.0001 (Student’s t-Test). (b) 

Tumor-initiating frequency evaluated by the limiting dilution assay.  
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Figure 2.11 CDCA7 is associated with PRC2-mediated CDH1 suppression 

(a-b) GSEA enrichment plots depicted the correlation between the gene signature 

upon CDCA7 knockdown and (a) up- or down-regulated gene sets of MDA-MB-231 

cells with EZH2 knockdown and (b) PRC2 target genes. (c) Co-IP of 3x Flag-tagged 

CDCA7 with PRC2 components and Snail. SUM149 cells were transfected with 3x 

Flag-tagged CDCA7 expression vector. The cell lysate was subjected to 

immunoprecipitation with anti-Flag antibody. Reciprocal Co-IP was performed using 

anti-SUZ12 antibody. The results were analyzed by Western blot probing EZH2, 

SUZ12, CDCA7, and Snail. (d) ChIP-qRT-PCR analysis of H3K27 trimethylation at 

the promoter region of CDH1. The results were expressed as mean ± SD (n = 3). 

****p < 0.0001 (Student’s t-Test).  
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Table 2.1 Primers used in the study 

Name Sequence 5’ to 3’ Purpose 

shCDCA7_F CCGGGCCTGCCTTCTACTTCTCAAACTCGAGTT

TGAGAAGTAGAAGGCAGGCTTTTTTG 

Cloning 

shCDCA7_R AATTCAAAAAAGCCTGCCTTCTACTTCTCAAAC

TCGAGTTTGAGAAGTAGAAGGCAGGC 

Cloning 

3xFlag-CDCA7_F1 GATTATAAAGATCATGACATCGATTACAAGGAT

GACGATGACAAGGACGCTCGCCGCGTGCCGC 

Cloning 

3xFlag-CDCA7_F2 CTAGCTAGCTAGGCCACCATGGACTACAAAGA

CCATGACGGTGATTATAAAGATCATGACATCGA

TTACAAGG 

Cloning 

3xFlag-CDCA7_R ATCCTGCAGGATCAAGAAAGATTTGAGAAGT Cloning 

CDH1_F TGCCCAGAAAATGAAAAAGG qRT-PCR 

CDH1_R GTGTATGTGGCAATGCGTTC qRT-PCR 

CCNA2_F TCCTCCTTGGAAAGCAAACA qRT-PCR 

CCNA2_R GGGCATCTTCACGCTCTATT qRT-PCR 

CCND1_F CCGTCCATGCGGAAGATC qRT-PCR 

CCND1_R ATGGCCAGCGGGAAGAC qRT-PCR 

CCNE1_F CGGTATATGGCGACACAAGAA qRT-PCR 

CCNE1_R GGTGCAACTTTGGAGGATAGA qRT-PCR 

CDC6_F CCCAAGAGGGTTGGTCTTATTC qRT-PCR 

CDC6_R GCTGAAGAGGGAAGGAATCTTG qRT-PCR 

CDC25A_F GGAAGTACAAAGAGGAGGAAGAG qRT-PCR 

CDC25A_R GGGAAGATGCCAGGGATAAA qRT-PCR 

CDK4_F ATGTGGAGTGTTGGCTGTATC qRT-PCR 

CDK4_R CAGCCCAATCAGGTCAAAGA qRT-PCR 

CLDN1_F GCGCGATATTTCTTCTTGCAGG qRT-PCR 

CLDN1_R TTCGTACCTGGCATTGACTGG qRT-PCR 

CLDN4_F GGCTGCTTTGCTGCAACTGTC qRT-PCR 

CLDN4_R GAGCCGTGGCACCTTACACG qRT-PCR 

MUC1_F CTGCTCCTCACAGTGCTTACAGTTG qRT-PCR 

MUC1_R TGAACCGGGGCTGTGGCTGG qRT-PCR 

c-MYC_F CGACGAGACCTTCATCAAAA qRT-PCR 

c-MYC_R TGCTGTCGTTGAGAGGGTAG qRT-PCR 
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Table 2.1 Primers used in the study(continued) 

VIM_F GAGAACTTTGCCGTTGAAGC qRT-PCR 

VIM_R GCTTCCTGTAGGTGGCAATC qRT-PCR 

YWHAZ_F ACTTTTGGTACATTGTGGCTTCAA qRT-PCR 

YWHAZ_R CCGCCAGGACAAAACAGTAT qRT-PCR 

Pro_CDH1_F TAGAGGGTCACCGCGTCTAT ChIP- 

qRTPCR 

Pro_CDH1_R TCACAGGTGCTTTGCAGTTC ChIP- 

qRTPCR 
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Table 2.2 Antibodies used in the study 

Name Company Cat. No. Purpose 

CD24-PE/Cy7 BioLegend 311120 Flow cytometry 

CD44-APC BD Biosciences 559942 Flow cytometry 

H-2Kd-PE BD Biosciences 553566 Flow cytometry 

CDCA7 Proteintech 15249-1-AP Western blot, IF 

Vinculin Cell Signaling 13901 Western blot 

EZH2 Cell Signaling 5246 Western blot 

SUZ12 Cell Signaling 3737 Western blot, Co-IP 

Snail Cell Signaling 3879 Western blot 

Flag Sigma F1804 Co-IP 

Normal mouse IgG Millipore 12-371 Co-IP 

Normal rabbit IgG Millipore 12-370 Co-IP 

H3K27me3 Cell Signaling 9733 ChIP 

CD24-phycoerythrin BD Biosciences 555428 IF 

CD44-BV510 BioLegend 103043 IF 

CK8/18 Abcam ab194130 IF 

goat anti-guinea pig 

IgG DL755 

Thermo Fisher Scientific SA5-10099 IF 

goat anti-mouse IgM 

AF488 

Thermo Fisher Scientific A-21042 IF 

goat anti-rabbit IgM 

AF647 

Thermo Fisher Scientific A-21245 IF 
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Chapter 3  

Targeting LRP8 inhibits breast cancer stem cells in triple-negative breast cancer 

Abstract 

Triple-negative breast cancer (TNBC) is the most difficult subtype of breast cancer to 

treat due to a paucity of effective targeted therapies. Many studies have reported that 

breast cancer stem cells (BCSCs) are enriched in TNBC that are responsible for 

chemoresistance and metastasis. In this study, we identify LRP8 as a novel positive 

regulator of BCSCs in TNBC. LRP8 is highly expressed in TNBC compared to other 

breast cancer subtypes and its genomic locus is amplified in 24% of TNBC tumors. 

Knockdown of LRP8 in TNBC cell lines inhibits Wnt/β-catenin signaling, decreases 

BCSCs, and suppresses tumorigenic potential in xenograft models. LRP8 knockdown 

also induces a more differentiated, luminal-epithelial phenotype and thus sensitizes 

the TNBC cells to chemotherapy. Together, our study highlights LRP8 as a novel 

therapeutic target for TNBC as inhibition of LRP8 can attenuate Wnt/β-catenin 

signaling to suppress BCSCs. 
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Introduction 

Triple-negative breast cancer (TNBC) is a heterogeneous disease diagnosed 

pathologically by the lack of expression of estrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2)1. Although 

accounting for only 10-15% of all breast cancers, TNBC has the worst prognosis 

due to its high rate of relapse and metastasis and the lack of effective targeted 

therapies1,2. Currently, cytotoxic chemotherapy is the main therapeutic strategy for 

TNBC, irrespective of disease stage3. However, TNBC patients with residual 

disease after chemotherapy have significantly worse survival than non-TNBC 

patients with residual disease4. Therefore, recent research of TNBC focuses on 

identifying novel therapeutic targets and mechanisms of chemoresistance. 

The aggressive nature of TNBC has been attributed to the presence of cancer 

stem cells, also termed “tumor-initiating cells”. These cells are characterized by 

their ability to self-renew and differentiate into non-stem cancer cells that form the 

tumor bulk5. Cancer stem cells have been identified as important targets for cancer 

treatment due to their enhanced metastatic capability and resistance to 

conventional chemotherapy. Increasing evidence has shown that breast cancer 

stem cells (BCSCs) are enriched in TNBC compared to other breast cancer 

subtypes6-10, which is concordant with the inherently aggressive clinical behavior 
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of TNBC. Thus, it is important to target BCSCs to achieve a better outcome in TNBC 

treatment. 

We conducted siRNA screening in a TNBC cell line to identify important 

regulators of BCSCs in TNBC. From this screening, we identified low-density 

lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor 

2, apoER2) as a novel positive regulator of BCSCs in TNBC. The biological function 

of LRP8 has been studied in the developing brain where it has been shown to regulate 

neuronal migration. Upon binding to its ligand, Reelin, at the cell surface, LRP8 

triggers phosphorylation of the cytoplasmic adaptor protein Disabled-1 (Dab-1) to 

activate the downstream signaling cascades11-14. A recent study reports that 

LRP8-Reelin signaling is also important for cognitive function15. However, the 

function of LRP8 in cancers and cancer stem cells is not well studied. 

Here, we show that LRP8 expression is elevated in TNBC as compared to other 

breast cancer subtypes, which may be due to a higher rate of LRP8 copy number gain 

or amplification in TNBC. Furthermore, higher LRP8 expression is associated with 

poor patient survival. Knockdown of LRP8 decreases BCSCs, metastatic potential, 

and tumorigenesis of TNBC and sensitizes TNBC cells to chemotherapy. 

Mechanistically, we show that LRP8 knockdown leads to inhibition of Wnt/β-catenin 

signaling pathway and potentially extracellular-signal regulated kinase (ERK)/MAPK 
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pathway. In conclusion, LRP8’s localization to the cell surface and its importance 

for maintaining BCSCs in TNBC position LRP8 as a valuable therapeutic target 

for the treatment of TNBC through eradication of BCSCs. 

Results 

LRP8 is highly expressed in triple-negative breast cancer 

To determine if LRP8 is expressed differentially among the various breast 

cancer subtypes, we analyzed the METABRIC patient data set, which contains 

nearly 2,000 breast cancer cases with gene expression, copy number alteration and 

clinical data16. Pathologically, LRP8 expression was elevated in TNBC compared 

to other subtypes (Fig. 3.1a). Stratification of this patient cohort based on 

molecular classification17 identified higher LRP8 expression in basal-like breast 

cancer (Fig. 3.1b), a subtype that constitutes ~80% of TNBC18-20. Using a 

genome-driven classification16, elevated LRP8 expression was found associated 

with the IC10 subgroup of breast cancers that shows high concordance with the 

basal-like subtype (Fig. 3.1c).  

Further analysis of the METABRIC data set showed that elevated LRP8 

expression in TNBC may be due to copy number alterations. Among all 

METABRIC breast cancer patients, copy number gain or amplification at the 
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LRP8 genomic locus was identified in 142 cases (6.5%) (data not shown). 

Interestingly, the incidence of LRP8 copy number gain or amplification increased to 

23-24% in TNBC, basal-like and IC10 breast cancers (Fig. 3.1d-f). The claudin-low 

subtype, which was common within TNBC21, also showed a higher rate of LRP8 copy 

number gain or amplification compared to the luminal and HER2 subtypes (Fig. 3.1e). 

Furthermore, patients with LRP8 copy number gain or amplification had significantly 

higher mRNA expression, suggesting that copy number alterations could be the causal 

mechanism underlying elevated LRP8 expression in these patients (Fig. 1g). Lastly, 

patients with high expression of LRP8 had poorer survival than the rest of the cohort 

(Fig. 3.1h), which may be due to the strong correlation between LRP8 expression and 

TNBC. The survival analysis result of METABRIC was consistent with that of 

another data set22 (Fig. 3.1i). Therefore, the LRP8 expression level could potentially 

be used as a prognosis marker. 

Knockdown of LRP8 decreases BCSCs and invasiveness in TNBC  

To study the function of LRP8 in TNBC, we performed siRNA or doxycycline 

(tetracycline)-inducible shRNA knockdown of LRP8 in two TNBC cell lines, 

SUM149 and HCC1937 (Fig. 3.2a), and examined the effect on CD44+/CD24- cells, a 

well-studied BCSC population with self-renewal and tumor-initiating ability23,24. We 
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found that LRP8 knockdown significantly reduced the percentage of 

CD44+/CD24- cells (Fig. 3.2b-d). Consistent with the reduction of the 

CD44+/CD24- BCSC population, LRP8 knockdown decreased the mammosphere 

formation capacity of TNBC cells (Fig. 3.2e, f), indicating an impairment of the 

self-renewal ability of BCSCs. 

Epithelial cancer cells can acquire stemness and CD44+/CD24- expression 

status through epithelial-to-mesenchymal transition (EMT)25, a process that also 

plays an important role in cancer metastasis26. To investigate whether silencing of 

LRP8 was able to inhibit metastasis of TNBC cells, we used a matrigel-based 

transwell assay to evaluate the effect of LRP8 knockdown on cellular migration 

and invasion. The results showed that LRP8 knockdown significantly decreased 

both migration and invasion of TNBC cells (Fig. 3.3a, b). Our data suggests that 

knockdown of LRP8 may decrease the metastatic potential of TNBC. 

Knockdown of LRP8 reduces tumorigenicity of TNBC 

To investigate the impact of LRP8 knockdown on tumorigenesis, we used a 

doxycycline-inducible vector to generate stable SUM149 cell lines carrying 

LRP8 shRNA (shLRP8) or negative control shRNA (shControl). Upon shLRP8 

induction with doxycycline in vitro, LRP8 protein was decreased to an almost 
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undetectable level (Fig. 3.2a). These stable SUM149 cell lines were injected into the 

mammary fat pads of NOD-SCID mice and shRNA was induced by doxycycline 

treatment when the tumors were palpable in all the mice. As shown in figures 3.4a 

and 3.4b, LRP8 knockdown significantly suppressed tumor growth. Furthermore, the 

result of the secondary limiting dilution transplantation experiment revealed that 

silencing of LRP8 significantly reduced the frequency of tumor-initiating cells by 

6-fold, from 1/204 (shControl) to 1/1208 (shLRP8) (Fig. 3.4c). 

Signaling pathways altered by LRP8 knockdown in TNBC cells 

To study the molecular mechanism of BCSC inhibition mediated by LRP8 

knockdown, we performed RNA sequencing (RNA-Seq) in SUM149 cells treated 

with control or LRP8 siRNA. Knockdown of LRP8 resulted in 366 genes upregulated 

and 416 genes downregulated at ≥ 2 folds (edgeR FDR < 0.05). To identify signaling 

pathways and cellular functions affected by LRP8 knockdown, we conducted pathway 

analysis and gene ontology (GO) analysis of the RNA-Seq data using DAVID. In the 

pathways known to regulate self-renewal and stemness of cancer cells, canonical 

Wnt/β-catenin signaling pathway was the most significantly dysregulated signaling 

pathway in the LRP8 knockdown SUM149 cells (Fig. 3.5a). In addition, the GO 

analysis revealed that mitogen-activated protein kinase (MAPK) pathways were also 
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interrupted by LRP8 knockdown (Fig. 3.5b). The alteration of the MAPK 

pathways might be due to the dysregulation of MAPK phosphatases caused by 

LRP8 knockdown (Fig. 3.5b). Furthermore, LRP8 knockdown significantly 

affected cell survival mechanisms such as proliferation and apoptosis (Fig. 3.5b), 

which might be the reason of the reduced tumor burden in the LRP8 knockdown 

xenografts.  

To determine the effect of LRP8 knockdown on the canonical Wnt/β-catenin 

pathway, we first examined the level of active (non-phosphorylated) β-catenin27,28 

by western blot and found that knockdown of LRP8 decreased the level of active 

β-catenin in SUM149 and HCC1937 cells (Fig. 3.5c). We next conducted gene set 

enrichment analysis (GSEA) of the RNA-Seq data using a Wnt signature gene 

set29 and demonstrated that Wnt target genes were negatively correlated with the 

LRP8 knockdown SUM149 cells (Fig. 3.5d), indicating that loss of LRP8 

downregulated Wnt downstream targets. The quantitative reverse transcription 

PCR (qRT-PCR) analysis of selected Wnt target genes in LRP8 knockdown 

SUM149 and HCC1937 further supported the inhibition of Wnt signaling in these 

cells (Fig. 3.5e, f).  

We also performed Western blot to examine the effects of LRP8 knockdown on 

MAPK signaling pathways. We found that LRP8 knockdown decreased the 
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phosphorylation of ERK1/2 in both SUM149 and HCC1937 cells (Fig. 3.5g). 

However, LRP8 knockdown led to opposite effects on the phosphorylation of p38 

MAPK in SUM149 and HCC1937 cells (Fig. 3.5g). Given that silencing of LRP8 

significantly altered the expression of MAPK phosphatases (Fig. 3.5b), we examined 

the RNA-Seq data and found that dual-specific phosphatases (DUSPs) were the most 

dysregulated MAPK phosphatases caused by LRP8 knockdown (Fig. 3.5h). We 

hypothesized that individual DUSPs might dominate the dephosphorylation of 

MAPKs in different cellular context. For instance, DUSP4-6 might dominate the 

dephosphorylation of p38 MAPK over DUSP1, DUSP8, and DUSP16 in HCC1937. 

Nevertheless, more studies will be needed to clarify how these DUSPs regulate 

specific MAPK pathways in different cellular context. 

LRP8 knockdown shifts TNBC cells towards a more differentiated, epithelial cell 

state 

We next conducted a more comprehensive GSEA of the LRP8 knockdown 

RNA-Seq data. We found that LRP8 knockdown shifted the gene signature of 

SUM149 cells from a basal-mesenchymal state towards a more luminal-epithelial 

state (Fig. 3.6a-c). Specifically, gene sets from mammary cells undergoing EMT were 

negatively correlated with the LRP8 knockdown cells (Fig. 3.6a). In addition, the 
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genes that were upregulated in luminal breast cancer and ER-positive breast 

cancer were positively correlated with the LRP8 knockdown cells (Fig. 3.6b, c). 

We next tested the hypothesis that TNBC cells were shifted from a 

basal-mesenchymal state towards a more luminal-epithelial state upon LRP8 

knockdown. We selected the classic mesenchymal genes vimentin (VIM) and 

fibronectin (FN1) and epithelial genes E-cdherin (CDH1) and mucin 1 (MUC1) 

and evaluated their expression by qRT-PCR. Knockdown of LRP8 decreased the 

expression of mesenchymal genes and concomitantly increased the expression of 

epithelial genes (Fig. 3.6d). This phenomenon was again confirmed by the 

immunofluorescence staining on tumor biopsies, which demonstrated a dramatic 

decrease of vimentin and CD44 and increase of CD24 expression in the LRP8 

knockdown tumors (Fig. 3.6e). We also found that knockdown of LRP8 in cell 

culture and xenografts led to elevated expression of CK19 (Fig. 3.6f, g), a 

luminal-epithelial cytokeratin of breast cancer, whose negativity was correlated 

with poor prognosis30,31. Furthermore, LRP8 knockdown sensitized SUM149 cells 

to docetaxel treatment. The IC50 of docetaxel was significantly decreased by 

2.4-fold in the LRP8 knockdown cells compared to control cells (Fig. 3.6h). 

Together, our results indicated that silencing of LRP8 could shift TNBC cells 
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towards a more differentiated, epithelial cell state and sensitize them to 

chemotherapy. 

Discussion 

TNBC has poorer prognosis compared with other breast cancer subtypes due to its 

inherent aggressiveness and the lack of targeted therapies3. Current treatments for 

TNBC are limited to surgery and chemotherapy. The later has been shown to induce 

BCSCs32, which are believed to be responsible for metastasis and drug-resistance. As 

a result, identification of therapeutic targets to eliminate BCSCs is necessary to 

achieve a better outcome for TNBC patients. By investigating the METABRIC data 

set, we have found that LRP8, a transmembrane protein, is highly expressed in TNBC 

in comparison to other breast cancer subtypes. Not only does LRP8 serve as a marker 

of poor prognosis in breast cancer, but our study also suggests that LRP8 is essential 

for the maintenance of BCSCs and tumorigenicity in TNBC. 

In our pathway analysis to scrutinize LRP8’s mechanism of action, we find that 

silencing of LRP8 significantly inhibits Wnt signaling pathway. Our results support 

previous studies which link LRP8 to Wnt signaling regulation. In normal tissues, 

LRP8 regulates osteoblast differentiation through Wnt signaling33. In addition, LRP8 

gene amplification and overexpression have been reported in lung cancer and its 
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oncogenic role has been suggested to be linked to Wnt signaling34. In the 

canonical Wnt signaling pathway, LRP5/6 function as Wnt co-receptors that bind 

to Wnt ligands and then inactivate the destruction complex to prevent proteosomal 

degradation of β-catenin35. Like LRP5/6, LRP8 belongs to the low-density 

lipoprotein receptor-related protein (LRP) family and shares the conserved 

domains, such as LDL repeats and EGF receptor-like domains36. Furthermore, 

LRP8 has been reported to interact directly with Wnt3a, indicating that LRP8 

might serve as a novel Wnt co-receptor33. Other studies have shown that ligation 

of LRP8 by activated protein C, a plasma protein with anticoagulant and 

cytoprotective activities, leads to Dab-1 phosphorylation and subsequent 

activation of PI3K and AKT and inactivation of GSK-3β by phosphorylation37,38. 

Phosphorylation of GSK-3β releases β-catenin from the destruction complex and 

thereby stabilizes β-catenin39-41. Therefore, LRP8 may activate Wnt signaling via 

different regulatory mechanisms. Our results and the previous studies suggest that 

LRP8 plays an important role in activating Wnt signaling in TNBC.  

It is worth noting that LRP8 is functionally redundant to LRP5/6 in Wnt 

signaling activation. Therefore, one concern is that LRP5/6 may potentially 

compensate LRP8 knockdown-mediated Wnt signaling inhibition. In our 

RNA-Seq data, we do not find LRP8 knockdown elevate the expression of 
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LRP5/6. Interestingly, LRP8 knockdown increase the expression of LRP1 by 2.3 

folds. LRP1 has been reported to interact with Frizzled-1, which causes the disruption 

of Wnt receptor/co-receptor complex formation and thus represses the canonical Wnt 

signaling pathway42. Furthermore, LRP8 knockdown increase the expression of 

SFRP1, the secreted Wnt antagonist, by 3.1 folds. These data suggest that LRP8 

knockdown can elevate the expression of Wnt pathway repressors which may 

compromise LRP5/6-mediated Wnt signaling activation. Such hypothesis is also 

supported by our mouse xenograft models, which demonstrate that long-term 

knockdown of LRP8 still significantly inhibits tumorigenesis. 

Wnt signaling plays a critical role in regulating self-renewal of stem cells and 

cancer stem cells43,44. In a mouse model, Wnt3a is sufficient to sustain mouse 

mammary stem cells to form spheres in vitro and enhance the reconstitution of 

mammary gland in vivo45. Studies have shown that overexpression of Wnt1 in mice 

induces spontaneous mammary cancers46,47. Recent work elegantly demonstrates that 

human mammary cells undergoing EMT have increased expression of WNT5A and 

decreased expression or protein secretion of Wnt antagonists SFRP1 and DKK148. 

Restoration of SFRP1 expression in these EMT mammary cells reduces cell migration 

and mammosphere formation in vitro and inhibits tumorigenesis in xenograft models 

48. In addition, Wnt signaling has been reported to be particularly active in TNBC and 
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is associated with metastasis and tumorigenesis in TNBC49-51. These studies reveal 

the profound effects of Wnt signaling in BCSCs and TNBC, hence highlighting 

the value of targeting LRP8 to inhibit Wnt signaling in TNBC.  

Emerging evidence has demonstrated the importance of MAPK signaling 

pathways in regulating EMT and TICs. Previous studies have demonstrated that 

activation of MAPK pathways is required or can synergistically enhance 

TGF-β-induced EMT52-55. MAPKs can also phosphorylate TWIST1, an EMT 

transcription factor, and thus protect it from proteasome-mediated degradation56. 

In our study, silencing of LRP8 decreases the phosphorylation of ERK1/2, which 

may contribute to the inhibition of EMT according to previous studies52,54-56. 

Interestingly, LRP8 knockdown increases the phosphorylation of p38 in HCC1937 

cells. Given that silencing of LRP8 significantly inhibits the expression of specific 

DUSPs, the elevated p38 phosphorylation in the LRP8 knockdown HCC1937 

cells implies a potential resistant mechanism of targeting LRP8 as loss of DUSPs 

has been reported to activate MAPK pathways and induce both stem cell-like 

phenotypes and chemoresistance in TNBC57,58. Therefore, a more thorough study 

will be needed to elucidate the effects of targeting LRP8 on DUSPs and the 

MAPK pathways.  
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TNBC/basal-like breast cancer has worse prognosis compared to the luminal 

subtypes of breast cancer59. Also, TNBC has been linked to a less differentiated 

stem or progenitor cell state contrary to the luminal subtypes which recapitulate a 

more differentiated epithelial cell state in human mammary epithelial hierarchy60. As 

the emerging evidence proves the contribution of BCSCs to tumorigenesis and 

drug-resistance, promoting TNBC cell differentiation is a rational and potentially 

effective strategy for TNBC treatment. A recent study has demonstrated that EMT 

reversion triggers mammary cells to leave the mesenchymal tumor-initiating state and 

differentiate into a chemotherapy-sensitive epithelial (non-stem) cell state61. Like the 

aforementioned study, our results show that upon LRP8 knockdown, TNBC cells 

acquire the more differentiated luminal-epithelial gene signature and become more 

sensitive to the treatment with docetaxel. 

In conclusion, our study shows that LRP8 is a novel oncogene in TNBC. The 

expression of LRP8 is highly associated with TNBC. Silencing of LRP8 can 

significantly suppress BCSCs and tumorigenesis in TNBC via Wnt signaling 

inhibition. Furthermore, knockdown of LRP8 shifts TNBC cells to a more 

differentiated, luminal-epithelial cell state and sensitizes them to chemotherapy. 

These results suggest LRP8 may serve as a therapeutic target to inhibit BCSCs in 

TNBC. 
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Materials and methods 

Cell lines and chemicals 

HCC1937 was grown in RPMI1640 (Invitrogen; Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) containing 10% FBS and 1x Antibiotic-Antimycotic 

(Invitrogen; Thermo Fisher Scientific, Inc.). SUM149 was grown in F12 (Invitrogen; 

Thermo Fisher Scientific, Inc.) containing 5% FBS, 1x Antibiotic-Antimycotic, 5 

μg/mL of insulin (Gibco; Thermo Fisher Scientific, Inc.), and 1 μg/mL of 

hydrocortison (Sigma-Aldrich, St. Louis, MO, USA). HEK293T was grown in 

DMEM (Invitrogen; Thermo Fisher Scientific, Inc.) containing 10% FBS and 1x 

Antibiotic-Antimycotic. Cells were cultured in a 5% CO2 incubator at 

37 °C. Docetaxel and 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H 

tetrazolium-bromide (MTT) were purchased from Sigma-Aldrich. 

siRNA knockdown of LRP8 

Cells were transfected with Silencer Select siRNA (Thermo Fisher Scientific, Inc.) 

targeting mRNA of LRP8 (Cat. No. s15367) in parallel with AllStars Negative 

Control siRNA (Cat. No. SI03650318, Qiagen, Palo Alto, CA, USA). Transfection 

was conducted by using Lipofectamine RNAiMAX (Invitrogen; Thermo Fisher 

Scientific, Inc.) according to the manufacturer’s instructions. 

Knockdown of LRP8 by inducible shRNA 

https://www.thermofisher.com/order/catalog/product/15240062
https://www.thermofisher.com/order/catalog/product/15240062
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Oligonucleotides containing the shRNA sequence targeting mRNA of LRP8 (Table 1) 

were ligated into AgeI and EcoRI digested Tet-pLKO-puro lentiviral vector. The 

LRP8 shRNA was designed to target a different mRNA sequence from those targeted 

by the LRP8 siRNA to confirm the effects of the siRNA. Tet-pLKO-puro was a gift 

from Dmitri Wiederschain (Addgene plasmid # 21915) and 

Tet-pLKO-puro-Scrambled shRNA was a gift from Charles Rudin (Addgene plasmid 

# 47541). To produce virus particles, the shRNA constructs were co-transfected with 

the packaging vectors psPAX2 and pMD2.G into HEK293T cells. The viral 

supernatants were collected 48 hours after transfection and then added to cells in the 

presence of 4 μg/mL polybrene (Sigma-Aldrich). Twenty-four hours later, cells were 

selected with puromycin (1 μg/mL) for 5 days. To induce shRNA knockdown, 

doxycycline at a final concentration of 100 ng/mL was added to the culture media. 

RNA-Seq and data analysis 

SUM149 cells were transfected with control or LRP8 siRNA in quadruplicate. After 

72 hours, total RNA was extracted with Direct-zol kit (Zymo, Irvine, CA, USA), and 

mRNA libraries were prepared using TruSeq (Illumina, Hayward, CA). RNA-Seq was 

performed in the University of Michigan DNA Sequencing Core using Illumina 

Hi-Seq 4000 with 50 cycle single-end reads. The sequencing reads were mapped to 

human transcripts annotated in GENCODE62 using Bowtie63. Only uniquely mapped 
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reads were used for further analysis. Gene expression levels were estimated as 

reads/kilobase/million mapped reads (RPKM)64 using rSeq65. Differentially expressed 

genes were detected using edgeR66. Genes with a FDR value < 0.05 and a fold change 

≥ 2 folds were considered significant. Gene ontology analysis was conducted using 

genes with a |log2 fold change| (|log2FC|) ≥ 1.5 in DAVID67. Gene Set Enrichment 

Analysis (Broad Institute) was used to correlate gene functions and signaling 

pathways that are significantly affected in LRP8 knockdown cells. All METABRIC 

data were accessed from the cBioPortal for Cancer Genomics website68,69. 

Mammosphere formation assay 

Mammosphere formation was conducted as previously reported70. Briefly, dissociated 

single cells were seeded at a density of 5,000 cells/well in Mammocult (StemCell 

Technologies) in ultra-low attachment 6-well plates (Corning Inc., Corning, NY, 

USA). After culturing for 6 days, primary mammospheres greater than 50 µm in 

diameter were counted. Primary mammospheres were then dissociated to single cells 

to be seeded at the same density as the primary mammosphere culture for secondary 

mammosphere formation. 

Invasion assay 

In vitro cellular invasion and migration was evaluated by matrigel-based transwell 

assays following the manufacturer’s instruction (Corning Inc.). Seventy-two hours 
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after siRNA transfection, cells were seeded at a density of 1x104 in serum-free 

medium in the top chamber of the transwell. Medium containing serum as attractant 

was added to the bottom chamber of the transwell. Twenty-four hours after seeding, 

the migrated/invaded cells were fixed with ice-cold methanol and stained with 0.05% 

crystal violet. Five pictures were taken at 20x magnification in random fields. 

Immunoblotting 

Cells were lysed in RIPA buffer containing 5mM EDTA, 1x protease inhibitor 

cocktail (Thermo Fisher) and 1x phosphatase inhibitor cocktail (Millipore). Proteins 

were separated by SDS-PAGE and probed with antibodies. LRP8 and CK19 

antibodies were purchased from Abcam (Cambridge, MA, USA). β-actin antibody 

was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Non-phospho 

(active) β-catenin (Ser33/37/Thr41) antibody was purchased from Cell Signaling 

(Danvers, MA, USA). The detailed information of the antibodies was listed in Table 

2. 

Flow Cytometry 

CD44 (BD Biosciences, San Jose, CA, USA) and CD24 (BioLegend, San Diego, CA, 

USA) staining was conducted 3-4 days after siRNA or shRNA knockdown of LRP8. 

The cells were analyzed on a MoFlo Astrios flow cytometer (Beckman Coulter, 
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Indianapolis, IN, USA). Additional information of the antibodies was listed in Table 

2. 

RNA preparation and qRT-PCR 

Total RNA was extracted from siRNA treated cells with Direct-zol (Zymo) and then 

reverse transcribed using QuantiTect Reverse Transcription kit (Qiagen). The cDNA 

was then subjected to quantitative PCR on a QuantStudio 3 Real-Time PCR System 

(Thermo Fisher Scientific, Inc.) using SYBR Green (Thermo Fisher Scientific, Inc.). 

YWHAZ was used to normalize and calculate relative gene expression. Primers used 

for qRT-PCR were listed in Table 1. 

Mouse xenograft model 

The animal studies were conducted following the protocols approved by the 

University Committee on the Use and Care of Animals at the University of Michigan. 

Female NOD/SCID mice (Jackson Laboratory, Bar Harbor, ME, USA) were used to 

evaluate the effects of LRP8 knockdown on tumor growth and tumorigenicity. 

Briefly, 5,000 SUM149 cells carrying doxycycline-inducible control or LRP8 shRNA 

were injected into the inguinal mammary fat pad of 6-8-week-old mice. Doxycycline 

diet (625 mg/kg) (Envigo, Haslett, MI, USA) was given to mice starting from 5 weeks 

after implantation when palpable tumors were observed. At the end of tumor growth 

monitoring, tumors were harvested and dissociated by using Tumor Dissociation Kit, 
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human (Miltenyi Biotec, Auburn, CA, USA), and then DAPI and H-2Kd (BD 

Biosciences) double-negative live human cancer cells were sorted by flow cytometry. 

Limiting dilution assay was conducted by inoculating the sorted and serially diluted 

cancer cells (2,500, 500 and 100 cells/inoculation) into the inguinal mammary fat pad 

of tumor-free mice. Tumor formation was monitored for 3 months. The frequency of 

tumor-initiating cells was calculated by using Extreme Limiting Dilution Analysis 

(ELDA)71. 

Immunohistochemisty 

Tumors were isolated from mouse xenografts and fixed in 10% formalin (Thermo 

Fisher Scientific, Inc.) followed by paraffin embedding. Immunohistochemistry was 

performed in the University of Michigan In-Vivo Animal Core (IVAC). Briefly, 

slides were deparaffinized and subjected to heat-induced antigen retrieval using a 

commercial pressure chamber (Biocare Decloaker, Biocare Medical) and buffer 

(Biocare Diva). Immunostaining was performed using an automated 

immunohistochemical stainer (Biocare Intellipath FLX® , Biocare Medical, Concord, 

CA) and included blocking for endogenous peroxidases and non-specific binding 

(Biocare Rodent Block M). The primary antibody (anti-CK19, cat #ab7754, Abcam) 

was applied for 30min at a concentration of 1:200. Detection was performed by a 

biotin-free polymer based commercial detection system (Biocare Univ HRP Polymer) 
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with the chromogen diaminobenzidine (DAB) and a hematoxylin nuclear 

counterstain. Negative controls were performed with each run using a universal 

control (Biocare #NC498) in place of the primary antibody. 

Immunofluorescence staining 

FFPE sections were deparaffinized and rehydrated by dipping three times in xylene, 

two times in 100% ethanol and once each in 95% and 70% ethanol. Antigen retrieval 

was performed by heating slides in citrate buffer (pH=6.0) in a microwave for 10 

minutes. Samples were then treated with ice-cold 1:1 Methanol:Acetone for 1 minute 

and washed with PBS. Blocking buffer consisting of 5% goat serum (Sigma Aldrich) 

diluted in PBS was applied at room temperature for 1 hour to prevent non-specific 

adhesion. Primary antibodies targeting LRP8 (1:200), Cytokeratins 8/18 (1:200), 

and vimentin (5 μg/mL) were diluted in blocking buffer and applied overnight in a 

humidified chamber at 4°C. Sections were washed three times for 5 min each with 

PBS. Secondary and direct-conjugated antibodies were diluted in blocking buffer and 

applied for 6-8 hr in a humidified chamber at 4°C: CD44-BV510 (2µg/ml), CD24 

phycoerythrin (2µg/ml), goat anti-mouse immunoglobulin M (IgM) AF488 

(2 μg/mL), goat anti-rabbit immunoglobulin G (IgG) AF647 (2 μg/mL), and goat 

anti-guinea pig immunoglobulin G (IgG) DL755 (2.5 μg/mL). Slides were again 

washed three times for 5 min each with PBS, then treated with DAPI (1 μg/mL, 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primary-and-secondary-antibodies
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/keratin-8
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/vimentin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoglobulin-g
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoglobulin-g
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoglobulin-g
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dapi
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Thermo Fisher Scientific) to label nuclei. Finally, the tissue sections were mounted 

with coverslips using Prolong Diamond Antifade Mountant (Thermo Fisher 

Scientific) and imaged with an Olympus IX-83 microscope using six optical filter sets 

corresponding to each fluorophore. 

Chemoresistance test 

SUM149 cells were transfected with control siRNA or LRP8-targeted siRNA. At 48 

hours after transfection, cells were reseeded into a 96-well plate at a density of 1x104 

cells/well. Twenty-four hours later, cells were treated with Docetaxel from 0 to 500 

nM for 72 hours and the cell viability was then measured by a MTT assay. Briefly, 

cells were incubated with 0.5 mg/mL of MTT solution at 37 ºC for 2 hours. The MTT 

solution was removed and then 50 µL of DMSO was added to each well. The 

absorbance at 570 nm was read by using a plate reader (BioTek, Winooski, VT, 

USA). 

Statistical analysis  

Two-tailed Student’s t-test was used to compare the statistical difference between two 

groups. One-way ANOVA was used if the comparison involved more than two 

groups. A P-value < 0.05 was considered significant. 
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Figure 3.1 LRP8 is highly expressed in TNBC 

a-c Breast cancer samples in the METABRIC data set were stratified by different 

classification methods. LRP8 was found highly expressed in a TNBC (****p < 

0.0001, Student’s t-Test), b basal-like subtype of the molecular subtypes (Normal: 

normal-like breast cancer, Lum A: luminal A subtype, Lum B: luminal B subtype, 

CL: claudin-low subtype, Basal: basal-like subtype; ****p < 0.0001, One-way 

ANOVA), and c IC10 of the integrative clusters (****p < 0.0001, One-way 

ANOVA). d-f Percentage of LRP8 copy number gain or amplification in breast 

cancer subtypes using different classifications (****p < 0.0001, χ2-test). g 

Comparison of LRP8 expression between breast cancer patients with LRP8 diploid 

(neutral) and those with LRP8 copy number gain or amplification (Amp) (****p < 

0.0001, Student’s t-Test). h, i Kaplan-Meier survival analysis of breast cancer patients 

with low or high expression of LRP8. h data from the METABRIC data set and i data 

from Kaplan-Meier Plotter. 
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Figure 3.2 LRP8 knockdown suppresses BCSCs in TNBC 

a Western blot of LRP8 and β-actin (loading control) in LRP8 (siLRP8) or control 

(siControl) siRNA treated SUM149 and HCC1937 and in LRP8 (shLRP8) or control 

(shControl) shRNA treated SUM149. b-d Flow cytometry analysis of CD44+/CD24- 

BCSCs in SUM149 and HCC1937 with LRP8 knockdown by siRNA and in SUM149 

with LRP8 knockdown by shRNA. e, f Primary and secondary mammosphere 

formation in SUM149 and HCC1937 with LRP8 knockdown by siRNA. The results 

of b-f were shown as mean ± S.D. (n=3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001, Student’s t-Test). 
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Figure 3.3 LRP8 knockdown inhibits invasiveness of TNBC cells 

Matrigel-based migration and invasion transwell assay. Migrated and invaded cells in 

a SUM149 and b HCC1937 with LRP8 knockdown by siRNA. The results were 

shown as mean ± S.D. (n=5, ****p < 0.0001, Student’s t-Test). 
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Figure 3.4 LRP8 knockdown inhibits tumorigenesis of TNBC 

a Tumor growth of SUM149 carrying doxycycline-inducible shLRP8 (n=7) or 

shControl (n=5). The cells were injected into the mammary fat pad of NOD-SCID 

mice. Doxycycline diet (DOX) was given when palpable tumors were observed in all 

mice (6 weeks after implantation). The results were shown as mean + S.D. (*p < 0.05, 

Student’s t-Test). b Tumor weight at the end of tumor monitoring (13 weeks after 

implantation). *p < 0.05, Student’s t-Test. c Secondary limiting dilution 

transplantation of the primary tumors. The frequency of tumor-initiating cells was 

calculated by using Extreme Limiting Dilution Analysis (ELDA).  
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Figure 3.5 Signaling pathways altered by LRP8 knockdown in TNBC cells 

RNA-Seq was conducted for SUM149 transfected with control siRNA or 

LRP8-targeted siRNA. a Pathway analysis and b GO analysis of the differentially 

expressed genes from the RNA-Seq data were conducted using DAVID. Canonical 

Wnt/β-catenin and MAPK signaling pathways were enriched upon LRP8 knockdown. 

c Western blot of active (Non-phospho) β-catenin and β-actin (loading control) in 

SUM149 and HCC1937 with LRP8 knockdown by siRNA. d GSEA of the RNA-Seq 

data using a gene set of previously reported Wnt downstream target genes. The 

expression of Wnt target genes was negatively correlated with the LRP8 knockdown 

cells. ES: enrichment score. e, f qRT-PCR for the selected Wnt target genes in 

SUM149 and HCC1937. Gene expression fold change between siLRP8 and siControl 

was calculated using the 2-∆∆Ct method and YWHAZ was used for normalization. The 

results were shown as mean ± S.D.. g Western blot of vinculin (loading control), 

phosphorylated and total protein of p38 and ERK1/2 in SUM149 and HCC1937 with 

LRP8 knockdown by siRNA. h Gene expression fold change of DUSPs between 

siLRP8 and siControl in SUM149 cells. RPKM: reads per kilobase million. 
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Figure 3.6 LRP8 knockdown shifts TNBC cells from a basal-mesenchymal state 

to a more differentiated luminal-epithelial state 

a-c GSEA enrichment plots of EMT and luminal breast cancer gene sets in the LRP8 

knockdown RNA-Seq data. a (left panel) Genes downregulated in mammary 

epithelial cells undergoing EMT (epithelial gene signature) were positively correlated 

with the LRP8 knockdown cells; (right panel) Genes upregulated in cells undergoing 

EMT (mesenchymal gene signature) were negatively correlated with the LRP8 

knockdown cells. Genes upregulated in luminal breast cancer (b) and ER-positive 

breast cancer (c) were positively correlated with the LRP8 knockdown cells. NES: 

normalized enrichment score, FDR: false discovery rate. d qRT-PCR for the selected 

epithelial (CDH1: E-cadherin, MUC1: mucin 1) and mesenchymal (VIM: vimentin, 

FN1: fibronectin) genes in SUM149 with siLRP8 or siControl. Fold change between 

siLRP8 and siControl was calculated using the 2-∆∆Ct method and YWHAZ was used 

for normalization. The results were shown as mean ± S.D. (n=3, *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001, Student’s t-Test). e Immunofluorescence 

staining of doxycycline-inducible control or LRP8 knockdown SUM149 xenograft  



101 

 

Figure 3.6 LRP8 knockdown shifts TNBC cells from a basal-mesenchymal state 

to a more differentiated luminal-epithelial state (continued) 

tumors. f Western blot of CK19 in SUM149 cells with LRP8 knockdown by siRNA in 

vitro. g CK19 IHC in SUM149 tumors with control or LRP8 knockdown by 

doxycycline-inducible shRNA. h Relative cell survival of siControl or siLRP8 

knockdown SUM149 cells treated with docetaxel (0, 1, 2.5, 10, 100, and 500 nM) for 

72 hours. The results were shown as mean ± S.D. (n=3). IC50 of docetaxel was 

calculated and compared (*p < 0.05, Student’s t-Test). 
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Table 3.1 Primers used in the study 
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Table 3.2 Antibodies used in the study 
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Chapter 4  

Identification of MLK4 as a novel therapeutic target for triple-negative breast 

cancer 

Abstract 

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with 

rapid progression and poor prognosis. Since TNBC does not respond to endocrine 

therapy or other available targeted therapy, there is a critical need to discover new 

therapeutic targets for TNBC. In this study, we identify mixed-lineage kinase 4 

(MLK4) as a novel therapeutic target for TNBC. MLK4 has a significantly higher 

expression in TNBC compared to other breast cancer subtypes based on analysis of 

The Cancer Genome Atlas dataset. Genetic knockdown of MLK4 significantly 

suppressed tumor growth in NOD/SCID xenograft mouse models. Gene set 

enrichment analysis and pathway analysis of RNA-sequencing data further reveal that 

MLK4 knockdown-induced tumor suppression is due to cell cycle arrest. MLK4 

knockdown also reduced tumor-initiating cells as evidenced by the inhibition of both 
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mammosphere formation in vitro and initiation of secondary tumors in an in vivo 

limiting dilution reimplantation assay. Furthermore, MLK4 knockdown inhibited 

epithelial-to-mesenchymal transition and cell invasion and migration. Together, our 

study demonstrates the benefits of targeting MLK4 in TNBC and highlights MLK4 as 

a novel therapeutic target for TNBC. 

Introduction 

Breast cancer is a well-known heterogenous disease with clinical and molecular 

complexity. Clinical decisions of breast cancer treatment mainly rely on the 

expression of estrogen receptor (ER), progesterone receptor (PR) and the aberrant 

expression of human epidermal growth factor receptor 2 (HER2) gene1. 

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of 

expression of ER, PR and HER2. TNBC accounts for 10-15% of all breast cancer 

cases2,3 and has been associated with more advanced disease stage and metastatic 

potential compared to other breast cancer subtypes4-6. Generalized chemotherapies are 

the major therapeutic strategy for TNBC as no effective targeted therapies exist. 

However, patients are under high risk of relapse and death once there is residual 

disease after chemotherapy7,8. Therefore, there is a critical need to develop effective 

targeted therapies for TNBC. 
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Mixed-lineage kinase 4 (MLK4) is a serine/threonine protein kinase that 

belongs to the MLK family of mitogen-activated protein kinase kinase kinases 

(MAP3Ks)9,  a core component of mitogen-activated protein kinase (MAPK) 

signaling pathways. Within the MAPK signaling cascade, the MLK family 

members mediate signal transduction from specific upstream stimuli to 

downstream c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways 

through phosphorylation of specific MAPK kinases10. MLK4 was first cloned 

and annotated as a MAPK11; however, further investigation uncovered its role as 

a MAP3K that directly phosphorylates mitogen-activated protein/extracellular 

signal-regulated kinase (MEK), which in turn phosphorylates and activates the 

extracellular signal-regulated kinase (ERK)9. Previous studies in colorectal 

cancer found that MLK4 exhibits a high mutation rate, leading to its annotation 

as an oncogene that activates ERK/MAPK signaling and synergistically 

cooperates with Ras to induce tumorigenesis9. However, a later study contradicts 

this argument, suggesting instead that MLK4 is a tumor suppressor gene and that 

the mutations observed in colorectal cancer result in a loss-of-function12. In 

ovarian cancer, MLK4 was found to be a negative regulator of both MAPK 

signaling and cell invasiveness13,14, which conflicts with the general function of 

MLK family proteins10. In contrast to the tumor suppressive role of MLK4 in 
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ovarian cancer, a recent study has shown that MLK4 expression is a marker of poor 

prognosis in patients with mesenchymal subtype glioblastoma multiforme and that 

silencing of MLK4 attenuated the mesenchymal identity of glioma stem cells via 

blocking NF-κB signaling instead of affecting the MAPK signaling15. Therefore, the 

role of MLK4, at the pan-cancer scale, does not fall within the classical notions of an 

oncogene or tumor suppressor, but rather its role is cancer specific. 

Compared to other MLK family members, the function of MLK4 in cancer is 

poorly characterized. Although recent studies have revealed the role of MLK4 in a 

few types of cancer, its function in breast cancer remains unknown. To the best of our 

knowledge, this is the first report that demonstrates the oncogenic role of MLK4 in 

breast cancer. Our study shows that MLK4 is not only a marker of TNBC but also 

critical to tumorigenesis. Silencing of MLK4 significantly restrains tumor growth via 

cell cycle arrest and suppresses tumor initiation via inhibition of 

epithelial-to-mesenchymal transition (EMT). Together, our study highlights that 

MLK4 is functionally important to tumor growth and tumorigenesis and could serve 

as a potential therapeutic target for TNBC. 

Results 

MLK4 is highly expressed in triple-negative breast cancer 
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Breast cancer is a heterogenous disease that can be classified into different 

subtypes according to the expression of surface receptors or molecular 

signatures16-18. Since MLK4 had not been studied in breast cancer yet, we first 

examined whether MLK4 had differential expression in different breast cancer 

subtypes. We analyzed the expression of MLK4 in The Cancer Genome Atlas 

(TCGA) dataset and found that MLK4 had higher expression in pathologically 

defined TNBC compared to other breast cancer subtypes (Fig. 1a). To confirm 

these results, we used the same cohort to further analyze the expression of MLK4 

in molecular breast cancer subtypes classified by gene expression signatures17. 

The expression of MLK4 was also elevated in basal-like subtype, which 

constitutes 70-80% of TNBC19-21, compared to other molecular subtypes (Fig. 

1b). We also found that high expression of MLK4 in breast cancer was 

significantly correlated with poor patient survival according to the Kaplan-Meier 

analysis using TCGA dataset (Fig. 1c). The median overall survival was 102.7 

months in breast cancer patients with the top 25% MLK4 expression and 130.1 

months in the rest of the breast cancer patients. The elevated expression of 

MLK4 in TNBC might lead to such a difference in survival rate because TNBC 

typically has relatively worse outcome compared to other breast cancer 

subtypes3. 
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MLK4 plays an oncogenic role in TNBC 

Next, to examine if MLK4 was a functional gene in TNBC, we used siRNA or 

doxycycline-inducible shRNA to knockdown MLK4 (Fig. 2a) and evaluated whether 

the knockdown could induce phenotypic changes in TNBC cell lines. To test whether 

MLK4 played an oncogenic or tumor suppressive role in TNBC, we performed the 

MTT assay and monitored cell growth curves of TNBC cell lines (SUM149 and 

MDA-MB-231) with control or MLK4 siRNA transfection. The results showed that 

MLK4 knockdown significantly suppressed TNBC cell viability in vitro (Fig. 2b). To 

confirm MLK4 knockdown-induced cell growth suppression in vivo, we inoculated 

SUM149 cells carrying doxycycline-inducible control or MLK4 shRNA into the 

mammary fat pad of NOD/SCID mice and fed the mice with food containing 

doxycycline to induce shRNA expression. Consistent with the results of the MTT 

assay in vitro, MLK4 knockdown significantly suppressed tumor growth in vivo (Fig. 

2c, 2d), confirming that MLK4 plays an oncogenic role in TNBC. To further 

understand the mechanisms underlying MLK4 knockdown-induced suppression of 

tumor growth, we performed RNA-sequencing (RNA-Seq) to determine the 

differential gene expression in SUM149 cells treated with control or MLK4 siRNA. 

We found that knockdown of MLK4 resulted in a ≥ 2-fold upregulation of 474 genes 

and ≥ 2 fold downregulation of 532 genes (edgeR FDR < 0.05). Next, we performed 
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pathway analysis and gene ontology (GO) analysis of the RNA-Seq data to 

examine potential biological functions or signaling pathways affected by MLK4 

knockdown. The analysis suggests that the cell cycle was significantly 

dysregulated in the MLK4 knockdown cells, especially G1 and S phases (Fig. 3a, 

3b). The gene set enrichment analysis (GSEA) further confirmed the interruption 

of the cell cycle by MLK4 knockdown (Fig. 3c). To validate the results of GSEA 

and pathway analysis, we knocked down MLK4 by siRNA in SUM149 cells and 

conducted cell cycle analysis. In agreement with our RNA-Seq analysis, MLK4 

knockdown led to G1 phase arrest and a significant decrease of cells in S phase 

(Fig. 3d). Furthermore, we do not observe an enrichment of members of 

apoptotic pathways in our GSEA, pathway analysis, and GO analysis. Therefore, 

our study confirms that MLK4 acts as an oncogene in TNBC, and that silencing 

of MLK4 suppressed tumor growth via cell cycle arrest. 

Knockdown of MLK4 suppresses self-renewal and tumorigenesis of TNBC cells 

A previous study has shown that silencing of MLK4 attenuates 

mesenchymal properties of cancer stem cells and inhibits gliomagenesis15. 

Cancer stem cells, also termed tumor-initiating cells (TICs), are an important cell 

population that contributes to tumorigenesis, drug-resistance and metastasis22. 
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Therefore, TICs have emerged as important therapeutic targets for cancer treatment. 

To investigate if MLK4 was functionally important to TICs in TNBC, we studied the 

effects of MLK4 knockdown on self-renewal and tumorigenesis in TNBC cell lines. 

First, to evaluate whether MLK4 knockdown inhibited self-renewal, a key 

characteristic of TICs, we conducted mammosphere formation assays. We found that 

MLK4 knockdown significantly reduced both primary and secondary mammosphere 

formation in SUM149 and MD-MB-231 cells (Fig. 4a). Next, to evaluate the effects 

of MLK4 knockdown on tumorigenesis, we harvested shControl and shMLK4 

SUM149 xenograft tumors from doxycycline treated NOD/SCID mice and conducted 

secondary reimplantation of serially diluted tumor cells into the mammary fat pad of 

another batch of NOD/SCID mice. We monitored the tumor initiation of the mice 

without any treatment. After 2 months of observation, MLK4 knockdown in the 

primary tumor caused significantly lower tumor-initiating efficiency in the secondary 

reimplantation when compared to the control shRNA group (Fig. 4b). These results 

indicate that MLK4 is critical to tumorigenesis. Together, our studies demonstrate the 

importance of MLK4 in TICs, and targeting MLK4 was beneficial to remove TICs 

from TNBC cells.    

Knockdown of MLK4 inhibits epithelial-to-mesenchymal transition 
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To further study the mechanism of MLK4 knockdown-induced 

anti-tumorigenesis, we scrutinized the GSEA results of the RNA-Seq data and 

looked for stem cell-related gene sets that were enriched by MLK4 knockdown. 

Among the top 10 enriched C2 curated gene sets (Table 1), we found that MLK4 

knockdown-induced gene expression changes inversely correlate with the gene 

expression signature of cells undergoing EMT (Fig. 5a), indicating an inhibition 

of EMT. EMT is an important developmental program that can enrich cancer cell 

stemness23. To further validate the inhibition of EMT caused by MLK4 

knockdown, we conducted qRT-PCR to examine if silencing MLK4 affected 

epithelial and mesenchymal gene expression in SUM149 and MDA-MB-231. In 

agreement with our GSEA findings, MLK4 knockdown significantly elevated 

epithelial gene (CDH1: E-cadherin, CLDN1: Cloudin-1, CLDN4: Cloudin-4, 

MUC1: Mucin-1, and GATA3) expression and concomitantly suppressed 

mesenchymal gene (VIM: Vimentin) expression (Fig. 5b). Interestingly, MLK4 

knockdown failed to decrease the expression of vimentin in MDA-MB-231. 

Nevertheless, the tested epithelial genes such as CDH1 and claudin genes were 

all upregulated by MLK4 knockdown in this Claudin-low cell line with 

EMT-like phenotype24. To further validate the inhibition of EMT by MLK4 

knockdown in vivo, we conducted immunofluorescence (IF) staining on tumor 
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biopsies of the control and MLK4 knockdown SUM149 xenograft tumors. We found 

that knockdown of MLK4 strongly decreased the expression of the mesenchymal 

markers vimentin and CD44 and concomitantly increased the expression of the 

epithelial maker CD24 and the luminal markers CK8 and CK18 (Fig. 5c). This 

observation suggests that silencing of MLK4 can reverse EMT of TNBC cells in vivo. 

Since EMT also plays a critical role in metastasis of epithelial cancer cells25, we 

hypothesized that MLK4 knockdown could inhibit the metastatic potential of TNBC 

cells. To test this hypothesis, we performed a matrigel-based invasion and migration 

assay in the MLK4 knockdown SUM149 cells. As expected, knockdown of MLK4 

significantly inhibited both invasion and migration of SUM149 cells (Fig. 5d), 

strengthening the evidence of EMT inhibition by MLK4 knockdown. Together, our 

results suggest that MLK4 is critical for TIC function maintenance, and that silencing 

of MLK4 suppresses tumorigenesis potentially via inhibition of EMT. 

Discussion 

Of all breast cancer subtypes, TNBC is the most aggressive with both poor 

prognosis and high metastatic potential. Furthermore, while targeted therapeutic 

approaches exist for ER-positive and HER2-positive breast cancers, no such 

approaches are available for TNBC. Therefore, there is an imperative need for the 
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identification of effective targeted therapeutics for TNBC to both increase patient 

survival and reduce therapy-related off target effects. TICs have emerged as ideal 

targets for TNBC treatment as they are responsible for drug-resistance and 

metastasis and have been reported to be enriched in TNBC26-29. In this study, we 

show for the first time that targeting MLK4 can attenuate TICs in TNBC, 

demonstrating MLK4’s potential as a novel therapeutic target for TNBC. 

Through employment of loss-of-function approaches, we found that 

silencing of MLK4 could significantly inhibit tumor growth and tumorigenesis. 

Interestingly, a recent study has reported that CEP-1347, a potent inhibitor of 

MLK1-3 that competitively binds to the ATP binding site of the MLK proteins, 

can be used to inhibit self-renewal and tumorigenesis in multiple cancer 

models30,31. Given that MLK4 shares high sequence identity within the 

catalytical domains of MLK1-332, it is very possible that CEP-1347 suppresses 

TICs also through MLK4 inhibition.  

 Our GSEA analysis has demonstrated that the gene expression changes observed 

during MLK4 knockdown are inversely correlated with the EMT gene expression 

signature. EMT is an important developmental program that transforms epithelial 

cells to mesenchymal cells with abilities to migrate and invade adjacent tissues33. 

Cancer cells can hijack the EMT program to acquire stem cell features and become 
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more tumorigenic and drug-resistant23,25,34. Recently, MLK4 has been reported to 

attenuate EMT and mesenchymal glioma stem cells15, which supports our findings of 

MLK4 in TNBC. In our study, MLK4 knockdown significantly reverses the EMT 

gene signature and suppresses tumorigenesis of TNBC cells. The increase of luminal 

marker expression and decrease of mesenchymal marker expression in TNBC cells 

during MLK4 knockdown suggests that loss of MLK4 may shift TNBC cells to a 

more luminal-like cell state. Luminal breast cancer has been linked to a more 

differentiated cell state with the expression of luminal-epithelial markers such as 

E-Cadherin and CK8/18, whereas the basal-like and Claudin-low subtypes tend to 

have stem-like or progenitor gene signatures lacking the expression of the 

luminal-epithelial markers35. Furthermore, luminal breast cancer has better prognosis 

compared to basal-like/TNBC36. Therefore, our study reveals that targeting MLK4 is 

not only beneficial to remove TICs but also switches TNBC toward a clinically 

favorable gene signature. 

 It is worth noting that although MLK4 belongs to the MAP3K family, it has been 

reported to function as a negative regulator of MAPK pathways13,14 and to regulate 

other signaling pathways such as NFκB15. In our RNA-Seq data analysis, we do not 

observe the dysregulation of the NFκB signaling pathway upon MLK4 knockdown. 

However, our GSEA results reveal that the gene signature of MLK4 knockdown cells 



116 

 

is significantly correlated to that of cancer cells treated with an irreversible epithelial 

growth factor receptor (EGFR) inhibitor (Table 1). The ERK/MAPK pathway is one 

of the major downstream signaling pathways of EGFR37. Furthermore, our GO 

analysis shows that MAPK phosphatases are significantly dysregulated by MLK4 

knockdown. Therefore, targeting MLK4 may affect the ERK/MAPK signaling 

pathway. In addition, our pathway analysis also reveals that MLK4 knockdown 

enriches important stem cell and EMT-related signaling pathways such as the Wnt 

signaling pathway and various cancer associated pathways, including NOTCH, 

TGF-β, and IL-6 (in the Pathways in cancer). Therefore, future work should focus on 

more thorough pathway analysis and mechanistic study to decipher the molecular 

mechanism of MLK4 in TNBC.   

In conclusion, we have identified MLK4 as a novel therapeutic target for 

TNBC. Targeting MLK4 can inhibit the self-renewal and tumorigenic properties 

of TNBC cells. Furthermore, MLK4 knockdown inhibits EMT and reduces 

metastatic potential. Collectively, our study uncovers MLK4 as a novel 

therapeutic target for the treatment of TNBC.  
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Materials and methods 

All the experiments performed in the study followed the guidelines of EH&S 

(Environment, Health & Safety) at the University of Michigan. 

Cell lines 

SUM149 was maintained in F12 media (Invitrogen; Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) containing 5% FBS, 1x Antibiotic-Antimycotic, 5 μg/mL of 

insulin (Gibco; Thermo Fisher Scientific, Inc.), and 1 μg/mL of hydrocortison 

(Sigma-Aldrich, St. Louis, MO, USA). MDA-MB-231 was maintained in DMEM 

(Invitrogen; Thermo Fisher Scientific, Inc.) containing 10% FBS and 1x 

Antibiotic-Antimycotic. Cells were cultured in a 5% CO2 incubator at 37 °C.  

MLK4 knockdown 

MLK4 was knocked down by siRNA or doxycycline-inducible shRNA. For the 

siRNA knockdown, cells were transfected with negative control siRNA (Cat. No. 

SI03650318, Qiagen, Palo Alto, CA, USA) or MLK4-targeted siRNA (Silencer Select 

siRNA, Cat. No. s230734, Thermo Fisher Scientific, Inc.) by using Lipofectamine 

RNAiMAX. For the inducible shRNA knockdown, MLK4 shRNA oligonucleotides 

(Table 2) were ligated into AgeI and EcoRI digested Tet-pLKO-puro lentiviral vector 

(a gift from Dmitri Wiederschain, Addgene plasmid # 21915). 

Tet-pLKO-puro-Scrambled shRNA (a gift from Charles Rudin, Addgene plasmid # 

https://www.thermofisher.com/order/catalog/product/15240062
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47541) was used as a negative control. Viral particles were packaged by 

co-transfecting Tet-pLKO-puro or Tet-pLKO-puro-Scrambled shRNA construct with 

the packaging vectors psPAX2 and pMD2.G into HEK293T cells. Cells were 

transduced with the virus in the presence of 4 μg/mL polybrene (Sigma-Aldrich). 

Twenty-four hours after virus transduction, the cells were selected with puromycin (1 

μg/mL) for 5 days. To induce shRNA knockdown, 100 ng/mL of doxycycline 

(Sigma-Aldrich) was added to the culture media, and the media was changed every 48 

hours. 

RNA-Seq and data analysis 

Total RNA was extracted using Direct-zol kit (Zymo, Irvine, CA, USA), and mRNA 

libraries were prepared using TruSeq (Illumina, Hayward, CA). The library was 

sequenced using Illumina Hi-Seq 4000 with 50 cycle single ended reads. The 

sequencing reads were mapped to human transcripts annotated in GENCODE38 using 

Bowtie39. Only uniquely mapped reads were used for further analysis. Gene 

expression levels were estimated as reads/kilobase/million mapped reads (RPKM)40 

using rSeq41. Differentially expressed genes were detected using edgeR42. Genes with 

FDR value < 0.05 and fold change ≥ 2 were considered significant. Gene ontology 

and pathway analysis were conducted using DAVID43. Gene Set Enrichment Analysis 

(Broad Institute)44,45 was used to correlate gene functions and signaling pathways that 



119 

 

are significantly affected by MLK4 knockdown. All TCGA data were accessed from 

the cBioPortal for Cancer Genomics website46,47. 

Mammosphere formation 

Mammosphere formation was performed as previously described 48. Briefly, cells 

were dissociated and seeded at a density of 5,000 cells/well in Mammocult (StemCell 

Technologies, Vancouver, BC, Canada) in ultra-low attachment 6-well plates 

(Corning Inc., Corning, NY, USA). Primary mammospheres were counted after 5-6 

days of seeding. For secondary mammosphere formation, primary mammospheres 

were dissociated enzymatically (trypsin) and mechanically (23G needle) to single 

cells, and the cells were then seeded at a density of 5,000 cells/well in the absence of 

siRNA to rule out potential anti-proliferation effects caused by siRNA. 

Invasion assay 

Matrigel-based transwell assay (Corning Inc.) was used to evaluate in vitro cellular 

migration and invasion. Briefly, 48 hours after siRNA transfection, 1x104 cells were 

seeded in the upper chamber of the transwell with or without matrigel coating. Cells 

were cultured with serum-free medium in the upper chambers while normal full 

medium as attractant were added in the bottom chamber. Twenty-four hours after 

seeding, the cells were fixed with chill methanol and then stained with 0.05% crystal 

violet. Images were taken at 20x objective in 5 random fields. 
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Immunoblotting 

Cell lysates were collected in RIPA buffer containing 5mM EDTA and 1x protease 

inhibitor cocktail (Thermo Fisher Scientific, Inc.). Proteins were separated by 

SDS-PAGE, transferred onto PVDF membrane and then probed by antibodies. Rabbit 

anti-human MLK4 antibody (A302-610A) was purchased from Bethyl Laboratory 

Inc. (Montgomery, TX, USA). Mouse anti-human β-actin (sc-69879) and mouse 

anti-human GAPDH (sc-365062) antibodies were purchased from Santa Cruz 

Biotechnology (Dallas, TX, USA) 

RNA preparation and qRT-PCR 

Total RNA was preserved in Trizol (Thermo Fisher Scientific, Inc.) and then isolated 

using Direct-Zol (Zymo, Irvine, CA, USA). Reverse transcription was conducted 

using QuantiTect Reverse Transcription kit (Qiagen). Quantitative PCR was 

conducted using SYBR Green (Thermo Fisher Scientific, Inc.) on a QuantStudio 3 

Real-Time PCR System (Thermo Fisher Scientific, Inc.). Relative gene expression 

was normalized to YWHAZ, and primers used for PCR were listed in Table 2. 

Mouse xenograft model 

All the experiments related to the use of animals were conducted following the 

protocols approved by the University Committee on the Use and Care of Animals at 

the University of Michigan. Briefly, 5,000 of SUM149 cells carrying 
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doxycycline-inducible control or MLK4 shRNA were injected into the inguinal 

mammary fat pad of 6-8-week-old female NOD/SCID mice (Jackson Laboratory, Bar 

Harbor, ME, USA). Doxycycline diet (625 mg/kg) (Envigo, Haslett, MI, USA) was 

given to mice when palpable tumors were observed in all the implanted mice. 

Limiting dilution assay was carried out to study the effect of MLK4 knockdown on 

tumorigenesis. Tumors were harvested from mice and dissociated by using Tumor 

Dissociation Kit, human (Miltenyi Biotec, Auburn, CA, USA). DAPI and H-2Kd (BD 

Biosciences) double-negative live human cancer cells were sorted by flow cytometry 

and then was inoculated (2,500, 500 and 100 cells/inoculation) into the inguinal 

mammary fat pad of tumor-free mice. Tumor formation was monitored for 2 months. 

Extreme Limiting Dilution Analysis (ELDA)49 was used to calculate the frequency of 

tumor-initiating cells. 

Immunofluorescence staining 

To deparaffinize and rehydrate the formalin-fixed paraffin-embedded sections, slides 

were dipped three times in xylene, two times in 100% ethanol and once each in 95% 

and 70% ethanol. Antigen retrieval was conducted by incubating slides in citrate 

buffer (pH=6.0) in a microwave for 10 minutes. Samples were then treated with 

ice-cold 1:1 Methanol:Acetone for 1 minute and washed with PBS. Blocking was 

conducted by incubating slides in PBS containing 5% goat serum (Sigma Aldrich) at 
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room temperature for 1 hour. Proteins were probed by primary antibodies targeting 

MLK4, vimentin, and Cytokeratins 8/18 in blocking buffer at 4°C overnight. After 

washing three times with PBS, slides were then incubated with secondary and 

direct-conjugated antibodies (CD44-BV510, CD24 phycoerythrin, goat anti-mouse 

IgM AF488, goat anti-rabbit IgG AF647, and goat anti-guinea pig IgG DL755) in 

blocking buffer at 4°C for 6-8 hr. Slides were washed three times with PBS, treated 

with DAPI (Thermo Fisher Scientific) to label nuclei, and finally being mounted with 

coverslips. 

Statistical analysis  

Two-tailed Student’s t-test was used to compare the statistical difference between two 

groups. One-way ANOVA was used if the comparison involved more than two 

groups. A P-value < 0.05 was considered significant. 
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Figure 4.1 The expression of MLK4 is associated with TNBC and patient 

survival 

Breast cancer samples in TCGA data set were classified (a) histologically or by (b) 

molecular signature. MLK4 was highly expressed in (a) TNBC (****p < 0.0001, 

Student’s t-Test) and (b) basal-like molecular subtype (Normal: normal-like breast 

cancer subtype, Lum A: luminal A subtype, Lum B: luminal B subtype, HER2: HER2 

amplified subtype, Basal: basal-like subtype; ****p < 0.0001, One-way ANOVA). (c) 

Kaplan-Meier analysis of breast cancer patients with low or high (top 25%) 

expression of MLK4 in TCGA data set.  
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Figure 4.2 MLK4 knockdown restrains tumor growth 

(a) Western blot of MLK4 in control (siControl) or MLK4 (siMLK4) siRNA 

transfected SUM149 and MDA-MB-231 cells and in SUM149 cells carrying control 

(shControl) or MLK4 (shMLK4) shRNA. (b) MTT cell viability assay of SUM149 

and MDA-MB-231 cells transfected with siControl or siMLK4 (n = 3). (c) Tumor 

growth curve of SUM149 cells carrying shControl (n = 4) or shMLK4 (n = 6) in the 

mammary fat pad of NOD/SCID mice. Doxycycline (DOX) food was given to the 

mice on week 6. (d) Tumor weight at the end of tumor monitoring (13 weeks after 

implantation). The results are expressed as mean ± SD. ***p < 0.001, ****p < 0.0001 

(Student’s t-Test). 
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Figure 4.3 MLK4 knockdown causes cell cycle arrest 

The gene expression profiles were obtained by RNA-Seq of SM149 cells transfected 

with siControl or siMLK4. (a) Pathway analysis and (b) GO analysis of the RNA-Seq 

data using DAVID. (c) GSEA plots of cell cycle-related gene sets. The molecular 

signatures database from the Broad Institute was used for the analysis. (d) Cell cycle 

analysis of SUM149 cells transfected with siControl or siMLK4. The results are 

expressed as mean ± SD (n = 3).  
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Figure 4.4 MLK4 is critical to self-renewal and tumorigenesis 

(a) Primary and secondary mammosphere formation in SUM149 and MDA-MB-231 

cells transfected with siControl or siMLK4. The results are expressed as mean ± SD 

(n = 3). **p < 0.01, ***p < 0.001, ****p < 0.0001 (Student’s t-Test). (b) 

Tumor-initiating frequency of secondary reimplantation of tumors from doxycycline 

treated mice. The frequency was calculated by extreme limiting dilution analysis. 
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Figure 4.5 MLK4 knockdown inhibits EMT and cell invasiveness 

(a) GSEA plots of the EMT gene sets. EMT_UP: upregulated genes in cells 

undergoing EMT; EMT_DN: downregulated genes in cells undergoing EMT. (b) 

Relative gene expression evaluated by qRT-PCR and normalized by YWHAZ. 

SUM149 and MDA-MB-231 cells were transfected with siControl or siMLK4. (c) 

Immunofluorescent staining of SUM149 xenograft tumors in NOD/SCID mice treated 

with doxycycline. (d) Matrigel-based migration and invasion assay. The results are 

expressed as mean ± SD. ***p < 0.001, ****p < 0.0001 (Student’s t-Test). 
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Table 4.1 C2 curated gene sets enriched in the MLK4 knockdown SUM149 cells 

Upregulated gene sets NES FDR  

KOBAYASHI_EGFR_SIGNALING_24HR_UP 2.46 0.0000 

SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_DN 2.23 0.0008 

DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 2.09 0.0127 

FURUKAWA_DUSP6_TARGETS_PCI35_UP 2.04 0.0189 

LIN_SILENCED_BY_TUMOR_MICROENVIRONMENT 2.04 0.0162 

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN 2.03 0.0151 

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP 1.97 0.0411 

MIKKELSEN_ES_LCP_WITH_H3K4ME3 1.96 0.0376 

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1_DN 1.96 0.0336 

ZHANG_TLX_TARGETS_UP 1.96 0.0303 

Downregulated gene sets NES FDR  

KOBAYASHI_EGFR_SIGNALING_24HR_DN -2.91 0.0000 

ZHANG_TLX_TARGETS_60HR_DN -2.68 0.0000 

GOBERT_OLIGODENDROCYTE_DIFFERENTIATION_UP -2.65 0.0000 

SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP -2.58 0.0000 

DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP -2.56 0.0000 

ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER -2.54 0.0000 

FUJII_YBX1_TARGETS_DN -2.52 0.0000 

ZHANG_TLX_TARGETS_DN -2.51 0.0000 

VERNELL_RETINOBLASTOMA_PATHWAY_UP -2.49 0.0000 

CHANG_CYCLING_GENES -2.47 0.0000 
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Table 4. 2 Primers used in the study 

Name Sequence 5’ to 3’ Purpose 

shMLK4_F CCGGGCAACTATTATCTCAGCCACTCTCGAGAGTGGCTGAGATAATAGT 

TGCTTTTT 

Cloning 

shMLK4_R AATTAAAAAGCAACTATTATCTCAGCCACTCTCGAGAGTGGCTGAGATA 

ATAGTTGC 

Cloning 

CDH1_F TGCCCAGAAAATGAAAAAGG qRT-PCR 

CDH1_R GTGTATGTGGCAATGCGTTC qRT-PCR 

CLDN1_F GCGCGATATTTCTTCTTGCAGG qRT-PCR 

CLDN1_R TTCGTACCTGGCATTGACTGG qRT-PCR 

CLDN4_F GGCTGCTTTGCTGCAACTGTC qRT-PCR 

CLDN4_R GAGCCGTGGCACCTTACACG qRT-PCR 

MUC1_F CTGCTCCTCACAGTGCTTACAGTTG qRT-PCR 

MUC1_R TGAACCGGGGCTGTGGCTGG qRT-PCR 

GATA3_F GCGGGCTCTATCACAAAATGA qRT-PCR 

GATA3_R GCTCTCCTGGCTGCAGACAGC qRT-PCR 

VIM_F GAGAACTTTGCCGTTGAAGC qRT-PCR 

VIM_R GCTTCCTGTAGGTGGCAATC qRT-PCR 
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Chapter 5  

Conclusion 

 TNBC is the most challenging breast cancer subtype with worse prognosis and 

higher metastatic potential compared to others. Given the lack of targeted therapy and 

limited advantages of chemotherapy, there is an imperative need to identify novel and 

effective targeted therapy for TNBC. BCSCs serve as ideal therapeutic targets for 

TNBC as they are enriched in TNBC and responsible for drug-resistance and 

metastasis. In this study, we aim to identify novel oncogenes that regulate BCSCs in 

TNBC.    

In Chapter 2, we explore the METABRIC data set to identify potential 

oncogenes that regulates EMT in TNBC. As previously described, EMT is an 

important developmental program that endows epithelial cancer cells to acquire 

stemness. We analyzed the gene expression pattern of 180 EMT-upregulated 

genes in the METABRIC data set and identified CDCA7 as a potential 

oncogene. CDCA7 has significantly higher expression in TNBC compared to 

other breast cancer subtypes. Such expression pattern might be due to copy 
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number alteration and epigenetic regulation of CDCA7 in TNBC. We also 

demonstrate that silencing of CDCA7 in TNBC significantly inhibits self-renewal and 

metastatic potential in vitro and tumor initiation in vivo. Following the functional 

characterization, our analysis of the RNA-Seq data of CDCA7 knockdown further 

reveal that CDCA7 is critical to regulating cell cycle and EMT. The dysregulation of 

cell cycle may explain CDCA7 knockdown-induced tumor growth suppression. 

Furthermore, we found that CDCA7 is associated with PRC2, Snail, and H3K27 

trimethylation on the promoter region of CDH1. This finding demonstrates that 

CDCA7 is essential for PRC2-mediated epithelial gene suppression and explains the 

mechanism of EMT inhibition caused by CDCA7 knockdown. 

In Chapter 3 and 4, we identify LRP8 and MLK4 as potential therapeutic targets 

for BCSCs in TNBC based on a small-scale siRNA screening. Both LRP8 and MLK4 

have significantly higher expression in TNBC compare to other breast cancer 

subtypes. LRP8 is a cell surface receptor, and MLK4 is a serine/threonine kinase. 

Both genes are important to the self-renewal of BCSCs as evidenced by the inhibition 

of mammosphere formation upon gene knockdown. Furthermore, knockdown of both 

genes significantly decreased tumor-initiating frequency as assayed by secondary 

reimplantation of serial-diluted tumor cells into NOD/SCID mice. Mechanistically, 

targeting LRP8 significantly inhibited EMT gene signature and Wnt signaling. In 
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addition, we found that silencing of LRP8 shifts TNBC cells from a 

basal-mesenchymal cell state to a more differentiated luminal-epithelial cell state 

and thus sensitizes TNBC cells to chemotherapy. On the other hand, targeting 

MLK4 interrupts cell cycle and results in EMT inhibition. The analysis of the 

RNA-Seq indicates that silencing of MLK4 may dysregulate the ERK/MAPK 

signaling pathway. Future work should focus on developing antibodies targeting 

LRP8 given its cellular localization and importance in maintaining BCSCs in 

TNBC. For MLK4, small molecule screenings can be done to identify potential 

therapeutics that can inhibit the enzymatic function of MLK4.  

Collectively, we have identified CDCA7, LRP8, and MLK4 as novel 

oncogenes that regulate BCSCs in TNBC. We have demonstrated the benefits of 

targeting these three genes in TNBC using both cellular and animal models. 

Consequently, this study highlights that CDCA7, LRP8, and MLK4 can serve as 

potential therapeutic targets for TNBC. 
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Appendix 

Doxycycline targets aldehyde dehydrogenase-positive breast cancer stem cells 

Abstract  

Targeting cancer stem cells (CSCs) is a key strategy to prevent cancers from 

developing drug resistance and metastasis. Mitochondria have been reported to be a 

vulnerability of CSCs by multiple studies. Here, we report that doxycycline, 

functioning as an inhibitor of mitochondrial biogenesis, can effectively target breast 

cancer stem cells (BCSCs). Our results revealed that doxycycline significantly 

decreased the frequency of aldehyde dehydrogenase-positive (ALDH+) BCSCs as 

well as mammosphere formation efficiency in HER2+ and triple-negative breast 

cancer (TNBC) subtypes. Doxycycline also ameliorated paclitaxel-induced 

enrichment of ALDH+ BCSCs in TNBC. Mechanistically, we showed that 

doxycycline decreased the level of reactive oxygen species and their downstream p38 

MAPK pathway. In agreement with the key role for p38 in maintaining BCSCs, a 

specific inhibitor targeting this MAPK pathway significantly decreased the number of 

ALDH+ cells. Doxycycline is a FDA-approved drug with minor and limited 
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side-effects. Given doxycycline’s low toxicity and strong effect on BCSC inhibition, 

we report that doxycycline should be safe to be used concomitantly with 

chemotherapy drugs to eradicate both CSCs and bulk tumor cells. 

Introduction  

With an estimated 230,000 new cases and 40,000 deaths in 2013, breast 

cancer has the highest incidence and is the second leading cause of 

cancer-related death among women in the United States1. Four subtypes of breast 

cancers, namely luminal A, luminal B, HER2+ and basal-like (significantly but 

not completely overlaps with the triple-negative breast cancer, TNBC), are 

classified according to the intrinsic gene expression profile2,3. While the luminal 

subtypes respond well to hormone therapies, over 50% of patients with HER2+ 

breast cancer develop trastuzumab-resistance within 1 to 2 years of treatment4,5. 

More than 70% of TNBC patients have residual invasive disease after 

neoadjuvant chemotherapy and are at high risk of disease relapse6. Recent 

evidence supports that a small fraction of cancer cells, termed cancer stem cells 

(CSCs), are capable of self-renewing and differentiating into non-stem cancer 

cells and are responsible for tumor initiation, drug resistance and metastasis7-10. 

Therefore, combining CSC-targeting agents with conventional chemotherapies 
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seems to be a promising strategy for eradicating both CSCs and bulk tumor cells11,12. 

Reprogramming of energy metabolism is one of the hallmarks of cancer13. Over 

80 years ago, Otto Warburg observed that cancer cells favored aerobic glycolytic 

metabolism in the presence of oxygen14. Warburg hypothesized that cancer results 

from impaired cellular mitochondrial metabolism. It is clear now that the Warburg 

effect is not due to the impairment of mitochondrial function in tumors. Indeed, 

depletion of mitochondrial DNA has been shown to decrease colony formation in soft 

agar and tumor initiation in mice15-19, which are the key indicators of CSCs. Recent 

studies have also demonstrated that mitochondrial features of CSCs differ from those 

of non-stem cancer cells20-22, and attenuating mitochondrial metabolism could 

suspend tumor metastasis and prolong tumor latency in xenograft models19,23. This 

phenomenon indicates that mitochondria are functionally indispensable to sustaining 

CSCs. Therefore, targeting mitochondria is emerging as a new strategy for eradicating 

CSCs.  

Doxycycline is a commonly used tetracycline analogue of antibiotics. With ideal 

pharmacokinetics and minor side effects, doxycycline has been used in clinics for five 

decades. The mechanism of doxycycline’s action is binding to mitochondrial 

ribosome, which then disrupts the biogenesis of bacterial mitochondria. In addition to 

bacterial mitochondria, doxycycline has also been reported to affect mitochondria in 
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eukaryotes24. In cancer, doxycycline was found to inhibit the self-renewal ability 

of CSCs in many types of cancer, including breast cancer25-28, indicating the 

potentiality of using the “old” antibiotic for a new treatment - targeting CSCs. 

Although doxycycline-mediated CSC inhibition has been linked to 

mitochondria 20,24,25, it remains unknown what type of CSCs doxycycline could 

inhibit. Breast cancer stem cells (BCSCs) can transition between two phenotypic 

states. One is a more proliferative epithelial-like state characterized by the 

expression of the CSC marker aldehyde dehydrogenase (ALDH) and the other is 

a more quiescent mesenchymal-like state characterized by the expression 

CD44+/CD24-29. In this study, we selected BT474, SK-BR-3, SUM149, and 

SUM159 breast cancer cell lines to examine doxycycline’s effects on BCSCs. 

BT474 and SK-BR-3 are both HER2+ breast cancer cell lines and according to 

the literature and our previous publication, this subtype has a higher number of 

ALDH+ epithelial-like BCSCs compared to other subtypes but does not have the 

CD44+/CD24- mesenchymal-like BCSC population 30,31. In contrast, SUM159 is 

a Claudin-low TNBC cell line, which has a high percentage of mesenchymal-like 

bulk tumor cells that are also CD44+/CD24-30. As a result, the CD44+/CD24- 

markers cannot be used to define the mesenchymal-like BCSCs in the 

Claudin-low subtype. SUM149, on the other hand, is a basal-like TNBC and has 
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both ALDH+ and CD44+/CD24- BCSCs. Hence, SUM149 is a suitable cell line for 

testing the effects of doxycycline on ALDH+ as well as CD44+/CD24- BCSC 

populations. 

In the present study, we report that doxycycline can reduce the ALDH+ BCSC 

population. Mechanistically, our results suggest that doxycycline inhibits ALDH+ 

BCSCs via inhibiting reactive oxygen species (ROS) production and their 

downstream p38 MAPK signaling pathway. 

Results 

Doxycycline inhibits ALDH+ BCSCs 

To test doxycycline's ability to inhibit ALDH+ BCSCs, we treated breast cancer 

cell lines with doxycycline and then measured ALDH activity in these cells. ALDH is 

an important biomarker of CSCs in many types of cancer33. In breast cancer, cells 

with high ALDH activity have self-renewal ability to regenerate tumors that 

recapitulate the heterogeneity of the parental tumors 8. Our results demonstrated that 

doxycycline at 10 μM significantly decreased the percentage of cells with high ALDH 

activity in the BT474, SK-BR-3 and SUM159 cells (Fig. A1). These results suggested 

that doxycycline could be used to target ALDH+ BCSCs. However, in SUM149 cells, 

doxycycline did not decrease ALDH+ (Fig. A1) or CD44+/CD24- (Fig. A2) BCSCs. 
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This result might be due to the characteristics of the SUM149 cell line (see 

Discussion). 

To further confirm whether doxycycline could functionally inhibit BCSCs, 

we treated BT474, SUM149 and SUM159 cells with various concentrations of 

doxycycline in the primary mammmosphere culture. Mammosphere formation is 

an in vitro surrogate assay to evaluate self-renewal ability of BCSCs. In BT474 

and SUM159, primary mammosphere formation was significantly inhibited by 

doxycycline in a concentration-dependent manner, whereas in SUM149, it was 

inhibited only at 10 μM (Fig. A3). The primary mammospheres were then 

dissociated and reseeded to form secondary mammospheres in the absence of 

doxycycline. In the secondary mammosphere culture, a 50% decrease in 

mammospheres was observed in the 10 μM doxycycline-pretreated BT474 and 

SUM159 cells (Fig. A3), indicating that doxycycline could inhibit the 

self-renewal ability of BCSCs in these cell lines.  

Doxycycline inhibits reactive oxygen species and their downstream p38 signaling 

In mammalian cells, doxycycline inhibits mitochondrial biogenesis by 

binding to 28S small mitochondrial ribosome24,34. Mitochondria is the main 

organelle of ROS generation. High mitochondrial mass20 and elevated ROS 
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levels35 have been reported to sustain ALDH+ CSCs. We demonstrated that 

doxycycline treatment significantly inhibited ALDH+ BCSCs (Fig. A1). Therefore, 

we hypothesized that doxycycline inhibited ALDH+ BCSCs via ROS attenuation. To 

test if doxycycline could decrease cellular ROS levels, we performed DCFDA assays 

after doxycycline treatment and analyzed samples by flow cytometry. As expected, a 

significant decrease in ROS levels was observed in the doxycycline-treated cells (Fig. 

A4). 

Next, we examined whether the p38 MAPK signaling downstream of ROS was 

affected by doxycycline. We found that doxycycline treatment resulted in a decrease 

in p38 phosphorylation in a dose-dependent manner in the BT474 and SUM159 cell 

lines (Fig. A5). To further test the correlation between p38 MAPK signaling and 

ALDH+ BCSCs, we treated BT474 cells with a p38 MAPK-specific inhibitor 

SB203580 and then performed the Aldefluor assay. The result showed that SB203580 

abolished ALDH activity (Fig. A5), indicating that p38 MAPK plays a key role in 

ALDH+ BCSC maintenance, which is targeted by doxycycline treatment. 

Doxycycline attenuates paclitaxel-induced enrichment of ALDH+ BCSCs  

Paclitaxel has been reported to kill the bulk of tumor cells, yet enriching ALDH+ 

CSCs via elevating the ROS level35. To ascertain whether doxycycline could 
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ameliorate paclitaxel-induced enrichment of ALDH+ BCSCs, SUM159 cells 

were pre-treated with doxycycline and then in combination with paclitaxel. In 

agreement with the previous report, paclitaxel treatment resulted in 

approximately 4 times more ALDH+ BCSCs as compared to the vehicle control. 

However, this enrichment of ALDH+ BCSCs induced by paclitaxel was 

significantly inhibited when cells were pre-treated and later co-treated with 

doxycycline (Fig. A6).  

Discussion 

Recent studies have demonstrated that metastasis and drug resistance of 

cancer are driven by small subpopulations of cells termed cancer stem cells 

(CSCs). CSCs are therefore emerging as important therapeutic targets for cancer 

treatment. In contrast to conventional cytotoxic chemotherapy which aims to kill 

the bulk of the tumor, CSC targeting therapy focuses on blocking specific 

signaling pathways which CSCs rely on. Thus, combining chemotherapy and 

CSC targeting therapy could help reach the goal of eradicating the entire tumor. 

In the present study, we found that doxycycline significantly decreased ALDH+ 

BCSCs by inhibiting MAPK signaling, the downstream pathway of ROS. While 

applied in combination with paclitaxel, doxycycline also attenuated 
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paclitaxel-induced enrichment of ALDH+ BCSCs, implying the potentiality of 

combining the two drugs for removing both the bulk of cancer cells and CSCs.  

High mitochondrial mass is associated with the ALDH+ CSC population20. Since 

doxycycline has been shown to interrupt mitochondrial biogenesis in eukaryotic 

systems24, we hypothesized that doxycycline can be used as an inhibitor for ALDH+ 

CSCs. The hypothesis is supported by our results of aldefluor and mammosphere 

formation assays. However, we also found that doxycycline failed to decrease the 

CD44+/CD24- BCSC population (Fig. A2). CD44+/CD24- are cell-surface markers 

acquired by epithelial cancer cells when they undergo epithelial-to-mesenchymal 

transition (EMT), a developmental program that enriches CSCs36. CD44+/CD24- EMT 

CSCs have characteristics that are distinct from those of ALDH+ CSCs. Unlike 

proliferative and epithelial-like ALDH+ CSCs, CD44+/CD24- EMT CSCs are 

quiescent and mesenchymal-like29,37. Recent studies have reported that doxycycline 

can inhibit the propagation of mitochondrial-related hypoxic CSCs27, whereas 

doxycycline-resistance may occur when cancer cells switch to a purely glycolytic 

phenotype28. The relationship between CD44+/CD24- EMT CSCs and the glycolytic 

phenotype is yet to be determined. Nonetheless, it is likely that only 

mitochondrial-driven ALDH+ CSCs but not CD44+/CD24- EMT CSCs are sensitive to 

doxycycline. 
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Mitochondria are an important source of ROS generation in most 

mammalian cells38. ROS play an important role in stabilizing hypoxia-induced 

factor 1α (HIF-1α), which is known to induce ALDH+ CSCs35,39,40. Studies have 

shown that the p38 MAPK pathway, a downstream pathway of ROS, is required 

for HIF-1α signaling 41,42. Knockdown of p38 MAPK in the 

HER2-overexpressing MCF-7 cell line can inhibit ALDH+ CSCs, cancer cell 

migration and invasion43,44. In the present study, we demonstrated that 

doxycycline significantly decreased intracellular ROS levels, p38 MAPK 

phosphorylation and ALDH+ CSCs. Cancer cells treated with a p38 

MAPK-specific inhibitor also exhibited a significant reduction in ALDH+ CSCs, 

indicating that doxycycline inhibited ALDH+ CSCs potentially via blocking the 

p38 MAPK signaling pathway. However, more evidence is needed to further 

support this hypothesis. Future studies will focus on directly investigating the 

involvement of p38 MAPK in doxycycline-mediated inhibition of ALDH+ CSCs. 

First, knockdown of p38 MAPK could be carried out in HER2+ and TNBC cell 

lines to ascertain whether ALDH+ CSC population is affected. Second, a 

constitutively active p38 MAPK could be overexpressed to examine its ability to 

prevent or decrease doxycycline’s effect on ALDH+ CSCs. 
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It is worth noting that doxycycline failed to inhibit ALDH+ CSC population and 

secondary mammosphere formation in SUM149 cells (Fig. A1 and A3). The number 

of mammospheres formed is mainly determined by the number of stem cells seeded in 

the culture. The results, however, can be affected if the treatment changes the 

proliferation of cells. Therefore, to evaluate whether doxycycline can really affect 

CSCs, we performed the secondary mammosphere formation assays in the absence of 

doxycycline. Hence, the effect of doxycycline on proliferation was avoided, and the 

mammospheres should be decreased if the number of CSCs has been reduced by 

doxycycline in the primary assays. In SUM149 cells, we found that doxycycline 

significantly decreased primary but not secondary mammosphere formation. The 

reason might be that doxycycline inhibits cell proliferation (data not shown) instead of 

decreasing CSCs in SUM149 cells. In addition, SUM149 has been reported as an 

inflammatory breast cancer cell line that constitutively adapts to hypoxia (45,46). 

Therefore, SUM149 can behave as if it is continuously hypoxic even under normoxia 

45. This may explain why doxycycline decreases the ROS level but fails to inhibit 

ALDH+ BCSCs in SUM149 cells. 

Recent studies and our results indicate the potentiality of repurposing 

doxycycline, an old drug as a new treatment to target CSCs. Doxycycline is an 

FDA-approved antibiotic since 1960s. With limited toxicity to cells, doxycycline is 
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relatively safe to be used concomitantly with chemotherapy drugs in patients25. A 

recent clinical trial demonstrated that pathogenic bacteria-negative patients with 

lymphoma still benefit from doxycycline47. More phase II clinical trials are 

ongoing to test the use of doxycycline as a CSC-targeting agent. In addition to 

targeting CSCs, doxycycline was also found to ameliorate tumor metastasis via 

inhibition of matrix metallopeptidases48,49. As such, we propose that doxycycline 

is an ideal drug that can be used in combination with cytotoxic chemotherapy 

drugs to eradicate both CSCs and bulk tumor cells. 

Materials and methods 

Cell lines and chemicals 

BT474 and SK-BR-3 cells were grown in RPMI-1640 (Invitrogen; Thermo Fisher 

Scientific, Inc., Waltham, MA, USA) containing 10% FBS and 1X 

antibiotic-antimycotic (Invitrogen; Thermo Fisher Scientific, Inc.). SUM149 and 

SUM159 cells were grown in F12 (Invitrogen; Thermo Fisher Scientific, Inc.) 

containing 5% FBS, 1X antibiotic-antimycotic, 5 μg/ml of insulin (Invitrogen; 

Thermo Fisher Scientific, Inc) and 1 μg/ml of hydrocortison (Sigma-Aldrich; Merck 

KGaA, Darmstadt, Germany). Cells were cultured in a 5% CO2 incubator at 
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37°C. p38 MAPK inhibitor SB203580 was purchased from Cayman Chemical 

Company (Ann Arbor, MI, USA). 

Mammosphere formation assay 

Mammosphere formation was performed as previously described32. Single cells were 

seeded in low-attachment 6-well plates (Corning, USA) at a density of 5,000 

cells/well. Cells were cultured in 2 ml of MammoCult™ (Stemcell Technologies, 

Inc., San Diego, CA, USA) with doxycycline from 0-10 μM. Doxycycline was 

replenished every 2 days, and mammospheres were counted on day 6. To test the 

self-renewal ability of CSCs, secondary mammosphere formation was performed in 

the absence of doxycycline. Briefly, primary spheres were dissociated to single cells 

enzymatically (trypsin) and mechanically (23G needle). Secondary mammosphere 

formation was performed by plating 5,000 cells/well of the dissociated single cells 

from the primary mammospheres.  

Aldefluor assay  

Cells were treated with doxycycline for 7 days. The aldehyde dehydrogenase (ALDH) 

activity was then determined by Aldefluor assay (StemCell Technologies Inc., USA) 

according to the manufacturer's instructions. Diethylaminobenzaldehyde (DEAB) was 

used as a negative control for gating. To test the importance of the p38 pathway in 

maintaining ALDH+ BCSCs, BT474 cells were treated with SB203580, a p38-specific 
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inhibitor, for 2 days and then Aldefluor assay was conducted. To inhibit 

chemotherapy-induced Aldefluor-positive CSCs, cells were pretreated with 10 μM of 

doxycycline for 3 days, and then were treated with a combination of doxycycline and 

10 nM of paclitaxel for another 4 days.  

CD44 and CD24 analysis 

Cells were treated with doxycycline for 7 days and then were harvested for CD44 (BD 

Biosciences, Franklin Lakes, NJ, USA) and CD24 (BioLegend, Inc., San Diego, CA, 

USA ) antibody staining. The cells were then analyzed by flow cytometry.  

Analysis of reactive oxygen species (ROS) 

Cells were treated with doxycycline for 7 days and then ROS were determined by a 

2’,7’-dichlorofluorescin diacetate (DCFDA)-based kit (Abcam, Cambridge, MA, 

USA) according to the manufacturer's instructions. Briefly, the cells were incubated 

with 20 μM of DCFDA at 37°C for 30 min. Samples were then spiked with 300 μl of 

ice-cold 1X buffer containing DAPI and kept on ice before the ROS level was 

measured by flow cytometry. 

Immunoblotting 

Breast cancer cells were treated with various concentrations of doxycycline for 7 

days. Cells were then lysed using RIPA buffer containing proteinase inhibitor cocktail 

(Thermo Fisher Scientific, Inc.) and phosphatase inhibitors (Calbiochem, USA). 
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Proteins were separated by SDS-PAGE and probed with antibodies. Phosphorylated 

p38 MAPK, p38 MAPK and vinculin antibodies were purchased from Cell Signaling 

Technology, Inc. (Danvers, MA, USA). 

Statistical analysis 

Two-tailed Student’s t-test was used to compare the statistical difference between two 

groups. One-way ANOVA was used if the comparison involved more than two 

groups. A P-value <0.05 was considered to indicate statistical significance. 
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Figure A1 Doxycycline decreases the ALDH+ BCSC population  

ALDH activities in (A) BT474 (B) SK-BR-3 (C) SUM149 and (D) SUM159 cells 

treated with different concentrations of doxycycline for 7 days were determined by 

Aldefluor assays. Results are expressed as mean ± SD (n=3, *P<0.05, **P<0.01, 
***P<0.001, one-way ANOVA).  BCSC, breast cancer stem cell. 
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Figure A2 Doxycycline does not affect the CD44+/CD24- BCSC population 

Flow cytometric analysis of CD44+/CD24- BCSCs in SUM149 cells treated with 

different concentrations of doxycycline for 7 days. Results are expressed as mean ± 

SD (n=3, *P<0.05, **P<0.01, ***P<0.001, one-way ANOVA). BCSC, breast cancer 

stem cell. 
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Figure A3 Doxycycline inhibits the self-renewal ability of breast cancer cells 

Relative mammosphere formation efficiencies in (A) BT474, (B) SUM149 and (C) 

SUM159 cells were shown as the mean ± SD (n=3, *P<0.05, **P<0.01, ***P<0.001, 

one-way ANOVA). Cells were treated with different concentrations of doxycycline in 

the primary mammosphere cultures (top panels) and then re-seeded in the secondary 

mammosphere cultures (bottom panels) in the absence of doxycycline.  
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Figure A4 Doxycycline decreases the ROS levels in breast cancer cells 

ROS levels in (A) BT474, (B) SK-BR-3, (C) SUM149 and (D) SUM159 cells treated 

with doxycycline (10 μM) or vehicle control for 7 days were determined by DCFDA 

assays. Results are expressed as normalized mean fluorescence intensity (MFI) ± SD 

(n=3, *P<0.05, **P<0.01, ***P<0.001, Student’s t-test). ROS, reactive oxygen species. 

 

 

 



161 

 

Figure A5 Doxycycline inhibits ALDH+ BCSCs via blocking the p38 MAPK 

pathway  

Western blot analysis of phosphorylated (p)-p38 and p38 in (A) BT474 and (B) 

SUM159 cells treated with different concentrations of doxycycline for 5 days. 

Vinculin was used as a loading control. Doxycycline treatment deceased the 

phosphorylation of p38 MAPK. (C) Aldefluor assays of BT474 cells treated with 

different concentrations of SB203580, a p38 MAPK-specific inhibitor for 2 days. 

SB203580 decreased the ALDH+ BCSC population. Results are expressed as the 

mean ± SD (n=3, *P<0.05, **P<0.01, ***P<0.001, one-way ANOVA). BCSCs, breast 

cancer stem cells; V, vehicle. 
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Figure A6 Doxycycline ameliorates paclitaxel-induced enrichment of ALDH+ 

BCSCs  

ALDH activities in SUM159 cells receiving vehicle control (V), paclitaxel (10 nM) 

(P) or paclitaxel (10 nM) with doxycycline (10 μM) pre-treatment (P+D) were 

determined by Aldefluor assays. Results are expressed as the mean ± SD (n=3, 
*P<0.05, **P<0.01, ***P<0.001, one-way ANOVA). BCSCs, breast cancer stem cells. 

NS, not significant. 

 

 

 


