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A dissertation submitted in partial fulfillment of the requirements for the 
degree of

Doctor of Philosophy
(Atmospheric Oceanic and Space Sciences and Scientific Computing) 

in The University of Michigan
2018

Doctoral Committee:

Professor James A. Slavin, Co-Chair
Associate Professor Shasha Zou, Co-Chair
Professor Kenneth G. Powell, Cognate
Professor Aaron J. Ridley, Member
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To my high school friends, to Gülce Güldür for ever so graciously keeping me in
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To family friends, Tuna, Meriç, Sülün and Mustafa Uysaler, Mustafa Amca, I

vi



wish I could have thanked you when you were still with us, but thank you very much
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ABSTRACT

The geospace system, consisting of the intrinsically coupled magnetosphere, iono-

sphere and thermosphere (M-I-T), is in pressure balance with the solar wind. During

sudden changes in the solar wind dynamic pressure, the magnetosphere undergoes

rapid compression or expansion processes which significantly perturb the magneto-

spheric flow profiles and the global current systems. These sudden global changes

are called sudden impulses (SIs). Based on the low-latitude magnetic field perturba-

tion measurements by the ground magnetometers, the SIs are traditionally defined as

positive SIs (SI+s); indicating magnetospheric compression or negative SIs (SI−s),

indicating magnetospheric decompression.

The magnetospheric and ionospheric responses to the SI+s and SI−s under dif-

ferent IMF and solar wind drivers are not well established mainly due to the sparsity

of observations. Therefore, the modelling approach was adopted to understand the

geospace system response. The University of Michigan Block Adaptive Tree Solarwind

Roe Upwind Scheme (BATS-R-US) global magnetohydrodynamic (MHD) code was

employed to study the generation and propagation of the perturbations associated

with the compression and decompression of the magnetosphere system. The high-

resolution electric potential and auroral power output from this coupled model were

then used to drive the Global Ionosphere Thermosphere Model (GITM) to investigate

the I-T system responses to the solar wind dynamic pressure variations.

In this study, we investigated the SI+ and SI− processes and their effects on

the geospace system. Through idealized simulations, we showed that a two-step
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response existed in the magnetosphere and the ionosphere. Both in the SI+ and SI−

cases, the initial response included magnetopause boundary deformation and forming

vortex-like structures in the boundary. The second response was the formation of

magnetospheric flow vortices with opposite senses of rotation on the dawn and dusk

sectors. These perturbed magnetospheric flows were associated with Field-Aligned

Currents (FACs) during both stages that mapped to the ionosphere. Moreover, the

ionospheric convection response due to these perturbation FACs preserved the two-

step behaviour, since the transient currents reversed directions between stages. The

dawn-dusk asymmetry seen in the magnetospheric flows were also maintained in the

ionospheric convection patterns.

We also established the role of the IMF BY on the geospace response during SI+

events, through idealized simulations. We showed that even though the magneto-

spheric and ionospheric perturbations that formed during SI+ were very similar, the

superposition of these perturbation currents with the BY controlled NBZ (Northward

BZ) current system resulted in different FAC profiles. Therefore, the simulated mag-

netic field perturbations on the ground showed significant variability with the IMF

BY .

Furthermore, we performed two case studies of an SI+ and SI−. The simulations

showed that the two-step behaviour was conveyed to the thermosphere, through the

ion-neutral coupling. For the SI+ case, both simulation and observation results

showed enhanced ion and electron temperatures and decreased electron density. The

SI− case study showed observational evidence for the simulated magnetospheric flow

profiles.

Within this study, the following scientific questions have been addressed: (i) the

role of IMF By on the ground magnetometer response to the solar wind dynamic

pressure enhancements, (ii) the magnetospheric and ionospheric responses, such as

field-aligned currents and convection, (iii) the role of pressure variation in determining

xxiii



the geospace system response and (iv) the ionosphere-thermosphere coupled responses

to the sudden changes in the solar wind dynamic pressure.
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CHAPTER I

Introduction

1.1 The Near Earth Environment

The near Earth environment is the region that consists of Earth’s neutral atmo-

sphere, ionosphere and magnetosphere systems. Being able to know the conditions in

the near-Earth environment is essential for successful telecommunication and space-

craft operations [Lanzerotti (2007)]. This region can be highly dynamic depending

on the solar wind and IMF conditions This deviation is caused by mass, momentum

and energy transport from the solar wind drivers to the near Earth systems. Such

changes can cause disruptions in telecommunication signals, impose radiation hazards

on spacecraft and air travelers, increase aerodynamic drag causing orbital problems

or even loss of the spacecraft [Picholtz (1996), Belehaki et al. (2009)]. In the following

chapters the properties and fundamental drivers of each medium and how they couple

will be discussed.

1.1.1 The Solar Wind and Interplanetary Magnetic Field

The solar wind is an ionized plasma flow which is driven by the pressure differ-

ence between the Sun’s corona and the interstellar medium [Gombosi (2004)]. The

region in between, which is filled with the supersonic solar wind, is called the he-

liosphere. This is where the solar system resides, therefore all the bodies inside the
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heliosphere interact with the solar wind. Thus, the dynamic pressure exerted on the

body significantly affects the environment around it.

The type of interaction between the obstacle and the solar wind depends on the

body’s magnetism since the solar wind also carries remnants of the solar magnetic

field [Kivelson and Russell (1997)]. This interplanetary magnetic field (IMF) is frozen

into the solar wind plasma, which means that plasma and magnetic field lines move

together [Kivelson and Russell (1997)]. The solar wind plasma moves outward from a

fixed source at the base of Sun, however this source moves as the Sun rotates. Because

of this motion, the magnetic field lines and the solar wind stream lines have a spiral

shape as shown in Figure 1.1. This spiral is known as the Parker spiral.

Ulysses observations of the solar wind revealed that there were two distinct streams

coming from the Sun [Gosling (1997)]. The solar wind from the higher latitudes of

the Sun is discharged at higher speeds than at the lower latitudes and as a result they

have different density, temperature and velocity values. The properties of the ’fast’

and ’slow’ solar wind are shown in Table 1.1.

Table 1.1:
Fast and slow solar wind properties observed at Earth’s orbit (adapted
from Schrijver and Siscoe (2009)).

Property Slow wind Fast wind

Density 10 cm−3
3 cm−3

Flow speed 430 ± 100 km/s 700-900 km/s
Proton temperature 4.2 x 104K 2.4 ± 0.6 x 105K
Electron temperature 1.3 ± 0.5 x 105K 1.3 ± 0.2 x 105K
Magnetic field 6 ± 3 nT 6 ± 3 nT

This variability in the solar wind causes significant dynamic pressure variations

along the heliosphere. Since the fast solar wind has a higher velocity, it travels along

a less coiled Parker spiral than the slow solar wind, eventually converging to the slow

stream at lower latitudes [Kivelson and Russell (1997)]. The plasma in between the

slow and fast solar wind regions is then compressed forming a high pressure region. As
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Figure 1.1:
The early Parker solar wind model shown in the solar ecliptic plane. The
spirals are magnetic field lines originating from the center of the Sun and
propagating with the solar wind to the interplanetary medium. The solar
wind speed is shown as 300 km/s (which is considered slow solar wind
today). S/B denotes the sector boundary, which separates the inward
and outward-directed magnetic fields. Adapted from Figure 4.1 of [Balogh
et al. (2008)].
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this interaction region propagates further outward, it becomes increasingly supersonic,

resulting in a pair of forward and reverse shocks [Gombosi (2004)]. These regions are

known as co-rotation interaction regions (CIRs).

Shocks can also form as a result of eruptive processes in the Sun, known as coronal

mass ejections (CMEs) [Kamide and Chian (2007)]. Large amounts of high energy

plasma and magnetic field are discharged from the Sun during CME events [Gombosi

(2004), Kamide and Chian (2007)]. This high speed ejecta compresses the solar wind

ahead and forms an interplanetary shock (IP). The CME core can carry a rope-like

magnetic structure, which can also interact with Earth’s magnetosphere and cause

strong geomagnetic activity.

The distribution of the high speed streams and interplanetary shocks that cause

enhanced solar wind dynamic pressure at the Earth are shown in Figure 1.2. During

solar maximum the number of shock and high speed stream events can exceed 75

events per year, resulting in prolonged disturbances in the Earth’s magnetosphere.
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Figure 1.2:
The distribution of Earth-directed high speed streams (red) and inter-
planetary shocks (blue) between the years 2010-2017. The number of
events are taken from the NASA CCMC DONKI Event Catalog.

1.1.2 The Magnetosphere

Earth has an intrinsic dipolar magnetic field with a dipole moment of 7.84x1015

Tm3. This dipole is tilted about 11◦ towards the rotation axis Kivelson and Russell

(1997). Magnetic field lines are directed to the magnetic North Pole as shown in

Figure 1.3.

In a coordinate system that is fixed along the dipole moment of the Earth, the

rotation can be neglected and the radial and angular magnetic field strengths can be

obtained with the equations 1.1 - 1.3.
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Figure 1.3:
A schematic representation of the Earth’s magnetic dipole. The direction
of the magnetic field lines are from south to north. Adapted from Gombosi
(2004).
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Table 1.2:
Layers of the ionosphere and their properties (adapted from Gombosi
(2004)).

Layer Altitude Peak Density Dominant
species

D Region 60-90 km 103 cm−3 NO+, O+
2 , N

+
2

E Region 90-140 km 105 cm−3 O+
2

F1 Region 140-200 km 106 cm−3 O+

F2 Region 200-500 km 106 cm−3 O+

Br = 2Mr−3 cos θ (1.1)

Bθ = Mr−3 sin θ (1.2)

B = Mr−3
√

1 + 3 cos2 θ (1.3)

Here, M is the magnetic dipole moment of the Earth, r is the radial distance from

the center of the Earth and θ is the co-latitude where the magnetic field lines map.

1.1.3 The Ionosphere

The ionosphere is the ion and electron dominant region of the terrestrial atmo-

sphere [Gombosi (2004)] which overlaps with the mesosphere, thermosphere and ex-

osphere. The ionosphere is highly stratified due to the molecular weight of the ion

species and it is classified based on the density of each region. The ionospheric den-

sity profile has strong diurnal variation and the peak densities drop by an order of

magnitude during the nighttime.

1.1.4 The Thermosphere

The thermosphere is the upper part of the Earth’s atmosphere where the slow

mixing causes a stratified composition depending on the temperature and the molec-

ular weight of the species [Gombosi (2004), Schunk and Nagy (2009)]. The density of
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Figure 1.4:
The height versus electron density profile of the ionosphere. The peak
densities and major ion species of the D, E, F1, and F2 layers are shown.
Adapted from Figure 2.16 of Schunk and Nagy (2009).
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each species varies exponentially as shown in Equation 1.4.

n(z) = n(z0)e
− z−z0

H (1.4)

The n is the number density of the species, z is the altitude, z0 is the base altitude

and H is the scale height. The expression for scale height is shown in Equation 1.5.

H =
kT

mg
(1.5)

The scale height depends on the Boltzmann coefficient (k), ambient temperature

(T), molecular weight of the constituent (m) and the gravity (g). The most common

species in the thermosphere are H, He, O, N2 and O2. The solar activity dependent

altitude profiles for these species are shown in Figure 1.5. During solar maximum

(left), the thermospheric temperatures are higher, leading to higher thermospheric

density at high altitudes. During solar minimum (right), the lower thermospheric

temperatures cause the constituents to condense.

1.2 The Geospace System Coupling

The solar wind, magnetosphere, ionosphere and thermosphere systems are intrinsi-

cally coupled with each other, which makes studying the propagation of perturbations

very difficult because of the different dominant particles and physical processes in each

region.

1.2.1 Solar Wind - Magnetosphere Interaction

The magnetospheric processes are controlled by the solar wind and interplanetary

magnetic field [Kamide and Chian (2007)]. The plasma flow from the Sun, determines

the shape and size of the Earth’s magnetic dipole field. The established equilibrium

between the solar wind and the Earth’s magnetic dipole gives rise to a magnetic
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Figure 1.5:
The global averaged number density profiles of total (black) and major
thermospheric constituents during solar maximum (left) and solar mini-
mum (right), derived from NRLMSISE-00 model. Adapted from Figure
2.a and 2.d of Emmert (2015).
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Figure 1.6:
Illustration of Earth’s magnetosphere and its interaction with the so-
lar wind. The Sun is to the left of the image. The illustration
shows Earth’s bow shock, magnetosheath, magnetopause, magneto-
tail, plasmasphere and plasma sheet. (The illustration is taken from:
www.nasa.gov/mission pages/ibex/news/spaceweather.html)

configuration as shown in Figure 1.6.

1.2.1.1 Bow Shock

The bow shock is the shock that forms in front of the Earth’s magnetosphere due

to its interaction with the supersonic solar wind [Gombosi (2004)]. The formation of

the bow shock slows down the solar wind and diverts its flow around the Earth. The

jump conditions that describe the plasma properties after the bow shock are given

below.

ρ2 =
γ + 1

γ − 1
ρSW (1.6)
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ut2 − uSWt =
2

γ − 1

BSWn −BSWt

µ0ρSWuSW
(1.7)

Here, the ρSW , uSW , BSWn , and BSWt are solar wind density, speed, normal and

tangent components of the magnetic field. The solar wind specific heat, γ is taken as

5/3. The downstream conditions denoted with ρ2 and ut2 define the properties of the

plasma in between the bow shock and the Earth’s magnetosphere, at a region called

the magnetosheath.

1.2.1.2 Magnetosheath

The region between the bow shock and the Earth’s magnetosphere is called the

magnetosheath [Gombosi (2004), Kivelson and Russell (1997)]. Passing through the

bow shock the solar wind plasma decelerates and its kinetic energy transforms into

thermal energy. Thus, the plasma in this region is thermalized and the flow becomes

subsonic [Kamide and Chian (2007)].

1.2.1.3 Magnetopause

The ram pressure contribution to solar wind is the highest compared to thermal

and magnetic pressure. The magnetopause is the location where Earth’s magnetic

field pressure balances the solar wind pressure. This relation is shown in Equation

1.8.

ρ2SWu
2
SW =

B2
MS

2µ0

(1.8)

Here the ρSW is the solar wind density, uSW is the solar wind speed, BMS is the

magnetosheath magnetic field, and µ0 is the permeability. As the solar wind dynamic

pressure increases, the left hand side of Equation 1.8 increases and pushes Earth’s

magnetosheath inward.
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The magnetopause standoff distance can be expressed at the equator using the

Earth’s dipole field which is shown in Equation 1.1.

RMP =

(
B3

0

2µ0ρSWu2SW

)1/6

(1.9)

Here the RMP is the magnetopause standoff distance, B0 is the magnetic field

strength at the Earth’s surface (equator). The magnetopause radius strongly depends

on the solar wind dynamic pressure, however it also depends on the z-component of the

IMF. Shue et al. (1997) derived an empirical formula for the magnetopause standoff

distance as a function of solar wind dynamic pressure and IMF BZ . This formula is

shown in Equation 1.10.

r = 2αr0(1 + cosθ)−α (1.10)

where α is:

α = (0.58− 0.007BZ)[1 + 0.024ln(Pd)] (1.11)

and the r0 is given by:

r0 = [10.22 + 1.29tanh(0.184(BZ + 8.14))]

(
1

PSW

)1/6.6

(1.12)

Here r is the radial distance and θ is the solar zenith angle.

The magnetopause is a tangential discontinuity [Kamide and Chian (2007)]. It is

blunt on the dayside but is stretched towards the tail [Kivelson and Russell (1997)].

There are other factors that affect the shape and size of Earth’s magnetosphere related

to the plasma properties, especially on the magnetotail.

Chapman-Ferraro currents

A boundary current system forms in between the solar wind plasma and the Earth’s

magnetic field at the magnetopause, which is known as Chapman-Ferraro currents
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due to oppositely moving electrons and positively charged particles [Kivelson and

Russell (1997)]. The strength of the Chapman-Ferraro current at the magnetopause

can be expressed as shown in Equation 1.13.

I =
2ρSW
BZ

u2SW (1.13)

Here the BZ is the magnetic field strength of the Earth’s dipole at the magne-

topause.

1.2.1.4 Inner Magnetosphere

The inner magnetosphere is the region between 1000 km to geostationary orbits

( 6-7 RE), consisting of two distinct plasmas, the plasmasphere and the radiation

belts.

Plasmasphere

The plasmasphere is the region where high densities of cold plasma ( 1eV) exist.

The source for this cold plasma is believed to be the upper ionospheric particles

that escaped from the gravitation field of the Earth [Kivelson and Russell (1997)].

The plasmasphere is dominated by H+, but He+, O+, O++, N+ and N++ are also

observed. This cold plasma resides in the low and middle latitude regions in the

closed field lines near the Earth.

Radiation Belts

The radiation belts are the regions of trapped energetic particles ( MeV) [Kamide and

Chian (2007)]. The particle population is higher in the equatorial plane and lower

at the higher latitudes due to losses to the neutral atmosphere [Kivelson and Russell

(1997)]. During geomagnetically active periods the radiation belt particle density and

energy increases.

Ring Current

The inner magnetospheric trapped particles with energy ranges between 10 to 200 keV
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propagate in closed trajectories due to gradient curvature drift [Gombosi (2004)]. The

positively charged particles drift westward, whereas electrons drift eastward creating

a current along the equatorial plane which is called the ring current. During storm

time the ring current increases, creating an overall drop in the geomagnetic field which

can be measured with the Disturbed Storm Time (Dst) index [Gombosi (2004)].

1.2.1.5 Magnetotail

The solar wind stretches Earth’s magnetic dipole away from the Sun [Kivelson

and Russell (1997)] and creates an elongated magnetosphere on the nightside. A

current sheet divides the magnetotail into two: the northern tail lobe and the southern

tail lobe. The tail lobes map to the corresponding nightside polar ionospheres. An

estimate of the magnetic flux in the tail lobe is given in Equation 1.14.

ΦT =
1

2
πR2

TBT (1.14)

Here ΦT is the magnetic flux, RT is the tail radius and BT is the tail magnetic field

strength.

Based on the definition of the magnetopause, the magnetotail should be in pressure

balance with the solar wind at the boundary. This pressure balance yields to an

estimate of the shape and size of the magnetotail as shown in Equation 1.15.

ρu2SW sin
2α + p0 =

B2
T

2µ0

(1.15)

Here p0 is the isotropic pressure of the solar wind and α is the flaring angle

that determines the shape of the magnetotail. Observations have shown that the

magnetotail can extend to 230 RE in the anti sunward direction [Kivelson and Russell

(1997)]. The flaring angle decreases with the tail distance.

Plasma sheet
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The plasma sheet, or central plasma sheet, is a region in the magnetotail that extends

closer to the Earth [Gombosi (2004)]. The plasma sheet lies on the stretched but

closed field lines and has a population of hot particles. At the magnetotail, this

current sheet is names as tail current sheet.

1.2.1.6 Dungey Cycle

As discussed above, the IMF BZ plays an important role in magnetospheric

physics, because of a phenomenon called magnetic reconnection. The magnetic

reconnection is still a widely studied concept, which is based on the merging of op-

positely aligned magnetic fields to form new magnetic field lines [Gombosi (2004)].

Dungey (1961) was first to suggest a steady circulation of the magnetospheric plasma

through a series of magnetic reconnection events. They showed that when the IMF

BZ was southward, it will reconnect with the Earth’s magnetic dipole field (1), then

the frozen-in magnetic fields would be stretched tailward by the solar wind (2). In the

magnetotail, these fields would be predominantly in the x-direction, with one end con-

nected to the poles, and the other in the solar wind. The open field lines would then

achieve a closed state [Kivelson and Russell (1997)] by reconnecting in the Earth’s

magnetotail (3). This reconnection would create one terrestrial closed field line, and

a plasmoid that would be released to the interplanetary medium to merge with the

solar wind. On the other hand the newly reconnected terrestrial field line would

propagate in the sunward direction (4) and would flow around either the dawn or the

dusk side of the Earth (5) back to the dayside (6) [Kivelson and Russell (1997)]. This

steady circulation of the magnetospheric field lines is called the Dungey cycle and has

crucial importance in understanding the magnetosphere-ionosphere interaction. The

schematic representation of the Dungey cycle is show in Figure 1.7.
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Figure 1.7:
A schematic diagram showing the magnetospheric convection of magnetic
field lines under southward IMFBZ . The numbers show the magnetic field
lines and their ionospheric counterparts. Adapted from Figure 8.15b in
Kelley (2009).
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1.2.2 Magnetosphere - Ionosphere Interaction

1.2.2.1 Convection in the Ionosphere

The Dungey cycle explains the steady convection of magnetic field lines in the

magnetosphere. These magnetic field lines are connected to the Earth in the high-

latitude regions. As the magnetic field lines reconnect and propagate anti-sunward

(1’), the convection electric field (ESW = uSWxBSW ) will drive the ionospheric flow

from noon towards midnight (2’) [Kivelson and Russell (1997)]. The convection

electric field in the polar cap due to this motion can be estimated with uPCxBPC .

Here uPC is the ionospheric convection velocity, whereas BPC is the magnetic field

vector at the polar cap. As the magnetic field lines reconnect in the tail and propagate

earthwards, the plasma is convected from midnight (3’) towards the dayside (4’, 5’,

6’). The mapping of the magnetospheric convection as electric field potentials to

the top of ionosphere in MLT coordinates can be seen in Figure 1.8. This type of

convection is called the two-cell convection pattern [Schunk and Nagy (2009)].

The two-cell convection pattern strictly depends on the interaction of Earth’s mag-

netosphere with the IMF. Observations have shown that when IMF BZ is southward

and IMF BY is zero, the convection pattern resembles the two-cell convection pat-

tern. However as shown in Figure 1.9 the potential drops between cells are distributed

asymmetrically when the y-component of the IMF changes.

When IMF BZ is southward, the convection is anti-sunward with the dawn cell

being larger when the y component of the IMF is negative and the dusk cell being

larger when the y component is positive. However, when BZ is northward, sunward

convection can be observed. There can be up to 4 convection cells when BY is zero,

with dawn cells being dominant during negative y, and dusk cells being dominant

during positive y.
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Figure 1.8:
The two cell convection pattern in the ionosphere is shown in MLT coordi-
nates. The contours are magnetospheric electrostatic potentials. Adapted
from Figure 12.4 of Schunk and Nagy (2009).
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Figure 1.9:
Electric potential contours under different IMF BY and BZ derived from
an empirical model. Adapted from Figure 12.4 of Schunk and Nagy
(2009).
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1.2.2.2 Region 1 and Region 2 currents

In the high-latitude regions, statistically there are two pairs of field-aligned cur-

rents, named Region-1 and Region-2 FACs. The Region 1 currents, which map to

higher latitudes, form as a result of the solar wind interaction with the Earth’s mag-

netosphere [Kivelson and Russell (1997)]. The Region 1 current is upward on the

dusk and downward on the dawn sector.

The Region 2 FACs form as a result of the divergence of the partial ring current in

the inner magnetosphere. They flow downward on dusk and upward on dawn sectors,

mapping to lower latitudes than the Region 1 current systems.

During Northward IMF BZ , an NBZ current system forms. This current has an

upward FAC on dawn and upward FAC on dusk sector mapping to slightly higher

latitudes than the Region 1 currents.

1.2.2.3 Ionospheric currents

The conductivity along the magnetic field lines is very high, but it is lower in

the ionospheric altitudes compared to in the magnetosphere. At these altitudes the

conductivity perpendicular to the magnetic field gains significance as a result of colli-

sions between charged particles and the neutral atmosphere. These collisions give rise

to two important major ionospheric currents known as Pedersen and Hall currents

[Schunk and Nagy (2009)]. The electron gyrofrequency is much higher than the ion

gyrofrequency, so the electrons are magnetized in the ionospheric altitudes and act

as if there are no neutrals. On the other hand, the ions are significantly affected by

the neutral particles. The different responses of electrons and ions results in devia-

tion of their drifts in the E region and thus the charge separation forms horizontal

currents. Therefore the Hall current is perpendicular to both magnetic and electric

fields [Kivelson and Russell (1997)]. The horizontal current in the ionosphere then

can be written as shown in Equation 1.16.
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J⊥ = ΣPE⊥ + ΣHêBxE (1.16)

Here êB is the unit vector in the direction of the magnetic field, ΣP and ΣH are

the height-integrated Pedersen and Hall conductances which depend on the collision

frequencies.

1.2.2.4 Conductance in the Ionosphere

The conductance of the ionosphere controls the energy transfer between the so-

lar wind, magnetosphere, ionosphere and thermosphere systems. The conductivity

profiles depend on the strength of the magnetic field, density of electrons, ions and

neutrals.

Pedersen conductivity

The expression for the Pedersen conductivity is shown in Equation 1.17 below.

σP = Σiσi
ν2i

ν2i + ω2
ci

+ σe
ν2e

ν2e + ω2
ce

(1.17)

Here σi is the ion conductivity, shown in Equation 1.18, νi is the ion collision fre-

quency, ωci is the ion gyroradius, σe is the electron conductivity, shown in Equation

1.19 and the ωce is the electron gyroradius.

The ion and electron conductivities are shown below. Here the n denotes density,

m denotes the mass, e denotes the charge and ν denotes the collision frequency of

the species with the neutrals. The subscripts i and e shows the species of ions and

electrons.

σi =
nie

2
i

miνi
(1.18)

σe =
nee

2
e

meνe
(1.19)
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Hall conductance

The expression for the Hall conductivity is shown in Equation 1.20 below.

σH = −Σiσi
νiωci

ν2i + ω2
ce

+ σe
νeωce

ν2e + ω2
ce

(1.20)

The typical altitude profiles of the specific, Hall and Pedersen conductances at

mid-latitude, daytime are shown in Figure 1.10. The Hall conductivity is significantly

larger than the Pedersen conductivity below 130 km. The specific conductivity is the

most dominant term above 250 km. The conductivities depend on electron density.

Therefore any cause of source or temperature variation can affect the vertical profile.

Conductivities are generally weaker at the nightside, as well as at the winter hemi-

spheres due to the lower temperatures and electron densities. in the absence of strong

electron precipitation.

Figure 1.10:
The altitude profiles of the specific,Hall and Pedersen conductivities are
shown. Adapted from Figure 2.6 of Kelley (2009).
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1.2.2.5 Energy transfer from the Magnetosphere

The mass, momentum and energy transfer from the magnetosphere to the iono-

sphere can be summarized in two categories: particle precipitation and joule heating.

Particle precipitation

Magnetospheric particles are lost in Earth’s atmosphere due to processes known as

pitch-angle scattering and charge exchange [Kivelson and Russell (1997)]. Especially

during high geomagnetic activity, due to the violation of the first adiabatic invariant

high levels of auroral precipitation is observed. Magnetospheric ions can also collide

with low energy neutrals resulting in charge exchange and loss of the charged particle.

Poynting Flux

The downward propagating Poynting flux from the magnetosphere can also trans-

fer energy to the ionosphere-thermosphere system by acting against jxB forces. The

expression for Poynting Flux is shown in Equation 1.21.

S =
E×B

µ0

(1.21)

This applied electromagnetic force is dissipated parallel to Pedersen currents

[Kivelson and Russell (1997)] at high latitudes through Joule heating. When the dif-

ferent between ion and neutral velocities are higher, the frictional heating increases,

as shown in Equation 1.22 [Schunk and Nagy (2009)].

Ti − Tn =
mn

3k
(vi − vn)2 (1.22)

1.2.3 Ionosphere - Thermosphere Interaction

1.2.3.1 Transport

Transport is one of the most dominant processes in the high latitude ionosphere

which causes density variations. This motion can be examined in two categories, first
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is the horizontal transport which was discussed in detail in Section 1.2.2.1 and the

other is the vertical transport which will be discussed in this section. The charged

particles are constrained to the inclined magnetic field, however the body forces acting

on them are in the vertical direction [Schunk and Nagy (2009)]. The inclination angle

becomes larger in the middle and lower latitudes, further complicating the transport

process at these regions. The general form of the ion diffusion equation is shown in

Equation 1.23.

uiz =
E

B
cosI + unsinIcosI − sin2IDa

(
1

ni
+

1

Tp

∂

∂z
+

1

Hp

)
(1.23)

Here uiz is the ion diffusion in the vertical direction, I is the magnetic inclination

angle, un is the neutral wind speed, Da is the diffusion coefficient (shown in equation

1.24) and HP is the scale height of the plasma. The first term on the right hand

side describes the vertical component of the E x B drift, the second term shows the

contribution from the neutral winds and the last term shows the affects of the body

forces along the stratified ionosphere.

Da =
2kTp
miνin

(1.24)

The ion diffusion equation is a good estimate for the ion vertical motion at middle

and low latitudes however it neglects the heat flow collision terms which are important

in higher latitudes and altitudes [Schunk and Nagy (2009)].

1.2.3.2 Chemistry

The four main processes are photoionization, impact ionization, ion-molecule re-

actions and electron-ion recombination Schunk and Nagy (2009). Photochemistry is

more important than transport at lower altitudes of the ionosphere.

Photoionization
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Photoionization is the process in which a photon produces free electron-ion pairs

from neutral particles and it is a major source of ionospheric plasma [Schunk and

Nagy (2009)]. The three major photoionization processes for the terrestrial upper

atmosphere are shown in equations 1.25-1.27.

O + hν → O+ + e− (1.25)

O2 + hν → O+
2 + e− (1.26)

N2 + hν → N+
2 + e− (1.27)

Impact Ionization

Impact ionization is the ionization process that occurs when an energetic particle,

such as electrons, ions, or cosmic rays, collides with a neutral constituent in the

atmosphere, and delivers sufficient energy to overcome the neutral’s ionization po-

tential [Kivelson and Russell (1997)]. The major magnetospheric source of such

energized particles are the precipitating electrons, which can form the aurora, with

energy ranges between 100 eV to 100 keV [Kelley (2009)]. As opposed to photons,

an energetic particle gradually loses its energy through impact ionization, which can

lead to primary and secondary electrons [Kivelson and Russell (1997)]. The impact

ionization process is shown in equation 1.28.

A+ e− → A+ + 2e− (1.28)

Here A is any neutral constituent in the atmosphere that has an ionization energy

equal or lower to the energy the electron can deposit [Shang (2018)]. Impact ioniza-

tion is particularly important at auroral latitudes due to the precipitation energetic

particles from the plasma sheet.

Ion-molecule reactions
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The ion molecule reactions are the charge exchanges that occur between a neutral

and an ion.

O+ +N2 → NO+ +N (1.29)

O+ +O2 → O+
2 +N (1.30)

N+
2 +O2 → O+

2 +N2 (1.31)

N+
2 +O → O+ +N2 (1.32)

N+
2 +O → NO+ +N (1.33)

Electron-Ion Recombination

When an ion and an electron collide, the free electron recombines with the ion and

produces neutrals. Below are some typical dissociative recombination reactions oc-

curring in the Earth’s ionosphere.

NO+ + e− → N +O (1.34)

O+
2 + e− → O +O (1.35)

N+
2 + e− → N +N (1.36)

1.2.3.3 Temperature and Transport in the Thermosphere

In addition to responding to the magnetospheric drivers through the ionosphere,

the behaviour of the thermosphere system is also affected by lower atmospheric

drivers. The equations that describe thermospheric response are discussed below.

Momentum equation

The motion of the thermospheric particles depends on the forces acting on the

neutrals. For the terrestrial atmosphere, the Coriolis force and the gravitational force
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are two important examples of such forces. In addition, significant pressure gradients

arise due to solar EUV heating, between summer and winter hemispheres as well as

daytime versus nighttime sectors. Viscous interactions also decrease the velocity of

the neutral particles [Kelley (2009)]. Even though neutral particles do not respond

to electromagnetic fields directly, collisions with ions change their momentum. The

ion drag term becomes more important at higher latitudes. The resulting momentum

equation for neutral particles is shown in Equation 1.37.

Duh

Dt
= −1

ρ
∇hP− 2Ωxuh + g +

1

ρ
∇(µ∇uh)− νni(uh − ui) (1.37)

The first term on the right hand side describes the effect of the pressure gradient,

the second term is the Coriolis force, the third term is the gravitational force, the

fourth term is the viscous diffusion and the last term is the ion drag.

Temperature variation

The temporal variation of the neutral temperature can be estimated using the

momentum and energy equations.

dTn
dt

=
1

ρCp

[(
Σions

nnmnνni
mi +mn

[
3k(Ti − Tn) +mi(ui − un)2

])
− ∂

∂z

(
λn
∂Tn
∂z

)]
(1.38)

The first term in the right hand side is the collisional heat transfer rate, the

second term is the frictional heat transfer rate and the third term is the vertical heat

conduction rate.

1.2.4 Magnetic Perturbations at the Ground

As discussed in the Section 1.2.1.1., the solar wind plasma and the Earth’s mag-

netosphere are in a pressure balance. When an earthward propagating interplanetary

shock or a high-speed stream interacts with the Earth, the momentum exerted by the

solar wind on the magnetosphere increases. To balance the new pressure, the Earth’s
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magnetopause moves radially inward. As a result of this motion, the Chapman-

Ferraro currents at the magnetopause are strengthened. This compression of the

magnetosphere can be detected by ground magnetometers at Earth’s surface [Kivel-

son and Russell (1997)], and is traditionally named as a sudden impulse (SI) or a

storm sudden commencement (SSC) if followed by a geomagnetic storm. The Biot-

Savart integral can be used to estimate the magnetic perturbations on the ground as

shown in Equation 1.39.

B =
µ0I

2r
ez (1.39)

Here the I is the current at a circular loop, B is the magnetic field at the center

of the current loop, r is the radius of the current loop and z is the axis perpendicular

to the plane of the current. Chapman-Ferraro, FACs, ring current are some examples

of the currents detected by ground magnetometers.

The ground magnetometers use the HDZ or NEZ coordinate systems. These coor-

dinate systems can be inferred from Figure 1.11, where H is the horizontal component

of the magnetic field strength, D is the declination angle between the North (N, along

x) and H components, E is the eastward component along y, and the z component is

in the nadir direction [Schunk and Nagy (2009)].

Ground magnetometer measurements have shown that the SI signatures at lower

latitudes were in the form a step-wise enhancement, however at higher latitudes the

SI could be decomposed into two consecutive signals as shown in Figure 1.12. The

magnetometers recorded a positive short-lived impulse that is positive on the morning

and negative on the afternoon sectors, named preliminary impulse (PI). This signal is

succeeded by a longer-lived signal that is negative on the morning and positive on the

afternoon sectors, called a main impulse (MI). Other studies [Shinbori et al. (2009);

Sun et al. (2014)] also investigated the PI-MI dependences on magnetic latitude and

longitude; nevertheless, due to sparsity of ground magnetometers, a global sense of
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Figure 1.11:
The HDZ and NEZ coordinate system. Adapted from Figure 11.3 of
Schunk and Nagy (2009).
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variation under different solar wind conditions has not been established.

Figure 1.12:
The magnetic field perturbations associated with sudden commencement
at different latitudes and local times. Adapted from Araki (1994b).
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1.3 Purpose of the Study

In this chapter, the properties, physics and the plasma processes that define the

magnetosphere, ionosphere and thermosphere systems were described. Being in a

constant pressure balance with the solar wind, the Earth’s geospace system is highly

responsive to the variations in the solar wind dynamic pressure, making it one of the

major driver of the space weather events in the near Earth environment. However,

isolating the effects of dynamic pressure is not trivial due to various reasons. One

important reason is that Earth’s magnetosphere also responds to the changes in the

IMF which is carried by the solar wind. In addition, the perturbations in the solar

wind and IMF are oscillatory. This results in a constant variability in the geospace

system’s response, making it harder to associate certain responses to the drivers.

Furthermore, the Earth’s own M-I-T systems can be very dynamic and the condi-

tions of these systems are determined by the Earth’s rotation and orbital motions.

Apart from the difficulties resulting from the complexity of the geospace system, there

are also operational limitations, such as the scarcity of observatories, infrequency of

experiments and low temporal and spatial resolution of the measurements.

The MHD modeling has been a very important component of geospace system

research because with the recent state of the modeling capabilities, the aforementioned

limitations can be easily eliminated. However one caveat still needs to be addressed,

which is the missing particle physics in the MHD models. Absence of such processes

results in misrepresentation of important magnetospheric processes such as dayside

and nightside reconnection, auroral precipitation and conductivity. Therefore, it is

very important to validate model results with case studies and provide comparisons

with measurements when available. For this reason, two chapters of this work are

devoted to case studies.

Another caveat, which arises when modeling the I-T system, is that some processes

are described through empirical models, such as conductance, convection electric fields
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and particle precipitation. These empirical approaches are known to average out small

perturbations, especially when different systems are coupled, resulting in lower energy

and momentum transfer rates in simulations. Also, these observation based empirical

models do not respond to enhancements in the solar wind density. This problem will

be discussed further in Chapter 4, but it constitutes one of the main motivations of

the study which is to represent the magnetospheric perturbations caused by the solar

wind dynamic pressure, by using the physics-based solutions to drive the I-T model.

With this approach, this study aims to answer:

1. What is the role of IMF BY in determining the ground magnetometer response

to solar wind dynamic pressure enhancement events?

2. How are the I-T systems affected by the magnetospheric compression due to

solar wind dynamic pressure enhancement?

3. What are the magnetospheric and ionospheric responses to a solar wind dynamic

pressure decrement event?

4. How are the I-T systems affected by the magnetospheric decompression due to

solar wind dynamic pressure decrement?

5. What are the differences of geospace responses to the solar wind dynamic pres-

sure enhancement and decrement events?
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CHAPTER II

The Global Model of the Geospace System

In order to understand the global geospace system responses to solar wind dynamic

pressure variations, we used the Space Weather Modeling Framework (SWMF) [Toth

et al. (2005)]. The simulations were run on the Ceheyenne and Yellowstone supercom-

puter clusters operated by the National Center for Atmospheric Research (NCAR).

The SWMF has different components that account for different physics domains.

In this study we used the global magnetosphere (GM), inner magnetosphere (IM),

and ionosphere electrodynamic (IE) components to simulate the impulsive dynamic

pressure variations and the geospace system response to such events.

2.1 The Ideal Magnetohydrodynamic Equations

The evolution of the Earth’s magnetosphere under solar wind driving can be ap-

proximated by the ideal MHD equations. These equations consist of macroscopic

transport equations for a gas and Maxwell’s equations [Gombosi (2004)]. These equa-

tions are the conservation of continuity (Equation 2.1), conservation of momentum

(Equation 2.2), induction (Equation 2.3) and conservation of energy (Equation 2.4).

∂ρ

∂t
+∇.(ρu) = 0 (2.1)

34



∂ρu

∂t
+∇.

[
ρuu + I

(
p +

B2

µ0

)
− BB

µ0

]
= −ρg (2.2)

∂B

∂t
+∇.(uB−Bu) = 0 (2.3)

∂

∂

(
1

2
ρu2 +

3

2
p
B2

2µ0

)
+∇.

(
1

2
ρu2u +

5

2
ρu +

(B.B)u−B(B.u)

µ0

)
= ρ(g.u) (2.4)

Here ρ is the mass density, u is the bulk velocity, p is the plasma pressure, B is

the magnetic field vector, g is the gravity and µ0 is the permeability of the free space.

These equations are solved by the GM component of the SWMF.

2.2 Global Magnetosphere Model

The Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme, (BATS-R-US) is used

to model the global magnetosphere (GM) [Toth et al. (2005)]. It solves 3D MHD

equations in a finite volume using Roe’s Approximate Riemann Solver on a block

adaptive mesh. BATS-R-US can take solar wind measurements of density, velocity,

temperature and IMF components as inputs to simulate the global magnetosphere

response to solar wind variations. The GM component can be coupled with the IM

and IE models and pass the field aligned current information along these domains.

2.3 Inner Magnetosphere Model

2.3.1 Rice Convection Model: RCM

The Rice Convection Model (RCM) is a model of the inner and middle magneto-

sphere, including the ring current, plasma sheet and their coupling to the ionosphere

[Toffoletto et al. (2003)]. The RCM uses a bounce-averaged kinetic model and as-

sumes an isotropic distribution function to solve for the collisionless Vlasov equation

for the particles in this region. The species included in the RCM are H+, O+ and

electrons.
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When coupled with a global magnetosphere model, RCM takes the time dependent

magnetic and electric field input from an outer boundary of choice, which defaults

to 10 Earth radii in the SWMF. Then the ExB and gradient curvature drifts are

calculated for the transport of particles. The source term in the RCM is the inflow

from the outer boundary, namely the global magnetosphere component, and the loss

terms are outflow from the boundary and the charge exchange with neutral hydrogen.

The RCM can also be coupled with a high-latitude ionosphere model in the

SWMF. In this case, the potential electric field is obtained through solving the

current continuity equation and the currents close through the ionosphere through

Field-Aligned Currents (FACs), giving rise to a more self-consistent estimate for the

Region-2 current systems.

2.3.2 Comprehensive Ring Current Model: CRCM

The Comprehensive Ring Current Model (CRCM) is a kinetic model of the ring

current and radiation belts. It solves the Boltzmann equation assuming an anisotropic

pitch angle distribution for the particles. Building upon the RCM, CRCM also takes

the time varying electric and magnetic fields to calculate the transport equations,

in addition it accounts for losses along the particle drift paths [Fok et al. (2001)].

When coupled with a global magnetosphere, the CRCM generates the initial par-

ticle distribution in the ring current through the steady-state solution at the outer

boundary.

2.4 Ionosphere Model

The Ridley Ionosphere Model (RIM), is a 2D ionospheric potential solver at 1000

km [Ridley et al. (2004)]. When coupled with global and inner magnetosphere models,

it maps the Region-1 and Region-2 currents to the top of the ionosphere and generates

a conductance pattern to calculate the electric field potentials. RIM also uses an
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empirical relation for conductance that relates ground magnetic perturbations to Hall

and Pedersen conductances [Ridley et al. (2004)]. Later an exponential empirical

relationship is used to calculate the particle precipitation that creates the diffuse

aurora in the model. The electric field potential and particle precipitation output

from RIM can be used to drive the Global Ionosphere Thermosphere Model.

2.5 Ionosphere Thermosphere Model

2.5.1 The Model Description

The ionosphere and thermosphere are intrinsically coupled systems that require

a self-consistent modeling approach. To provide a complete understanding of the

geospace system response to solar wind pressure variations, ion and neutral behaviour

should be examined through a first-principles based model. The Global Ionosphere

Thermosphere Model (GITM) by Ridley et al. (2006) is a three dimensional global

model, using an altitude-based non-uniform grid. It solves the dynamics and chem-

istry equations without the hydrostatic assumption.

The following neutral densities are included in GITM:O,O2, N(2D), N(2P ), N(4S),

N2, NO,H andHe. The ion species included in the code are as follows: O+(4S), O+(2D),

O+(2P ), O+
2 , N

+, N+
2 , NO

+, H+ and He+. The initial density profiles used in the sim-

ulations are from the International Reference Ionosphere (IRI) [Bilitza (2000)]. Each

species has individual vertical velocities based on gradient in partial pressure, grav-

ity, ion drag, Corriolis force, geometry and friction. The terms affecting the overall

temperature are solar EUV, Joule and particle heating, conduction, NO and CO2

radiative cooling.

The high-latitude drivers are particularly important when investigating the geospace

system response to solar wind drivers. Solar wind-magnetosphere interactions signifi-

cantly affect the high-latitude ionospheric electrodynamics and particle precipitation.
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GITM can be coupled with various different high-latitude ionospheric electrodynam-

ics models, including the output from the aforementioned ionosphere model, RIM,

that self-consistently solves for the global and inner magnetospheres and projects

them to a 2D ionosphere at 1000 km.

2.5.2 The Governing Equations

GITM solves the fluid equations for neutrals, ions and electrons in three-dimensional

spherical coordinates. The fundamental equations for each of them are discussed be-

low.

2.5.2.1 Neutral equations

The continuity equation for neutrals is shown in Equation 2.5.

∂Ns

∂t
+Ns5 ·u + u ·Ns = 0 (2.5)

Here u is the bulk neutral velocity in the horizontal direction and the Ns is the

number density for species s. The momentum equation for the neutrals is shown in

Equation 2.6.

∂u

∂t
+ u · 5u +5T +

T

ρ
5 ρ = 0 (2.6)

where, ρ denotes the total mass density of the neutrals and T is the normalized

neutral pressure, i.e, p/ρ. Finally, the energy equation of neutrals is show in Equation

2.7

∂T

∂t
+ u · 5T + (γ − 1)T 5 u = 0 (2.7)

where γ is the specific heat ratio of the gas. The horizontal and vertical advection

is treated separately in GITM. The derivation of the conservation equations for the
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horizontal and vertical components in spherical coordinates are described in detail in

Zhu et al. (2016), Ridley et al. (2006), Zhu (2016). The continuity equation in the

vertical direction after these derivations becomes:

∂Ns

∂t
+Ns

(
1

r

∂uθ
∂θ

+
1

rcosθ

∂uφ
∂φ
− uθtanθ

r

)
+
uθ
r

∂Ns

∂θ
+

uθ
rcosθ

∂Ns

∂φ
= 0 (2.8)

The eastward component of the momentum equation is as follows:

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uθ

rcosθ

uθ
∂φ

+
1

rcosθ

∂T

∂θ
+

T

rρcosθ

∂ρ

∂φ

=
Fφ

ρ
+
uθuφtanθ

r
− uruθ

r
+ 2Ωuθsinθ − 2Ωurcosθ

(2.9)

Here Fφ is the force due to ion-neutral friction and neutral viscosity in the Φ

direction. This term can be expressed as follows:

Fφ = ρiµin(vθ − uθ) +
∂

∂r
η
∂uθ
∂r

(2.10)

where µin is the ion-neutral collision frequency and η is the viscosity coefficient.

The northward component of the momentum equation is given below:

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uφ

rcosθ

∂uθ
∂φ

+
1

r

∂T

∂θ
+

T

rρ

∂ρ

∂θ

=
Fθ

ρ
−
u2φtanθ

r
− uθuφ

r
− Ω2rcosθsinθ − 2Ωuφsinθ

(2.11)

Here the Ω is the Earth’s angular velocity, i.e., effect of the Coriolis force and Fθ is

the ion-neutral friction and neutral viscosity in the θ direction as shown in Equation

2.12.

Fθ = ρiµin(vθ − uθ) +
∂

∂r
η
∂uθ
∂r

(2.12)
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Finally, the horizontal energy equation for the neutrals is:

T

∂r
+

uφ
rcosθ

∂T

∂θ
+ (γ − 1)T

(
1

r

∂uθ
∂θ

+
1

rcosθ

∂uφ
∂φ
− uθtanθ

r

)
= 0 (2.13)

and the vertical energy equation for the neutrals is:

∂T

∂t
+ ur

∂T

∂r
+ (γ − 1)T

(
2ur

r
+
∂ur

∂r

)
=

κ

cνρmn

ε (2.14)

where cν is the averaged specific heat, κ is the Boltzmann constant, the mn is the

average mass of neutrals, ε is the energy term that contains the solar EUV heating,

NO and O cooling, thermal conduction and Joule heating rates.

2.5.2.2 Ion equations

The ion equations are also separated into the horizontal and vertical components.

The ion continuity equation in the horizontal direction is as follows:

∂Nj

∂t
+
vθ
r

∂Nj

∂θ
+

vφ
rcosθ

∂Nj

∂φ
= Lj (2.15)

Here, N is the number density of the ion species j and Lj is the source term. The

ion continuity equation in the vertical direction is as follows:

∂Nj

∂t
+ vr

∂Nj

∂r
+ Nj

∂vr

∂r
= 0 (2.16)

Here, N is the natural log of the number density of the ion species j. This equation

is solved for O+ only, since it is the most dominant species at the F-region. The ion

momentum equation is shown in Equation 2.17.

ρi
dv

dt
= −5 (pi + pe) + ρig + eNe(E + v ×B)− ρiµin(v − u) (2.17)

where g is the gravity term. This equation can be further simplified by neglecting
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the temporal variation of the ion velocity on the left hand side. Finally, the ion energy

equation is shown in Equation 2.18.

3

2
κni

∂Ti
∂t

= −κniTi5 ·ui −
3

2
Niκui · 5Ti −5 · qi + ΣQi (2.18)

Here qi is the ion heat flow and Qi is the sum of ion heating rates. In addition,

two specific heating terms for the ions are shown in Equations 2.19 and 2.20. The

term that expresses the collisional heating of ions by the electrons is shown below.

Qie = 3κΣi
ntmtνte

mt +me

(Te − Ti) (2.19)

The heating term that defines the collisional heating of ions by neutrals is as

follows.

Qin = ΣtntmtΣk
3κ(Tn − Ti) +mk(un − ui)2

mt +mk

(2.20)

2.5.2.3 Electron equations

The calculations for electrons are simpler since the electron density is calculated

from the sum of the ion densities due to charge neutrality. Furthermore, the electron

motion is mainly controlled by the E×B, further simplifying the terms in the elec-

tron momentum equation. The resulting expression for electron velocity is shown in

Equation 2.21.

ve =
E×B

B2
(2.21)

The electron energy equation is shown in Equation 2.22.

∂Te
∂t

=
2

3
Te5 ·ve − ve · 5Te +

2

3

1

Neκ
(−5 ·qe + Qe + Le) (2.22)
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Here Qe is the total electron heating rate, Le is the total electron cooling rate,

and qe is the electron heat flow vector, which is shown in Equation .

qe = −βeJ‖ − κe5Te (2.23)

The electron heat flow vector depends on βe the thermoelectric coefficients, J‖ the

current parallel to the magnetic field and κe the electron thermal conductivity. In

addition, the collisional heating of electron by ions is described as below.

Qei = 3κnemeΣtνet
(Ti − Te)
me +mt

(2.24)

2.6 Other Tools Used in the Study

2.6.1 Ground Observations

2.6.1.1 SuperMAG

SuperMAG is an international collaboration effort, which collects and provides

a database for more than 300 ground based magnetometers [Gjerloev (2012)]. It

utilizes 3D vector measurements of the magnetic field perturbations measured on the

ground. The magnetic field contributions from the Earth’s slowly varying dipole field

is subtracted (baseline removal) from the measurements.

2.6.1.2 PFISR

Poker Flat Incoherent Scatter Radar is the first component of the Advanced Mod-

ular Incoherent Scatter Radar (AMISR) which is a radar facility designed to conduct

studies of the upper atmosphere, ionosphere and space weather events. PFISR is

located at the 65◦N and 147◦W . The radar measures plasma parameters such as

electron density, electron temperature, ion density, ion temperature, ion neutral colli-

sion frequency, ion velocity and composition. The AMISR project is led by Southwest
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Research Institute.

2.6.2 Spacecraft Observations

2.6.2.1 THEMIS

The Time History of Events and Mesoscale Interactions During Substorms (THEMIS)

mission, employs 5 identically instrumented spacecraft with a primary objective of un-

derstanding the cause of geomagnetic substorms. The instrument on board THEMIS

spacecraft are: Electric Field instrument (EFI), Fluxgate magnetometer (FGM),

Search Coil magnetometer (SCM), Electrostatic analyzer (ESA), Solid State tele-

scope (SST). In this study Themis-D, ESA measurements have been used, which are

presented in Chapter 5. For this I would like to acknowledge NASA contract NAS5-

02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically,

C.W. Carlson and J. P. McFadden for use of ESA data.

2.6.2.2 MMS

The NASA Magnetospheric Multi-scale Mission (MMS), consist of four identi-

cally instrumented spacecraft that is utilized to study the magnetic reconnection.

The FIELDS: Magnetic and Electric Field Instrument Suite is used in this study.

Therefore I would like to acknowledge Dr. Roy Torbert the lead Co-I of the FIELDS

instrument suite, and Dr. C. T. Russell, the PI of the FGM instrument.

2.6.3 SpacePy

SpacePy is a Python package for space sciences, which aims to make data anal-

ysis, modeling and visualization easier [Morley et al. (2011)]. This open-source code

library was extensively used and its functionality was further improved to visualize

and process the simulation results presented throughout this study.
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CHAPTER III

The Response of the Geospace System to Solar

Wind Dynamic Pressure Enhancements Under

Different IMF BY orientations

3.1 Introduction

The Earth’s magnetosphere undergoes a rapid compression when the solar wind

dynamic pressure exhibits a sudden increase. Such enhancements generally occur

during encounters with earthward directed IP shocks or steepened high speed stream

interfaces. The compression propagates along the magnetosphere-ionosphere (M-I)

system [Collier et al. (1998), Suguira et al. (1968) , Huttunen et al. (2005)], which can

be traced through ground magnetometers simultaneously [Araki (1994b)]. However

understanding the formation and propagation of sources behind the SI signal believed

to need further study [Tanaka (2003)].

As discussed before, the magnetic perturbations measured on the ground are a

result of enhanced and reconfigured M-I current systems during the compression of the

magnetosphere. At lower latitudes, Chapman-Ferraro currents are the primary source

[Kikuchi and Araki (1979)], whereas the field-aligned current (FACs) systems and

their closure currents play the dominant role at higher latitudes. Global simulations

by Fujita et al. (2003b), Fujita et al. (2005), Yu. and Ridley (2011), and Kubota et al.
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(2015) all displayed different ionospheric transient current systems which form on the

dayside and then propagate toward the nightside during the compression events.

Simulation results from Fujita et al. (2003a) showed an initial current system forming

as a result of the immediate magnetopause deformation, in association with the PI

signature. Later simulations by Fujita et al. (2003b) identified the magnetospheric

plasma vortices as the source of the MI signature. Their results showed both these

current systems were not a part of the preexisting Region-1 (R1) and Region-2 (r2)

current systems on the top of the ionosphere.

Using ground magnetometer results Araki (1994b) derived a model of SIs, showing

that the PI signal was caused by the equivalent current systems as a result of dusk-to-

dawn electric fields. On the contrary the MI signal was due to the equivalent current

system resulting from dawn-to-dusk electric fields. In addition, theoretical studies

of Kivelson and Southwood (1991) revealed that as the magnetopause boundary was

compressed, vortices were generated at the boundary, which then propagated with the

compression front. Likewise these vortices launched Alfven waves, which propagated

down to the ionosphere and perturb the Region 1 and 2 current systems. Similar

perturbations of the current systems were also reported by Yu and Ridley (2009)

using BATS-R-US global MHD simulations. They have shown that regardless of the

magnetic latitude, the response to a sudden dynamic pressure enhancement consisted

of two phases. However, the identification of the first phase was difficult in the

equatorial regions due to fast magnetosonic waves being frequently reflected from the

inner and outer boundary of the magnetosphere, eventually dissipating.

A self-consistent model of the M-I system imposes closure of the FAC system

through the magnetosphere and ionosphere as boundary conditions. This model re-

sults in equivalent convection flows in both the magnetosphere and ionosphere Tanaka

(2003). Such observations of ionospheric vortices were reported in Murr et al. (2002)

by combining observations from ground-based magnetometers from Northern and
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Southern hemispheres, riometers, and auroral imagers to study the relation between

FACs and traveling convection vortices (TCVs). TCVs are a pair of ionospheric

counterclockwise or clockwise convection flow vortices that form on the dayside and

propagate toward the nightside [Murr et al. (2002), Zesta et al. (1999)]. Such vortex

counterparts were also seen in global MHD simulations. Slinker et al. (1996) were one

of the first to show that the TCVs form during pressure pulses. By tracing the mag-

netic field lines that connect the two regions, they showed that the ionospheric TCVs

mapped to regions in the equatorial magnetosphere where vortical flows formed and

they were associated with such transient currents. Yu. and Ridley (2011) also showed

the formation and propagation of magnetospheric vortices and their association with

the second FAC response that created the MI part of the SC.

The transient currents also change the conductivity profile at the top of the iono-

sphere. Zhu et al. (1999) further studied the effects of precipitation from magneto-

spheric vortices to the ionosphere along the FACs and concluded that FACs associated

with TCVs can cause localized conductivity variations. Furthermore, they showed

that this enhancement of conductivity leads to distortion of TCVs and lead to the

ground magnetic perturbations.

As discussed in Section 1.2.2.1, the IMF holds a key role in understanding the

variability observed in the PI-MI signatures. Iijima and Potemra (1976) has shown

that the FAC patterns were altered significantly with varying IMF BY and BZ . The

IRIDIUM measurements reported in Anderson et al. (2008) provided a 10 year sta-

tistical distribution of the Region-1 currents derived under different IMF conditions.

These results have shown that when the IMF BY orientation was positive, the down-

ward FAC cell on the dawn sector expanded and extended equatorward, while in the

case of negative IMF BY , the upward FAC cell on the dusk sector showed the same

response. This effect was more prevalent during northward IMF BZ conditions.

The dependence of the ionospheric convection to the IMF BY orientation has
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been well established with numerous studies that include theory, satellite measure-

ments, and ground-based radar observations of ion velocity data [Backus (1986);

Heelis (1984); Heppner and Maynard (1987); Amm et al. (1999); Weimer (2005);

Wilder et al. (2013)]. Global simulations by Tanaka (2001) showed that the mir-

ror symmetry of the two-cell convection pattern was broken due to IMF BY . They

also identified the Hall currents induced by the Region-1 FAC systems was respon-

sible for the flow variations on the dayside. Yet the relation between IMF BY and

asymmetries in the ground magnetometer responses was not as widely studied. A

study by Sitar and Friis-Christensen (1996) concluded that there was no systematic

response to solar wind dynamic pressure enhancements and no evident link between

the magnetometer response and IMF clock angle, using 2500 h of solar wind data

from IMP 8 and ground magnetometers. However, not focusing on the effects of IMF

BY during northward and southward IMF BZ conditions separately might have af-

fected the results. Another study to relate the IMF properties with ground magnetic

perturbations was conducted by Weimer (2005), using the empirical model for con-

vection patterns. The study showed that the empirical model had lower skill scores at

sites close to perturbation reversals. This underlines the need for studying the IMF

BY related asymmetries in perturbation signatures with first-principles based models,

which can reproduce magnetospheric and ionospheric sources self-consistently.

3.2 Simulation Setup

To model the solar wind dynamic pressure interaction with the coupled M-I sys-

tem, we used the SWMF [Toth et al. (2005)]. The GM/BATS-R-US, IM/CRCM

and IE/RIM components were used to represent the system. The set of simulations

presented in this chapter were run on Yellowstone supercomputer cluster operated by

the National Center for Atmospheric Research (NCAR).

Three cases were simulated through the aforementioned combination to investigate
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the effects of IMF BY i.e., BY = -5 nT, BY = 0, and BY = 5 nT, while all the other

parameters were kept the same. The idealized solar wind plasma and IMF parameters

that were used to drive the system are shown in Figure 3.1a. The sudden dynamic

pressure enhancement was introduced at the outer boundary at t-7 min. The VX

increased from 350 km/s to 445 km/s. The proton number density increased from 10

amu/ cm3 to 30 amu/ cm3 and the overall dynamic pressure was enhanced 4 times

to its initial value. These values were adapted from a case study of the solar wind

dynamic pressure enhancement event on 15 August 2015. The solar wind and IMF

conditions extracted from 14 RE upstream revealed how the shock propagated from

the outer boundary to the Earth. When the compression front arrived at the subsolar

point, the value of VX was 430 km/s, the density was 26 amu/ cm3 and the BZ and

BY values deviated only slightly from their initial values.

In order to determine the ground magnetometer response to pressure change,

100 virtual ground magnetometers were implemented uniformly in between 50◦ and

80◦ magnetic latitude and with 36◦ magnetic longitude resolution. A Biot-Savart

integral-based algorithm in SWMF readily calculates the perturbations caused by

the M-I currents [Yu and Ridley (2008)]. The locations of the ground magnetometers

are shown in Figure 3.1b. A baseline value is determined (the values at t-1 min.),

and subtracted from the reported ground magnetometer responses.
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Figure 3.1:
(a) The idealized solar wind parameters for three simulations. The first
panel shows the IMF BY for case 1 (BY = −5nT ), case 2 (BY = 0nT )
and case 3 (BY = 5nT ). The second panel shows IMF BZ = 5nT , the
third panel shows the velocity, the fourth panel shows the density and the
fifth panel shows the variation in the solar wind dynamic pressure. The
red line marks the time of the pressure in the outer boundary. (b) The
positions of the virtual magnetometers in MLT coordinates.
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3.3 Response of the M-I System

3.3.1 Ground Magnetometer Response to Different IMF BY

3.3.1.1 Middle latitude Response

The magnetic north (N) component of the simulated magnetic field perturbations

at the ground was investigated to understand the response at the 50◦ and 60◦ magnetic

latitudes. The MLT-time maps of simulated responses are shown in Figure 3.2a.

The first row shows the temporal evolution at 50◦ under three different IMF BY

orientations, however there was no significant difference between the three cases. A

bipolar response to SI was recorded in all three cases, with a negative dip around 4

nT, followed by a positive perturbation around 10 nT between 11 MLT to 3 MLT.

The response was a step-wise enhancement at the dawn sector. The peaks of the

bipolar signature were recorded at around t+3 min. and t+7 min., which marked the

PI and MI phases respectively.

The SI response at 60◦, (bottom row of Figure 3.2a) was very similar to the

response at the 50◦ magnetic latitude, with slightly higher amplitudes recorded for

PI and MI phases. The response started to show minor asymmetries around dawn

sector, compared with the post-noon responses.

3.3.1.2 High latitude Response

The MLT-time maps of the simulated N-component at 70◦ and 80◦ under three

different IMF BY orientations are shown in Figure 3.2b. The first row shows the

temporal evolution at 70◦. It can be seen that very clear bipolar signatures have

formed as a response to SI at the 70◦ magnetic latitude. There were also significant

dawn-dusk asymmetries between the three different cases. Between 18 and 21 MLTs,

simulations driven with negative (left) and positive (right) BY , showed a positive

perturbation followed by a negative perturbation in the N component. However, the
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simulations driven with zero BY had a negative perturbation at this region followed

by a positive response. In addition, between 0 and 6 MLTs, the simulated response to

the SI under a negative BY (left) had a negative - positive - negative trend, whereas

the positive and zero BY responses only recorded a negative then positive trend. In

all three cases, the peaks of the bipolar signature were recorded around t+3 min. and

t+7 min., similar to the middle latitudes, at the post-noon sectors. Yet, the pre-noon

sectors recorded these peaks about 2 minutes earlier.

The bottom three panels in Figure 3.2b show the perturbation maps for stations

at 80◦ magnetic latitude. At this latitude the asymmetries between different cases

became very apparent. The simulations driven with negative BY (left) showed a

strong negative perturbation as a response to SI. Between 10 to 00 MLTs, the response

had a weak positive followed by a stronger negative trend. On the contrary, between

00 to 06 MLTs, the response was a strong negative followed by a weak positive trend.

The simulations driven with zero BY (middle) showed overall weaker perturbations

compared to positive and negative BY cases, with asymmetric post-noon and pre-noon

responses in accordance with Araki (1994b) model. The SI perturbations during

the positive BY (right) showed an overall stronger positive response. There were

no significant asymmetries between post-noon and pre-noon sectors, however the

response was stronger at the dawn sector. Similarly, the peaks of perturbations

corresponded to previous timings of PI and MI peaks.

3.3.2 Field-aligned Current Systems Under Different IMF BY

The temporal evolution of the FAC systems as a response to solar wind dynamic

pressure enhancement under different IMF BY orientations are presented in Figure

3.3a. These polar plots show the Northern hemisphere down to 50◦ magnetic latitude

with magnetic noon located on top. The red contours show the upward FACs, whereas

the blue contours show the downward FACs. The solid and dashed lines show the
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(a)	Mid-La*tude	Response	

(b)	High-La*tude	Response	

Figure 3.2:
The MLT-time maps of the magnetic perturbations detected by the uni-
formly distributed virtual ground magnetometers located at middle lati-
tudes (a) and high latitudes (b) are shown. The rows show 50◦, 60◦, 70◦

and 80◦ latitudes (top to bottom). The panels on the left show the re-
sponses when IMF BY is negative, the ones in the center show the case
when BY is 0, and the panels on the right show the response when BY

is positive. The red contours show positive, blue contours show negative
perturbations. The purple line is the zero contour. Green lines show the
dusk, noon, dawn, midnight sectors.
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electric field potentials, while the solid purple line is the open closed field boundary

output from the simulations. The top row shows the FACs at the time of arrival of

the compression front to the Earth’s magnetopause, t. These initial FAC profiles are

very different due to the orientation of BY . Each column in Figure 3.3a shows the

response under a different BY orientation, that is negative, zero and positive from left

to right. Each row in Figure 3.3a shows a different time interval with 1 min. cadence

starting from t (top) to t+3 min. (bottom).

The FACs under negative IMF BY had a larger downward FAC cell at the high

latitude region, whereas the the FACs under positive BY had a larger upward FAC cell

at the same region. The FACs under zero BY showed the nominal NBZ current system

in which both downward and upward FACs had the same cell size at higher latitudes.

As the compression front reached the Earth, all three FAC profiles showed a pair of

an additional upward FAC cell on dawn and a downward FAC cell on dusk sectors,

around 70◦ magnetic latitude. This FAC pair was later seen as propagated towards

the midnight sector at t+2, mapping to a slightly higher magnetic latitude around

75◦. At the same time instance, t+2, another additional FAC pair with opposite

polarities to the initial pair had formed in the dayside at all simulated cases. The

new FAC pair had an upward cell on dusk and a downward cell on dawn again around

70◦ magnetic latitude. At t+3, this second FAC pair can be seen as it propagated to

the nightside following the first FAC pair. The upward FAC of the second pair was

stronger (0.1 - 0.2 µA/m2) during the negative BY case, and the downward FAC was

stronger during the positive BY case.

In order to investigate these transient FACs, the pre-compression FAC profiles

were subtracted from each time snapshot. The evolution of these perturbation FACs

are shown in Figure 3.3b. The FACs related with PI had the same direction in

all three cases, which was upward at the pre-noon and downward at the post-noon

sectors. The strength of the perturbation currents did not vary in between the three
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cases however the downward cell extended towards noon during the negative BY ,

whereas upward cell extended towards noon during positive BY as can be inferred

from the t+1 snapshots. The second perturbation FAC pair had an opposite polarity

to that of the first one. This current pairs occur at t+2, displaying more asymmetric

features compared to the previous pair. In this case, the downward cell extended

towards noon during the positive BY , whereas the upward cell extended towards noon

during negative BY . These perturbation FACs with different polarities resulted in

the previously reported variations in the simulated ground magnetometer signatures.

Therefore the initial perturbation FAC pair will be referred to as PI-FACs, whereas

the second perturbation FAC pair will be referred to as MI-FACs from here forward.
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3.3.3 Contributions from Different Currents Systems to the Magnetic

Perturbations at the Ground

In order to understand the sources of the simulated ground magnetic perturbation

responses, the contributions from different magnetospheric and ionospheric currents

have to be taken into account. In this section the magnetic perturbations caused by

FACs, Pedersen, Hall, and magnetospheric currents are discussed. The response of

the zero BY case is provided as an example.

Figure 3.4 shows the polar plots of perturbation in the north component of the

simulated magnetic field computed from FACs, Pedersen currents, Hall currents, mag-

netospheric currents and the total perturbation (from left to right) at three time in-

stances which are before the event (t-1), during the PI peak (t+3) and during the

MI peak (t+7). The subtraction of the baseline value resulted in zero before the

compression as can be seen from Figure 3.4a to Figure 3.4e (first row).

During the PI phase (second row), the perturbations from the FAC and Pedersen

currents roughly cancelled each other. The perturbation profile due to the Hall current

was negative on the dayside, with a negative dip on the high-latitude noon sector, and

a positive peak around 5 MLT. The response in the low latitude sectors in between

0 to 6 MLT were positive. The high latitude response to Hall currents between 15-

0 MLT was also positive. The contribution from the magnetospheric currents was a

weak positive except the high latitude dawn to noon sectors. The overall perturbation

profile resembled the Hall perturbation profile with slight variations at the low latitude

sectors.

During the MI phase (bottom row), the polarity of the FAC and Pedersen cur-

rents were reversed. Between 2-15 MLT the magnetic perturbation response to FACs

was negative, whereas it was positive everywhere else. Similarly, between 2-18 MLT

the magnetic perturbation response was positive to the Pedersen currents, however

at the nightside the high-latitude response was negative. The magnetic perturbation
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response to Hall currents at this time was asymmetric. The high latitude response

between 8-22 MLT (clockwise) was negative, while elsewhere the response was pos-

itive. At lower latitudes, the responses had opposite signs. The MI responses were

stronger than the PI responses to the Hall currents. The response to magnetospheric

currents remained similar to that of the PI phase. The total perturbation profile again

resembled the Hall perturbation profile, with enhanced response at the pre-midnight

sector due to the contributions from the FAC perturbations.

Figure 3.5 shows the total magnetic perturbation profiles taken at the PI (top) and

MI (bottom) peaks for the three cases. During the PI phase (top row), the response

to negative BY was a negative perturbation at the high latitudes extending from the

midnight region towards the noon. This response was similar in zero BY but the

amplitude was weaker. However the negative response in positive BY was confined

to the 0-2 MLT and 8-15 MLT regions, with a patch of positive perturbation around

2-8 MLT. The amplitude of the negative response was also weaker compared to zero

and negative BY cases, whereas the positive response had stronger amplitude.

During the MI phase (bottom row), the simulated response to positive BY was

the strongest with a peak amplitude around 160 nT. In comparison, the response to

negative BY had a peak at the high latitude noon sector that was around 100 nT.

There was a magnetic local time asymmetry observed in the response of the negative

BY case.

3.3.4 Magnetospheric Sources for the Perturbations at the Ground

Simulated magnetometer responses showed significant asymmetries during the

compression event due to variations of the perturbed FACs and ionospheric currents.

To examine the source of the perturbed FACs, we trace the magnetic field lines that

link the disturbance currents at the ionosphere to the equatorial magnetosphere. The

red solid lines indicate an upward FACs associated field line, whereas the blue solid
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lines show a downward FAC associated field line. The arrows show the velocity vectors

in the equatorial plane with different colors representing their flow speed.

3.3.4.1 PI Response

Figure 3.6 shows two time instances taken at t and t+1 for three different BY

cases. At time t, the FAC configuration of each case was different but as can be seen

more clearly from the snapshots at t+1, the compression led to an upward FAC on

dawn and a downward FAC on dusk in all three cases. This current was generated

as a result of magnetopause deformation and reconfiguration of the magnetospheric

return flows to form a counter clockwise rotating vortex on dawn, and a clockwise

rotating vortex on dusk sectors.
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Figure 3.4:
The contour plots showing contribution from different current systems
in the M-I system for the case where BY is zero at three time instances
t-1, t+3, and t+7 minutes. From left to right each column shows FAC,
Pedersen, Hall, Magnetospheric currents and the total perturbation re-
spectively.
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Figure 3.5:
The ground magnetic perturbation profiles taken at peak PI (t+3 min.)
and MI (t+7 min.) are shown for the northern hemisphere. From left to
right the columns show negative BY , zero BY , and positive BY cases.
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3.3.4.2 MI Response

Figure 3.7 shows two time instances taken at t+3 and t+7, in which the evolution

and the propagation of the magnetospheric flow systems in the equatorial plane that

gave rise to the second perturbation FACs can be seen for three different BY cases.

For all of the cases, a clockwise rotating vortex on the dawn and a counter clockwise

rotating vortex on the dusk sector forms at t+3. These flow vortices were associated

with an upward FAC on the dusk and a downward FAC on the dawn. The rotation

sense of the vortices were opposite to the ones observed in the PI phase. Similarly

the perturbation FACs associated with these vortices also had opposite senses of

directions to those seen in the PI phase.

These findings are in alignment with the Kivelson and Southwood (1991) study

which related the ionospheric vortices to magnetospheric vortices. They argued that

as the pressure front propagated towards the tail, the shear flows created vortices that

induced a FAC pair that was responsible for the magnetic perturbations observed at

the ground. The MI vortices mapped to 7-8 RE within the magnetosphere, whereas

the PI flow anomalies mapped to 9-10 RE distances. This also explains why the PI

FACs mapped to higher latitudes in the ionosphere compared to MI FACs.

Figures 3.6 and 3.7 show that regardless of the initial FAC profiles, the magneto-

spheric response to solar wind dynamic pressure enhancement was very similar, with

slight variations between the locations of the perturbed magnetospheric flow.
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3.4 Discussion

The high-latitude ground magnetometer perturbations in the global simulations

show a two-step response to sudden solar wind dynamic pressure enhancements,

namely the PI and MI phases. This two-stage response can be traced back to both the

magnetosphere and the ionosphere due to the coupling through FACs. Evaluating the

effects of the compression with different IMF BY orientations showed that although

the magnetospheric and ionospheric responses were very similar, the differences in the

pre-existing FAC system were responsible for the asymmetric ground magnetometer

response.

3.4.1 PI Signature Under Different IMF BY

The PI signature has been historically associated with the wave mode conversion

at the magnetopause at the time of compression [Fujita et al. (2003a); Yu and Ridley

(2009)]. Due to the Alfven waves created by mode conversion from magnetosonic

waves at the magnetopause, the currents carried by the magnetic field lines to the

high-latitude ionosphere were enhanced. In Figure 3.3, the perturbation FAC system

due to compression occurred at t+1. This happened within 1 minute of the compres-

sion of the magnetosphere and can be seen more clearly in both negative and positive

IMF BY cases. When BY was zero, the perturbation currents were 0.1-0.2 µA/m2

weaker than the nonzero BY case during the PI phase. The simulated locations of

the perturbation FACs were upward in the pre-noon sector and downward in the

post-noon sector around 70◦ magnetic latitude, which is consistent with those at 14

MLT at 73◦ magnetic latitude shown in Tian et al. [2016].

Figures 3.2a and 3.2b show that the PI-related response varies with magnetic

latitude, longitude and time. The overall PI duration was around 1 minute at 50◦

magnetic latitude. As the latitude increased, the duration of the PI response also

increased by 1 minute. At higher latitudes, the duration of the PI signature further
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increased to 4 minutes. PI signatures peaked at t+3 for all three cases at the 5 MLT

region. The largest negative perturbation was around 90 nT at 80◦ magnetic latitude,

for the negative BY case. This peak value decreased to 60 nT for the zero and positive

BY cases.

3.4.2 MI Signature Under Different IMF BY

The magnetospheric sources for the MI responses have been found to be the twin

vortex structures [Motoba et al. (2003); Yu and Ridley (2009); Sun et al. (2014)].

The MI vortices appeared at t+3 in all three cases on the dayside and propagated

towards the nightside. In all three cases, vortices rotated clockwise on the dawnside

and counterclockwise on the duskside. The magnetospheric vortices were around 3 RE

wide, which is consistent with the derived spatial scales from Time History of Events

and Macroscale Interactions during Substorms (THEMIS) observations by Tian et al.

(2016). The magnetospheric vortices mapped back to the ionosphere in a reversed

sense, i.e., clockwise at dusk and counterclockwise at dawn, which is consistent with

the theoretical studies [Motoba et al. (2003); Tanaka (2007); Zhao et al. (2015)].

The MI FAC system had the same sense of direction as the R1 current systems and

the pair was centered at 67◦ magnetic latitude when they formed which was slightly

lower than the PI FAC system. The clockwise-rotating dawn vortex was associated

with the downward FACs, while the counterclockwise-rotating dusk vortex was asso-

ciated with upward FACs. The ionospheric FAC pairs propagated from the dayside

towards the nightside ionosphere together with their magnetospheric counterparts.

In contrast to the Araki (1994a)model of SIs, where the polarity changes only

between morning and afternoon sectors at the high latitudes, the simulated magnetic

perturbations showed a more complex variation for PI-MI signatures. During negative

and zero IMF BY conditions, there were no bipolar signatures between 11 and 13 MLT

at 80◦ magnetic latitude. However the bipolarity occurred from negative to positive
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at 10-23 MLT below 70◦ magnetic latitude and from positive to negative at 14-23

MLT above 70◦ magnetic latitude for these cases. There was also a weak positive to

negative change between 60◦ and 70◦ around 3 MLT. This change can be seen at 7

MLT for positive BY case. The high-latitude response at 12 MLT also did not show

bipolarity during positive BY .

3.5 Summary and Conclusions

The effects of sudden enhancements in the solar wind dynamic pressure under

different IMF BY configurations were investigated using a global MHD model. In

particular, 100 uniformly distributed virtual magnetometers were used to understand

the global behaviour of the ground magnetic perturbations as functions of magnetic

latitude, longitude, and time. The magnetospheric and ionospheric sources of these

perturbations were investigated through magnetospheric flows, ionospheric FACs and

magnetic field perturbations from magnetospheric and ionospheric currents. The

findings can be summarized as follows:

1. Two different pairs of transient FACs occurred, with different directions at dawn

and dusk sectors. These perturbations FACs for both PI and MI phases did not

show significant differences during different IMF BY orientations, however the

pre-existing NBZ current systems differed drastically for different y directions.

The superposition of the transient FACs with these BY dependent NBZ currents

created asymmetric responses.

2. The magnetic field perturbation contributions from FAC and Pedersen currents

almost cancel each other, however there were asymmetries associated with these

current systems as well. The total magnetic perturbation at the ground level

was mostly due to the Hall current systems, with 12 MLT being the region

where peak perturbation was recorded during negative BY , and 6 MLT being
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the region where the peak occurred during the positive BY . For the zero BY

simulations, there were two peaks located at 6 and 12 MLTs.

3. The magnetospheric sources for the PI and MI signatures were also identified.

PI FACs mapped to the magnetopause boundary, whereas MI FACs mapped to

well-defined flow vortices at dawn and dusk sectors. These vortices occurred at

the dayside and propagated towards the nightside while at the same time the

MI FACs occurred at pre and post-noon sectors, and propagated towards the

nightside through the dawn and dusk sectors.
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CHAPTER IV

A Case Study of a Sudden Solar Wind Dynamic

Pressure Increase on the Geospace System

4.1 Introduction

The magnetospheric response to sudden dynamic pressure enhancements has been

widely studied through theory and observations. Kivelson and Southwood (1991) was

first to show that flow perturbations due to compression can excite a pair of vortices

at dawn and dusk sectors with opposite senses of rotation. Their findings on the

direction of the FACs as a result of such perturbed flows, had been confirmed by

modeling studies and significantly resembled the FACs on the top of the ionosphere

[Fujita et al. (2003a), Fujita et al. (2003b), Kataoka et al. (2004), Motoba et al. (2003),

Ozturk et al. (2017), Samsonov and Sibeck (2013), Yu. and Ridley (2011), Zhao et al.

(2015)].

The FACs at the top of the ionosphere and the horizontal ionospheric currents

(Hall and Pedersen) can be reconstructed from ground magnetometer observations

[Kamide et al. (1976), Matsushita and Xu (1982), Untiedt and Baumjohann (1993),

Weygand et al. (2011), Weygand et al. (2012)]. It is known that the Hall currents

are the most significant contributors to the observed magnetic field perturbations at

ground levels under the assumption of a uniformly conducting ionosphere [Fukushima
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(1969)]. Therefore, the reconstructed currents are very close approximations to the

Hall current configurations [Keiling et al. (2009)].

Fukushima (1969) showed that the ionospheric flow patterns are antiparallel to

the Hall currents. During sudden solar wind dynamic pressure enhancements these

convection flows are significantly perturbed and traveling convection vortices are ob-

served [TCVs; Clauer et al. (1984), Friis-Christensen et al. (1988), Glassmeier and

Heppner (1992), Honisch and Glassmeier (1986), Lanzerotti et al. (1991)]. The PI

and MI FACs that form as a result of sudden dynamic pressure enhancement [Fujita

et al. (2003a), Fujita et al. (2003b), Yu and Ridley (2009), Ozturk et al. (2017)], can

lead to TCV type twin vortices that form on the dayside and propagate towards the

nightside. There are also theoretical and observational studies that showed connec-

tions between TCVs and magnetospheric vortices [Glassmeier and Heppner (1992),

Glassmeier et al. (1989), Keiling et al. (2009), Kim et al. (2015), Slinker et al. (1996)].

The perturbation FACs significantly alter the ionospheric convection which in

turn affects the ionosphere-thermosphere system. Even though the magnetospheric

sources of the ionospheric perturbations in the convection profiles have been studied

extensively, how the perturbed flows affect the I-T system is still not well understood.

One of the most important studies on the topic was conducted by Schunk et al.

(1994) using the Utah State University time-dependent ionospheric model. A pair

of oppositely directed FACs were introduced to the simulation and propagated from

dayside to the nightside with a speed of 3 km/s, mimicking the TCV observations.

They showed that the local ion and electron temperatures were enhanced on the path

of TCV. As a result, the NO+ density increased, while the electron and O+ densities

were depleted [Schunk et al. (1994)].

The response of the I-T system to solar wind dynamic pressure enhancements has

been discussed in various studies [Valladares et al. (1999), Zou et al. (2017), Kim

et al. (2015), Shi et al. (2017)]. Valladares et al. (1999) used Greenland magnetome-
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ter arrays and the Sondrestorm Super Dual Auroral Radar Network (SuperDARN)

to show that magnetic perturbations larger than 100 nT at the ground were associ-

ated with elevated ion temperatures and plasma density depletions Valladares et al.

(1999). Similarly, using the Poker Flat Incoherent Scatter Radar (PFISR), Zou et al.

(2017), showed that ion temperatures increased by over 3000 K when PI and MI

FACs propagated above the site. In addition, they found that there was a persistent

electron temperature enhancement and an ensuing density drop in the F region [Zou

et al. (2017)]. In addition, Kim et al. (2015) used SuperDARN and the European

Svalbard Incoherent Scatter Radar to show electron and ion temperature enhance-

ments. Their study also employed ground magnetometers to show pressure induced

ionospheric vortical convection patterns in association with the enhanced tempera-

ture. Finally, using the Scanning Doppler Imager (SCANDI) they demonstrated sig-

nificant variations in the thermospheric winds, providing evidence that the pressure

can perturb the thermospheric system [Kim et al. (2015)]. Another significant study

that shows thermospheric disturbances as a response to solar wind dynamic pres-

sure enhancements was conducted by Oliveira et al. (2017). Applying the superposed

epoch analysis (SEA) technique to the Challenging Minisatellite Payload and Gravity

Recovery and Climate Experiment (CHAMP) measurements, they showed that the

neutral mass densities were enhanced as a response to compression [Oliveira et al.

(2017)]. Similarly, Shi et al. (2017), reported enhanced neutral mass density from

CHAMP and Gravity Recovery and Climate Experiment (GRACE) measurements,

coinciding with increased Poynting flux measurements from the Defense Meteorologi-

cal Satellite Program (DMSP) during sudden dynamic pressure enhancement events.

The OpenGGCM simulations for the event showed that the location of enhanced

Poynting Flux coincided with the transient FAC systems [Shi et al. (2017)]. These

studies show that the pressure enhancements in the solar wind not only can strongly

influence the ionosphere system locally, but also can also cause global and long-lived
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effects throughout the I-T system.

At high latitudes Poynting Flux can be used as a proxy of Joule heating, which

is a key parameter when describing the momentum and energy transferred from the

magnetosphere to the I-T system [Knipp et al. (2004)]. The sparseness of continu-

ous high resolution measurements of ionospheric electric fields, electron densities and

neutral winds make quantification of Joule heating using experimental measurements

very difficult [Deng and Ridley (2007), Thayer (1998), Verkhoglyadova et al. (2016)].

The numerical modeling of the Joule heating is also challenging because the input

used in most I-T models are empirical models which spatially and temporally smooth

the electric field data [Codrescu et al. (1995), Foster et al. (1986), Heelis et al. (1982),

Thayer (1998), Weimer (1996)]. Combined with the lack of realistic conductivity

models, numerical modeling of Joule heating usually yields in a systematic underes-

timation [Deng and Ridley (2007), Huang et al. (2016), Johnson and Heelis (2005),

Verkhoglyadova et al. (2016)]. In addition to the smoothing, most empirical models

of the ionospheric electric fields do not accurately capture the dynamics of the active

periods such as the solar wind dynamic pressure enhancements. Therefore, employing

electrodynamics solutions from a first-principles model with high temporal and spa-

tial resolution has the potential to significantly improve our current understanding of

the geospace response to solar wind dynamic pressure enhancement events.

4.2 Methodology

The 17 March 2015 event, which was one of the most geoeffective events of solar

cycle 24 [Kataoka et al. (2015), Wang et al. (2016)] was chosen for examination with

MHD and global I-T models. The ionospheric disturbances have been reported in

many studies [Cherniak et al. (2015), Fagundes et al. (2016), Jacobsen and Andalsvik

(2016), Liu et al. (2016), Verkhoglyadova et al. (2016)]. In particular PFISR was at

an ideal location to capture the propagation of shock-induced FAC and convection
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vortices [Zou et al. (2017)].

4.2.1 Simulation Setup

For this study, the global MHD simulation was driven by the solar wind and in-

terplanetary magnetic field (IMF) data obtained from the Wind spacecraft at L1,

propagated to the upstream boundary at X = 32 RE. The simulation results were

shifted by 16 minutes to minimize the timing uncertainties stemming from the propa-

gation of the solar wind values in the simulation domain. This value was determined

by comparing the perturbations in the simulation to the observed compression time

in the sym-H index which was at 0445 UT. Figure 4.1a shows the propagated solar

wind measurements and IMF values for BY , BZ , VX , number density and the sym-H

index between 0430 UT and 0515 UT. Figure 4.1b shows the BY , BZ , VX , number

density and the pressure values taken from the simulations at the subsolar point for

comparison. The red line marks 0445 UT, the arrival of the compression front to the

Earth. Both the velocity and density values prior to compression were flat in WIND

observations, however the simulated values in Figure 4.1b showed mild enhancements

at 0442 UT, around 50 km/s and 3cm−3 respectively. These artificial compression

signals in the upstream conditions may sometimes occur in numerical simulations,

because the MHD solvers allow for small amounts of divergence of B to occur, which

is then stabilized with waves generated close to discontinuities [Powell (1994), Toth

(2000)]. Apart from this minor enhancement, the IMF values in the simulation closely

resembled the WIND measurements. The VX increased from 420 to 510 km/s, while

the density increased from 18 to 58 cm−3. The IMF BY was close to zero before the

compression, leading to a symmetric configuration in the ionospheric FACs. How-

ever, with the start of the compression, BY turned positive and stayed positive until

0504 UT. This variation in BY is expected to create a dawn-dusk asymmetry in the

ionospheric FACs [Tanaka (2001)]. IMF BZ stayed northward, further intensifying
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during the compression to 25 nT.
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For this study, the GM inner boundary was set to 2.5 RE from the center of

the Earth. The computational domain was a three-dimensional box in geocentric

solar magnetospheric coordinates that started from 32 RE upstream of the Earth in

the X direction to 224 RE tailward and -128 RE to +128 RE both in the Y and

Z directions. The finest resolution was closest to Earth, where the cells had 1/8

RE grid resolution.To understand the global magnetic signatures on the ground, 600

virtual ground magnetometers were implemented in each hemisphere uniformly from

the magnetic equator up to 80◦ latitude (4◦ in latitude by 12◦ in longitude).

The results obtained from the coupled GM-IM-IE modules including convection

and auroral precipitation then were used to drive the GITM. For this study, a spatial

resolution of 4◦ in longitude to 1◦ in latitude was used for the region between 100

and 600 km. The GITM simulation was first driven by the empirical Weimer convec-

tion model Weimer (2005) and the Ovation aurora model Newell et al. (2002), from

15 March 2015 0000 UT, that was, 2 days before the event, to 17 March 2015 0405

UT, that was, 40 min before the compression, in order to allow the model to converge

to a solution that was not affected by the initial conditions. These empirical models

were run with the Wind measurements of the solar wind and IMF as inputs. From

0405 UT onward, the electric potentials and auroral precipitation obtained from the

MHD simulation were used to drive GITM, updating the electrodynamic patterns ev-

ery 10 seconds to better capture the temporal and spatial variations associated with

the solar wind drivers.

4.2.2 Validation of the Simulation Results

In order to validate the model, the virtual magnetometer responses corresponding

to the same locations of the SuperMAG ground magnetometers were used and the

simulated results were compared with the measurements. Figure 4.2 shows the com-

parison of the Poker Flat (PKR) magnetometer measurements (red) with the virtual
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Figure 4.2:
The comparison of the N-component of the Poker Flat (PKR) magne-
tometer observations (red) with the simulated magnetometer response
(blue) extracted at the same location of PKR, during the solar wind dy-
namic pressure enhancement is shown. The negative preliminary impulse
signature was observed at 0445 UT.

PKR magnetometer (blue) for the magnetic North component. After the baseline was

extracted, the PKR magnetometer recorded a sharp decrease around 120 nT starting

at 0445 UT, which was the PI signature associated with the SI. The PI dip was then

followed by a positive perturbation of 100 nT that corresponded to the MI signature

of the SI. The virtual magnetometer responded to the minor numerical compression

shown in Figure 4.1a at 0442 UT. The good agreement between the MHD model re-

sults and the PKR observations demonstrated that the global MHD model captured

the ionospheric drivers well at this location and could be used to drive GITM to

further investigate the I-T responses over Poker Flat.

76



4.3 Magnetospheric Response

The magnetosphere response to compression is shown in Figure 4.3 for two time

steps, 0446 UT and 0447 UT which corresponds to the MI phase. The formation of

the magnetospheric vortices at the dayside (0446 UT) and their propagation towards

the nightside (0447 UT) can be seen clearly. The vortex on the dawn, which was

centered at X=3 RE, Y=-5 RE, had a clockwise sense of rotation and was associated

with a downward FAC. This vortex mapped to the 69◦ magnetic latitude and 9 MLT

at the top of the ionosphere at 0446 UT. The vortex on the dusk, which was centered

at X=6 RE, Y=-4 RE, had a clockwise sense of rotation and was associated with a

downward FAC. This vortex mapped to the 72◦ magnetic latitude and 15 MLT at the

top of the ionosphere at the same time.

The propagation of these two vortices can be seen in Figure 4.3b at 0447 UT.

The dawn vortex was centered at X=-1 RE, Y=-6 RE, mapping to 7 MLT and 68◦

magnetic latitude. Similarly, the dusk vortex was centered at X=-1 RE, Y=+6 RE,

mapping to 17 MLT and 66◦ magnetic latitude at this time step. These vortices

propagated towards the nightside and eventually dissipated around 0515 UT.
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4.4 Ionospheric Response

The ionospheric response to the sudden solar wind dynamic pressure enhancement

was examined through FACs, Joule heating, ion temperature and convection profiles

and the global variations in the N component of the magnetic perturbations recorded

by the virtual ground magnetometers. The variation of these profiles at key time

steps are shown in Figure 4.4. The ionospheric temperatures and convection results

were extracted from the GITM simulations, and they are in geographic coordinates

as opposed to the other profiles shown in Figure 4.4.

The FAC profile at the quiet time, 15 minutes before the arrival of the compression

front, showed symmetrical upward and downward FAC profiles since the IMF BY was

very close to zero at the time. The Joule heating profile was mostly zero as shown in

the second row of Figure 4.4a. The non zero locations corresponded to the boundary

between upward and downward FACs of the NBZ current system at the dawn and

dusk sectors. The electric field potentials were condensed at these locations. The

ion temperature and convection profiles at 227 km are shown in the third row. This

altitude was chosen to best display the response of the ions to convection. The ion

temperature was around 1000 K, with slight enhancements to 1200 K at the midnight

region. The N components of the magnetic field perturbations are shown in the fourth

row. The overall profile was very close to an unperturbed state, with weak positive

perturbations at high latitude midnight and negative perturbations at the low latitude

pre-midnight sector.

The system responded to the compression immediately at 0445 UT, which corre-

sponded to the PI phase of the SI. The perturbed profiles at this time instance are

shown in Figure 4.4b. A perturbation FAC pair occurred on the dayside as a response

to compression, with an upward cell on the dawn and a downward cell on the dusk,

both centered around 70◦ magnetic latitude. Respectively, the Joule heating was en-

hanced above 25 W/m2 at the noon sector around 70◦ magnetic latitude, which was
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located in between the oppositely directed PI FAC pairs. The ion temperature at the

same location was also immediately enhanced to 2500 K. As a response to PI-FACs,

a clockwise rotating ion convection vortex occurred at the dawn and a counter clock-

wise rotating ion convection vortex occurred at the dusk regions. Largest convection

flows were located again at the region between PI-FACs. The PI signature at the vir-

tual ground magnetometers showed the dawn-dusk asymmetry previously discussed

in the Araki’s model Araki (1994b). The high latitude (70◦-80◦) dawn sector showed

negative perturbations, whereas the dusk sectors showed positive perturbations. The

mid latitude (60◦-70◦) virtual magnetometers recorded positive perturbations at the

dawn sector and negative perturbations at the dusk sector. The lower latitude vir-

tual magnetometers (¡ 60◦) showed positive perturbations at the dayside and negative

perturbations at the nightside.

The system response at 0446 UT, 1 minute after the compression, is shown in

Figure 4.4c. Another pair of perturbation FACs arose on the dayside, marking the

start of the MI phase. This FAC pair had an upward cell on the dusk and a downward

cell on the dawn, opposite to the PI-FAC pair, centered around 68◦ magnetic latitude.

The magnetospheric sources of these FACs are shown in the Figure 4.3a. At this

time instance, Joule heating at dawn and dusk regions were enhanced. Similarly,

the ion temperatures and convection speeds were enhanced at these locations, dusk-

side temperatures and velocities being higher than the dawn-side. The magnetic

perturbation profile stayed similar to 0445 UT, despite weakening. One exception

was seen at 9 MLT high-latitude, where a positive perturbation was recorded.

The perturbations associated with the MI phase became more dominant at 0447

UT, which is shown in Figure 4.4d. The MI-FACs propagated towards the flanks and

started extending to the nightside. The Joule heating was highest at the locations

in between MI and PI FACs at dawn and dusk sectors. The biggest change was

seen at the ion convection profiles. The ion convection vortices had changed senses
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of rotation, as opposed to the ones at PI phase. The overall negative magnetic

perturbation patches weakened, whereas the positive perturbation recorded at 9 MLT

strengthened. In addition low latitude response became positive at the nightside.

At 0448 UT, the MI-FACs dominated the FAC profile at the top of the ionosphere

as can be seen from Figure 4.4e. The MI-FACs elongated from dayside to the night-

side. The Joule heating profile was highest at the same locations, between PI and

MI FACs at this time step. However, the ion convection speeds were faster at this

time instance, correspondingly the ion temperatures were higher than the previous

time instance. Overall magnetic field perturbations showed a negative behaviour at

high-latitude dusk and low-latitude dawn, in addition to the positive behaviour at

low-latitude dusk and high-latitude dawn. Due to the compression of magnetopause

currents, overall low-latitude response became positive.
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The ionospheric and thermospheric responses to SI at 19 LT were further investi-

gated. This location corresponded to where PFISR was located (blue dot in Figure

4.4). The ion and neutral temperature profiles between 100 km to 600 km from 50◦

to 90◦ latitudes were extracted and displayed in three time instances 0430 UT, 0445

UT, 0446 UT in Figure 4.5. The ion convection flows were also contoured with solid

and dashed lines over the temperature profiles. The unperturbed ion and neutral

temperature profiles are shown in Figures 4.4a and d. The ion temperature profile

displayed an altitude dependent profile, with the exception of the high temperature

region near the geographic pole. The neutral temperature profile showed peaks at

two latitudes, 50◦ and 90◦.

Both the ion and neutral temperature profiles showed an immediate response to

the PI phase shown in Figures 4.4b and e. There were mild enhancements, around

500 K in the ion temperature at 64◦, 75◦, 82◦ and 89◦ latitudes, corresponding to the

locations of enhanced Joule heating rates in the Figure 4.4b. The neutral temperature

showed an enhancement of 10 K around 65◦ latitude.

The beginning of the MI Phase, 0446 UT, is shown in Figures 4.4c and f. A

significant enhancement of 1000 K was seen at the ion temperature profile around 68◦

latitude, and another enhancement of 500 K was seen around 88◦ latitude, extending

all the way down to 120 km. Similarly, the neutral temperature profile showed an

enhancement around 20 K at the same locations, extending to 200 km. The enhanced

temperature regions were colocated with the regions of high ion convection speeds.

The flow speeds exceed 750 m/s at the 68◦ latitude, and 1000 m/s at the pole region.

During these time instances, there was also a constant background cooling in the ion

and neutral temperature profiles, due to the region being close to the terminator.
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The altitude profiles of the simulation outputs were extracted along the heating

channel (at 198◦ longitude and 68◦ latitude) were extracted which was also very

close to the PFISR location (at 214◦ longitude and 65◦ latitude). The modeled

altitude profiles for ion temperature, electron temperature, and density were averaged

every 5 min to match the PFISR observations, which were long pulses that were

integrated every 5 min to improve the signal to noise ratio. The comparisons of the

modeled results with the PFISR measurements are shown in Figure 4.6. The averaged

GITM ion temperature increased around 500 K during the compression. However,

the vertical profile at 0446 UT without averaging (dotted line) shows that the peak

enhancement was about 1000 K above the background temperature at the time of

compression and the averaging results in an under-estimation of the overall profile.

The PFISR observations demonstrated that the peak ion temperature enhance-

ment was about 2000 K and occurred around 200 km. The simulated electron tem-

perature also showed an enhancement around 200 K during the perturbation but then

dropped to values lower than the unperturbed state after 0455 UT. Conversely, the

PFISR measurements of electron temperature showed a larger increase over a longer

duration. The electron density, shown in the bottom panels, decreased around 20%

after the compression in the GITM simulations. The drop in the electron density was

more drastic in the PFISR measurements, with a peak drop of about 50% at 300 km.
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(a)

(b)

(c)

Figure 4.6:
The vertical (100-600 km) profiles of ion temperature (a), electron tem-
perature (b) and electron density (c) are shown. The panels on the left
show PFISR observations, whereas the panels on the right show the sim-
ulated responses extracted at the same location. The colors show the
time-averaged profiles for before the event (0430-0445 UT) in gray, dur-
ing (0445-0450 UT) in blue, immediately after (0450-0455 UT) in green
and after (0455-0500 UT) in red. The dotted line shows the profile ex-
tracted at 0446 UT. 86



Overall, the comparison of PFISR observations with GITM simulation results

showed that the I-T system was significantly perturbed, but the amplitudes of the

perturbations were larger than the simulation results showed, especially in electron

density and temperature. Figure 4.7 shows the altitude profiles for densities of NO+

and O+, as well as the neutral temperature taken at the same location as the heating

channel. The top panels shows that NO+ was initially enhanced by 20% at around

180 km, followed by a subsequent 10% decrease. However the O+ decreased by 25%

during the compression, similar to the electron density drop shown in Figure 4.6c.

The drop in both species is consistent since the O+ is the main constituent in the F

region. The neutral temperature shown in the bottom panel of Figure 4.7 was initially

enhanced above 200 km, but later demonstrated a wave-like structure. The initial

enhancement was about 10 K, which later dropped 10 K below the initial temperature,

later recovering and approaching closer to the initial temperature profile.
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Figure 4.7:
The vertical (100-600 km) density profiles for NO+ (top) and O+ (mid-
dle) and the neutral temperature are shown. The colors show the time-
averaged profiles for before the event (0430-0445 UT) in gray, during
(0445-0450 UT) in blue, immediately after (0450-0455 UT) in green and
after (0455-0500 UT) in red. The dotted line shows the profile extracted
at 0446 UT.

4.5 Discussion

The Earth’s magnetosphere was rapidly compressed as the solar wind dynamic

pressure suddenly increased, causing deformation of the magnetopause boundary, re-

configuration of the magnetospheric and ionospheric flow profiles as well as the M-I
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current systems. The perturbation FACs that arose as a response to SI, were similar

to those shown by various other numerical simulation studies [Slinker et al. (1996),

Fujita et al. (2003a), Kataoka et al. (2003), Yu. and Ridley (2011), Ozturk et al.

(2017)] and to equivalent current systems constructed from observations [Kamide

et al. (1976), Matsushita and Xu (1982), Untiedt and Baumjohann (1993), Weygand

et al. (2011), Weygand et al. (2012)]. These perturbation FACs were super-imposed

on the preexisting NBZ current system. The resulting ion convection patterns had

similar physical properties to those of the TCVs [Clauer et al. (1984), Engebret-

son et al. (2013), Friis-Christensen et al. (1988), Glassmeier and Heppner (1992),

Honisch and Glassmeier (1986), Kim et al. (2015), Lanzerotti et al. (1991), Zesta

et al. (2002)]. The simulated ionospheric convection vortices arose near 70◦ latitude

on the dayside and propagated towards the nightside. The convection electric field

and auroral precipitation patterns from the coupled MHD model that were used to

drive GITM simulations, proved to be very effective to drive the I-T system. The

GITM simulations showed enhanced ion temperature and velocities at locations where

electric field potentials were densest. Despite the short duration of the perturbations,

the neutral temperatures were also enhanced by around 20 K.

During the propagation of the ionospheric convection vortices, simulation results

showed significant ion temperature enhancements that exceed 1000 K extending to

200 km altitude. These results are consistent with the PFISR observations shown by

Zou et al. (2017). Likewise, the EISCAT radar data presented by Kim et al. (2015)

showed enhancements between 1000-3000 K in the ion temperature as a response to

the TCV propagation between 150 to 300 km. Another TCV simulation by Schunk

et al. (1994) showed a similar enhancement in ion temperature which was around 3000

K with the peak occurring at 220 km. One possible reason for the underestimated ion

temperature enhancements between the GITM simulations and the PFISR observa-

tions could be the disparity in the ion convection vectors, which peak at around 720
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m/s in the GITM simulations but reach up to 2000 m/s in the PFISR observations

as reported in Zou et al. (2017).

Another underestimated response was observed in the electron temperature varia-

tions both amplitude and duration-wise. Estimating electron temperature is the key

to successfully model the electron recombination processes in the I-T system. The

peak enhancement in electron temperature, which was about 300 K occurred at 200

km in GITM simulations at the location of the heat channel. This enhancement was

not as large as the electron temperature enhancements reported in Kim et al. (2015)

and Zou et al. (2017). The EISCAT observations showed an electron temperature

enhancement of 1000-3000 K between 200 and 300 km, while the PFISR observations

reported in the latter showed an increase of 500-1000 K between 150 and 450 km.

The electron temperatures also remained higher for a longer duration as shown in the

PFISR observations plotted in Figure 4.6a.

The modeled ion and electron temperatures showed similar behaviour to the ob-

served ones during the TCV events; however, the magnitude difference is noteworthy.

The disparity between the unperturbed electron density and temperature profiles in

GITM results and the PFISR observations indicates that there exists a fundamen-

tal process that was either not included in GITM that can cause rapid heating of

the electrons or was missed in the MHD simulation or not passed to the GITM. For

example, as investigated in detail by Zhu et al. (2016), the electron heat flux has

great effects in the plasma temperature and density. In the current GITM version,

the electron heat flux was added uniformly in the subauroral region mimicking the

ring current effects but not in the auroral zone, which can lead to an underestimation

of the plasma temperature there. In addition, the underestimated electron tempera-

ture also affects the calculation of ion temperature [Wang et al. (2016)] causing lower

enhancements in the ion temperature during the perturbed state.

Another reason for the low ion temperatures in the simulations results, in addition

90



to the low auroral precipitation, can be the underestimated Joule heating in the

model [Deng and Ridley (2007), Verkhoglyadova et al. (2017), Zhu et al. (2016)]. In

GITM, the ion and electron temperatures are solved for in a time-accurate mode,

which indicates how strongly the ion temperatures are controlled by the localized,

instantaneous Joule heating. The Joule heating shown in Figure 4.4 was calculated

from the IE/RIM model results and even though it is higher than the heating in

Verkhoglyadova et al. (2017), which used the electric potentials derived from the

Weimer (2005) model to drive the GITM simulations for the same event, it might

not be sufficient overall.

The rise in the ion temperature leads to increased rates for charge exchange reac-

tions, causing rapid conversion of O+ to NO+, followed by enhanced recombination

[Schunk and Nagy (2009)]. This process is responsible for the observed and simulated

drops in the O+ and electron densities. The simulated electron density was in gen-

eral lower compared to the PFISR observations. This could again be a result of the

underestimated auroral precipitation from the MHD model [Deng and Ridley (2006),

Slinker et al. (1996), Sojka et al. (1997), Wilson et al. (2006), Zhang et al. (2014)].

Despite the short duration of the perturbation (30 minutes overall), the enhance-

ment in the neutral temperature was noteworthy (5-15 K). In order to understand

how the separate phases of the SI can affect the thermosphere, the three transfer

rates that were shown in Equation 1.38 were calculated using state variables from the

GITM simulation results at the same location where the highest heating occurred.

The values of these three heating terms, collisional, frictional and vertical conduction

rates at 0446 UT are shown in Figure 4.8. The ion to neutral collisional heat transfer

and the ion-neutral frictional heating rates were very similar and peaked at 240 km.

The collisional heat transfer rate was around 0.1 K/s larger than the frictional heating

term between 200 and 400 km. After the ion and neutral temperatures were enhanced

near 240 km, the temperature gradient led to enhanced vertical thermal conduction.
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Between 100 and 370 km, vertical heat conduction was negative, and above 370 km,

it was positive. This can be inferred as the thermosphere below 370 km was cooled

by conducting heat upward and downward, whereas above 370 km, the thermosphere

was heated by the upward conduction from lower altitudes, since the peak in neutral

temperature was around 370 km as shown in Figure 4.5f.

Figure 4.8:
The vertical profile (100-600 km) of the contributions from the ion to neu-
tral collisional heat transfer (red), ion to neutral frictional heat transfer
(blue) and neutral vertical heat conduction rates (orange) are shown at
0446 UT at the simulated PFISR location.

The temporal variation of the neutral and ion velocities extracted at 240 km are

shown in Figure 4.9a. The initial response of the ion and neutral velocities to the
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numerical shock discussed in the methodology section (see Section 4.2.2) can be seen

prior to 0445 UT. Overall, there were two peaks in the ion velocity, one at 0446 UT

and another one at 0448 UT which were around 1000 m/s over the background speeds

with the PI peak being larger than the MI peak. The neutral velocity only had two

peaks, one associated with the numerical pressure enhancement and one after 0445

UT, which was directly associated with enhanced ion velocities.

The temporal evolution of the ion to neutral collisional (red) and frictional (blue)

heating rates at 240 km are shown in Figure 4.9b. Similar to the ion velocity, there

were four peaks in both rates. The peaks after 0445 UT, are directly associated with

PI and MI phases of the SI and both terms were enhanced by an order of magnitude.

The collisional heating term was larger than the frictional heating term at 240 km.

Combined, the collisional and frictional heating terms were able to deliver 1 K/s of

heating to the neutrals at 0446 UT, which was around 60 K/minute. From these

rates and velocity variations, it is clear that the thermosphere response to an SI

was immediate and caused by frictional and subsequent collisional heating from ions

to neutrals. There was a constant background cooling in the system, that was not

shown in Figure 4.9b, due to the decrease in the solar EUV radiation. This resulted

in vertical conduction extracting heat from the upper thermosphere system.

93



(a
)  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
(b

)

F
ig

u
re

4.
9:

T
h
e

te
m

p
or

al
va

ri
at

io
n
s

of
th

e
io

n
(b

lu
e)

an
d

n
eu

tr
al

(o
ra

n
ge

)
ve

lo
ci

ti
es

ar
e

sh
ow

n
on

th
e

le
ft

(a
),

w
h
il
e

th
e

co
ll
is

io
n
al

(r
ed

)
an

d
fr

ic
ti

on
al

(b
lu

e)
h
ea

ti
n
g

ra
te

s
ar

e
sh

ow
n

on
th

e
ri

gh
t

(b
)

at
24

0
k
m

ov
er

th
e

P
F

IS
R

lo
ca

ti
on

.

94



4.6 Summary and Conclusions

The investigation of the 17 March 2015 sudden storm commencement through

global numerical simulations revealed that the solar wind compression of the mag-

netosphere significantly perturbed the ionosphere and thermosphere systems. The

scarcity of available observations prohibited the examination of these three systems

all at once, but with the help of high-resolution, global solutions the transient re-

sponse to compression was captured. The findings of this study can be summarized

as follows:

1. The high-latitude electric field potentials and the convection patterns were per-

turbed during the compression. The ionospheric flow speeds exceeded 1000 m/s,

in particular between PI and MI FACs.

2. The ion temperature enhancements were above 1000 K where the ion convection

speeds were highest, due to the frictional heating. The observed ion temperature

enhancement was even higher than the modeled results, indicating the frictional

heating rates were underestimated.

3. The peak collisional and frictional heat transfer rates between ions and neutrals

and the peak ionospheric density were co-located at 240 km. Both heating rates

were similar in magnitude and delivered 60 K/min to the neutrals.

4. The O+ and electron density dropped due to charge exchange rates increasing

proportionately with the ion temperature. NO+ density increased.

5. The underestimated perturbation in electron temperature indicated that mod-

eling efforts lack some magnetospheric heat source for electrons, such as heat

flux.
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CHAPTER V

A Case Study of a Sudden Solar Wind Dynamic

Pressure Decrease on the Geospace System

5.1 Introduction

The solar wind dynamic pressure directly affects the shape and size of the Earth’s

magnetosphere. The variation in the solar wind causes global changes in the magne-

tospheric configuration, disrupts the magnetospheric and ionospheric current systems

and results in large scale flow perturbations [Samsonov and Sibeck (2013), Kivelson

and Southwood (1991), Fujita et al. (2003a), Fujita et al. (2003b), Yu. and Ridley

(2011)]. The response of the geospace system to the sudden enhancement of the

solar wind dynamic pressures, known as sudden storm commencements (SSCs) or

sudden impulses (SIs), [Araki (1994a)] has been traditionally studied using ground

magnetometer observations of magnetic field perturbations at the ground level. These

signatures had temporal, latitudinal, and longitudinal dependencies [Araki (1994a),

Araki (1994b), Sun et al. (2014)] indicating that they have different magnetospheric

and ionospheric sources [Fujita et al. (2003a), Fujita et al. (2003b), Kivelson and

Southwood (1991)]. The high-latitude magnetometer observations of SIs showed that

the compression signature can be decomposed as a short-lived Preliminary Impulse

(PI) and a succeeding longer-lived Main Impulse (MI) [Araki (1994a), Araki (1994b)].
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These impulse signatures create a bipolar response, with a polarity dependent on the

magnetic local time. Therefore, investigating the physical processes which lead to

the formation and propagation of the SI signatures, became an important aspect of

understanding solar wind magnetosphere interaction.

Apart from the SI events related to the solar wind dynamic pressure enhancements,

which will be referred to as SI+ from here on, the solar wind dynamic pressure decre-

ments can also cause global disruptions in the geospace system. Araki and Nagano

(1988) showed that high-latitude ground magnetometers also observed bipolar re-

sponses but different polarities during sudden expansions of the magnetosphere after

the solar wind dynamic pressure dropped. In addition, they used geosynchronous

spacecraft measurements to show that the magnetic field parallel to Earth’s rotation

axis also decreased as a result of expansion. Ground magnetometer observations at

lower latitudes showed that these perturbations were preceded by an initial positive

perturbation. Apart from this initial positive perturbation at the low-latitudes, they

concluded that SI−s can be well explained by the same model derived for SI+s [Araki

(1994a)]. However, only a total of five events were investigated in this study, which

was not sufficient to conclusively determine whether the SI− events were mirror im-

ages of the SI+ events. In addition, this model was not able to explain the initial

positive perturbation observed at the low-latitudes.

To explain the distribution and the polarization of the SI−s further, Takeuchi

et al. (2000), conducted a study using higher temporal resolution data from ground

magnetometers. Their study further distinguished the SI− signatures from the mirror

image of an SI+, by showing the resemblances between two impulse signatures for

certain locations on the ground. They further investigated the SI− response with a

larger data set consisting of 28 events [Takeuchi et al. (2002)], concluding that the

SI− generation can be explained by simply reversing the direction of the electric

field which occurs due to the motion of the magnetopause. They also concluded that
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compression and expansion mechanisms would lead to oppositely rotating ionospheric

vortices but since the magnetic field produced by the vortices change direction at a

fixed point on the ground due to the tailward propagation of these vortices, SI−s and

SI+s both can produce polarity distributions alike.

As opposed to the SI+s, there is no evident link between geomagnetic storms

and SI−s, but there are studies on the relationship between SI−s and geomagnetic

activity. N.Sato et al. (2001) was the first one to show that the optical aurora can

be enhanced due to solar wind dynamic pressure drops. They investigated a sharp

dynamic pressure drop from 12 nPa to 2 nPa and used DMSP-F13 satellite measure-

ments to show enhanced electron precipitation, and an associated upward FAC sys-

tem. They argued that field line resonance might be the reason for the acceleration of

electrons, as opposed to loss-cone instability which is responsible for the enhanced op-

tical emissions during SI+s. Liou (2007) further investigated the link between SI−s

and geomagnetic activity with a data set of 13 large solar wind dynamic pressure

decrement events. Using the ultraviolet imager on board Polar satellite and ground

magnetometer observations, they found that 3 out of the 13 events were associated

with substorms, however an increase in the open flux was necessary regardless of the

amplitude of the dynamic pressure drop that triggered a substorm. Another optical

emission study by Belakhovsky and Vorobjev (2016) showed that the auroral intensity

was increased and the auroral structures propagated poleward as a response to the

SI−. Their results highlighted that the auroral response to SI−s were highly complex

and could prevail even after 15 minutes from the onset of the dynamic pressure drop,

later leading to the dimming of the aurora.

The formation and propagation of global perturbations as a response to SI−s

are not well understood, since most of the aforementioned studies rely on scarce

observational data. One important modeling work on SI−s was conducted by Fujita

et al. (2004). They found that similar to the SI+, oppositely directed FAC pairs form
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as a result of magnetospheric expansion, namely at the PI− and MI− phases, which

map to vortical flows in the magnetosphere. However, the formation mechanisms

for these vortices remain unclear. Zhao et al. (2015), used equivalent ionospheric

currents deduced from ground magnetometer observations and Themis observations

in addition to an MHD model to find the magnetospheric footpoints of observed

ionospheric vortices. Their results showed a counter clockwise rotating vortex in

the dawn sector, associated with the MI− phase, however the origins of PI− phase

remained unclear.

In this chapter, a sudden solar wind dynamic pressure decrease was investigated

using global MHD and I-T models as well as spacecraft and ground magnetometer

observations. The purpose of this study is to investigate the magnetospheric and

ionospheric sources for the PI− and MI− signatures, study the polarity distribution

of the ground magnetometer responses to SI−s, identify the ionospheric regions which

are most prone to SI− events and understand how the ionosphere and thermosphere

systems are affected in these regions.

5.2 Methodology

5.2.1 Simulation Setup

The 11 June 2017 event was chosen as a case study to investigate the solar wind

dynamic pressure decrements and their effects on the geospace system response. Sim-

ilar to the 17 March 2015 case study, the ionospheric electrodynamics were simulated

through a coupled GM-IM-IE simulation. The solar wind and IMF data were taken

from the OMNI Database. The input parameters are shown in Figure 5.1.

Since the drivers for the simulation were taken from the OMNI Database, the

simulation times were shifted by 7 minutes, which was roughly the time for the solar

wind to propagate from 32 RE, the outer boundary of the simulation domain, to the
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Figure 5.1:
The input values used for IMF BY , BZ , solar wind plasma parameters VX
and np are shown as well as the dynamic pressure and the sym-H index
taken from the OMNI Database between 1400 UT to 1500 UT. The solid
green line shows the time of dynamic pressure drop.
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Earth with the solar wind speed. Figure 5.2 shows the IMF and solar wind parameters

extracted at the subsolar point, x=17 RE. The green line shows the arrival of the

solar wind dynamic pressure drop at the nose of the magnetopause ( 10 RE), the red

line shows the arrival of the dynamic pressure drop at the Earth. The IMF BY was

very close to 0 during the event, turning negative at 1438 UT and then positive at

1439 UT. The IMF BZ was northward and did not show any strong variations during

the interval. The change in solar wind velocity was around 20 km/s, during the event

with no significant perturbations. The solar wind density dropped from 42 #/cm3

to 10 #/cm3. The solar wind dynamic pressure dropped from 4 nPa to 1nPa. The

sym-H index dropped from 25 nT to 0 due to dynamic pressure decrease.

Similar to the previous case study, the GM inner boundary was set to 2.5 RE from

the center of the Earth. The computational domain was a three-dimensional box in

geocentric solar magnetospheric coordinates that started from 32 RE upstream of the

Earth in the X direction to 224 RE tailward and -128 RE to +128 RE both in the

Y and Z directions. The finest resolution was 1/8 RE grid close to the Earth. 600

virtual ground magnetometers were implemented in each hemisphere uniformly from

the magnetic equator up to 80◦ latitude (4◦ in latitude by 12◦ in longitude).

The GITM simulations were driven with OMNI data from 9 June 2017 1400 UT

to 11 June 2017 1400 UT. The Weimer Weimer (2005) empirical model was used

for convection, while the Ovation aurora model Newell et al. (2002) was used for

particle precipitation during this interval. The particle precipitation and electric field

solutions obtained from the global MHD model were then used to drive the GITM

simulations starting from 11 June 2017 1400 UT and onwards to 1700 UT, updating

the electrodynamic patterns every 10 seconds. The GITM simulations were run with

a spatial resolution of 4◦ in longitude and 1◦ in latitude for an altitude range between

100 and 600 km.
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Figure 5.2:
The simulated IMF BY , BZ , solar wind VX . NP and Pdyn values extracted
from the subsolar point at 17 RE are shown between 1430 UT to 1500
UT. The solid green line shows the time of the pressure drop.
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5.2.2 Spacecraft Positions

The locations of the THEMIS-D and MMS-1 spacecraft are shown in Figure 5.3.

THEMIS-D was located in dayside dusk sector [3.4, 10.7, -2.1 RE], very close to the

magnetopause before decompression. MMS-1 was located in the tail dawn sector [-

22.4, -9.9, 5 RE] during the event. The ESA instrument from THEMIS-D was used to

understand the magnetospheric flows at this location whereas the FGM instrument

from MMS-1 was used to understand the propagation of the decompression front.

(a)                (b) 

Figure 5.3:
The positions of MMS-1 (blue) and THEMIS-D (red) spacecraft are shown
in GSM XY (a) and XZ (b) coordinates. The magenta dashed lines show
the magnetopause boundary calculated with the Shue model, based on
the IMF and solar wind values before the dynamic pressure drop. The
teal dashed lines show the magnetopause boundary after the dynamic
pressure drop.
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5.3 Results

5.3.1 Magnetospheric Response

Figure 5.4 shows the evolution of the global magnetosphere system. The equato-

rial flow profile can be seen on the right with the solar wind and magnetosheath flow

vectors shown as green colors that corresponded to speeds above 200 km/s. There

were two channels of sunward flows located at dawn and dusk just before the decom-

pression.

At 1438 UT, shown in Figure 5.4b, the nose of the magnetopause started to

expand. This resulted in two flow vortices at the dayside magnetosphere, one having a

clockwise sense of rotation in the dawn sector and the other having a counter clockwise

sense of rotation in the dusk sector. These vortices will be referred to as PI− vortices

from here on. There were also significant sunward flows at the subsolar magnetopause.

Figure 5.5 shows the continuation of the evolution of the magnetospheric topology

during the event. The top panels show the low density region in the solar wind

which propagated towards the tail, corresponding to 1440 UT. A new pair of flow

vortices emerged with opposite senses of rotation to their predecessor counterparts

at dawn and dusk. Both pairs of vortices emerged inside the dayside magnetopause

and propagated towards the nightside, eventually dissipating around 1450 UT (Figure

5.5c). These vortices will be referred to as MI− vortices from here on.
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Figure 5.6:
The variation of the magnetopause distance calculated with the Shue
model (dashed) and density gradient (solid) with the solar wind dynamic
pressure in between 1430 UT to 1500 UT are shown.

The evolution of the magnetopause location at the subsolar point was also inves-

tigated during this time interval as shown in Figure 5.6. The magnetopause location

was calculated using the Shue model driven by the OMNI data, as well as the simu-

lated magnetopause location calculated with the density gradient method described

in Garcia and Hughes (2007). At 1437 UT, the dynamic pressure dropped from 7.5

nPa to 2.4 nPa, at this instance the Shue model showed the magnetopause location

increased from 8RE to 10RE. The simulation results showed an expansion from 8RE

to 10.5RE at this instance in agreement with the Shue model.

Figure 5.7 shows the THEMIS-D ESA (left) and MMS-1 FGM (right) observations

(bottom) compared with the simulated satellite measurements (top). THEMIS-D was

recording tailward flows in the dusk sector, however as the magnetosphere started to

expand, the flows became sunwards. The VY component was mostly positive both in

simulations and the observations with mild intervals of negative values before 1455
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UT. These flow variations indicated that a series of flow perturbations were recorded

in the dusk sector first with a sense of counter clockwise then with a sense of clockwise

rotation.

The MMS-1 FGM measurements presented in Figure 5.7b show the propagation of

the perturbation to the tail. Considering the dipole structure of the Earth’s magnetic

field, a decompression indicates that BX should decrease, whereas the BZ component

should increase. The behaviour was very clear in the MMS-1 observations, marking

the time of arrival as 1450 UT. The time of arrival and the drop of BX was well

captured with the simulation. One explanation for not capturing the behaviour of

BZ is that MMS-1 in the simulations was further away from the current sheet than

observations indicate.
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5.3.2 Ionospheric Response

The behaviour of the FACs, transient FACs, the Joule heating and the ground

magnetometer profiles were studied in more detail to understand the ionospheric re-

sponse to magnetospheric expansion. These profiles are shown in Figure 5.8 at the

same time instances as the magnetospheric snapshots shown in Figures 5.4 and 5.5.

Due to the IMF BZ being north, the FAC profile resembled the NBZ current system

closely before the magnetospheric expansion started. Figure 5.8b shows the response

1 minute after the expansion started. The overall FAC profile did not change signif-

icantly, however the perturbation FAC systems, which were obtained by subtracting

the FAC profile from the previous minute, showed an upward FAC on dusk and

a downward FAC on dawn, consistent with the magnetospheric flow vortices. The

Joule heating profile shown in the third row of Figure 5.8b, displayed a weakening

in the dusk region. The magnetic field perturbations at the ground, shown in the

fourth row of Figure 5.8b, indicated a positive perturbation (green contours) at low

latitudes between 3 to 14 MLTs, at middle latitudes between 12 to 15 MLTs, and

at the high-latitude midnight sector. At the same time instance, the high latitude

northward magnetic response at the dawn sector was negative.

Figure 5.8c shows the perturbed profiles at 1440 UT. The electric field potential

contours have enlarged, indicating the expansion of the magnetosphere. At this time

the perturbation FACs shown inthe second row had different directions to those at the

PI− phase. These MI− FACs were upward in the dawn and downward in the dusk

sectors. The PI− FACs had moved tailward at this instance. The Joule heating profile

in the third row had weakened but extended further equatorward and there was a clear

dawn-dusk asymmetry with dawn sector having more heating. The ground magnetic

perturbations also showed a clear dawn-dusk asymmetry in this instance. The virtual

magnetometers recorded a positive perturbation in the mid-latitudes between 4-13

MLT. The response was negative everywhere else, with two strong peaks, one in the
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high-latitude dawn sector and one in midnight sector.

At 1445 UT, the FAC profile started to differ from the earlier stages, as shown in

Figure 5.8d. The electric field potentials became denser in the dusk sector, whereas

PI− and MI− FACs started to disappear. The Joule heating became stronger in the

dusk sector. The ground magnetic perturbations were negative with the exception

of the high-latitude region located between 6-13 MLT. The negative perturbation

peaked at the high-latitude pre-noon sector.

At 1450 UT, the dayside FAC profile did not show significant perturbations, how-

ever the electric field potentials in the nightside, especially in dusk region, were denser.

The transient currents showed the closure currents for the MI− FACs with opposite

directions. The Joule heating in the dawn side significantly weakened, but strength-

ened in the dusk sector, corresponding to stronger electric field regions. Overall, the

ground magnetic perturbation profile was very similar to that at 1445 UT, with a

stronger negative dip in the mid-latitude region between 6-14 MLT, a stronger pos-

itive peak in the high-latitude region at the same local time sector, and a stronger

negative dip in the high-latitude region between 18-06 MLTs.
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Three magnetometer measurements were compared with the simulated magne-

tometer measurements to assess the simulation results. The locations of these mag-

netometers are shown in Figure 5.8 in the bottom row. The magnetometers were

chosen to sample the behaviour at the high-latitude dawn, dusk and low-latitude

dayside regions. The comparison of the observations with the simulations results are

shown in Figure 5.9. The Hopen Island (HOP) magnetometer, located in the dusk

sector at the time, recorded an enhancement followed by a drop in the N component

of the magnetic field. This behaviour was well captured by the virtual magnetome-

ter, indicating the presence of an upward perturbation FAC, followed by a downward

FAC. The Faroe Island (HOV) magnetometer recorded a drop in the magnetic field,

which was also captured by the model. At lower latitudes, the expected response to

an expansion is a drop in the overall magnetic perturbation due to the variation in

the Chapman-Ferraro currents. The Rankin Inlet (RAN) magnetometer located in

the dawn sector recorded a drop followed by an enhancement in the magnetic field.

The response of the virtual magnetometers to the magnetospheric expansion was well

captured, however they underestimated the magnitude of the perturbations.

Figure 5.11 shows the ion convection, temperature and electron temperature vari-

ations from the GITM simulations, as a response to the sudden expansion of the

magnetosphere. Figure 5.10a shows that the ion temperatures were below 1000 K

before the event, with the exception of 10-14 LT, where a relatively strong westward

ion convection was seen and the ion temperatures exceeded 2500 K. The electron

density was depleted in this region. The meridional cut taken at 11 LT, shows the

ion temperature peaked at 79◦ latitude, and around 300 km altitude. 1 minute after

the start of the magnetospheric expansion, the ions started cooling and convecting

eastward at noon. The drop in the ion temperature was around 1000 K at 300 km

in the 11 LT cut. At 1440 and 1445 UT, the ions still convected eastward at noon

and the temperature profiles stayed similar to that of 1438 UT. Figure 5.10e shows
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the profiles at 1450 UT. At this time ions started convection westward again, heating

the ions in the region back to 2500 K. The meridional cut showed that the peak ion

temperature reached 2400 K at the same latitude but at a lower altitude around 180

km.

Figure 5.11 shows the vertical ion temperature, electron temperature and density

profiles extracted from 78◦ latitude at the 11 LT. Before expansion the peak ion

temperature was 2700 K at 300 km. At 1438 UT, the ion temperature dropped

around 1600 K and the peak ion temperature was 1200 K at 210 km. The ion

temperature did not change drastically until 1450 UT, at which, the temperature was

enhanced but it was still lower than the initial profile at 1435 UT. The peak of the

ion temperature was located at 200 km, and it was around 2300 K.

The electron density and temperature profiles are shown in Figure 5.10b, however

there were no significant changes in both profiles except a mild drop followed by a

recovery. The most significant variation can be seen in the electron density profile

above 240 km, where the final electron density dropped by 10 %.
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5.4 Discussion

With the help of global and physics based simulations, the response of the geospace

system to a sudden solar wind dynamic pressure event has been investigated. During

the expansion of the magnetosphere, the simulated magnetospheric flows showed in-

teresting features, especially during the PI− phase. One of the most comprehensive

studies investigating the magnetospheric response to SI−s was conducted by Zhao

et al. (2015). They have reported Themis-A observations of a counter clockwise ro-

tating vortex in the dawn sector, and reproduced an oppositely rotating dawn-dusk

vortex pair with MHD simulations corresponding to the same time interval. However,

this study showed that PI− vortices exist in the magnetosphere and their existence

could be verified with THEMIS-D observations of the velocity on the dusk. Further-

more, the ground magnetometers also indicated vortical structures through bipolarity

changes. The PI− vortices indicated an upward perturbation FAC in the dusk sec-

tor and a downward perturbation FAC in the dawn sector as shown in Figures 5.4

and 5.8. These FACs were responsible for the positive magnetic field perturbation in

dusk and the negative magnetic field perturbation in the dawn sectors. Simulations

reported in Fujita et al. (2005), also showed sunward flows during the PI− phase, but

the partial vortex profile [Fujita et al. (2005)] was not fully described.

The magnetic field perturbations on the ground, derived by virtual magnetome-

ters, showed only slight deviations from the Araki model of SI−s [Araki and Nagano

(1988)]. The PI− phase showed an enhancement in the low-latitude dawn sector and

high-latitude noon and midnight sectors. The MI− signature was mostly negative

with strong dips at low-latitude noon and high-latitude midnight sectors. One excep-

tion to the overall negative trend was seen at the high-latitude noon sector, but with

lower magnitudes than that of the negative dips. These differences from the Araki

model can be attributed to the large magnetic dipole tilt in June and to the mostly

positive but fluctuating IMF BY values.

118



The pre-existing NBZ current system had an upward FAC cell at the high-latitude

dusk and mid-latitude dawn and a downward FAC at the high-latitude dawn and mid-

latitude dusk at 1430 UT. During the PI− phase, the electric field potentials in the

dusk sector weakened, while those in the dawn sector remained unchanged. During

the MI− phase, both cells had weakened but the dusk cell had intensified on the

nightside. This behaviour was reflected in the Joule heating in the ionosphere.

One of the most important missing links in understanding the geospace system

response to solar wind dynamic pressure drops, was due to the lack of studies on the

I-T system. By driving GITM with electric potentials that exhibit the behaviour of

the magnetospheric expansion, this study showed the effects of the dynamic pressure

drops on the ionosphere system. There was a significant drop in the ionospheric

temperature at noon that exceeded 1000 K, but little response was seen in the electron

temperature, density or the neutral temperature. Overall, the neutral temperature

dropped by around 40 K above 326 km, however it later increased by about 30 K by

1445 UT. Similarly, after the decompression, the ion temperature was restored with

slightly lower temperatures in the F2 region.

This case study of the solar wind dynamic pressure decrease on 11 June 2017

revealed interesting magnetospheric flow profiles that were not evident in previous

studies. Although this case was very useful in understanding the global response to

solar wind dynamic pressure, it also showed the necessity of idealized simulations

which can eliminate the asymmetries that occur due to the drivers of the system,

such as the IMF, as well as intrinsic parameters like dipole tilt.

5.5 Summary and Conclusions

The findings of this study can be summarized as follows:

1. A pair of dawn-dusk vortices appear on the dayside as a response to magne-

119



tospheric expansion. These PI− vortices have a clockwise sense of rotation on

the dusk, and a counter clockwise sense of rotation on the dawn sector.

2. Another pair of dawn-dusk vortices follow the PI− vortices. TheseMI− vortices

have a counter clockwise sense of rotation on the dusk and a clockwise sense of

rotation of the dawn sector.

3. These vortices mapped to the ionosphere as PI− (downward on dawn and up-

ward on dusk) and MI− (upward on dawn and downward on dusk) FACs.

4. The Joule heating on the noon sector decreased as a result of ionospheric electric

field potential contours enlarging with magnetospheric expansion.

5. The ion temperature dropped by around 1500 K in the noon sector, which was in

between PI− and MI− FACs. Around 15 minutes later it increased by around

800 K. On the contrary, the electron temperature, density and the neutral

temperatures were not significantly affected by the magnetospheric expansion.

6. The polarity distribution of the magnetic field perturbations at the ground level

slightly deviated from the SI− model of Araki Araki (1994a), which is a mirror

image of the SI+, but this deviation is attributed to variations in the IMF

drivers and the dipole tilt.
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CHAPTER VI

The Geospace System Responses to Idealized

Sudden Solar Wind Dynamic Pressure Increase

and Decrease

6.1 Introduction

The sudden decreases in the solar wind dynamic pressure are associated with

various magnetospheric activity, like ultra low frequency (ULF) waves [Motoba et al.

(2003), Zhang et al. (2010), Shen et al. (2016)] auroral intensity enhancements [N.Sato

et al. (2001), Liou (2007), Belakhovsky and Vorobjev (2016)] and even substorms

[N.Sato et al. (2001)]. However the exact mechanisms behind the sudden expansion

of the magnetosphere, the magnetospheric and ionospheric sources for the two-step

response observed as the decompression signature [Takeuchi et al. (2000)], the global

polarity distribution of the magnetic field perturbations on the ground [Araki and

Nagano (1988), Takeuchi et al. (2002)] and the altitudinal changes in the I-T system

[Zhao et al. (2015)] have not been well understood.

The geospace system response is significantly affected by the dipole tilt, IMF, and

solar wind drivers, making idealized studies a necessity to parse out effects of each of

those driving parameters. In this chapter, the global magnetospheric and ionospheric

evolutions of the geospace system during SI+s and SI−s are investigated through
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idealized simulations to minimize influence from other sources. In addition one strong

event and one weak event have been designed for SI+ and SI− comparisons between

strong and weak compression and decompression are presented to further investigate

the role that solar wind density changes play in perturbing the geospace system.

6.2 Methodology

Similar to previous studies, the simulation outer boundary was set to +32 to -224

RE in X, -128 to +128 RE in Y and Z GSM coordinates. The GM/BATS-R-US,

IM/RCM and IE/RIM components were used. A grid resolution of 1◦ in latitude

by 1◦ longitude in MLT coordinates was picked for the IE module. Likewise, the 10

second high resolution output from IE was used in driving the GITM model. The

virtual ground magnetometer chain consisted of 600 uniformly distributed points in

MLT coordinates for each hemisphere. To understand the geospace system response

and how it differs between a SI+ and a SI−, four cases of idealized simulations were

conducted, one weak and one strong compression, as well as a weak and a strong

decompression.

6.2.1 Simulation Setup for Compression

The solar wind and IMF drivers for the weak and strong compression cases are

shown in Figure 6.1a and b respectively. The top panel shows the IMF BY , which

equals zero, and the second panel shows the IMF BZ , which was set to 5 nT. The

IMF BX , not shown, was set to 0 nT. The solar wind velocity was set to -320 km/s,

which was a nominal speed for the slow solar wind. The solar wind velocity stayed

constant throughout the simulation to inhibit electric field variations due to solar

wind velocity variations. The compression was initiated by an enhancement in the

solar wind density, shown in the fourth panels of both Figures 6.1a and b. The initial

solar wind density was 10 cm−3, which was increased to 30 cm−3 at 1430 UT for the
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weak compression. This perturbation arrived at the Earth 7 minutes later at 1437

UT. The corresponding solar wind dynamic pressure increased from 1 nPa to 2.5 nPa,

resulting in an overall solar wind dynamic pressure ratio, P2/P1 of 2.5. For the strong

compression, the initial solar wind density was 5 #/cm3, which was increased to 50

#/cm3 at 1430 UT and similar to the weak compression arrived at the Earth at 1437

UT. The dynamic pressure was 0.5 nPa and as a result of density enhancement was

increased to 4.2 nPa, with an overall P2/P1 ratio of 8.4.

The values before 1400 UT were used to drive the GITM simulations for both

cases with the Weimer (2005) electric field potentials and the ovation aurora model

[Newell et al. (2002)] for particle precipitation for a 2 day period, to allow the model

to converge. These drivers were updated every minute. The initialization simulations

ended at 14.00 UT and the drivers were then switched to the 10 second output from

the MHD model.
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6.2.2 Simulation Setup for Decompression

The solar wind and IMF drivers for the weak and strong decompression cases

are shown in Figure 6.2a and b respectively. The IMF drivers were the same as the

compression cases, with IMF BX and BY being zero, and BZ being set to 5 nT, while

the solar wind speed was constant at -320 km/s. The solar wind dynamic pressure

drop was again initiated at 1430 UT, with a drop in density for both cases. For the

weak SI−, the solar wind density was 30 #/cm3, which dropped to 10 #/cm3. The

dynamic pressure was 2.4 nPa and dropped to 0.5 nPa, resulting in an overall P2/P1

of 0.4. For the strong SI−, the solar wind density was 50 #/cm3, which dropped to

5 #/cm3 at 1430 UT. The dynamic pressure dropped from 4.2 nPa to 0.5 nPa, with

an overall P2/P1 ratio of 0.12.

Similar to the compression simulations, the GITM simulations were driven with

the values prior to 1400 UT with the Weimer (2005) electric field potentials and

the ovation aurora model [Newell et al. (2002)] for particle precipitation for a 2 day

period. At 1400 UT, the drivers for GITM were replaced with the global MHD

solutions which had a 10 second temporal resolution.
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6.3 Comparison of Magnetospheric Responses to Strong Com-

pression and Decompression Events

In this section, only the comparison of strong SI+ and SI− will be presented to

understand the differences between compression and decompression events. Figure 6.3

shows the magnetospheric flow profiles in the equatorial region before the perturbation

for the SI+ and SI− events respectively. The magnetospheric configuration shown in

Figure 6.3a had a magnetopause standoff distance of 10 RE due to the weaker solar

wind pressure, whereas the magnetopause standoff distance was 8 RE in Figure 6.3b

due to the larger pressure. The co-rotational flows extended up to a radius of 8 RE

on the left and up to 6 RE on the right when the magnetosphere was compressed.

Both magnetospheric configurations showed sunward flows in the outer portions of

the magnetosphere. Some elongated vortex like structures were also present in both

configurations. One such vortex can be seen in the dayside dawn sector with a counter

clock-wise sense of rotation, starting at [9, -1] RE and extending to [3,-7] RE in Figure

6.3a, whereas in Figure 6.3b it started at [9,-2] RE and extended to [5,-4] RE. The

vortex system had a larger spatial scale in Figure 6.3a compared to the compressed

case. Another vortex can be seen at dusk towards the nightside with a clock-wise

sense of rotation. The dusk vortex in Figure 6.3a had a partial structure, starting at

[7,5] RE and extending towards [-3,8] RE. Similarly, the dusk vortex in Figure 6.3b

started at [5,1] RE and extended to [-5,5] RE. There were additional vortex systems

on the nightside, however their examination is beyond the scope of this work.

Figure 6.4 shows the preliminary impulse responses of the SI+ (a-c) and SI− (d-f).

The flow profiles 1 minute prior (1436 UT) to the perturbation arrival resembled the

quiet time profiles in Figure 6.3a and b closely. When the compression front arrived

at the nose of the magnetopause, as shown in Figure 6.4b, the sunward flows in

the dayside magnetosphere ([8,-2] RE and [8,4] RE) were replaced with anti-sunward
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        SI+                                     SI-          

(a)                                       (b)

Figure 6.3:
The comparison of the magnetospheric flow profiles at the equatorial plane
before the dynamic pressure increase (a) and decrease (b) events. The
contours show the x component of the velocity, arrows show the flow
vectors, and the contours on the top of the Earth shows the radial current
projections (red/upward; blue/downward).
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flows, shrinking the size of the pre-existing vortex. The curl of the dusk vortex at the

dayside magnetosphere was also enhanced due the compression of the nose. Figure

6.4c shows one minute after the arrival of the compression front. Both the dawn and

dusk vortices have shrunk and their start points were offset to [4,-7] RE and [3,9] RE

respectively, due to the propagation with the solar wind.

The flow profile in Figure 6.4e shows the expansion of the magnetosphere as the

decompression front arrives at the nose of the magnetopause. Sunward flows occurred

in the dayside magnetosphere as a part of the expansion. The dusk vortex further

shrinks, whereas the dawn vortex disappears in the next minute shown in Figure

6.4f. Two new partial vortices appeared as a result of fountain like expansion from

the nose, with a counter clock-wise sense of rotation on dusk, and with a clock-wise

sense of rotation at dawn. Both flow systems had larger spatial scales than the initial

vortex systems.

129



        SI-                                     SI+          

  t
 - 

1 
m

in
. 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

t  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 t 

+ 
1 

m
in

.

(a
) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 (b

)  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  (

c)

(d
)  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 (e
)  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  (
f)

F
ig

u
re

6.
4:

T
h
e

eq
u
at

or
ia

l
m

ag
n
et

os
p
h
er

ic
fl
ow

p
ro

fi
le

s
fo

r
S
I
+

(a
,b

,c
)

an
d
S
I
−

(d
,e

,f
)

ta
ke

n
at

1
m

in
u
te

p
ri

or
to

th
e

p
er

tu
rb

a-
ti

on
(a

,d
),

at
th

e
ti

m
e

of
ar

ri
va

l
(b

,e
)

an
d

1
m

in
u
te

af
te

r
th

e
ar

ri
va

l
of

th
e

p
er

tu
rb

at
io

n
(c

,f
).

P
in

k
ar

ro
w

s
h
ig

h
li
gh

t
th

e
m

os
t

si
gn

ifi
ca

n
t

fl
ow

p
ro

fi
le

ch
an

ge
s.

130



The main impulse response of the SI+ (a-c) and SI− (d-f) are shown in Figure

6.5. The previous PI+ vortex systems propagated towards the nightside at X=-2 RE

as indicated in Figure 6.4a. On the dayside a new vortex system started to form, with

a counter clock-wise sense of rotation in the dusk sector and with a clock-wise sense

of rotation in the dawn sector. This new vortex system (shown with pink arrows),

associated with the MI+ phase became more evident in Figure 6.4b, with the dawn

vortex centered at [4,-6] RE and the dusk vortex centered at [4,6] RE. 5 minutes

after the arrival of the compression front, these new vortices had further propagated

towards the nightside, with centers at [1.8, -7] RE and [1.8,7] RE respectively as shown

in Figure 6.4c. The new magnetopause standoff distance was at 8 RE, 5 minutes after

the arrival of the compression front.

Figure 6.5d shows the start of the MI− phase, with flows directed in the +y

direction in the dusk and -y direction in the dawn sectors. The MI− vortices appeared

4 minutes after the magnetosphere started to decompress, which is shown in Figure

6.5e (shown with purple arrows). The flow in the noon sector became tailward,

completing the formation of vortices. The dawn vortex had a counter clock-wise

sense of rotation, whereas the dusk vortex had a clock-wise sense of rotation. These

vortices also propagated towards the nightside with the dawn vortex centered at

[5,-6] RE and dusk vortex centered at [5,6] RE, shown in Figure 6.5f. The new

magnetopause standoff distance was at 10 RE, 5 minutes after the expansion started.
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Figures 6.6 and 6.7 show the temporal evolution of VX and VY extracted at [X,Y] =

[4,-6] RE (dawn) and [4,6] RE (dusk) for SI+ and SI−. During the compression, both

the dawn and dusk vortices had a negative x component, indicating tailward motion

from 1437 to 1440 UT. Between 1440 UT and 1446 UT, the flows were sunward.

In the dawn sector, Vy was positive, indicating that the magnetosphere was moving

inwards, while it was mostly negative in the dusk sector, again showing an inward

motion. The brief period when Vy turned positive at dusk indicates that the PI vortex

was fully completed at this point.

During the decompression, both the dawn and dusk vortices had a sunward flow

(+ Vx), between 1437 and 1443 UT. The flows became tailward between 1443 and

1449 UT in the dawn sector, and between 1443 and 1453 UT in the dusk sector. Vy

was negative inn the dawn sector and positive in the dusk, indicating the expansion

of the magnetosphere.
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Figure 6.6:
The x (blue) and y (red) components of the velocity at dawn (a) and dusk
(b) sectors taken at x = 4RE are shown between 1430 UT to 1500 UT for
the SI+ event.
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Figure 6.7:
The x (blue) and y (red) components of the velocity at dawn (a) and dusk
(b) sectors taken at x = 4RE are shown between 1430 UT to 1500 UT for
the SI− event.
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If there was only one set of vortices, both compression and decompression signa-

tures of the y component would have shown a sign reversal. Instead, the temporal

evolution of the velocities at these locations indicates two sets of vortices passing back

to back from the [4,-6] RE and [4,6] RE points.

Figure 6.8 shows the compression vortices in the dusk sector. The clock-wise

rotating PI+ vortex would form prior to the counter clock-wise rotating MI+ vortex

during the SI+ event. A spacecraft passing through these vortices at points 1-2-3

(left) would observe the Vx (purple dots) and Vy (orange) shown on the right of Figure

6.8. At point 1, both the Vx and Vy components would be positive, measuring the

outer edge of the PI+ vortex. Point 2 would correspond to the inner edge of the PI+

or the outer edge of the MI+ vortices, regardless it would result in negative Vx and

Vy measurements. At point 3, the spacecraft would be at the inner edge of the MI+

vortex, which then would correspond to positive Vx and Vy measurements.

Figure 6.9 shows the decompression vortices in the dusk sector. The counter clock-

wise rotating PI− vortex would form prior to the clock-wise rotating MI− vortex

during the SI− event. Similarly, a spacecraft passing through these vortices at points

1-2-3 (left) would observe the Vx (purple dots) and Vy (orange) shown on the right of

Figure 6.9. At point 1, both the Vx and Vy components would be negative, measuring

the outer edge of the PI− vortex. Point 2 would correspond to the inner edge of the

PI− or the outer edge of the MI− vortices, regardless it would result in positive Vx

and Vy measurements. At point 3, the spacecraft would be at the inner edge of the

MI− vortex, which then would correspond to negative Vx and Vy measurements.

These schematics show how spacecraft measurements can be mistaken for a single

vortex measurement since the start and end points would have same direction. It

also helps explain the vortex signatures observed by Themis-D which were shown

in Figure 5.8, implying that the observations show not one but two vortex systems

with different senses of rotation which can explain how the two-step response was
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generated in the magnetosphere.
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6.4 Comparison of Ionospheric Responses

To understand the differences in the ionospheric response to the compression and

decompression, the FAC, Joule heating, ion convection, ion temperature and the N

component of the magnetic perturbations at the ground are investigated. In addition

a comparison between strong and weak events is also provided.

6.4.1 FAC Response

The evolution of the FACs for four different cases are show in Figure 6.10. Figure

6.10a shows the FAC profiles 7 minutes prior to the arrival of the solar wind pertur-

bations, starting from the strong SI+ and SI−, followed by the weak SI+ and SI−.

All four profiles showed the NBZ current system prior to the perturbation, with an

upward FAC cell on dawn and a downward FAC cell on dusk at the high-latitudes and

with an upward Region-1 sense FAC cell on dusk and a downward FAC cell on dawn

at the lower-latitudes. The strengths of the FAC cells were similar with compressed

configurations (second and fourth rows), having denser electric field potentials at the

nightside.

The response to compression was immediate as shown in Figure 6.10b in the first

and third rows. A new FAC with an upward cell on dawn and a downward cell on

dusk appeared. The magnitude of the perturbation FACs for strong SI+ were 0.2

µA/m2 larger than that of the weak SI+. The densest electric field potential line

contours were in the noon sector for the strong SI+, while the densest potential line

contours were in the pre-midnight sector for the weak SI+.

The response to the decompression was also prompt as shown in the second and

fourth rows of the Figure 6.10b. The perturbation FACs had an upward direction at

dusk and a downward direction at dawn. Similarly, the magnitude of the strong SI−

FACs were larger than that of the weak SI− by 0.15 µA/m2.

Two minutes after the arrival of the perturbation, a new FAC system developed
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Figure 6.10:
The evolution of the FACs are shown at quiet time (a), 1 (b), 2 (c) and
6 (d) minutes after the arrival of the perturbations. Panels show strong
SI+, SI−, weak SI+ and SI− simulations from top to bottom. The red
(blue) contours show upward (downward) FACs, the dashed and solid
lines show electric field potentials.
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with an opposite polarity to the initial FACs, as shown in Figure 6.6c. During the

magnetospheric compression, these perturbation FACs had an upward FAC cell at

dusk, and a downward FAC cell at dawn. The FAC cells were larger spatially and

amplitude wise during the strong compression, compared with the weak compression.

On the other hand, the perturbation FACs for decompression had an upward cell at

dawn and a downward cell at dusk. Similarly, the stronger decompression cells were

larger in size and amplitude compared with the weak decompression case.

Figure 6.10d shows the FAC profiles 6 minutes after the arrival of the perturbation.

The MI+ FACs were larger than the SI+ case, but the profiles for both the strong

and weak case were very similar to each other. The PI− FACs were stronger than

the MI− FACs for the decompression cases. The upward PI− and MI− FACs for

the weak case also merged at 12 MLT. In addition, the weak SI− case had an upward

FAC cell at midnight throughout the interval, which was also seen in the SI+ FACs.

This upward FAC cell further amplified as the magnetosphere expanded.

6.4.2 Joule Heating Response

Figure 6.11 shows the variation in the Joule heating profile as a response to strong

SI+, strong SI−, weak SI+ and weak SI−. Seven minutes prior to the perturbation,

the Joule heating had a peak in the noon sector for all four cases. The strong SI−

profile showed an additional enhancement along the dusk sector. Apart from the

strong SI+ case, the peak heating occurred at 78◦, 14 MLT.

Figure 6.11b shows the response 1 minute after the perturbation. For the strong

SI+ case, the peak enhancement occurred between the 11-13 MLT sector, correspond-

ing to the region in between the dawn and dusk PI+ FACs in Figure 6.10. The weak

SI+ case had a peak at the same MLT but at a higher latitude. The response was also

significantly smaller in magnitude and size compared to the strong SI+. The initial

response of the strong SI− was not as prominent as the response of the strong SI+.
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Both strong and weak SI− simulations showed mild enhancements in Joule heating

rates on the nightside.
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Figure 6.11:
The evolution of the Joule heating profiles are shown at quiet time (a),
1 (b), 2 (c) and 6 (d) minutes after the arrival of the perturbations.
Panels show strong SI+, SI−, weak SI+ and SI− simulations from top
to bottom.

At the start of the main impulse phase, shown in Figure 6.11c, the heating for

the strong SI+ case was enhanced in between regions of PI+ and MI+ currents,

extending from the dayside towards dawn and dusk. The heating in the weak SI+

case was also further increased in the noon sector, with weak extension towards dawn
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and dusk. For both SI+ events, the heating in the dusk sector was larger than that in

the dawn sector. The strong SI− profile also showed an additional heating patch in

the noon sector with the dusk patch further amplifying. The weak SI− also showed

an enhancement in the same locations. Surprisingly the amplitude of the dusk patch

surpassed that of the strong SI− by 2 mW/m2.

Figure 6.11d shows 6 minutes after the arrival of the perturbation. The highest

Joule heating rates were seen from 05-07 MLT, 14-18 MLT, 13-15 MLT, and 04-06

MLT for the strong SI+, strong SI−, weak SI+, and weak SI− respectively. There

were two heating channels in all cases, which corresponded to the region between PI

and MI FACs. The SI− cases showed additional heating channels at higher latitudes,

especially, in the midnight sector which corresponded to regions between PI− FACs

and pre-existing NBZ currents.

6.4.3 Ion Temperature Response

Figure 6.12 shows the ion convection patterns and the differenced ion temperature

profiles obtained by removing the profile at one previous time step. The ion convection

patterns were very similar to each other prior to the event.

At t+1, the ion temperature enhancement was above 150 K from 10 to 13 LT in

the strong SI+ case, corresponding to the peak Joule heating region for this time.

The ion convection profile consisted of a clock-wise rotating vortex at dawn and a

counter clock-wise rotating vortex in the dusk sector. At t+2, the latitudes below 70◦

on the dayside started cooling, whereas the region corresponding to the peak Joule

heating rates were heated. The ion convection vortices were enlarged, with the dusk

vortex being larger than the dawn vortex. At t+6, the ion convection vortices had

opposite senses of rotation to the previous ones, and the highest ion temperature

regions shifted to 5 LT and 20 LT.

The ion temperature response in the weak SI+ case lagged 1 minute, compared
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to the strong SI+, due to the Joule heating being weaker. The ion temperature en-

hancement at t+2 was around 120 K, with vortices that had similar senses of rotation

but mapping to slightly higher latitudes. At t+6, the ion convection vortices had re-

versed senses of rotation but were not as effective as the strong SI+ in perturbing

the nightside ionosphere.

In the strong SI− case, a pair of flow vortices appeared at t+2 with a clock-wise

rotating vortex at dusk and a counter clock-wise rotating vortex at dawn. The ion

temperature enhancement was much weaker compared to the SI+, and the convec-

tion vortices had opposite senses of rotation. At t+6, the rotation sense of the ion

convection vortices had reversed and the peak heating occurred between 04-06 LT.

The ion convection response of the weak SI− was very similar to the strong SI−

with peak ion temperature enhancement being 20 K. At t+6, the ion convection

vortices had reversed senses of rotation, similar to the strong SI− case. The peak

temperature enhancement occurred between 06-09 LT.
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Figure 6.12:
The evolution of the differenced ion temperature profiles are shown at
quiet time (a), 1 (b), 2 (c) and 6 (d) minutes after the arrival of the
perturbations with ion convection vectors on top for the Northern Hemi-
sphere. Panels show strong SI+, SI−, weak SI+ and SI− simulations
from top to bottom. The strong and weak simulation results are shown
with separate color bars.

6.4.4 Virtual Magnetometer Response

The northward component of the baseline subtracted magnetic field perturbations

at the ground level, derived from the virtual magnetometers are presented in Figure

6.13. The responses of the weak and strong SI+s were qualitatively very similar but
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quantitatively different. In both cases, the high-latitude (> 70◦) response between

12-19 MLT was positive (green), while the 19-12 MLT was negative (pink) with

the exception of 04-06 MLT positive response seen in weak SI+. The mid and low-

latitude (< 70◦) response during the PI+ was negative between 2-19 MLT and positive

between 19-02 MLT. These PI+ responses eventually weakened, as shown in Figure

6.13c, and reversed at the MI+ phase shown in Figure 6.13d. The response at the

high-latitudes was positive between 18-01 MLT, and negative between 01-18 MLT.

Similarly, the mid and low-latitude (< 70◦) responses were positive everywhere except

within 18-00 MLT between 60◦ − 70◦ .

The responses were also qualitatively very similar for both SI− cases. The high-

latitude PI− signatures consisted of an enhancement in between 15-02 MLT and

a decrease in between 2-15 MLT. At t+6 min, the high-latitude MI− signatures

consisted of an enhancement between 02-13 MLT, and a decrement between 13-02

MLT, with the exception of an enhancement between 13-20 MLT seen in the strong

SI− case. The low-latitude response was a decrement everywhere except the positive

response at the mid-latitudes (60◦ − 70◦) between 22-01 MLT in both cases.

The overall ground magnetic field polarity distributions as a response to SI+ and

SI− were mirror images with slight exceptions at high-latitudes (< 70◦) between 5-7

MLT during the preliminary impulse phase and between 16-18 MLTs during the main

impulse phase.
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Figure 6.13:
The evolution of the baseline subtracted magnetic perturbation profiles
at the ground are shown at quiet time (a), 1 (b), 2 (c) and 6 (d) minutes
after the arrival of the perturbations for the Northern Hemisphere. Pan-
els show strong SI+, SI−, weak SI+ and SI− simulations from top to
bottom. The strong and weak simulation results are shown with separate
color bars.

6.4.5 Altitude Profiles in the Ionosphere

Figure 6.14 shows the ion temperature (left), electron temperature (middle) and

density profiles (right) in the dawn (a) and dusk (b) sectors for select times during

the strong SI+. The dawn [11 LT, 78◦] and dusk [14 LT, 77◦] locations were picked
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based on the points where significant changes occurred in the ion convection profiles.

The ion temperature profile in Figure 6.11a shows that the highest ion temperature

enhancements occurred below 300 km at 1440 UT, with a peak enhancement reaching

300 K. However, the ion temperature dropped back to its initial value by 1445 UT.

The electron temperature above 180 km was also enhanced about 100 K at 1440 UT,

dropping back to the initial values by 1450 UT. The electron density profile did not

show a significant variation during this interval.

Figure 6.14b shows the aforementioned quantities in the dusk sector. The peak ion

temperature enhancement occurred at 1440 UT, which was around 150 K at 180 km,

however it cooled down to initial values by 1445 UT. The highest electron temperature

enhancement occurred at the same time, which was around 100 K above 180 km. The

electron density was first enhanced then dropped below the initial values, however

this variation was not very significant above 150 km. Below 150 km, the electron

density increased by 20% of its initial value at 1440 UT, then dropped by 22% at

1450 UT compared to the values at 1430 UT.

Figure 6.15 shows the same vertical profiles of ion temperature (left), electron

temperature (middle) and density profiles (right) at dawn (a) and dusk (b) sectors

for select times during the strong SI− event. Again, the dawn [11 LT, 73◦] and

dusk [14 LT, 80◦] locations were picked based on locations which showed highest

variations in ion convection profiles. During the SI− event, the peak ion temperature

enhancement was around 300 K which occurred at 1440 UT at 240 km, followed by a

cooling of around 150 K. At 1438 UT, the electron temperature was enhanced around

300 K above 160 km, stayed high until 1445 UT, and cooled back to the initial values

at 1450 UT. The electron density above 180 km, showed 18% enhancement reaching a

peak at 1450 UT, while the values dropped around 60% below the initial value under

130 km.

On the dusk side shown in Figure 6.15b, the ion temperature decreased above 150
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km, with a peak drop around 150 K at 1440 UT, and further decreased about 150

K by 1450 UT. Similarly, electron temperature dropped above 150 km, with a peak

drop around 300 K by 1450 UT. The electron density was enhanced above 180 km,

however the enhancement was very small. Below 120 km, the electron density profile

at 1445 UT was 55% smaller than at 1430 UT. This overall drop was around 25%

below 120 km at 1450 UT.
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6.5 Discussion

The simulated response of the global magnetosphere revealed distinct responses

to PI phases. During compression, a pair of PI+ vortices formed in the dayside

dawn (counter clock-wise) and dusk sectors (clock-wise), later propagating towards

the tail. The PI+ signatures were attributed to magnetopause deformation [Kivelson

and Southwood (1991)] but the simulation results showed that the existence of mag-

netospheric flows and their horizontal motion with the compression of the nose of the

magnetosphere also play a role in the formation of these vortical flows. On the other

hand, the simulations of the strong SI− case showed a pair of PI− vortices forming

as a result of magnetospheric expansion starting from the nose. These sunward flows

lead to a clock-wise rotating vortex on the dawn and a counter clock-wise rotating

vortex in the dusk sector. These vortices generate a pair of upward FACs on the dusk

and a downward FACs on the dawn sectors which can explain the two-step response

reported in Araki and Nagano (1988) and Takeuchi et al. (2002).

Both the PI+ and the PI− vortices haven’t been observed before, whereas both

MI+ [Samsonov and Sibeck (2013)] and MI− [Zhao et al. (2015)] vortices have been

reported. The further investigation of the Vx and VY along the possible spacecraft

trajectories revealed that back to back measurements of the PI and MI vortices did

not distinguish the two oppositely rotating vortices, however a W shaped signature

in either component accompanied by a decrease in the other velocity component

can indicate the presence of two consecutive vortices with opposite senses of rotation.

Such signatures are abundant in satellite observations, one of them is shown in Figure

5.7a for a decompression case at dusk.

The global simulations showed that for the SI+ and SI− cases a two-step response

in the FAC profiles was observed. The PI+ FACs, had an upward cell on the dawn

and an upward cell on the dusk as shown in previous studies [Fujita et al. (2003a),

Yu. and Ridley (2011), Ozturk et al. (2017)]. The PI− FACs, had an upward cell
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on the dusk and a downward cell on the dawn, which are opposite to that of the

compression case. Both PI+ and PI− FACs had similar amplitudes, however the

longitudinal extent of the PI+ FACs was larger. The comparison between strong

and weak PI FACs showed, even though the perturbation FACs had similar quali-

tative properties, that the magnitude of the FACs depended on the strength of the

compression/decompression events.

The MI+ FACs had an upward FAC cell on the dusk and a downward FAC

cell on the dawn, similar to what has been shown in previous studies [Fujita et al.

(2003a), Yu. and Ridley (2011), Ozturk et al. (2017)]. On the contrary, the MI−

FACs had an upward cell on the dawn and a downward cell on the dusk sectors.

Similarly, the magnitude of the perturbation FACs depended on the strength of the

compression/decompression events.

One interesting finding is that PI+ FACs merged with the inner cells of the NBZ

current system which had the same polarity in the dawn and dusk sectors, whereas

the PI− FACs merged with the outer cells of the NBZ current system that had the

same dawn-dusk polarity. This resulted in formation of different channels in Joule

heating profiles. The peak Joule heating channels occurred between PI+ FACs during

the compression, whereas they occurred between the inner and perturbed outer cells

(outer cells + PI− FACs) of the NBZ currents during decompression. The Joule

heating channels during the MI phase occurred between the PI and MI FACs for

both compression and decompression cases. However because of the aforementioned

behaviour more channels formed at the nightside during decompression, since tailward

traveling PI− FACs kept perturbing the inner cells of the NBZ current systems. In

addition, during the weak decompression event the amplitude of the NBZ current

system and the weak PI− and MI− FACs were comparable, resulting in a different

FAC profile compared with that of the strong SI−.

The simulation results also showed that a two step response exists in the iono-
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spheric convection patterns. A clock-wise ion convection vortex formed on the morn-

ing sector, whereas a counter clock-wise convection vortex formed on the afternoon

sector at the PI+ phase. On the contrary, a counter clock-wise ion convection vortex

formed on the morning sector, whereas a clock-wise ion convection vortex formed

on the afternoon sector during the PI− phase. The ion convection speeds for the

PI− were smaller than those for PI+. New ion convection vortices with opposite

senses of rotation formed during the MI phase for both compression and decompres-

sion. The comparison between strong and weak cases of compression showed similar

qualitative results, however since the FAC intensity for the strong compression case

was higher, the ions responded earlier to the strong compression. The comparison

between strong and weak cases of decompression showed differences between regions

where peak temperature enhancements occurred.

The simulated ground magnetic field maps showed that the SI+ and SI− events

were almost mirror images of each other, with minor exceptions. However, as opposed

to the SI+ model by Araki (1994a), the response between dawn and dusk sectors was

not asymmetric at the MI phase. The polarity reversal at this stage was between 3-18

MLT.

The investigation of the altitude profiles during the SI+ and SI− events also

showed very distinct responses. The ion temperature profile was affected most from

the SI+, showing enhancements around 100-300 K between 120-300 km. The electron

density below 120 km at dusk sector also responded to the SI+, with a 10% enhance-

ment at 1440 UT, which can be due to the downward precipitation of electrons from

the upward PI+ FAC, this value later dropped below the initial value. The altitudinal

response to the SI− showed more variations in all three quantities. Both the ion and

electron temperatures in the dawn sector were enhanced (above 180 km), around 300

K at 1440 UT. The electron density was also enhanced by 18% above 180 km, but

dropped by 60% below 120 km. However on the dusk side, both the ion and electron
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temperatures dropped by 300 K above 180 km. At this location, the electron density

was enhanced by 5% above 180 km, but dropped by 55% below 120 km.

6.6 Summary and Conclusions

Four idealized events, namely a strong SI+, a strong SI−, a weak SI+ and weak

SI−, were investigated using the global MHD and I-T models to understand the

magnetospheric and ionospheric responses to compression and decompression. The

findings of this study can be summarized as follows:

1. A pair of dawn dusk vortices appear on the dayside with opposite polarities

during the PI phase for both magnetospheric compression and expansion. The

PI+ and PI− vortices have opposite senses of rotation at dawn and dusk sectors.

2. The PI+ FACs merge with the inner cells of the NBZ current system, whereas

the PI− FACs merge with the outer cells of NBZ current system. This results

in different heat channels forming in between current systems.

3. The comparison of the strong and weak SI+ events showed that both responses

are qualitatively very similar, whereas the magnitude of the perturbations de-

pend on the strength of the compression.

4. The comparison of the strong and weak SI− events showed that the mechanisms

giving rise to perturbations were similar, however they couple with NBZ and

R1 currents differently, resulting in spatial variations of the response.

5. The polarity distributions of SI+ and SI− were almost mirror images of each

other with responses reversing in between 3-18 MLT.

6. The altitude profiles of ion temperature, electron temperature and density

showed stronger responses to the SI− event. The ion and electron tempera-
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tures increased by around 300 K on the dawn but decreased by around 300 K

on the dusk sector.
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CHAPTER VII

Conclusions and Future Work

7.1 Findings of the Work

In this study, the geospace system (M-I-T) response to solar wind dynamic pres-

sure variations was investigated with the extensive use of global models. The magne-

tospheric flows, FACs, ion convection flows, ground magnetic field, ion, electron and

neutral temperature perturbations were examined in detail to understand (1) their

magnetospheric and ionospheric sources, (2) the formation and evolution of the per-

turbations, (3) the spatial asymmetries due to the compression and decompression of

the magnetosphere. The main conclusions of this work are summarized as follows:

Q1. What is the role of the IMF BY in determining the geospace system response

to solar wind dynamic pressure enhancement events?

The IMF BY affects the symmetry of the NBZ current system. Even though the mag-

netospheric flows and associated FAC systems due to solar wind dynamic pressure

increase did not show significant differences during different IMF BY orientations.

The superposition of these transient FACs with the BY dependent NBZ currents cre-

ated asymmetric responses. The total ground magnetic perturbation at high-latitudes

was mostly due to the Hall current systems, with noon sector being the region where

the peak perturbation was recorded during negative BY , and the dawn sector being
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the region where the peak perturbation occurred during the positive BY . For the zero

BY simulations, there were two peaks located in both regions.

Q2. What are the effects of magnetospheric compression on the I-T system?

The high-latitude convection patterns were largely perturbed during the compres-

sion. In certain regions, the flow speeds exceeded 1000 m/s, in particular between

the PI and MI FACs. The ion temperature enhancements were above 1000 K at

these locations, due to significant frictional heating. The PFISR observations for the

ion temperature enhancement were even higher than the modeled results, indicating

that the frictional heating rates were underestimated in the model. Within the flow

channel, the peak heat transfer and frictional heating rates between ions and neutrals

and the peak ionospheric density were co-located with the peak ionospheric density

at 240 km. Both heating rates were similar in magnitude and delivered energy to

the neutrals at a rate of 60K/min. Subsequently, in the heating region the O+ and

electron density dropped due to charge exchange rates increasing proportionately to

the ion temperature while the NO+ density increased in the same region.

Q3. What are the magnetospheric and ionospheric responses to a solar wind dy-

namic pressure decrement event?

A two-step response was seen in the magnetosphere and ionosphere system after the

solar wind dynamic pressure decrease. First, a pair of vortices appeared on the day-

side as a response to magnetospheric expansion. These PI− vortices had a clockwise

sense of rotation on the dusk, and a counter clockwise sense of rotation on the dawn.

Following the PI− vortices, a pair of MI− vortices appeared. These MI− vortices

had a counter clockwise sense of rotation on the dusk and a clockwise sense of rotation

on the dawn, exactly opposite to the PI− vortices. These PI− and MI− vortices

mapped to the ionosphere as PI− (downward on the dawn and upward on the dusk)
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and MI− (upward on the dawn and downward on the dusk) FACs. The polarity

distribution of the magnetic field perturbations at the ground level slightly deviated

from the SI− model of Araki (1994a), which is a mirror image of the SI+, but this

deviation is attributed to variations in the IMF drivers and the dipole tilt.

Q4. How are the I-T systems affected by the magnetospheric decompression?

The Joule heating in the noon sector decreased as a result of ionospheric electric field

potential contours reconfigure after the magnetospheric expansion. The ion tempera-

ture dropped by around 1500 K in the noon sector, which was in between the PI− and

the MI− FACs. However, 15 minutes later it increased by around 800 K due to the

propagation of the MI− FACs. On the contrary, the electron temperature, density

and the neutral temperatures were not significantly affected by the magnetospheric

expansion.

Q5. What are the differences in the geospace response between the solar wind dy-

namic pressure enhancement and decrement events?

The PI+ and PI− vortices have opposite senses of rotation at the dawn and the dusk

sectors. The PI+ FACs merge with the NBZ current system, whereas the PI− FACs

merge with the Region-1 current system. The superposition of the perturbation FACs

with pre-existing FACs results in different locations of energy deposition and heating

channels. The MI+ and MI− vortices had opposite senses of rotations compared

to their predecessor PI+ and PI− vortices, resulting in MI+ and MI− FACs with

opposite directions compared to the PI+ and PI− FACs. The polarity distributions

of ground magnetic perturbations of SI+ and SI− were almost mirror images of each

other with responses reversing in between 3-18 MLT.
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7.2 Future Work

7.2.1 Exploring the Effects of Other Solar Wind and IMF Drivers During

Solar Wind Dynamic Pressure Variations

Global modeling is a powerful tool that can help explore the effects of differ-

ent drivers. In this study, only the northward IMF BZ case has been investigated.

This means that the open flux in the polar cap region was low, and no significant

geomagnetic activity was expected during these periods. However, during intervals

of southward IMF BZ , the polar cap open flux content increases, and the magneto-

sphere can be more dynamic. An example of how the magnetopause standoff distance

changes as a result of southward turning of the IMF can be seen in Figure 7.1. The

figure shows the variation of the magnetopause standoff distance calculated from the

simulations using the density gradient model (solid line) and from the solar wind

observations using the Shue model (dashed line) with the IMF BZ (upper panel) and

solar wind dynamic pressure (bottom panel) during the 11 June 2017 event.

Apart from the direction of the drivers such as BY , BZ and VY , the magnitude

of the solar wind and IMF parameters are known to contribute to the asymmetries

that are observed in the geospace system response. In this study, how the solar wind

density could affect the geospace system response was discussed briefly in Chapter

VI. This study can be further be expanded to investigate how the CIRs and CMEs

can individually affect the geospace system, by driving the models with representative

idealized drivers that would resemble the typical values of the fast-slow solar wind

structure of the CIRs, and the typical shock-sheath-flux rope structure of the CMEs.
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Figure 7.1:
The variation of the magnetopause standoff distance calculated from the
simulations using the density gradient model (solid line) and from the
solar wind observations using the Shue model (dashed line) with the IMF
BZ (upper panel; blue) and solar wind dynamic pressure (bottom panel;
green) between 1430-1740 UT during the 11 June 2017 event.
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7.2.2 Exploring the Magnetotail Response to the Solar Wind Dynamic

Pressure Variations

In this study, the focus was on the dayside responses to the solar wind dynamic

pressure variations. However, as the compression/decompression front propagates

towards the tail, it will perturb the magnetospheric flows, the magnetic field con-

figuration and the currents in the tail. Investigating how the magnetotail responds

to the compression/decompression events, as well as quantitatively determining how

long the perturbations last will further our understanding of the tail dynamics.

7.2.3 Improving the Models

Conductance plays a key role in the coupling of the M-I-T systems. The case

studies presented in this work showed that the simulated results mostly underesti-

mated the ground magnetic field perturbations, the ion and electron temperatures

compared with the observations. One possible reason is that the conductance model

used in the system might be responsible for such disparities. Improved conductance

models are essential to truly assess the response of the geospace system to the solar

wind and IMF perturbations.
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