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Abstract 

Vaccination provides significant advantages over post-infection treatment such as long-

lasting protection, prevention of co-morbidities, and a reduction in the dissemination of pathogens. 

While vaccination has tempered many once virulent pathogens, others remain without effective 

vaccines. Moreover, the emergence of previously unknown or isolated pathogens is presenting a 

significant threat to human health. Overpopulation, increased urbanization, and international travel 

provide continuous sources of naïve hosts, permitting the persistence and spread of pathogens 

along with an increased potential of pandemics. Here, three projects are presented describing the 

development and characterization of viral subunit loaded vaccine nanoparticles for the generation 

of protective humoral immune responses against hepatitis C virus, Ebola virus, and human 

immunodeficiency virus. 

In the first project, lipid-based nanoparticles, called interbilayer-crosslinked multilamellar 

vesicles (ICMVs), were produced with hepatitis C virus (HCV) recombinant antigens E2.661 or 

E2c.661, displayed average antigen loading efficiencies were 54% and 50%, respectively, and 

average nanoparticle dimeters between 115-132 nm. The preservation of surface displayed 

antigens was confirmed by indirect immunofluorescence staining with antigen-specific antibodies, 

and in vivo vaccination of mice with ICMV formulations generated ~10-fold higher antigen-

specific serum IgG titers compared with control vaccine formulations. Immune sera were tested 

for their neutralization capacities by an in vitro assay, and both ICMV formulations exhibited 

neutralization of autologous and heterologous HCV virus like particles, with E2c.661 ICMVs 
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displaying a balanced neutralization profile compared to E2.661 ICMVs, indicating E2c.661 as a 

candidate antigen for a broadly effective vaccine formulation. 

In a second application, recombinant Ebola envelope glycoprotein (rGP) was formulated 

with ICMVs or a variant (NTA ICMVs) for concerted display of rGP on ICMV surfaces. Loading 

efficiencies varied between formulations (15 and 33%), with the addition of NTA approximately 

doubling rGP loading. The large rGP complex and epitope conformations were preserved 

throughout nanoparticle synthesis, and both formulations displayed distinct antibody binding 

profiles. Regardless of the surface antigen display, both nanoparticle formulations generated 

marked titers of class switched antigen-specific antibodies in mice after vaccination compared to 

the vehicle or rGP control groups. Four weeks after immunization, mice were challenged with a 

lethal dose of murine adapted Ebola virus and 100% survival was observed for mice vaccinated 

with either ICMV formulation as well as the adjuvanted control formulation. While these data 

demonstrated short-term protection in three of the tested groups, further research is needed to 

evaluate long-term protection and the epitope specificity of the generated antibodies. 

Lastly, a new ICMV nanoparticle design was developed for formulation with the 

recombinant human immunodeficiency virus envelope glycoprotein (SOSIP). The new 

nanoparticle, called ICMV-NHS, display ~25% loading efficiency of SOSIP, and a mean diameter 

of ~300 nm. Preliminary studies indicate preservation of the SOSIP protein complex and 

conformational epitopes, which are necessary to produce protective and broadly neutralizing 

humoral responses. However, further optimization and characterization of the nanoparticle are 

needed to enhance antigen loading and evaluate antigen display prior to in vivo immunogenicity 

studies. 



xii 

The data reported here highlights the complexity of formulating subunit-loaded vaccine 

nanoparticles. Many factors including antigen design, display, and antigen-nanoparticle interfaces 

are important considerations and can contribute significantly to strength and specificity of the 

generated immune response. To bridge this gap of knowledge, in-depth characterization of 

nanoparticles, like those reported here, can aid in elucidating and correlating in vitro properties of 

vaccine nanoparticles with in vivo performance.  



1 

Chapter 1 

Introduction 

 

1.1 Overview of infectious diseases 

Infectious diseases accounted for approximately 15% of worldwide deaths in 2016, [1] with 

a disproportionately high incidence in low income countries. Historically, some of the most 

significant losses of life were attributed to outbreaks of infectious diseases. Two well-known 

examples were the Black Death (circa mid-1300s), which is estimated to have killed between 75-

200 million people (~16-44% of the global population); and the 1918 Spanish flu, which resulted 

in 50-100 million deaths in the span of about a year.[2-4] The spread and persistence of infectious 

pathogens are affected by factors like population density, travel, and public health measures (e.g. 

sanitation and access to medication).[2, 5, 6] As the global population grows and urbanization and 

global travel increase, any outbreak of infectious disease has a very a real and growing chance of 

producing a global concern.  

In developed countries, pandemics like the Black Death or the 1918 Spanish flu have not 

been seen in approximately 100 years, owing in part to the development and application of 

sanitation, along with the discovery and development of vaccines and chemo-therapeutics. The 

mid-20th century saw an enormous increase in the development and use of vaccines and antibiotics
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against numerous pathogens, reducing the impact and incidence of diseases which were previously 

a significant concern. However, in recent decades many pathogens have developed resistance to 

chemotherapeutics, prompting new strategies for effective treatment. Additionally, as the human 

population grows and expands, contact with previously isolated or unknown pathogens have 

presented new threats to public health. This dissertation will focus on three pathogens, hepatitis C 

virus, Ebola virus, and human immunodeficiency virus, all of which are currently global concerns.  

 

1.2 Hepatitis C virus 

Hepatitis C virus (HCV) was identified in 1989 as the causative agent of hepatitis C.[7] 

Currently, an estimated 71 million people are infected with chronic hepatitis C.[8] Transmission of 

HCV occurs mainly by parenteral routes with common modes being contaminated needles, blood 

transfusions, organ transplants, tattoos, and piercings.[9] Less frequent routes include sexual 

contact or mother-to-child transmission. Most HCV infections (~70%) are asymptomatic, thus 

unreported, undiagnosed, and progress to chronic hepatitis C which can persist unnoticed for years, 

increasing the chance of transmission. Chronic hepatitis C primarily affects the liver, and the main 

morbidity is liver fibrosis.[9] Approximately 15-30% of patients with liver fibrosis will progress to 

liver cirrhosis, potentially requiring a liver transplant. Additionally, a fraction of patients with liver 

cirrhosis will develop hepatocellular carcinoma, and hepatitis C is a leading risk factor in the 

United States.[10]  

HCV is a genetically diverse virus grouped into seven genotypes (~35 % genetic diversity) 

with varied prevalence across the globe.[11, 12] Each genotype is divided into subtypes (<15% 

genetic diversity), and each virus mutates while residing in the host, giving rise to “quasi-
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species.”[12, 13] The random mutability and subsequent genetic diversity affords HCV an advantage 

to evade host immune responses by natural selection, which play a role in the persistence of chronic 

HCV infections. In a small fraction of cases, chronic hepatitis C can be cleared by the host immune 

system, even after years of residence and immune evasion. The spontaneous generation of 

neutralizing antibodies in chronically infected individuals has provided a template for the design 

of a HCV vaccine. Extensive research of HCV neutralizing antibodies has determined that the E2 

subunit of the HCV envelope glycoprotein the main target of neutralizing responses. Furthermore, 

some antibodies produced have demonstrated the ability to neutralize HCV genotypes different 

than those residing in the host, suggesting that a pan-genotype HCV vaccine may be possible to 

produce. However, many of the mutations sites that result in the HCV genotypes and immune 

evasion are a part of the E2 antigen. These regions of high variability are highly antigenic and 

serve as decoys to the immune response, detracting from generation of cross-genotype neutralizing 

antibodies.[14, 15] 

Unlike a HCV vaccine, therapeutics for hepatitis C have existed for decades; however, the 

earliest medications, interferon and ribavirin, are non-specific antiviral medications and are prone 

to severe side-effects thus limiting their effective use.[11, 16, 17] In 2011 direct acting antivirals 

(DAAs) were introduced against HCV, but when used as a monotherapy, viral resistance was 

observed in patients.[16] To combat the rise of antiviral resistant HCV strains, DAAs were used in 

conjunction with PEGylated interferon and ribavirin, leading to improved treatment efficacy, 

though side-effects caused by PEGylated interferon and ribavirin limited the widespread use of the 

combination therapy.[11, 16] Newer, second generation DAAs have tolerable side-effects, do not 

need co-administration of interferon and ribavirin, and successfully cure ~90% of hepatitis C when 

administered.[9, 11, 12] Though the treatment of HCV has increased dramatically in efficacy, the 
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regimen is lengthy, lasting between 2-6 months, and requires daily dosing leading to concerns of 

spread during the course of treatment and patient compliance.[11] Moreover, the genotypes of 

hepatitis C virus (HCV) are not universally affected by DAAs but require individualized therapies 

to maximize their efficacy. Lastly, the mutability of HCV poses the potential to generate DAA 

resistant strains, which have been observed against some DAAs, and require strict adherence to 

the therapy regimen.[11, 16] Currently, a pan-genotype DAA that is well tolerated has not been 

discovered, prompting a strategic and rational use of the limited number of available DAAs as well 

as the continued research of producing a widely effective HCV vaccine.  

 

1.3 Ebola virus 

Ebola virus disease (also called Ebola hemorrhagic fever) came to attention as a human 

pathogen in 1976 after separate outbreaks in the countries of Sudan and the Democratic Republic 

of Congo (formerly Zaire), which claimed the lives of 431 lives with a mortality rate of 72%.[18] 

Outbreaks of similar magnitude have occurred since then, and five strains have been identified: 

the eponymous Ebola virus (EBOV), Bundibugyo virus, Sudan virus, Tai Forest virus, and Reston 

virus. All strains save the Reston virus can infect humans, and the remaining strains displaying a 

range of disease severity and mortality rates with Ebola virus as the most virulent. The 2014 

outbreaks in Sierra Leone, Liberia, and Guinea were caused by Ebola virus, and resulted in 

approximately 28,600 cases with a mortality rate of approximately 40% in the two years of the 

epidemic.[18] 

Transmission of Ebola virus occurs via direct contact of mucosal membranes, open 

wounds, or lesions by infected people, bodily fluids, body parts, or contaminated items.[18] 
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Symptoms develop after 2-21 days and include fever, body aches, joint pain, nausea, diarrhea, and 

progress rapidly to multiple organ failure, internal and external bleeding, and systemic shock.[18, 

19] In fatal cases, death occurs 6-16 days after symptoms begin. The cellular targets of Ebola are 

still being elucidated, but in the early stages after transmission, monocytes and macrophages are 

the primary targets.[20] After the incubation period, the virions spread systemically in an apparently 

non-discriminant fashion to infect hepatic, adrenocortical, and endothelial cells, among others.[19] 

Recent research has revealed that immune privileged sites such as the gonads, inner-eye, and 

placentas can retain Ebola virus after an infection has been resolved.[18, 19, 21] 

Many details of EBOV pathogenesis remain uncertain including which host immune 

responses are necessary for protection and viral clearance. The role of cellular immune responses 

in protection is hotly debated, and EVD progression can induce lymphopenia (loss of CD4+ and 

CD8+ T cells) which may impact other immune responses.[22, 23] However, it is generally accepted 

humoral immune responses necessary, as fast and potent humoral responses are positively 

correlated with survival from EVD.[22, 23] Additionally, neutralizing antibodies have been 

discovered from EBOV inoculated animals, and can provide passive protection in animal models 

and are being developed as post-exposure therapies for humans.[24, 25] Unfortunately, EBOV 

evades host immune responses due to a number of factors. Among these factors is how the early-

stage of infection primarily targets antigen presenting cells (APCs) such as dendritic cells, 

monocytes, and macrophages. APCs disseminate to local and systemic tissues and are thought to 

aid in spreading EBOV to other cell populations while concurrently destroying the APC 

population, which is important for both innate and adaptive immune responses.[19, 22] 

The production of adaptive humoral responses are targeted against the only surface antigen 

of EBOV, the envelope glycoprotein (GP).[26, 27] Full length GP is translated as a heterodimer 
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composed of the subunits GP1 and GP2 which are covalently bound by a disulfide bond. Three GP 

heterodimers associate into a trimer which is expressed on the virion surface and functions to bind 

and facilitate entry into target cells.[28] While the GP trimer is a large and can have antibodies 

targeted against many regions, not all antibodies will neutralize the antigen. GP contains a large 

domain that is heavily glycosylated, called the mucin like domain, which is non-functional, highly 

antigenic, and can serve as an immune decoy from functional domains and promote the production 

of non-neutralizing antibodies.[29] Additionally, EBOV produces a non-functional, truncated 

variant of GP, called secreted GP (sGP),[28, 29] that is produced as a dimer and secreted from 

infected cells. sGP is transcribed approximately four times that of full length GP, and the 

disproportionally high amount and secreted nature of sGP is thought to also serve as an immune 

decoy against GP specific antibodies.[29-31] Notably, despite the high level of sequence similarities 

between sGP and GP, antibodies have been discovered that are selective against GP but not sGP, 

providing rational to the viability of an EBOV vaccine.[29] 

Currently, many vaccine candidates have been produced for EBOV and a number of which 

are in clinical trials. The furthest advanced candidate is a recombinant virus where GP is expressed 

on the surface of vesicular stomatitis virus (rVSV-EBOV), a zoonotic virus, to produce a 

replication competent hybrid virus.[32] Clinical trials to assess the safety of rVSV-EBOV in healthy 

adults revealed the vaccine candidate was mostly well tolerated with some instances of acute 

arthritis and skin lesions;[33, 34] however, safety has yet to be evaluated in young children and 

immunocompromised patients. Apart from rVSV-GP, non-replicating hybrid viruses are also 

being produced and evaluated, though concerns of pre-existing immunity are being addressed as 

they have been observed against some of the tested viral vectors.[35, 36]. Lastly, DNA and RNA 

based vaccines are also in development, and have demonstrated some promise in animal models 
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and clinical trials, but development of protective responses required large doses of vaccine and 

multiple administrations and raise concerns of feasibility and patient compliance.[37]  

Similar to EOBV vaccines, there are currently no specific treatments for EVD. Infected or 

suspected infected patients are given supportive care including fluid replacement and oxygen, 

along with management of symptoms such as pain, nausea, inflammation, and diarrhea.[18, 20] New 

investigational compounds are being evaluated against EBOV including the RNA-dependent-

RNA polymerase inhibitor, favipravir; and two nucleoside analogues, GS-5734 and BCX4430,[38] 

but further clinical trials are needed to assess safety and efficacy. 

 

1.4 Human immunodeficiency virus 

Human immunodeficiency virus (HIV) was isolated in 1983 and determined as the 

causative agent of acquired immunodeficiency syndrome (AIDS).[39, 40] As of 2016, approximately 

37 million people were infected with HIV worldwide, and 1 million deaths occurred as a result of 

AIDS.[41] The origins of HIV were traced to a similar virus found in primates, called simian 

immunodeficiency virus (SIV), which emerged as a human pathogen due to the genetic similarities 

between human and primates.[42] Separate events of HIV emergence have occurred and resulted in 

two broad categories off HIV; HIV-1, the more virulent virus from multiple chimpanzee (and 

potentially gorilla) origins;[43-45] and HIV-2, a less virulent virus originating from sooty 

mangabeys. HIV-1 is further divided into the four main groups: M, N, O, and P. Each group 

represents a single cross-species transmission event, and group M accounts for approximately 99% 

of infections, and is further divided into nine subtypes. 
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HIV transmission occurs through contact of infected bodily fluids (i.e. blood, seminal and 

pre-seminal fluids, rectal and vaginal fluids, and breast milk).[46] Most instances of HIV 

transmission occur form sexual contact and contaminated needles. Immediately after infection, the 

host’s body responds to HIV as it would any other acute infection.[47] Transmitted virions are taken 

up by antigen presenting cells (APCs), like macrophages and dendritic cells, to initiate the immune 

response. However, while some virions are taken up by APCs, others bind to the cells and are 

transported to secondary lymphoid organs where there is a rich source of CD4+ T cells, which 

HIV selectively target.[48] These sites become the primary residence of HIV, and while many of 

the infected cells will be discovered and destroyed, some will persist as reservoirs of HIV.[49] This 

subset of T cells, called latently infected T cells, harbor HIV at a low replication stats that express 

little to no viral proteins. At some later time, stimulation of latently infected cells induces a surge 

of viral replication, and continues the chronic infection and dissemination of HIV. 

During the initial infection when HIV virions are prevalent, antibodies are generated 

against the surface bound envelope glycoprotein (Env), and initially control the infection.[47] 

However, after latently infected T cells are established, selective pressure results in the survival of 

virions that are not recognized by circulating antibodies allowing for immune evasion and the 

persistence of chronic HIV infection. Three major immune evasion mechanisms of Env are: one, 

error prone replication that result in in phenotypic alterations on Env; two, extensive glycosylation 

of gp120 and gp41; and three, conformational masking of conserved epitopes.[50, 51] Mutations that 

arise during replication produce a diverse population of Env that respond to the selective pressures 

of the host immune system, and produce Env variants poorly recognized by the generated 

antibodies. Glycosylation of gp120 and gp41 serve as immune decoys, distracting the immune 
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response from functional sites, and also mask buried epitopes that are conserved between Env 

variants.  

In 20-30% of chronically infected individuals, antibodies against conserved regions can be 

generated, and neutralize Env from multiple groups.[52, 53] These antibodies are called broadly 

neutralizing antibodies (bNAbs) and in a small subset of individuals they have been shown to 

naturally control HIV replication (called elite neutralizers). The unique and uncommon 

characteristics associated with HIV bNAbs are slowly generated over approximately two to three 

years of chronic infection, and typically do not afford any protection to host. However, they do 

provide valuable insight towards the production of an effective vaccine for HIV. 

The many steps of the HIV infection cycle and transmission have presented multiple targets 

for antiretroviral compounds (ARTs), and can be grouped based on the steps they inhibit including: 

fusion/entry inhibitors, reverse transcriptase inhibitors, integrase inhibitors, and protease 

inhibitors.[54, 55] Unfortunately, the initial use of single ARTs (monotherapy) gave rise to ART 

resistant HIV strains due to poor infiltration sites of HIV reservoir, producing sub-therapeutic 

concentrations that allowed for continual survival and adaptation of HIV against the therapeutic. 

Updated regimens using combination therapy, administering medications that span at least two 

different mechanisms of action, are highly effective at limiting the reproductive capability of HIV 

and are the initial therapy for many patients. Due to the resistance HIV has gained against many 

available ARTs, standardized therapies are used to prevent resistance against all ARTs, in addition 

to limiting toxicity associated with some ARTs.[56]  

Current ART regimens and guidelines are highly effective at reducing the presence of 

virions in patients to a point where viral RNA is undetectable, but ARTs are unable to cure patients 

of HIV.[55, 57] When ART therapy is paused or ended, HIV levels resurge in patients, thus requiring 
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life-long ART administration to prevent HIV replication and high serum levels.[55] The inability of 

ARTs to eliminate HIV has been linked to poor diffusion and sub-therapeutic levels of ARTs at 

sites of latently infected cells resulting in ineffective inhibition and clearance of HIV.[49, 58, 59] 

 

1.5 Vaccines 

1.5.1 Concept and history 

Vaccination traces back to a common practice called variolation, or inoculation, in which 

patients would be administered, or inoculated, with matter from an infected person to induce an 

immune response that would confer protection in the naïve patient.[60, 61] One of the most extensive 

and widespread applications of variolation was for smallpox in the early 18th century at the peak 

of the smallpox epidemic in Europe, which had a mortality rate of 20-60%.[61] Smallpox variolation 

proved effective but had three major drawbacks. First, there was a chance of death after variolation, 

though it was approximately 10-fold less than natural smallpox infections.[60, 61] Second, 

inoculation of matter from infected people inadvertently spread other carried diseases such as 

tuberculosis.[61] Lastly, after variolation the patients were contagious as the pathogen was not 

weakened by any means and risked new outbreaks, as evidenced by smallpox epidemics in the 

1960s and ‘70s.[60, 61] 

Vaccination, on the other hand, functions on the premise that ill-adapted or weakened 

pathogens can confer protection against the virulent, native pathogen while reducing side-effects 

and avoiding new epidemics. The discovery of vaccination is credited to Edward Jenner, who was 

first to test and prove the theory that inoculation of cowpox (vaccinia), a similar but less virulent 

disease to smallpox, can provide immunity against smallpox..[60, 61] Jenner validated his theory by 
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inoculating a young boy (James Phipps) with the cowpox virus, which he termed vaccination. The 

child developed the symptoms of cowpox, and when they subsided he was inoculated with 

smallpox, but did not develop the disease, thus proving that cowpox vaccination can protect against 

smallpox infection. Use of Jenner’s method curbed the smallpox epidemic and paved the way for 

its eradication.  

The determination and use of cowpox as a viable substitution for smallpox was a fortuitous 

and quite unique event given the antigenic similarities between the two viruses, which were 

unknown at the time. However, those vaccinated against smallpox were observed to contract the 

disease years later, therefore requiring periodic re-vaccination to maintain protective immunity. 

Later, Louis Pasteur developed less-virulent pathogens for a variety of diseases by serial 

inoculation of host species that were weakly susceptible to the pathogens. This method weakened, 

or “attenuated,” the pathogens to their natural hosts and produced replication competent vaccines 

with mild side effects and ushered in a new era of vaccination. 

1.5.2 Types and components of vaccine formulations  

Conventional vaccines are comprised of attenuated vaccines, inactivated (“killed”) 

vaccines, and subunit vaccines. Attenuated vaccines are highly effective due to their ability to 

replicate, which provides a continual source of the pathogen along with other components  called 

pathogen-associated molecular patterns (PAMPs) that are recognized by the host immune system 

as exogenous matter and results in an intensification of the host immune response.[62] Due to these 

two factors, attenuated vaccines usually require only one administration to provide long-term, or 

life-long, immunity. Inactivated vaccines are rendered non-replicative by heat, chemicals, or 

radiation, and while they possess the same components of attenuated vaccines the lack of 

replication requires booster vaccinations to produce protective and long term immune responses. 
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Additionally, the methods used for inactivation can degrade or alter the pathogen in a way that 

contributes to less protective immunity.  

Both attenuated and inactivated conventional vaccines consist of the whole pathogen, and 

carry inherent risks that have been historically observed.[63, 64] Since attenuated viruses can 

replicate their use in people with weakened immune systems may produce severe side effects. 

Also, attenuated vaccines can potentially revert to a virulent state after vaccination, thus producing 

the natural disease in the patient along with potentially spreading the virulent pathogen. However, 

modern techniques utilizing genetic alteration of pathogens can remove or modify genetic 

components that contribute to virulence, which have helped to reduce the potential of vaccine 

reversion. For inactivated vaccines there is a potential of incomplete inactivation, resulting in 

inoculation of virulent pathogens into patients. These factors along with others have limited the 

use of whole-pathogen vaccines for pathogens that are highly virulent. 

Subunit vaccines utilize only the component(s) of a pathogen that immune responses are 

generated against (called antigens), thereby minimizing the risk of infecting inoculated patients. 

Though subunit vaccinations are safer than whole pathogen vaccines, they are poorly 

immunogenic and require additional formulation. Notably, subunit vaccines do not replicate and 

may not contain PAMPs, and require booster administration and incorporation of 

immunostimulatory compounds (called adjuvants), respectively, to improve immunogenicity.  

1.5.3 Modern vaccines 

Methods and technologies beginning in the 1950’s have led to a new generation of vaccines 

along with enhancing conventional vaccines. Some notable examples will be briefly mentioned. 

Virus like particles (VLPs) are non-replicating nanoparticles produced from structural components 
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of viruses, and can be considered a type of subunit vaccine as they contain only a fraction of the 

viral components.[65] The presented antigens are displayed in a native-fashion on VLP surfaces, 

thus mimicking the natural pathogen and enhancing immunogenicity. However, VLPs are unique 

to viruses, but recent advances in recombinant technologies permitted antigens of other pathogens 

to be combined with VLPs for expression on VLP surfaces.[66] 

Similar to VLPs are the use of viral vectors to administer antigens for heterologous 

pathogens. Antigen from the pathogen of interest are recombinant added to viral vectors that 

display little or no pathogenicity to humans. The recombinant viral vectors are replication 

competent and contain endogenous PAMPs. An example is rVSV-EBOV, where the Ebola virus 

envelope glycoprotein was recombinant added and expressed on vesicular stomatitis virus, a 

zoonotic virus. [33, 34]. Other viruses used as vectors include many type of adenovirus and modified 

vaccinia Ankara virus.[33, 34, 37, 67] While recombinant viral vectors are effective at eliciting immune 

responses without boost vaccinations, there are concerns of their safety in patients with 

compromised immune systems. Additionally, reports of anti-vector immunity has led to the 

removal of some viral vector candidates as well as foreshadowing future issues with long-term 

immunity and efficacy.  

DNA and RNA based vaccines are also popular alternatives vaccine formats in which DNA 

or RNA encoding the antigen(s) of interest is administered and taken up by cells, and the encoded 

antigens is produced and expressed by the host cell.[68, 69] The advantages of this system is that 

short the antigen is produced for a time, providing a renewable source for the immune response. 

Additionally the genetic material can be delivered to cells without the accompanying pathogen, 

avoiding issues seen with whole pathogen vaccines. However, soluble DNA and RNA are not 

efficiency taken up by cells and when done, they can be degraded. A common practice to enhance 
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delivery to target cells is to formulate the DNA/RNA with nanoparticles, such as lipid-based or 

polymeric nanoparticles, or VLPs.[68, 69]  

1.5.4 Adjuvant incorporation 

To produce an immune response that is comparable to those of attenuated vaccines, 

immunostimulatory compounds (or adjuvants) are included in subunit vaccine formulations.[70] 

Adjuvants are used to mimic the effect a pathogen has on innate immunity, which helps to produce 

a stronger adaptive response.   

In the United States two adjuvants are approved for general use in vaccinations: aluminum 

salts (alum) and monophosphoryl lipid A (MPLA). Alum is known for producing strong Th2 

responses and has been incorporated into many vaccines since the 1930’s.[71] This adjuvant is 

believed to function by acting as a depot for slow release of antigen once administered. MPLA is 

a derivative of lipopolysaccharide, a component of gram-negative bacteria, and is an activator of 

the Toll-like Receptor 4 (TLR 4) PRR.[72] Experiments using MPLA in soluble antigen 

formulations induce strong Th1 responses, yet when incorporated into particles it has been reported 

to induce more balanced Th1/Th2 response.[73] 

The discovery and development of new adjuvants is a growing area of research. One 

experimental adjuvant that is currently in phase 2 trials is ISCOMATRIX®. This adjuvant is a 

combination of cholesterol, phospholipid, and ISCOPREP saponin, and when combined form a 

cage-like structure.[74] When admixed with antigens, ISCOMATRIX® serves a delivery vehicle to 

draining lymph nodes and promotes uptake by antigen presenting cells. The saponin component 

of ISCOMATRIX® is also an immunostimulatory agent top induce cytokine release and promote 

the adaptive immune response; however, the direct mechanism of action is not known. 
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1.6 Interbilayer-crosslinked multilamellar vesicles (ICMVs)  

1.6.1 Concept and development 

Delivery of antigens to immunological sites is a continued area of research. The antigen 

must not only be delivered to these areas but it must be done so at amounts that can produce an 

effective response. Adjuvants that are incorporated into vaccines must also be delivered to the 

same sites as the antigen. Significant improvements in responses are seen between antigen only, 

co-administered antigen and adjuvant, and co-delivery of antigen and adjuvant.[75] For soluble 

vaccine strategies, the simultaneous delivery of vaccine components is not assured due to 

differences in pharmacokinetic parameters. Different permeability and distribution properties can 

greatly affect where and to what degree vaccine components disseminate in the host. However, 

nanoparticles are designed to contain each of the vaccine components in a dense package.  

ICMVs are multilayered liposomes that contain covalent bonds between functionalized 

lipid head groups. The rationale behind this design is to increase the stability of the particle in vivo. 

Other designs such as liposomes or multi-lamellar vesicles (MLVs) that are not cross-linked are 

quickly degraded once administered.[76] The use of a phospholipid bilayer design allows ICMVs 

to retain both hydrophobic and hydrophilic compounds. Lipophilic compounds are generally 

contained in the lipid bilayer; whereas, hydrophobic compounds are either in nanoparticle core, 

between bilayers, or adsorbed onto the particle surface. Therefore, widely varying compounds can 

be packaged into a single unit to be co-delivered to immune sites. 

ICMVs are produced by rehydration of a phospholipid film that is partially comprised of a 

phospholipid with a maleimide-functionalized head group (MPB).[76]. Rehydration results in a 
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heterogeneous population of multi-layered vesicles which are sonicated to produce simple 

liposomes of a more uniform size. Addition of calcium chloride induces fusion of the liposomes 

into a stratified particle that is approximately 250 nm in diameter. Cross-linking is achieved by the 

addition of dithiothreitol (DTT), a membrane permeable reducing agent that reacts with the 

maleimide head groups of opposing bilayers to form interbilayer covalent bonds. The ICMV is 

washed to remove any excess calcium and unbound DTT, and unreacted maleimide on the surface 

of the ICMV can be conjugated to PEG-thiol to promote longer circulation in vivo.  

IMCVs have previously been tested as a vaccine formulation in mice using a model antigen 

and resulted in a 1000 fold increase in antibody titers compared to simple liposomes and around a 

10 fold increase compared to MLVs.[76] Another vaccination strategy using a malarial antigen 

incorporated into ICMVs produced immune responses compared to soluble antigen admixed with 

alum.[73] Additionally, these ICMV formulations provided a more balanced cellular and humoral 

response despite using MPLA, which is known to generate strong Th1 responses.  

ICMVs have also been used in prior vaccination attempts with recombinant Env displayed 

on the particle surface.[77] The study resulted in enhanced antibody titers compared to the levels 

produced in response to the soluble antigen. However this study did not utilize the interior surfaces 

of ICMVs to retain antigen, a major advantage of ICMVs.  

1.6.2 Components of ICMVs 

ICMV components can be divided into three different groups: lipid bilayer components, 

crosslinking compounds, and fusion inducers. Depending on the characteristics desired for the 

ICMV structure or what is needed to support the antigen type, any of these groups can be modified.  
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Typically ICMVs are produced using a 1:1 molar ratio of the phospholipids DOPC and 

maleimide functionalized DOPE (MPB).[76] Both of these lipids have a net negative charge which 

is conferred to the ICMV once produced and the unsaturated dioleoyl acyl chains have melting 

temperatures well below room temperature. Modification to either of these properties can be 

achieved by addition or replacement with other phospholipids, such as those with the saturated 

distearoyl acyl chain or with neutral or positively charged lipids (e.g. DOPE or DOTAP, 

respectively). Lipophilic compounds can also be added to this group for various functions, such as 

cholesterol to increase membrane rigidity or lipophilic fluorophores for ICMV visualization. Other 

functionalized lipids can be added for distinct functionalization of the particles such as the use of 

lipids conjugated with NTA, a chelating agent that is used to retain compounds containing 

polyhistidine tags.[78]  

Thiol containing compounds are required for the maleimide-thiol conjugation reaction that 

crosslinks bilayers into a stable structure.[76] DTT is the preferred thiol containing agent in ICMV 

synthesis due to its strong reducing potential and efficient reaction with maleimide. The short 

length of DTT produces a consistent distance between bilayers of roughly the length as DTT. This 

presents a dilemma for encapsulation of compounds of larger size in the interbilayer space. The 

reducing ability of DTT also has the potential to react with cysteines present on proteins and 

peptides. Though this may bind and retain antigens it can also affect their presentation.  

Divalent metal ions are the choice fusion inducers with calcium ions producing the best 

results.[73] Other fusion inducers are currently being tested, and include the use of ionic polymers 

that serve as the sources of both the fusion inducer and the thiol groups for crosslinking of bilayers. 
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Chapter 2 

Towards elicitation of broadly neutralizing antibody responses against 

hepatitis C virus with vaccine nanoparticles presenting E2 antigen 

 

2.1 Abstract 

Hepatitis C remains a global epidemic despite the global distribution and administration of 

antiviral therapeutics. An estimated 1% of the global population has contracted hepatitis C, and 

~80% of those infections are asymptomatic and progress to chronic infection that increases the 

risk of liver fibrosis in those infected and transmission to others. Currently, a vaccine against 

hepatitis C virus (HCV) does not exist due to the extreme diversity and adaptability of the virus 

that leads to immune evasion. Here, we report the generation of autologous and heterologous 

neutralizing antibodies using two recombinant HCV antigens, E2.661 and E2c.661, loaded into 

lipid-based nanoparticles called, interbilayer-crosslinked multilamellar vesicles (ICMVs). 

Specifically, after three rounds of vaccination in mice, ICMVs loaded with E2.661 and E2c.661 

generated autologous neutralizing antibodies in 100% and 86% of mice, respectively, whereas, 

measureable heterologous neutralization was observed with serum from 43% and 86% of mice. 

Further investigation of the immunization sera revealed that 100% and 43% of sera from E2c.661 

ICMV and E2.661 ICMV vaccinated mice bound to the conserved and broadly neutralizing HCV1 

epitope, suggesting its contribution to the heterologous responses. These data indicate ICMVs 
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loaded with E2c.661, but not E2.661, as a candidate vaccine for further investigation to generate 

cross-genotype protective humoral responses against HCV. 

 

2.2 Introduction 

As of 2015, approximately 71 million people were living with chronic hepatitis C 

worldwide, with an estimated 1.75 million new cases that year.[8] Chronic HCV infection can lead 

to liver fibrosis and cirrhosis, and is a leading contributor to hepatocellular carcinoma.[79] Despite 

the advances of direct acting antivirals (DAAs) against the hepatitis C infection, the treatment is 

lengthy (lasting 2-6 months), and requires daily dosing that is tailored to the diverse genotypes of 

HCV.[11] Furthermore, the escalating crisis of opioid epidemics and injecting drug use in the US 

and elsewhere fuel the spreading of HCV.[80] An HCV vaccine that can prevent HCV transmission 

or the development of chronic HCV infection will be an important tool for the elimination of this 

devastating human pathogen.  

Analyses of monoclonal antibodies (mAbs) from chronically infected patients have 

identified cross-genotype neutralizing antibodies recognizing the E2 subunit of the HCV envelope 

glycoprotein complex,[15, 81-84] with many of these antibodies recognizing epitopes within the CD81 

binding site (CD81bs) of E2.[14, 15, 82] Recently, we demonstrated that three antibodies against this 

epitope protected chimeric liver mice of HCV after passive immunization.[85] Additionally, in a 

previous report, immunization of humanized mice with a recombinant E2 antigen generated cross-

genotype targeting antibodies; however, an extensive dosing schedule was required, and only two 

mAbs were identified from a pool of 51 inoculated mice.[86] Generation of cross-neutralizing 

antibodies has remained a challenge, partially because the three variable regions (VRs) of E2 are 

highly mutagenic and antigenic, thus skewing humoral immune responses away from crucial 
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conserved epitopes.[87-89] Extensive research from us and others has led to the development of a 

engineered E2 subunit that retains its conformation and immunogenicity,[90-93] and we have 

recently determined the E2 core structure (E2c), devoid of the highly variable region 1 (HVR1) 

and variable region 2 (VR2), while preserving key epitopes, including the important CD81bs on 

the E2 neutralizing face.[94, 95]  

In this report, we have developed synthetic vaccine nanoparticles loaded with soluble 

recombinant antigens of E2 and E2c truncated to residue 661 (E2.661 and E2c.661, respectively) 

and evaluated for their antigenicity and immunogenicity. As soluble antigens, E2.661 and E2c.661 

lack the multivalent display, concerted orientation, and presence of immunostimulatory danger 

signals as HCV virions. We have previously demonstrated that subunit antigens loaded into lipid-

based nanoparticles, called interbilayer-crosslinked multilamellar vesicles (ICMVs), can 

significantly improve immune responses to protein antigens.[73, 76]  

Here we sought to test the immunogenicity of ICMVs loaded with E2.661 or E2c.661, and 

evaluate the display of the antigens on ICMV surfaces. ICMVs were analyzed by 

immunofluorescence staining and evaluated both as bulk formulations and individual 

nanoparticles. Notably, the CD81bs-targeting broadly neutralizing antibody HCV1 selectively 

bound to E2c.661 ICMVs, compared with E2.661 ICMVs.  Vaccination with ICMV formulations 

generated log-fold increases in antigen-specific serum IgG titers, compared with soluble controls. 

Neutralization of HCV pseudotype-like particles (HCVpp) were more frequent and of a greater 

capacity by serum collected form ICMV immunized mice compared to soluble controls. 

Specifically, immune sera from the E2.661 ICMV group preferentially neutralized autologous 

HCVpp in 7 of 7 mice with high potency. In contrast, immune sera from 6 of 7 animals immunized 

with E2c.661 ICMVs exhibited neutralizing-capacity against autologous HCVpp (albeit at 
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moderate level) as well as heterologous HCVpp, thus demonstrating broadening and cross-

genotype activity of humoral immune responses. 

 

2.3 Materials and Methods 

Generation of soluble E2 constructs for protein expression and purification. 

We have previously reported the cloning and purification of the recombinant antigens of 

the HCV E2 glycoprotein.[94] Here, E2.661 and E2c.661 recombinant antigens of the E2 

glycoprotein from the prototypic HCV strain H77 were both C terminally truncated to amino acid 

residue 661 for comparison of the effect of VR deletion on E2. Spaete et al. showed previously 

that E2 truncated at amino acid 661 can be expressed as folded, soluble recombinant protein despite 

the presence of odd number of cysteine residues in the protein.[90] E2c.661 has the additional 

modifications: 1) N-terminal truncation to residue 412; 2) replacement of amino acids 460-485 

with a gly-ser-ser-gly linker; and 3) removal of the N-linked glycosylation sites at residues 448 

and 576. Antigens were co-transfected with pAdvantage (Promega) into FreeStyle 293-F 

mammalian cells (Invitrogen) supplemented with 7.5 μM kifunensine and incubated for 72 hours 

at 37°C. The proteins were purified over an AR3A antibody affinity column (AR3A chemically 

conjugated to protein A (GE) using DMP (Thermo Fisher Pierce)), eluted with 0.2 M glycine 

buffer pH 2.2. 

Antibody production and purification. 

We have previously reported the production of the HCV-specific antibodies AR1B, AR2A, 

AR3A, and HCV1.[14, 83] Briefly, variable and constant antibody fragments were cloned into 

pDR12 vectors and pIgG1 vectors, respectively, then co-transfected into CHO (Chinese hamster 
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ovarian) cells. The expressed antibodies were collected and purified via a protein A-agarose 

column (GE Healthcare).  

ICMV synthesis. 

ICMVs were synthesized with slight modifications from our previous report.[76] Briefly, 

solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] sodium salt (MPB) (Avanti Polar 

Lipids) in chloroform were mixed in equal molar ratios and dried to produce thin lipid films. Stock 

antigens were diluted in 10 mM bis-tris propane (BTP) (Fisher Scientific) at pH 7 for a final 

concentration of 250 µg/mL. These solutions were used to rehydrate the dried films. The resulting 

suspensions were sonicated by probe tip (QSonica Q125) to produce small unilamellar vesicles 

that were subsequently CaCl2 and DTT (Fisher), which were added to fuse and crosslink 

interbilayer maleimides, respectively, to produce ICMVs. The resulting particles were incubated 

for one hour in at 37 °C and centrifuged (Eppendorf 5430R) at 14,000 r.c.f. for 4 minutes at 4 °C 

to remove unloaded antigen. The pelleted ICMVs were washed with DNA grade water (Fisher), 

and this process was repeated once more before a final suspension 200 µL of sterile filtered 

phosphate buffered saline (Gibco). For the immunostaining assays, ICMVs were produced as 

above with the addition of a lipophilic fluorophore, 1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt (DiD) (Thermo Scientific), at less 

than 0.2 molar percent to the lipid films. ICMVs used for inoculation were produced as those above 

with the addition of the Toll-like receptor-4 agonist, monophosphoryl lipid A (MPLA, Avanti 

Polar Lipids) to the initial phospholipid mixture, similar to a previous report.[76] 
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Antigen loading. 

Loading of E2.661 or E2c.661 into ICMVs was evaluated by sodium dodecyl-sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions on Bolt™ 8% Bis-

Tris Plus gels (Invitrogen). Gels were run using MOPS SDS running buffer (Invitrogen) for 45 

minutes at 200V. Following protein migration, the gels were stained with Coomassie Brilliant Blue 

R-250 (Fisher), and after sufficient rounds of destaining, the gels were visualized with a 

FluorChemM digital imager (ProteinSimple) and analyzed via ImageJ software.  

ICMV size analysis. 

The diameter of ICMVs was measured by DLS using ZetaSizer Nano ZSP (Malvern) and 

by nanoparticle tracking analysis via NanoSight NS300 (Malvern) equipped with a 405nm or 

488nm laser. The zeta potential of ICMVs was measured using a ZetaSizer NanoZSP. For size 

analysis, the formulations were diluted in 0.22µm filtered water, whereas, formulations used of 

zeta potential measurements were diluted in 0.22µm filtered water or 0.22µm filtered phosphate 

buffered saline (PBS). 

Evaluation of surface-displayed antigens. 

Antigen-loaded ICMVs containing DiD were diluted 1:2 in FACS buffer (1% BSA (Fisher) 

in PBS) and briefly water-bath sonicated to disrupt nanoparticle aggregates. The samples were 

further diluted two-fold with FACS buffer containing either antigen specific primary antibodies 

AR1B, AR2A, AR3A, and HCV1,[14, 83, 86] or isotype control human IgG1 kappa antibody (Sigma-

Aldrich) at a working concentration of 0.018 mg/mL. An additional control group consisting of 

FACS buffer alone was also included, termed “Processed Control”. All samples were incubated 

overnight at 4°C and then centrifuged at 20000 r.c.f. for 45 minutes at 4°C to remove unbound 
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antibodies. The pellets were washed with FACS buffer and centrifuged again. All processed 

samples were suspended in 100 µL phycoerythrin (PE) conjugated goat anti-human IgG 

(eBioscience) secondary antibody at a 1:50 dilution and incubated for one hour at room 

temperature away from light. Unbound secondary antibodies were removed by two rounds of 

configuration and washing as above, and the particles were suspended in FACS buffer and plated 

into a black opaque 96-well plate (Costar).  The emission/excitation signals of DiD and PE were 

measured at 644/670 and 488/578, respectively. For NanoFACS analysis, the above samples were 

transferred after the plate-based measurements into FACS tubes and diluted approximately two-

fold with FACS buffer. The samples were placed on ice analysis on a Beckman Coulter MoFlo 

Astrios fitted with M1 and M2 masks. Data gathered by NanoFACS was analyzed using FloJo 

software. 

In vivo vaccination studies. 

Female, 5- to 8-week old, C57/BL-6 mice (Envigo) were vaccinated on days 0, 21, and 42  

by subcutaneous injection (100 µL) divided equally on either side of the tail base. Four vaccine 

formulations were evaluated, consisting of either soluble antigen (E2.661 or E2c.661) plus MPLA 

or antigen loaded ICMVs (E2.661 or E2c.661) plus MPLA. Initial vaccinations administered 10 

µg of indicated antigens along with approximately 1 µg MPLA. Subsequent vaccinations 

contained 5 µg of indicated antigens and approximately 0.5 µg MPLA. Serum samples collected 

for ELISAs and in vitro pseudo-virus neutralization assays were collected via submandibular 

punctures on day -1, 20, 41, 62, 104, 142, and 176. Sera were collected into Microvette® 500 Z-

gel tubes (Sarstedt) and processed according to the manufacturer’s instructions. Serum samples 

were removed and stored at -80°C until used. 

Enzyme linked immunosorbent assays. 
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Endpoint titers of E2-specific IgG from immune sera were determined by ELISA similar 

to a previous report.[96] In summary, ELISA microwells were pre-coated with 5 μg/ml Galanthus 

nivalis lectin (Vector Labs) overnight at 4°C. Microwells were washed with 1X PBS/0.05% 

Tween20 and blocked with 4% non-fat milk (Bio-Rad) for 1 hour at room temperature (R.T.). H77 

E1E2 antigens were captured from the cell lysate of 293T cells with an expression plasmid for 1 

hour at R.T. Serially diluted serum from immunized animals were added, and incubated for 1 hour 

at R.T. Antibodies bound to the antigen were detected by peroxidase (HRP)-conjugated goat anti-

mouse IgG Fc antibody (1/2000) (Jackson ImmunoResearch) and TMB substrate (Pierce). 

Endpoint titers were measured as the highest dilution of serum producing a signal 3-fold greater 

than the background signal. For the recognition of linear peptide epitopes by serum antibodies, the 

HCV H77 corresponding HVR1 peptide (amino acids 384-411; sequence 

ETHVTGGNAGRTTAGLVGLLTPGAKQNI) (Genscript) or a long peptide (amino acids 407-

424; sequence AKQNIQLINTNGSWHINS) (NIH) containing the HCV1 epitope (residues 412-

423) were coated onto wells at 5 µg/mL overnight at 4 °C for binding of immune sera.  

In vitro pseudotype-virus particle neutralization assay. 

The production of HCV pseudotype-virus particles (HCVpp) and the in vitro neutralization 

assay have been described previously.[83] Briefly, HCVpp expressing firefly luciferase and E1E2 

from either H77 (genotype 1a), UKN1b12.6 (genotype 1b), or J6 (genotype 2b) were collected 

from the supernatants of cultured 293T cells. Immune sera at 1:50 dilutions were combined with 

the HCVpp containing supernatants and incubated for 1 hour and 37°C. The antibody-virus 

mixtures were added to microwells seeded with Huh7 cells the day prior and incubated at 37°C. 

After 4-6 hours incubation the mixtures were replaced with fresh culture medium and incubated 

for an additional 72 hours. The firefly luciferase signal from HCVpp infected cells was determined 
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using Bright-Glo™ Luciferase Assay System (Promega) according to the manufacturer’s 

instructions. HCVpp neutralization was calculated as a percent of the residual virus infectivity 

divided by infectivity without sera after background subtraction. Pseudotype virus particles 

transfected with pNL4-3.lucR−E only was used to determine the background infectivity, while 

pseudotype virus particles expressing the envelope glycoprotein from lymphocytic 

choriomeningitis virus (LCMVpp) were used as a negative control. 

Statistical analysis.  

Determination of statistical significance was performed using Prism 7.0.3. One-way or 

two-way ANOVA significance tests with Tukey’s or Sidak’s post-hoc multiple comparison test 

were used for group-wise analysis as indicated in the figure legends. Statistical significance is 

indicated as: n.s. p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

 

2.4 Results 

Antigen design. 

The recombinant antigens used in this study were derived from the E2 envelope 

glycoprotein of the prototypic HCV strain H77 (Figure 2-1A).[93, 94] Both antigens were truncated 

to remove part of the stalk and the entire transmembrane regions to improve solubility.[90] 

Additional modifications to the E2c.661 include removal of N-linked glycans and two variable 

regions while retaining a native-like conformation.[94] Previous research has suggested that the 

VRs are immunogenic decoys and contributing factors of immune evasion by HCV.[97, 98] 
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Figure 2-1. Schematic representations of antigen constructs and characterization of antigen-loaded ICMVs. 

Characterization of antigen-loaded ICMVs. 

Antigen-loaded ICMVs were produced following the standard protocol by thin film 

rehydration using buffer containing 50 µg of E2.661 or E2c.661. After removal of unloaded 

antigens, ICMVs were analyzed by dynamic light scattering (DLS) to determine their diameter 

and zeta potential (Figure 2-1B). Measurement of the bulk samples by DLS reported an average  

  
Figure 2-1. Schematic representations of antigen constructs and characterization of antigen-loaded ICMVs. 

A) Native HCV E2 is represented with conserved regions (blue) interspersed with 3 variable regions (VRs). 

E2.661 and E2c.661 are truncated at amino acid 661 to remove most of the stalk region and the entire 

transmembrane domain (TM). Additional alterations in E2c.661 are the removal of the hypervariable region 

1 (HVR1) and VR2 (replaced with a gly-ser-ser-gly linker), and removal of N-linked glycans at residues 

448 and 576. B) Table of percent loading efficiencies of initial antigen (LE %), average diameters by DLS 

or NTA, polydispersity indices (PDI), and zeta potentials (ZP) of ICMVs. C) Intensity-based Zetasizer 

distributions of E2.661 and E2c.661 ICMVs. D) NanoSight size distributions (number-based) of E2.661 

and E2c.661 ICMVs. Measurements reported as mean ± SD. 
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Figure 2-2. Analysis of antigen loading efficiencies in ICMVs. 

diameter of 132  ± 16 nm and 123 ± 2 nm for ICMVs loaded with E2.661 and E2c.661, respectively 

(Figure 2-1B), and both formulations demonstrated largely homogeneous size distributions, 

indicated by  polydispersity indices of 0.23 ± 0.02 and 0.21 ± 0.02 and size distribution peaks 

focused around 130 nm (Figure 2-1B, C). The zeta potentials were relatively conserved between  

the ICMV formulations, at -35 ± 7 mV and -30 ± 16 mV for ICMVs and NTA ICMVs diluted in  

Figure 2-2. Analysis of antigen loading efficiencies in ICMVs. A, B) Reducing SDS PAGEs of E2.661 and 

E2c.661 ICMVs (with or without DiD) to determine loading efficiency (super. = supernatant of first 

centrifugation after ICMV production). Note: the multiple adjacent bands represent the different glycoforms 

of recombinant E2. C) Loading efficiencies of three independent DiD- and DiD+ ICMV pairs. D) Average 

loading efficiencies of production matched ICMVs. Measurements reported as mean ± SEM. Statistical 

analysis performed by two-way ANOVA of matched pairs, followed by Sidak’s multiple comparisons test. 

n.s. p > 0.05. 

 

Figure 2-3. Analysis of surface antigen conformation and display.Figure 2-2. Analysis of antigen 

loading efficiencies in ICMVs. A, B) Reducing SDS PAGEs of E2.661 and E2c.661 ICMVs (with or 

without DiD) to determine loading efficiency (super. = supernatant of first centrifugation after ICMV 

production). Note: the multiple adjacent bands represent the different glycoforms of recombinant E2. C) 
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water, respectively, confirming that the antigens did not affect the anionic charge of ICMVs. 

Individual nanoparticle sizes as measured by nanoparticle tracking analysis (NTA) were 115 ± 12 

nm and 121 ± 14 nm in diameter for E2.661 and E2c.661 ICMVs, respectively, with main 

distribution peaks around 100 nm (Figure 2-1B, D). The antigen content of ICMVs loaded with  

either E2.661 or E2c.661 was determined by SDS PAGE under reducing conditions, followed by 

Coomassie staining (Figure 2-2A, B). We observed loading efficiencies of 54 ± 8% and 50 ± 7% 

for E2.661 ICMVs and E2c.661 ICMVs, respectively, with no significant difference between the 

two ICMV formulations (p > 0.05, Figure 2-1B).   

Interrogation of surface-displayed antigen on ICMVs. 

To assess display of surface-bound antigens and antibody-mediated recognition of epitopes 

on ICMVs, we performed an indirect immunofluorescence assay on ICMVs using a microplate-

based whole population approach[73] as well as NanoFACS-based interrogation of individual 

nanoparticles (see below)  (Figure 2-3A). For both approaches, ICMVs were incubated with 

primary antibodies directed against E2 epitopes, followed by incubation with phycoerythrin (PE)-

conjugated secondary antibodies (Figure 2-3A). To account for particle loss from the 

immunofluorescence process, we included a small amount (< 0.2 molar %) of a lipophilic 

fluorophore, DiD, during the ICMV synthesis as a non-discriminate marker of nanoparticles. We 

evaluated the loading efficiencies of antigens in DiD+ and DiD- ICMVs and observed similar 

antigen loading between the formulations (Figure 2-2A-D). Next, we incubated DiD+ E2.661 or 

E2c.661 ICMVs with antigen-specific antibodies, AR1B, AR2A, AR3A, or HCV1, which 

recognize four different antigenic sites on E2.[14, 15] Control groups included an isotype control 

antibody to assess non-specific antibody binding and FACS buffer alone as a negative control. To 

evaluate nanoparticle recovery, the DiD signals of the processed samples (those that were  
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Figure 2-3. Analysis of surface antigen conformation and display. 
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incubated with antibodies and washed) were compared against the unprocessed ICMVs (those that 

were not incubated with any antibody).  

The microplate-based assessment of the whole ICMV population revealed the average 

particle recovery rate of 65 ± 5% and 67 ± 4% for E2.661 ICMVs and E2c.661 ICMVs, 

respectively (Figure 2-3B). We then measured the PE signals from antibody-bound ICMVs and 

normalized the values by the particle recovery rates (Figure 2-3C). Both ICMV formulations were 

recognized and bound by antibodies specific to various epitopes across E2, demonstrating 

maintenance of antigenicity in ICMVs. Notably, the signal for the E2c.661 ICMVs was 

significantly greater than that of E2.661 ICMVs for HCV1 antibody (p < 0.5, Figure 2-3C).  

Immunofluorescence staining is a useful tool for discerning antigen display profiles on 

ICMVs; however, analysis of bulk samples, as above, does not provide insights into antigen 

display on individual particles. To address this issue, we have employed a flow cytometry-based 

analysis method, termed NanoFACS, which we adopted from previous reports.[99-103] The same 

samples used in the plate-based method were analyzed by NanoFACS. After gating on individual 

ICMVs, the DiD signal and PE-antibody signal were plotted (Figure 2-3D). The DiD signal on 

the X-axis indicates individual ICMVs, while the PE-antibody signal on the Y-axis shows the 

extent of antibodies binding to individual ICMVs. Notably, that there was some loss of DiD during 

Figure 2-3. Analysis of surface antigen conformation and display. A) Schematic of the 

immunofluorescence staining process. Step 1, ICMVs labeled with DiD (blue glow) are incubated with 

primary antibodies (or FACS buffer). Step 2, after washing the samples are incubated with PE-labeled 

secondary antibodies (or FACS buffer). DiD fluorescence is used to assess particle loss during processing, 

while PE fluorescence corresponds to bound primary antibodies. Immunofluorescence staining is first 

measured on a batch basis then each sample is recollected and analyzed on an individual nanoparticle basis 

using flow cytometry. B) DiD fluorescence signal of processed and unprocessed (DiD control) samples. C) 

Secondary antibody signal normalized to DiD loss. D) Representative NanoFACS plots from each group 

tested. E) DiD fluorescence of immunofluorescence stained ICMVs measured by NanoFACS. F) 

NanoFACS signal of bound secondary antibody after incubation with designated ICMVs. Measurements 

reported as mean ± SEM. Statistical analysis performed by two-way ANOVA, followed by Tukey’s 

multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

Figure 2-4. Vaccination study in C57BL/6 mice.Figure 2-3. Analysis of surface antigen conformation 

and display. A) Schematic of the immunofluorescence staining process. Step 1, ICMVs labeled with DiD 

(blue glow) are incubated with primary antibodies (or FACS buffer). Step 2, after washing the samples are 

incubated with PE-labeled secondary antibodies (or FACS buffer). DiD fluorescence is used to assess 

particle loss during processing, while PE fluorescence corresponds to bound primary antibodies. 

Immunofluorescence staining is first measured on a batch basis then each sample is recollected and 

analyzed on an individual nanoparticle basis using flow cytometry. B) DiD fluorescence signal of processed 

and unprocessed (DiD control) samples. C) Secondary antibody signal normalized to DiD loss. D) 

Representative NanoFACS plots from each group tested. E) DiD fluorescence of immunofluorescence 

stained ICMVs measured by NanoFACS. F) NanoFACS signal of bound secondary antibody after 

incubation with designated ICMVs. Measurements reported as mean ± SEM. Statistical analysis performed 

by two-way ANOVA, followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. 
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and display. A) Schematic of the immunofluorescence staining process. Step 1, ICMVs labeled with DiD 

(blue glow) are incubated with primary antibodies (or FACS buffer). Step 2, after washing the samples are 

incubated with PE-labeled secondary antibodies (or FACS buffer). DiD fluorescence is used to assess 

particle loss during processing, while PE fluorescence corresponds to bound primary antibodies. 

Immunofluorescence staining is first measured on a batch basis then each sample is recollected and 

analyzed on an individual nanoparticle basis using flow cytometry. B) DiD fluorescence signal of processed 

and unprocessed (DiD control) samples. C) Secondary antibody signal normalized to DiD loss. D) 

Representative NanoFACS plots from each group tested. E) DiD fluorescence of immunofluorescence 

stained ICMVs measured by NanoFACS. F) NanoFACS signal of bound secondary antibody after 

incubation with designated ICMVs. Measurements reported as mean ± SEM. Statistical analysis performed 

by two-way ANOVA, followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. 

 

Figure 2-4. Vaccination study in C57BL/6 mice.Figure 2-3. Analysis of surface antigen conformation 

and display. A) Schematic of the immunofluorescence staining process. Step 1, ICMVs labeled with DiD 

(blue glow) are incubated with primary antibodies (or FACS buffer). Step 2, after washing the samples are 

incubated with PE-labeled secondary antibodies (or FACS buffer). DiD fluorescence is used to assess 
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the immunofluorescence process, as reflected by the slight decrease in the DiD signal between the 

unprocessed and processed samples (Figure 2-3E). Consistent with the microplate-based method, 

we observed strong binding of various E2 epitope-specific antibodies on the surfaces of both 

E2.661 ICMVs and E2c.661 ICMVs (Figure 2-3F). Importantly, there were notable differences 

in the PE-antibody signals obtained by the microplate- and NanoFACS-based methods. Compared 

with E2.661 ICMVs, E2c.661 ICMVs exhibited significantly elevated binding of AR1B, AR2A, 

and HCV1 antibodies (p < 0.01, p < 0.001, and p < 0.0001, respectively, Figure 2-3F), suggesting 

enhanced presentation of E2 epitopes on E2c.661 ICMVs. 

E2c.661 ICMVs generate neutralizing antibodies against autologous and heterologous E1E2. 

We next sought to determine whether the differences in the antigen design and epitope 

display on the surfaces of ICMVs have any impact on the immunogenicity of ICMVs in vivo. To 

bolster the immune responses, we incorporated an immunostimulatory adjuvant, MPLA (a Toll-

like receptor 4 agonist) in all of the vaccine formulations. Mice were vaccinated subcutaneously 

at the tail base with the prime dose of 10 µg antigen plus 1 µg MPLA and two boost doses of 5 µg 

antigen and 0.5 µg MPLA with a three-week interval between immunizations (Figure 2-4A). We 

collected serum samples spanning day -1 to 176 and analyzed them for IgG titers against the native 

E1E2 antigen by sandwich ELISA. Both ICMV formulations demonstrated a rapid increase in 

antigen-specific IgG titers after the first vaccination, whereas seroconversion of the soluble groups 

was observed after the second vaccination (Figures 2-4B and Figure 2-5). Regardless of the 

antigen used, E2-serum IgG titers from the ICMV vaccine groups were similar in magnitude 

throughout the vaccination study, and were consistently greater than their respective soluble 

controls, with at least 6 and 20-fold increases for E2.661 ICMV and E2c.661 ICMV groups, 

respectively (Figure 2-4B). 
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Figure 2-4. Vaccination study in C57BL/6 mice. 
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We evaluated the antigen specificity and neutralization capacity of the immune sera by in 

vitro neutralization assay against HCV pseudotype-virus particles (HCVpp) expressing E1E2 

glycoproteins from autologous (H77) or heterologous (UKN1b12.6 and J6) HCV strains, or the 

envelope glycoprotein from lymphocytic choriomeningitis virus (LCMV) as a negative control. 

Serum samples from day 62 demonstrated autologous HCVpp neutralization in 7 of 7 and 3 of 7 

serum samples from E2.661 and E2c.661 ICMV groups, respectively, compared to 2 of 7 and 1 of 

7 for their respective control groups. At this time point only two serum samples possessed 

heterologous HCVpp neutralizing capacity, one from the E2.661 control group and the other from 

the E2c.661 ICMV group. At day 104, autologous responses were sustained for the E2.661 ICMV 

group, but interestingly expanded to 6 of 7 mice from the E2c.661 ICMV group, and in both groups 

heterologous neutralization also increased to 3 of 7 and 6 of 7 mice (Figure 2-4C, D).  

Vaccination with E2.661 ICMVs generated immune sera with strong neutralizing activity 

against autologous HCVpp, with 6 out of 7 mice exhibiting > 30% neutralization at day 176; 

however, they exhibited weak and short-lived neutralizing capacity against heterologous HCVpp 

(Figure 2-4C, D). In stark contrast, immune sera from the E2c.661 ICMV group exhibited 

neutralizing capacity against both autologous (albeit at a lower capacity) and heterologous HCVpp 

Figure 2-4. Vaccination study in C57BL/6 mice. A) Vaccination scheme indicating days of subcutaneous 

vaccinations (black arrows) and serum collection (red arrows). B) Arithmetric average E2 specific IgG 

titers from serum collections. Endpoint antibody titers of mouse samples were determined by calculating 

the highest serum dilution producing an absorbance value 3-fold above background. Measurements reported 

as mean ± SEM. Statistical analysis was performed on groups with similar antigens (e.g. E2.661 + MPLA 

vs. E2.661 ICMV + MPLA) using two-way ANOVA with matched pairs followed by Tukey’s multiple 

comparisons test. Statistical significance levels are denoted by asterisks (*) for E2 antigen formulations and 

pound signs (#) for E2c antigen formulations. (#/*) p < 0.05, (##/**) p < 0.01, (###/***) p < 0.001, 

(####/****) p < 0.0001. C) Average in vitro pseudotype-virus particle neutralization various by diluted 

vaccination serum collected at various time points. Measurements reported as mean ± SEM. Statistical 

analysis was performed by two-way ANOVA using matched pairs followed by Tukey’s multiple 

comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. D) Individual in vitro serum 

neutralization titers. LCMV (Lymphocytic Choriomeningitis Virus, negative control), HCV H77 

(autologous HCV), and HCV UKN1b12.6 and J6 (heterologous strains from genotype 1b and 2a, 

respectively). 

 

Figure 2-5. E2 specific serum IgG titers for individual mice.Figure 2-4. Vaccination study in C57BL/6 

mice. A) Vaccination scheme indicating days of subcutaneous vaccinations (black arrows) and serum 

collection (red arrows). B) Arithmetric average E2 specific IgG titers from serum collections. Endpoint 

antibody titers of mouse samples were determined by calculating the highest serum dilution producing an 

absorbance value 3-fold above background. Measurements reported as mean ± SEM. Statistical analysis 

was performed on groups with similar antigens (e.g. E2.661 + MPLA vs. E2.661 ICMV + MPLA) using 

two-way ANOVA with matched pairs followed by Tukey’s multiple comparisons test. Statistical 

significance levels are denoted by asterisks (*) for E2 antigen formulations and pound signs (#) for E2c 

antigen formulations. (#/*) p < 0.05, (##/**) p < 0.01, (###/***) p < 0.001, (####/****) p < 0.0001. C) 

Average in vitro pseudotype-virus particle neutralization various by diluted vaccination serum collected at 

various time points. Measurements reported as mean ± SEM. Statistical analysis was performed by two-

way ANOVA using matched pairs followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001. D) Individual in vitro serum neutralization titers. LCMV (Lymphocytic 

Choriomeningitis Virus, negative control), HCV H77 (autologous HCV), and HCV UKN1b12.6 and J6 

(heterologous strains from genotype 1b and 2a, respectively). 
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collection (red arrows). B) Arithmetric average E2 specific IgG titers from serum collections. Endpoint 

antibody titers of mouse samples were determined by calculating the highest serum dilution producing an 

absorbance value 3-fold above background. Measurements reported as mean ± SEM. Statistical analysis 

was performed on groups with similar antigens (e.g. E2.661 + MPLA vs. E2.661 ICMV + MPLA) using 

two-way ANOVA with matched pairs followed by Tukey’s multiple comparisons test. Statistical 

significance levels are denoted by asterisks (*) for E2 antigen formulations and pound signs (#) for E2c 

antigen formulations. (#/*) p < 0.05, (##/**) p < 0.01, (###/***) p < 0.001, (####/****) p < 0.0001. C) 

Average in vitro pseudotype-virus particle neutralization various by diluted vaccination serum collected at 

various time points. Measurements reported as mean ± SEM. Statistical analysis was performed by two-

way ANOVA using matched pairs followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001. D) Individual in vitro serum neutralization titers. LCMV (Lymphocytic 

Choriomeningitis Virus, negative control), HCV H77 (autologous HCV), and HCV UKN1b12.6 and J6 

(heterologous strains from genotype 1b and 2a, respectively). 
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Figure 2-5. E2 specific serum IgG titers of individual mice. 

in 6 out of 7 mice by day 104 (p < 0.001, compared with the soluble control, Figure 2-4C, D). We 

confirmed these data by retesting serum from both E2c.661 vaccination groups and included a 

cross-genotype (2a) HCVpp, J6. We again observed neutralization against H77 and UKN1b12.6 

HCVpp as well as one cross-genotype neutralizing sample (Figure 2-4D). On day 142, the 

neutralizing responses from the E2c.661 ICMV group began to wane, but 3 of 7 samples still 

exhibited  heterologous HCVpp neutralization, and an average neutralization capacity significantly 

higher than the E2.661 ICMV or soluble control groups (p < 0.05 and p < 0.01, respectively Figure 

2-4C, D).Given these data, the ICMV formulations incited potent antigen-specific antibody 

responses with neutralizing capacity against autologous and heterologous viruses, whereas the 

soluble groups were less antigenic and immunogenic. 

 
Figure 2-5. E2 specific serum IgG titers of individual mice. Endpoint serum antibody titers were 

determined by calculating the highest serum dilution that produced an absorbance signal 3-fold 

above background. 

 

 

Figure 2-6. Specificity of immune sera to HVR1 and HCV1 peptides.Figure 2-5. E2 

specific serum IgG titers of individual mice. Endpoint serum antibody titers were determined by 



36 

Figure 2-6. Specificity of immune sera to HVR1 and HCV1 peptides. 

Figure 2-6. Specificity of immune sera to HVR1 and HCV1-epitope peptides. 

Epitope recognition of immune serum. 

Lastly, we evaluated the specificity of the serum antibodies against linear epitopes most 

affected by the recombinant alterations of E2, HVR1 and AS412 (the epitope of HCV1). Based on 

the neutralization data (Figure 2-4C, D), we selected serum samples from day 104 to analyze IgG-

binding against either peptide (Figure 2-6). As a control, day -1 collected serum samples were 

tested for antigen specificity, and no peptide-specific IgG were observed at any of the tested  

Figure 2-6. Specificity of immune sera to HVR1 and HCV1-epitope peptides.  A) Optical densities (O.D) 

of log-fold serum samples after incubation on HVR1 coated ELISA plates. Shown are day 104 immune 

sera from mice vaccinated with E2.661 ICMVs and E2c.661 ICMVs. B) Optical densities of log-fold serum 

samples after incubation on ELISA plates coated with AS412 containing long peptide. Individual serum 

samples are color matched between A) and B). 

 

Figure 2-7. E2.661 ICMV and E2c.661 ICMV day -1 vaccination serum specificity to HVR1 and 

HCV1 peptidesFigure 2-6. Specificity of immune sera to HVR1 and HCV1-epitope peptides.  A) Optical 

densities (O.D) of log-fold serum samples after incubation on HVR1 coated ELISA plates. Shown are day 

104 immune sera from mice vaccinated with E2.661 ICMVs and E2c.661 ICMVs. B) Optical densities of 

log-fold serum samples after incubation on ELISA plates coated with AS412 containing long peptide. 

Individual serum samples are color matched between A) and B). 
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Figure 2-7. E2.661 ICMV and E2c.661 ICMV day -1 vaccination serum specificity to HVR1 and HCV1 

peptides. 

Figure 2-7. E2.661 ICMV and E2c.661 ICMV day -1 vaccination serum specificity to HVR1 and HCV1 peptides. 

dilutions (Figure 2-7). On the other hand, all day 104 serum samples from the E2.661 ICMV + 

MPLA group bound to the HVR1 peptide (Figure 2-6A). As expected, positive responses were 

absent from serum samples of the E2c.661 ICMV group since HVR1 is deleted in E2c.661 

(Figures 2-1A and 2-6A). However, removal of the highly antigenic HVR1 region appeared to 

increase antibody production to the adjacent HCV1 epitope region. All serum samples (7 of 7) 

from the E2c.661 ICMV group possessed HCV1 long-peptide targeting antibodies, compared to 3 

of 7 samples from the E2.661 ICMV group (Figure 2-6B). Interestingly, when we plotted the 

peptide binding ELISA data for HVR1 against the autologous HCVpp neutralization percentage, 

there was a positive correlation trend for E2.661 ICMV + MPLA (r = 0.58), and a negative trend 

Figure 2-7. E2.661 ICMV and E2c.661 ICMV day -1 vaccination serum specificity to HVR1 and HCV1 

peptides. A) Optical densities of log-fold serum samples after incubation with HVR1 coated ELISA plates. 

B) Optical densities of log-fold serum samples after incubation with HCV1 long peptide coated ELISA 

plates. Individual serum samples are color matched between A and B. 

 

Figure 2-8. Correlation of day 104 peptide specific ELISA O.D. to in vitro neutralization.Figure 

2-7. E2.661 ICMV and E2c.661 ICMV day -1 vaccination serum specificity to HVR1 and HCV1 peptides. 

A) Optical densities of log-fold serum samples after incubation with HVR1 coated ELISA plates. B) Optical 
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Figure 2-8. Correlation of day 104 peptide specific ELISA O.D. to in vitro neutralization. 

for the E2c.661 ICMV + MPLA samples (r = -0.06), suggesting a correlation between the presence 

of HVR1 and H77 neutralization (Figure 2-8A). A similar analysis of the HCV1 long-peptide 

ELISA data compared to the corresponding heterologous neutralization demonstrated positive 

trends for both nanoparticle formulations, with the E2c.661 ICMV + MPLA group exhibiting a 

greater correlation between the two factors (r = 0.66), compared to the E2.661 ICMV + MPLA 

group (r = 0.32) (Figure 2-8B). Taken together, these data suggest that the presence of HVR1 may 

have a positive effect on autologous neutralization, but may not be required. Additionally, antibody 

response to the HCV1 epitope region may positively impact heterologous neutralization, although 

other epitopes may also contribute.  

Figure 2-8. Correlation of day 104 peptide specific ELISA O.D. to in vitro neutralization. A) HVR1 ELISA 

O.D. values from 1:100 diluted serum plotted against in vitro neutralization percentage of H77 HCVpp. B) 

AS412 ELISA O.D. values from 1:100 diluted serum plotted against in vitro neutralization percentage of 

UKN1b12.6 HCVpp. Pearson correlation coefficient is indicated for each plot. 

 

Figure 3-1. Antigen and nanoparticle design.Figure 2-8. Correlation of day 104 peptide specific ELISA 

O.D. to in vitro neutralization. A) HVR1 ELISA O.D. values from 1:100 diluted serum plotted against in 

vitro neutralization percentage of H77 HCVpp. B) AS412 ELISA O.D. values from 1:100 diluted serum 
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2.5 Discussion 

We have developed ICMVs loaded with recombinant HCV E2 antigens and interrogated 

antigen display and orientation on the surfaces of ICMVs using both whole population- and single 

particle-based analyses of antibody-antigen interactions. Our work demonstrates that in vitro 

assessment of conformational antigen display on nanoparticles can aid in selection of vaccine 

formulations that may elicit broadly neutralizing antibody responses in vivo.  In particular, antigen 

loaded ICMVs elicited greater E2-specific IgG titers with superior neutralizing capacities than 

their respective soluble controls (Figure 2-4). When compared directly, immune sera from the 

E2.661 ICMV group displayed a selectivity for autologous neutralization, whereas, immune sera 

from the E2c.661 ICMV group exhibited both autologous and heterologous neutralization (Figure 

2-4C, D). These data aligned with our in vitro analysis in which the broadly neutralizing antibody 

HCV1 bound with a greater extent to E2c.661 ICMVs (Figure 2-3C, F), suggesting a contribution 

of the HCV1 epitope in generating heterologous neutralization. Detailed analysis of epitope 

recognition by immune sera revealed that all mice administered E2.661 ICMVs generated HVR1-

specific antibodies, whereas only 3 of 7 mice elicited antibodies to the HCV1 epitope region 

(Figure 2-6A, B). In stark contrast, all mice administered with ICMVs carrying E2c.661 (HVR1 

removed) skewed antibody responses to the HCV1 epitope region (Figure 2-6B). These data 

suggest the importance of screening for proper antigen display on nanoparticle vaccines, as 

different orientations may impact the breadth and potency of immune responses in vivo.  

Our initial characterization of antigen loading and particle sizes showed comparable results 

for both E2.661 ICMVs and E2c.661 ICMVs (Figure 2-1); however, these metrics do not provide 

insights on antigen conformation or orientation on nanoparticle surfaces. To evaluate these 

properties, we employed an indirect immunofluorescence staining assay using E2-specific 
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antibodies recognizing spatially distinct antigenic sites (Figure 2-3). Additionally, we examined 

the homogeneity of antigen display by comparing a microplate-based analysis of bulk samples to 

a flow-based analysis of individual nanoparticles (Figure 2-3A). Notably, while the microplate-

based assay showed similar binding for all but one of the E2-recognizing antibodies (Figure 2-

3C), analysis of individual nanoparticles by NanoFACS revealed significantly enhanced binding 

of AR1B, AR2A, and HCV1 antibodies on E2c.661 ICMVs, in comparison to E2.661 ICMVs 

(Figure 2-3F). This discrepancy highlights a limitation of the population-based assessment of the 

vaccine nanoparticles. As antigen-displaying nanoparticles may aggregate with incubation of 

antibodies during the immunofluorescence staining process, a more sensitive approach, such as 

NanoFACS, is needed to probe antigen display on individual nanoparticles.  

The in vitro antibody binding profiles (Figure 2-3C, F) allowed us to hypothesize on how 

the antigen constructs are presented on ICMV surfaces. Most apparent is the difference in AR3A 

and HCV1 binding, both of which recognize epitopes on the neutralizing face of E2. AR3A signals 

were the lowest of all antigen-specific antibodies, despite its high affinity, suggesting that this 

epitope may be partially occluded or in an unfavorable position for AR3A recognition. The 

orientation of the E2 constructs was likely influenced by either 1) the presence of free thiols which 

could bind with maleimides present on the lipid bilayers, or 2) electrostatic interactions with the 

ICMV surface. Initially we suspected that the sole free cysteine (C652) of the antigens [94, 104] 

reacted with MPB on ICMV surfaces and anchor the antigen to the nanoparticle. However, the 

C652 residue is located on an exposed stretch of amino acids near the C terminus (back layer) 

which is on the opposite face of the CD81bs.[94] In this presentation, where the back layer interacts 

with the ICMV surface, the CD81bs would likely be presented outwardly on ICMVs and should 

not inhibit AR3A binding. Furthermore, the back layer contains the AR2A epitope,[105] which was 
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readily bound by AR2A (Figure 2-3C, F), suggesting the back layer is not in contact with the 

ICMV surface. Alternatively, a region of basic amino acids is present on the E2 core near the 

neutralizing face and in the vicinity of the flexible VR2 region.[94, 105, 106] If these basic residues 

interacted with the anionic surface of ICMVs, then the neutralizing face would likely not be 

presented outwardly and may be in a position that affects antibody binding. Previous research 

indicates the VR2 region is disordered and flexible,[94, 105] suggesting some exposure of the basic 

region is possible on E2.661. Similarly, the removal of VR2 in E2c.661 can greatly expose this 

basic region to interface with ICMVs, and in tandem with the lack of VR2 may alter the orientation 

of the antigen.[94] 

The presentation of antigens on ICMVs was a major aspect of this work, focusing on both 

the orientation on ICMVs and the conformation of neutralizing epitopes.  For the later aspect, our 

data indicate that neither the mechanical nor chemical (i.e. DTT) stresses of ICMV synthesis 

affected the three antigenic sites of E2 (Figure 2-3C, F). In particular, we were concerned with 

the reduction of disulfide bonds by the crosslinking agent DTT (a mild reducing agent), which is 

typically detrimental to the structure and function of proteins. Yet, Fenouillet et al. reported that 

partial reduction of an E2 fusion protein did not abolish binding to CD81, and, when administered 

to mice, increased vaccine antigenicity and the neutralization capacity of the immune serum.[107] 

In this study, the redox status of the antigens loaded into ICMVs was not assessed, but may have 

contributed to the observed increase in immune responses between ICMVs and the soluble control 

groups, suggesting a non-canonical role for partial reduction of antigens in vaccination strategies.  

While the results reported here are promising, the collected data was limited to two 

heterologous strains of HCV, one of which was the same genotype as the autologous strain. 

Additional research is needed to assess the breadth of the observed immunogenicity against the 
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other HCV genotypes, and to determine what properties of the antigen loaded ICMV can be used 

to enhance both the breadth and potency of immune responses. 

 

2.6 Individual contributions 

J. Bazzill, M. Law and J.J. Moon designed the experiments. J. Bazzill, L.J. Ochyl., E. 

Giang, and S. Castillo performed the experiments.  J. Bazzill., E. Giang, M. Law and J.J. Moon 

analyzed the data and wrote the manuscript. 
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Chapter 3 

Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for 

induction of potent antibody and polyfunctional T cell responses 

 

3.1 Abstract 

The 2014 outbreak of Ebolavirus (EBOV) in West Africa led to unprecedented cases of 

Ebola virus disease that resulted in ~11,000 deaths, and there is a recent outbreak in Congo as of 

the time of this writing. While several viral vector-based vaccine candidates have progressed to 

clinical trials for vaccination against EBOV, there are still concerns about their efficacy due to 

anti-vector immunity as well as their side effects, especially among infants and 

immunocompromised individuals. Here, we aimed to develop synthetic nanoparticles as a safe and 

highly immunogenic platform for vaccination against EBOV. Here, we report that a large 

recombinant EBOV GP (rGP) can be successfully incorporated into lipid-based nanoparticles, 

termed interbilayer-crosslinked multilamellar vesicles (ICMVs), while preserving its epitope 

configuration and orientation. Briefly, we encapsulated rGP in two different variants of ICMVs 

with or without nickel nitrilotriacetic acid (NTA)-functionalized lipids. The quaternary structure 

of rGP was properly maintained on the surfaces of both formulations of ICMVs, and when 

administered together with monophosphoryl lipid A (MPLA, a Toll-like receptor-4 agonist) in 
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mice, both forms of rGP-ICMVs elicited potent humoral and cellular immune responses. Notably, 

the rGP-ICMV group without the NTA-lipids enhanced formation of germinal center (GC) B cells 

and polyfunctional T cells and elicited immune sera with improved neutralizing-capacity against 

rVSV-GP across the most dilutions. When mice were challenged with a lethal dose of murine 

adapted EBOV, 100% survival was observed by those vaccinated with nanoparticles as well as 

one soluble antigen group. This study suggests the potential of vaccine nanoparticles as a safe and 

immunogenic platform for configurational, multivalent display of large subunit antigens and 

elicitation of neutralizing antibody and polyfunctional T cell responses. 

 

3.2 Introduction 

Since the emergence of EBOV in 1976, approximately 13,000 lives have been lost to Ebola 

virus disease, with mortality rates of 25-90% among infected individuals. [108] The 2014 outbreak 

of EBOV in West Africa led to unprecedented cases of Ebola virus disease (EVD) resulting in 

~11,000 deaths, approximately 7-fold greater than all previous incidents combined [108]. This 

outbreak also marked the first inter-continental cases of EVD, prompting a worldwide response to 

the endemic. Therefore, there is an urgent need to develop an effective vaccine against EBOV.  

To that end, several vaccine candidates for EBOV have progressed to clinical trials, most 

of which are so far based on recombinant viral constructs expressing the EBOV envelope 

glycoprotein (GP). As the only surface-expressed EBOV antigen, GP is naturally presented as a 

trimer with an apparent fully glycosylated molecular weight of ~670 kDa and contains motifs for 

both target cell binding and viral membrane fusion making it a valuable target to inhibit EBOV 

infection [28, 109, 110]. While the recombinant vesicular stomatitis virus vaccine candidate (rVSV-
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EBOV) has been shown to induce potent immune responses after a single dose in clinical trials, 

numerous side effects have been reported among healthy adults, including acute arthritis and skin 

lesions [32-34]. Additionally, the potential for toxic side effects in infants and immunocompromised 

individuals remain as major concerns [32]. Alternatively, non-replicating recombinant adenovirus 

vectors co-expressing GP are a safer alternative, but issues with potency require booster 

vaccinations, and in many cases pre-existing or post exposure anti-vector immunity may affect 

vaccine efficacy [35, 36]. 

In contrast, EBOV subunit vaccines may offer a safer alternative while maximizing 

immune responses at the antigen of interest, and a resurgence of EBOV subunit vaccines have 

been reported, many of which utilize non-mammalian cells and/or fusion proteins to enhance GP 

production and purification [111-114]. However, subunit vaccines generally suffer from weak and 

transient immune responses, and to elicit potent immune responses, high antigen doses, multiple 

vaccinations, or formulation with adjuvants were required [111-113]. Additionally, off target effects 

from fusion proteins can substantially contribute to the antigenic responses, as observed by Rios-

Huerta et al. [114]. Similarly, adjuvant incorporation and selection can produce varied results, as 

demonstrated by Kondoro et al., where protection in mice was induced using 100 µg doses sans 

adjuvant [115]. A follow up study in guinea pigs highlighted the variability in adjuvant selection in 

immunogenicity and protection [112]. Adjuvant incorporation is a common method to enhance 

overall immune response to vaccines, but for humoral responses specifically, vaccines are typically 

formulated with a multivalent antigen display. A recent report evaluated a solid-protein core 

nanoparticle, consisting only of multivalent displayed full length EBOV GP [116]. When 

administered to mice along with the adjuvant Matrix M, protective responses were observed in all 

mice two weeks after final vaccination. 
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Outside of DNA or RNA based vaccines, to the best of our knowledge there has been one 

previous instance where a synthetic nanoparticle was used for EBOV vaccination. In that research 

irradiated EBOV virions were encapsulated into liposomes and used to vaccinate mice with 

successful protection against challenge; however, later trials in non-human primates failed to 

protect from lethal viral challenge [117, 118]. While many laboratories, including ours, have focused 

on engineering vaccine delivery platforms that can improve immunogenicity of subunit antigens 

[116-120], it remains unclear how in vivo performance of subunit vaccination is dictated by 

configurational orientation of antigens and their multivalent display on vaccine delivery vehicles, 

especially for large subunit antigens as in the case of the EBOV GP trimer. Our goals for this 

project were to develop synthetic nanoparticles as a safe and highly immunogenic platform for 

vaccination against EBOV and to examine how antigen orientation impacts T cell and B cell 

immune responses in vivo. We have previously reported the development of lipid-based 

nanoparticles, called interbilayer-crosslinked multilamellar vesicles (ICMVs) [76]. We have shown 

that ICMVs can elicit potent T cell and B cell immune responses with a variety of antigens, 

including peptides and recombinant proteins [73, 76, 121]. While the potential of ICMVs to display a 

large recombinant HIV Env protein has been recently demonstrated using chemical fixation or 

post-modification of particles with Env protein [77], it remains to be seen how to preserve the 

epitope configuration and orientation of large recombinant proteins while maintaining their 

immunogenicity in vivo. 

Here, we report that a recombinant EBOV GP (rGP) with minimal recombinant alterations 

and no chemical cross-linking can be successfully incorporated into ICMVs while preserving its 

epitope configuration and orientation. Specifically, we tested rGP encapsulated in two different 

ICMV variants, either the traditional ICMVs or ICMVs containing nickel nitrilotriacetic acid-
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functionalized lipids (NTA ICMVs). Introduction of NTA-lipid is thought to allow binding of 

poly-histidine tagged rGP on the surfaces of NTA ICMVs. We then performed detailed 

immunofluorescence analyses with monoclonal antibodies specific for linear and configurational 

rGP epitopes on a population and single nanoparticle level. Our results indicated that the 

quaternary structure of rGP was properly maintained on the surfaces of both nanoparticle 

formulations. Mice vaccinated with both forms of rGP nanoparticles carrying an 

immunostimulatory adjuvant, MPLA (a Toll-like receptor-4 agonist) increased humoral and 

cellular immune responses, compared with the soluble control. In particular, the rGP ICMV + 

MPLA group induced formation of germinal center B cells and polyfunctional T cells and 

generated immune sera with enhanced neutralizing-capacity  

 

3.3 Materials and Methods 

Animals.  

Female 8-12-weeks-old C57BL/6 mice were obtained from Charles River. Research was 

conducted under an IACUC approved protocol in compliance with the Animal Welfare Act, PHS 

Policy, and other Federal statutes and regulations. The United States Army Medical Research 

Institute of Infectious Diseases (USAMRIID) IACUC committee approved this protocol, and 

experiments were conducted at an Association for Assessment and Accreditation of Laboratory 

Animal Care, International accredited facility. Animal status following viral infection was 

evaluated according to an Intervention Scoresheet approved by USAMRIID IACUC. Animals 

were monitored at least once daily and increased to at least two times daily at the onset of disease. 



48 

Euthanasia was performed by CO2 inhalation followed by confirmatory cervical dislocation. All 

surviving animals were euthanized on day 14 post infection. 

Vaccinations and Viral Infections.  

Mice were prime-boost vaccinated at a three-week interval using bi-lateral subcutaneous 

injections at the tail base. Antigen and adjuvant amounts were administered at 3 µg and 2.5 µg, 

respectively, for both vaccinations. Four weeks post final vaccination mice were inoculated by 

intraperitoneal injection with a target dose of 1,000 plaque forming units (p.f.u.) of mouse-adapted 

Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (Ma-EBOV) in biosafety level 4 

containment. Clinical observations were recorded starting after virus inoculation. Moribund mice 

were euthanized based on institution-approved clinical scoring. 

Protein production and purification. 

Recombinant Ebola virus glycoprotein (rGP) was constructed starting from a full-length 

EBOV Mayinga (GenBank) GP coding sequence. To generate a soluble variant of EBOV GP, the 

transmembrane (TM) domain (amino acids 651-676) was deleted and replaced with a 6-histidine 

protein purification tag. The resulting coding sequence was cloned into the pDisplay mammalian 

expression vector (Thermo), and transfected into human embryonic kidney suspension cell-line 

293E (Thermo) using lipofectamine 3000 (Life Technologies) following manufacturer’s 

recommended protocols. Cell supernatants were harvested after 72 hours of incubation at 37°C, 

and rGP was purified by affinity chromatography using a Nickel Sepharose High Performance 

column (GE Healthcare). Collected fractions were concentrated using Amicon Ultra filter with 

50kDa cutoff (Millipore), and protein concentration was determined using Bradford assay and 
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quantitative ELISA. Molecular weight and epitope preservation were analyzed by SDS-PAGE and 

Western blot, respectively. 

Interbilayer-crosslinked multilamellar vesicle synthesis and characterization. 

ICMV formulations were synthesized similar to those reported previously, with some 

modifications [73, 76]. In brief, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] sodium salt (MPB), and 

1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] nickel salt 

(DOGS NTA) (Avanti Polar Lipids), were mixed in either 50:50:0 or 48:50:2 molar ratios and 

dried to produce thin films. Hydration buffer containing rGP was added to the dried films and 

vortexed to produce large multilamellar vesicles (MLVs), and were probe tip sonicated (QSonica) 

at 40% amplitude for 5 minutes to produce unilamellar vesicles (ULVs). ICMVs were formed by 

adding CaCl2 and dithiothreitol (DTT) at working concentrations of 33mM and 1.24mM to ULV 

suspensions to induce nanoparticle fusion and crosslinking, respectively. ICMVs were centrifuged 

at 14,000 r.c.f. at 4 °C to remove unloaded rGP, washed with DNA grade water (Fisher), and  

suspended in 0.22 µm filtered PBS (Gibco). 

ICMVs produced for immunostaining assays and NanoFACS analysis were produced as 

above with the addition of the lipophilic fluorophore 1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt (DiD, Thermo Scientific) at less 

than 0.2 molar percent in dried films.  

Monophosphoryl lipid A (MPLA) (Avanti Polar Lipids) was added to the initial 

phospholipid mixture for production of ICMVs for vaccination. MPLA retention was estimated 

using fluorescently labeled phospholipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
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(lissamine rhodamine B sulfonyl) (ammonium salt) (Liss-Rhod-PE, Avanti Polar lipids) as a 

surrogate marker. Briefly, Liss-Rhod-PE containing rGP MLV and ICMV formulations were 

produced and the fluorescence signal was measured at 560/593nm. Liss-Rhod-PE retention was 

determined as a percentage of ICMV fluorescence relative to the respective MLV, which was 

assumed to be fully retained. If necessary, additional MPLA (1 mg/mL in DMSO) was added for 

an injection amount of 2.5 µg MPLA. Unloaded ICMVs (vehicle control) were synthesized 

similarly to rGP ICMVs + MPLA, but with a working concentration of 2.46 mM DTT, and 

formulated for injection the same as the rGP ICMV + MPLA group. 

Antigen loading was assessed by poly-acrylamide gel electrophoresis under non-reducing 

conditions (NR PAGE). Samples were prepared following manufacturer’s instructions, loaded into 

Bolt 4-12% Bis-Tris Plus gels (Invitrogen), and ran for 35 minutes at 200V in MOPS running 

buffer (Novex). Protein content was assessed by Coomassie Brilliant Blue R-250 staining (Fisher), 

imaged with FluorChem M (Protein Simple), and quantified using ImageJ software. 

Samples were prepared and ran on NativePAGE™ Novex® Bis-Tris gel system (Life 

Technologies) following manufacturer’s protocols. Briefly, samples were diluted in Native PAGE 

sample buffer, bath sonicated to disrupt aggregates, and incubated with N-Dodecyl β-D-maltoside 

(DDM, Invitrogen) at a 1.11% working concentration for 30 minutes on ice. Immediately before 

loading onto gels (3-12% Bis-Tris), G-250 was added to samples containing DDM following 

manufacturer’s instructions. Samples that were not detergent incubated were prepared in sample 

buffer and remained on ice until loaded. Gels ran at room temperature using dark blue cathode 

buffer for approximately 100 minutes. Gels were destained according to manufacturer’s 

instructions, and protein migration was assessed by silver staining (Thermo Fisher). 
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Mass Spectrometry analysis. 

LC-HRMS analysis of rGP content in the in vivo vaccine formulations was performed 

similarly as described previously [122]. Briefly, formulation aliquots were digested with trypsin/lys-

C (Promega) in the presence of Protease Max™ (Promega). Prior to LC-HRMS injection the 

samples were combined with isotopically labelled AQUA Ultimate™ (Thermo Fisher) peptides as 

internal standards, and comprised of two GP-specific peptides as both fully cleaved and missed 

cleavage variants. The spiked samples were ran on an Ultimate 3000 HPLC (Thermo Fisher) with 

downstream Orbtrap Elite MS/MS (Thermo Fisher). The extracted ion chromatograms were 

obtained by XCalibur 2.0 (Thermo), and standard curves were generated after normalizing the 

heavy AQUA peptides to their light counterparts derived from the vaccine formulations. The rGP 

content was back calculated to determine the rGP content in the dosing formulations, production 

batches, and the nanoparticle loading efficiency. Particle diameter and zeta potential were 

measured by dynamic light scattering (DLS) using a Malvern ZetaSizer Nano ZSP. Samples were 

diluted in 0.22 µm filtered diluent for DLS analysis, recollected, and diluted further for individual 

particle sizing by nanoparticle tracking analysis via a NanoSight NS300 instrument (Malvern). 

Samples were diluted in DNA grade water for size determination, and in PBS for measuring zeta 

potentials.  

Immunofluorescence stained nanoparticles were prepared by incubating equal volumes of 

ICMVs overnight at 4 °C in 0.04 mg/mL antigen specific primary monoclonal antibodies 6D8 or 

13C6 (USAMRIID), or mouse IgG1, κ isotype (BP Pharmingen) in FACS buffer (1% BSA in 

PBS), or in FACS buffer alone. Samples were washed by centrifuging at 20,817 r.c.f. for 45 

minutes at 4 °C, discarding the supernatant, and suspending the pellets in FACS buffer. The wash 

step was repeated prior to incubation in 100 µL F(ab’)2 α-mouse IgG-PE secondary antibody 
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(eBioscience) for one hour at room temperature. Unbound secondary antibody was removed by 

washing and the particles were plated, and fluorescence signal was measured at 488/578 and 

644/670 nm for PE and DiD, respectively. After immunostaining assay, samples were transferred 

to FACS tubes, and analyzed on a Beckman Coulter MoFlo Astrios with M1 and M2 masks. 

NanoFACS data was analyzed via FloJo software.  

Enzyme-linked Immunosorbent Assays.  

Blood was collected into MiniCollect serum tubes (GBO) at day 35 via submandibular 

route, and recovered serum was stored at -80oC until use. Serial serum dilutions were added to 

plates coated with 2 μg/ml rGP starting at 1:10 dilution for IgM or 1:100 dilution for IgG and 

subclasses and incubated for 1 hour at room temperature. Plates were then washed three times with 

PBS-T, and secondary antibody was incubated for 1 hr at a final concentration of 0.6 μg/ml. 

Secondary antibodies included goat anti-mouse IgG-HRP (Southern Biotech 1030–05), IgG1-HRP 

(Southern Biotech 1070-05), IgG2c-HRP (Southern Biotech 1079–05), and IgM-HRP (1030-05). 

Plates were subsequently washed three times with PBS-T, developed using Sure Blue TMB 1-

component substrate and stop solutions (KPL) and optical density (O.D.) read at 450 nm on a 

SpectraMax M5 (Molecular Devices). Serum from unvaccinated animals was used to establish 

background. Pooled convalescent serum from previous EBOV vaccine studies was included in 

each assay as a positive control. End-point titers were defined as the background plus 0.2. O.D.  

Germinal Center B-cell Analysis.  

Ten days after the second vaccination the draining lymph nodes were harvested for B cell 

assays. Single-cell suspensions of draining lymph nodes were washed with FACS buffer (PBS, 

0.5% BSA and 2 mM EDTA) and counter-stained. B cell staining included B220 (BD Clone RA3-
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6B2), CD95 (Company?), CD138 (BD Clone 281-2), and T & B Cell Activation Antigen (BD 

Clone GL-7). All samples were Fc-blocked (anti- CD16/CD32, BD), and stained to evaluate 

viability (live/dead aqua, Invitrogen) prior to counterstaining. Samples were run on a BD FACS 

Canto II and analyzed using FlowJo. 

Antigen specific T and B cell ELISpot Assays.  

ELISpot plates were coated overnight with either IFNγ capture antibody (clone AN18) or 

rGP. Plates were washed and blocked per manufacturer’s instructions. Splenocytes were isolated 

from vaccinated animals and red blood cells were lysed (Lonza). For T cell assays, splenocytes 

were suspended in complete medium (RPMI with 20 U/mL mouse recombinant IL2 (Life 

Technologies), 2 μg/mL mouse CD49d (BD), and 2 μg/mL mouse CD28 (BD)), and was plated at 

2.5x105 cells/well. To each well an additional 100 μL of complete media with either 4 μg/mL 

EBOV GP-specific peptide (WIPYFGPAAEGIYTE, Mimotopes), 4 μg/mL DMSO (Sigma) for 

negative controls, or 4 μg/mL cell stimulation cocktail (eBiosciences) for positive controls was 

added. For B cell assays, 100 uL aliquots of splenocyte suspensions in complete medium were 

directly seeded at 2.5x105 cells/well into rGP coated ELISpot plates. Cells were then incubated for 

16 h at 37°C prior to development per the manufacturer's instructions. All ELISpot plates were 

analyzed using a CTL ImmunoSpot instrument (Cellular Technology Limited).  

Intracellular Cytokine T cell Assays.  

Following red blood cell lysis, splenocytes were cultured at 106 cells/mL in complete media 

(90% RPMI 1640, 10% FBS, 20 mM Hepes, 1% Pen/strep, 0.05 mM BME) with 10 U/mL mouse 

recombinant IL2, 1 μg/mL mouse CD49d, 1 μg/mL mouse CD28, and 1X protein transport 

inhibitor cocktail (eBioscience). Cell suspensions were plated at 100 uL/well and stimulated with 
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either cell stimulation cocktail (eBioscience), DMSO, or EBOV GP-specific peptide WE15 at 2 

μg/mL. Cells were stimulated for five hours then washed in PBS + 10% FBS. Live/Dead Aqua 

(Life Technologies) was used to detect viable cells by incubation for 10 min at 4°C; Fc Block 

(Miltenyi) was used to prevent non-specific antibody binding. After washing, surface antibodies 

CD3-V450 (BD), CD8-APC-H7 (BD), and CD4-FITC (BD) were incubated with samples for 20 

min at 4°C. Cells were washed and fixed with 3.7% paraformaldehyde overnight. Cells were 

permeabilized with perm/wash buffer (eBioscience) and stained with IFNγ-PE-Cy7 (BD), IL2-

APC (BD), and TNFα-PE (BD) antibodies. Samples were run on a BD FACSCanto II and analysis 

was conducted using FlowJo software (Tree Star, Inc.).  

Neutralization Assay. 

Percent neutralization of serum antibodies was assessed by enhanced green fluorescent 

protein (eGFP) fluorescence of residually infected Freestyle™ 293-F cells (ThermoFisher). 

Briefly, recombinant vesicular stomatitis virus expressing both Ebola virus glycoprotein and eGFP 

(rVSV-GP) (a kind grift from Kartik Chandran, Albert Einstein College of Medicine) were 

incubated with serial dilutions of vaccination serum and 5% v/v guinea pig complement (Cedarlane 

Laboratories) for 1 hour at 37 °C. The rVSV-GP/serum mixtures were added to 100uL suspensions 

of Freestyle™ 293-F cells at a concentration of 1x106 cells/mL and incubated for 18–20 hours at 

37°C. Percentage of infection, i.e. eGFP expression, was measured using a BD FACSCanto II, 

and, neutralization was calculated by normalizing the infection percentages to the ICMV + MPLA 

control group. 
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Figure 3-1. Antigen and nanoparticle design. 

Statistical Analysis.  

Determination of statistical significance was performed using Prism 7.0.3. One-way or 

two-way ANOVA significance tests with Tukey’s post-hoc multiple comparison test was used for 

group-wise analysis as indicated in the figure legends.  

 

3.4 Results 

Recombinant GP and nanoparticle design. 

EBOV GP viral spike is displayed as a trimer of GP1/GP2 heterodimers embedded in the 

viral surface by a transmembrane domain (TM) of GP2 (Figure 3-1A). EBOV rGP used for ICMV 

Figure 3-1. Antigen and nanoparticle design. (A) Illustration of ZEBOV envelope glycoprotein (GP) 

displayed on the viral envelope as a native trimer (red brackets indicate the GP1/GP2 disulfide bond). (B) 

Illustration recombinant modifications to produce rGP (TM, transmembrane domain). (C) Blue Native 

PAGE of rGP followed by Coomassie staining. (D) Diagram of expected rGP display on an ICMV or NTA 

ICMV (DTT, dithiolthreitol). 
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formulations was modified to generate a soluble form by removal of the transmembrane domain 

(TM) from the C terminus of GP2 (Figure 3-1B). Additionally, a polyhistidine-tag (his-tag) was 

inserted at the C terminus of truncated GP2 for purification, and the resulting antigen appears as 

two bands around 400 kDa and 800 kDa when migrated on non-denaturing and non-reducing Blue 

Native PAGE (Figure 3-1C). Production of ICMVs with rGP can lead to uncontrolled display of 

antigen, likely dictated by electrostatic interactions or free sulfhydryl groups (Figure 3-1D). On 

the other hand, we hypothesized that NTA ICMVs can selectively bind his-tags, thus allowing for 

concerted display of rGP.  

Preservation of rGP in ICMVs. 

ICMV synthesis may affect the tertiary and quaternary structure of rGP. Specifically, 

preservation of the GP1/GP2 disulfide bond is necessary to retain the protein complex and its 

immunogenic epitopes. We initially produced rGP ICMV formulations using the standard 

synthesis method with 2.46 mM of DTT used as a crosslinker of the opposing lipid layers within 

ICMVs, but this resulted in reduction of the GP1/GP2 disulfide bond (data not shown). We titrated 

down the concentration of DTT to 1.24 mM in order to remove excess thiols not required for 

interbilayer crosslinking. This led to preservation of the GP1/GP2 disulfide bond as demonstrated 

by NR-PAGE (Figure 3-2A). rGP formulated into either ICMVs or NTA ICMVs migrated at 

molecular weights similar to the original stock rGP without any fragmentation or reduction. In 

contrast, fully reduced rGP dissociated as separate GP1 and GP2 fragments (far right lane in Figure 

3-2A). 

We assessed whether the quaternary structure of rGP was maintained during the ICMV 

formulation by Blue Native PAGE. To analyze individual rGP complexes, we disrupted the ICMV 

formulations using a mild detergent, dodecyl β-D-maltoside (DDM). rGP from both traditional 
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Figure 3-2. Preservation of rGP incorporated into ICMVs. 

ICMVs or NTA-linked ICMVs appeared primarily around 400 kDa (Figure 3-2B). Interestingly, 

soluble rGP incubated with or without DDM had 400 kDa MW bands as well as prominent bands 

at lower MW, which were absent in the lanes for rGP ICMVs or rGP NTA ICMVs (Figure 3-2B). 

These results indicated that rGP was stably loaded in ICMVs and NTA ICMVs without any 

significant fragmentation or dissociation of the GP1/GP2 heterodimer.  

Loading of rGP in ICMVs. 

We tested the effect of the initial protein loading amount and the addition of DOGS-NTA 

on the loading efficiency of the EBOV rGP in ICMV formulations. Batches of ICMVs and NTA 

ICMVs were produced using 20 µg or 40 µg rGP, and incorporation of antigen was determined by 

NR-PAGE (Figure 3-1 and Table 3-1). While doubling the initial loading amount of rGP did not 

significantly alter the loading efficiencies (17.2 ± 8.4% and 15.0 ± 6.5% for ICMVs, and 26.1 ± 

6.8% and 32.8 ± 5.1% for NTA ICMVs), the total amount of rGP incorporated into a batch of 

Figure 3-2. Preservation of rGP incorporated into ICMVs. (A) Non-reducing PAGE of rGP containing 

ICMVs and NTA ICMVs. Far right lane containing reduced rGP shows bands of GP1 and GP2. (B) BN 

PAGE of rGP, rGP ICMVs (I), and rGP NTA ICMVs (N). Samples incubated with DDM are indicated. 
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Table 3-1. Antigen loading of rGP nanoparticles. 

ICMVs and NTA ICMVs increased by ~1.8 fold and ~2.5 fold, respectively (Table 3-1). Addition 

of DOGS-NTA to ICMVs contributed to the loading efficiency and mass content, increasing either 

by ~1.5 and ~2.2-fold for particles produced with 20 µg and 40 µg rGP, respectively; however, the 

increase was only statistically significant for particle produced with 40 µg rGP (p < 0.001). Based 

on the increased antigen content, ICMVs and NTA ICMVs produced with 40 µg rGP were selected 

for further in vitro characterization and in vivo immunogenicity studies.  

Characterization of ICMVs. 

We utilized dynamic light scattering (DLS) to examine the size, zeta potential, and 

unilamellar vesicle (ULV) properties of traditional ICMVs or NTA ICMVs loaded with rGP. The 

average diameter of ULVs and NTA ULVs were 63.4 ± 6.9 nm and 57.9 ± 1.4 nm, respectively, 

which increased approximately by 55 nm after processing them into respective ICMVs (117.2 ± 

10.1 nm and 117.5 ± 17.6 nm), consistent with previous reports [76] (Figure 3-3A). Both ICMVs 

and NTA IMCVs exhibited homogenous particle sizes, as evidenced by average polydispersity 

indices of 0.17 ± 0.02 and 0.18 ± 0.01, respectively, along with negative zeta potentials (-22.3 ± 

1.4 mV and -21.7 ± 1.3 mV, Figure 3-3A, B). Because DLS measures bulk samples and may 

generate data skewed towards larger particle sizes, we validated our results with individual 

particle-based nanoparticle tracking analysis. The data indicated that the size distribution of ULVs 

Table 3-1. Antigen loading of rGP nanoparticles. Loading efficiencies are reported as percent of initial rGP 

used for production. Measurements reported as sample mean ± standard deviation. Statistical analysis 

performed by two-way ANOVA followed by Tukey’s multiple comparisons test. n.s. (not significant), 

*p<0.05, **p<0.01, ***p<0.001. 



59 

Figure 3-3. Size distributions of rGP ULV and ICMV formulations. 

and NTA ULVs as well as their respective ICMV formulations correlated well with the DLS results 

(Figure 3-3A, C).  

 

  

Figure 3-3. Size distributions of rGP ULV and ICMV formulations. (A) Table of intensity based 

nanoparticle sizes, and polydispersity indices and zeta potentials from Zetasizer measurements, along with 

number based nanoparticle diameters by nanoparticle tracking analysis. (B) Intensity based size 

distributions of antigen loaded ICMV formulations compared to respective ULVs. (C) Number based size 

distributions of antigen loaded ICMV formulations compared to respective ULVs. 
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Figure 3-4. Bulk analysis of rGP display on nanoparticle surfaces. 

Antigen conformation and display on nanoparticles. 

Antigen loaded ICMVs and NTA ICMVs were evaluated by a plate-based indirect 

immunofluorescence staining assay [73] to examine display and preservation of rGP epitopes on the 

surfaces of nanoparticles. First, nanoparticle retention was determined by adding a trace amount 

of DiD, a lipophilic fluorophore, during the nanoparticle synthesis, followed by determining 

fluorescence signal of processed and unprocessed nanoparticles (Figure 3-4A). Processed ICMV 

and NTA ICMV samples exhibited an average retention of 44 ± 3% and 59 ± 2%, respectively, 

and similar retention rates were observed with or without the presence of antibodies.  

We next evaluated ICMVs and NTA ICMVs for preservation of linear and conformational 

epitopes by indirect measurement of bound EBOV GP-specific mouse monoclonal IgG antibodies 

(mAb), 6D8 or 13C6 [26, 27], respectively. Signal cross-over of DiD and non-specific antibody 

binding produced nominal signals (FACS buffer and Isotype groups, respectively, Figure 3-4B). 

In contrast, we measured marked phycoerythrin (PE) signals from the linear and conformational 

antibody groups. Specifically, the PE signal associated with the linear antibody (6D8) was ~1.2-

fold higher on ICMVs, compared with NTA ICMVs (p < 0.0001, Figure 3-4B). In contrast, the 

Figure 3-4. Bulk analysis of rGP display on nanoparticle surfaces. (A) Particle recovery after 

immunostaining process by retention of DiD signals in unprocessed and processed nanoparticles. (B) 

Fluorescence signals of PE-labeled secondary antibodies bound to nanoparticles incubated with the 

indicated primary antibodies. (C) Secondary antibody signals normalized to particle retention. (A-C) 

Measurements reported as mean ± SEM. Statistical analysis performed by two-way ANOVA followed by 

Tukey’s multiple comparisons test. ***p<0.001. 
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Figure 3-5. Display of rGP on single nanoparticles. 

fluorescence signal associated with the conformational antibody (13C6) was ~1.7-fold higher on 

NTA ICMVs than ICMVs (p < 0.0001, Figure 3-4B). The PE fluorescence signal normalized to 

the particle retention (as measured by the DiD recovery in Figure 3-4A) exhibited the similar trend 

of antibody binding (Figure 3-4C). The PE signal associated with 6D8 was ~1.5-fold higher on 

ICMVs than NTA ICMVs, while that for 13C6 was ~1.2-fold higher on NTA ICMVs than ICMVs 

(p < 0.0001, Figure 3-4C).  

To further investigate display and preservation of rGP epitopes on a single particle level, 

we have adopted a flow cytometry-based assay that we termed NanoFACS [99-103]. Using this 

method, we were able to examine individual nanoparticle populations and quantify both DiD and 

PE fluorescence of each particle (Figure 3-5A). We first confirmed similar DiD content between 

Figure 3-5. Display of rGP on single nanoparticles. (A) Representative flow cytometry plots of PE and 

DiD signals for immunostained rGP ICMVs. (B) DiD fluorescence of individual particles. (C) Fluorescence 

signal of PE-labeled secondary antibodies bound to single particles. (B-C) Measurements reported as 

geometric mean ± SEM. Statistical analysis performed by two-way ANOVA followed by Tukey’s multiple 

comparisons test. n.s.>0.05, **p<0.01. 



62 

Table 3-2. Incorporation of rGP in nanoparticle formulations used for vaccination. 

individual particles that were processed with different antibodies (Figure 3-5B). Interestingly, 

linear antibody binding was not significantly different between the two formulations; whereas, we 

observed ~1.3-fold higher binding of the conformational antibody to NTA ICMVs, compared with 

ICMVs (p < 0.01, Figure 3-5C). 

In vivo vaccination. 

We performed vaccination studies using EBOV rGP nanoparticle formulations 

incorporated with a potent adjuvant molecule, MPLA [73]. The addition of MPLA improved rGP 

encapsulation in ICMV and NTA ICMVs (Table 3-2). Mice were immunized subcutaneously on 

day 0 and day 21, and serum samples were collected on day 35 (Figure 3-6A). Analysis of immune 

sera with ELISA indicated that mice immunized with all vaccine formulations had low levels of 

anti-EBOV GP IgM by day 35 (Figure 3-6B).  On the other hand, we observed ~5-log average 

anti-EBOV GP IgG end point titers for both nanoparticle groups and the soluble rGP group 

formulated with MPLA (rGP + MPLA) (Figure 3-6C). Analysis of the immune sera for anti-

EBOV GP IgG1 and IgG2c subclasses demonstrated similar trends, with the addition of MPLA 

significantly boosting antibody responses (Figure 3-6D, E). In particular, mice vaccinated with 

rGP ICMV + MPLA had the highest anti-EBOV GP IgG1 and IgG2c titers, with 6.0-fold and 7.8-

fold improvement, compared with the soluble rGP + MPLA control group (p < 0.05 and p < 0.01 

for IgG1 and IgG2c titers, respectively, Figure 3-6D, E).  

Table 3-2. Incorporation of rGP in nanoparticle formulations used for vaccination. Loading efficiencies 

and mass content of rGP ICMVs and NTA ICMVs including MPLA during synthesis, as determined by 

NR SDS-PAGE and confirmed by mass spectrometry. Efficiencies are reported as percent of initial rGP 

used for production (40 µg). Measurements reported as mean ± standard deviation. 
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Figure 3-6. Immunogenicity against rGP after in vivo vaccination.   
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Antibody effector function was evaluated by a neutralization assay with hybrid VSV co-

expressing GP and eGFP reporter protein (rVSV-GP, as described in the Supplementary Methods). 

Median neutralization values ranging 50-80% were observed with 10, 30, and 90-fold diluted sera 

from both antigen loaded ICMV formulations (Figure 3-6F-I). On the other hand, the median 

neutralization for the soluble rGP + MPLA group peaked at 51% at a 30-fold dilution and 

decreased to the basal level upon further dilution (Figure 3-6F-I). In particular, at 270-fold serum 

dilution, rGP + MPLA vaccine group lost the neutralizing activity; whereas, rGP ICMV + MPLA 

group still exhibited 38% neutralization (p < 0.01, Figure 3-6I).  

Four weeks after the final vaccination, in vivo protection was evaluated in mice by 

monitoring survival after challenge with a lethal dose of murine adapted EBOV (ma-EBOV). All 

mice vaccinated with the vehicle control and 90% of those vaccinated with soluble antigen 

succumbed to infection 7-8 days after administration (Figure 3-6J). In comparison, 100% survival 

was observed by mice immunized with either ICMV formulation, as well as the adjuvant soluble 

antigen group, indicating at least a month long durability in the induced immune responses.   

Figure 3-6. Immunogenicity against rGP after in vivo vaccination. (A) Mice (n = 10/group) were vaccinated 

subcutaneously at the tail base with either Blank ICMV + MPLA, rGP, rGP + MPLA, rGP ICMV + MPLA, 

or rGP NTA ICMV + MPLA on day 0 and 21. Antigen and adjuvant doses were 3 µg rGP and 2.5 µg 

MPLA, respectively, for both injections. Serum was collected two weeks after final vaccination. (B-E) 

EBOV GP specific IgM, total IgG, IgG1, or IgG2c antibody responses were measured by ELISA. Dotted 

and dashed lines represent minimum and maximum dilutions tested, respectively. Measurements reported 

as geometric mean ± SEM. Non-seroconverted serum samples were assigned log-values of 0.5 (IgM) or 1.5 

(IgG and subclasses) for graphical representation and statistical analysis. (F-I) Box and whisker plots of 

rVSV-GP neutralization by diluted serum from five randomly selected mice from each group. Percent 

neutralization was determined by residual infectivity of sample groups compared to naïve serum. (J) 

Survival curve of mice inoculated with 1000 p.f.u. of ma-EBOV on day 49. (B-I) Statistical analysis 

performed by one-way ANOVA followed by Tukey’s multiple comparisons test. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001.  
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Activation of adaptive immune cells. 

To assess the cellular immune responses, mice were vaccinated as above, and secondary 

lymph organs were harvested 10 days after the final vaccination (Figure 3-7A). The frequency of 

EBOV GP-specific splenic B cells was quantified by an IgG ELISpot assay (Figure 3-7B).  

Significantly higher frequencies of antigen-specific B-cells were observed for the nanoparticle 

groups than either the soluble antigen or vehicle control groups (Figure 3-7B). The frequency of 

total and germinal center B cells in the draining lymph nodes were enumerated via flow cytometry 

analysis (Figure 3-7C). While total B cells numbers were similar between all groups (Figure 3-

7D), the frequencies of germinal center B cells were significantly higher for both ICMV 

formulations, compared with the vehicle control or soluble antigen (p < 0.05, Figure 3-7E). 

Though the role of T cell immune responses during EBOV infection remains elusive, 

cellular immunity is canonically induced during viral infections. Additionally, ICMVs have been 

previously reported to induce balanced Th1/Th2 immune responses [73, 76]. We evaluated the 

induction of EBOV-specific T cell responses using both ELISpot and intracellular cytokine 

staining (ICS). ELISpot assay performed on splenocytes re-stimulated with a GP-specific peptide 

revealed that rGP ICMV + MPLA vaccine group generated 5.8-fold higher frequency of IFN-γ 

producing splenic T-cells, compared with the rGP + MPLA control group (p < 0.05, Figure 3-8A). 

In addition, there was a trend for an increased frequency of IFN-γ producing splenic T-cells for 

the rGP NTA ICMV + MPLA vaccine group, compared with the soluble rGP + MPLA control 

group (Figure 3-8A). 
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Figure 3-7. B cell activation and germinal center formation. 

 

  

Figure 3-7. B cell activation and germinal center formation. (A) Mice (n = 5/group) were vaccinated 

subcutaneously at the tail base with either Blank ICMV + MPLA, rGP, rGP + MPLA, rGP ICMV + MPLA, 

or rGP NTA ICMV + MPLA on day 0 and 21. Antigen and adjuvant doses were 3 µg rGP and 2.5 µg 

MPLA, respectively, for both injections. Draining (inguinal) lymph nodes and spleens were harvested 10 

days after final vaccination for ELISpot, intracellular cytokine staining (ICS), and germinal center (GC) 

analysis. (B) EBOV GP antigen-specific B cell frequencies from harvested spleens enumerated by ELISpot. 

(C) Representative flow cytometry gating of harvested B cells from draining lymph nodes of vaccinated 

mice. Total B cell frequencies were gated on viable/B220+ and GC B cells were additionally gated on GL-

7+/CD95+. (D-E) Relative frequency of viable total B cells and GC B cells from draining lymph nodes. (B, 

D-E) Measurements reported as mean ± SEM. Statistical analysis performed by one-way ANOVA followed 

by Tukey’s multiple comparisons test. *p<0.05, ***p<0.001, ****p<0.0001. 
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We also performed intracellular cytokine staining on splenic CD4+ and CD8+ T cells for 

production of IFN-γ, IL2, and TNF-α (Figure 3-8B). When the polyfunctional responses were 

parsed among the cytokine combinations, rGP ICMV + MPLA group induced the highest 

frequency of polyfunctional IFN-γ+/IL2+/TNF-α+ CD4+ T cells (Figure 3-8C), while there was 

a trend for increased frequencies of IFN-γ+/IL2+ and IFN-γ+/TNF-α+ CD4+ T cells for the rGP 

NTA ICMV + MPLA vaccine group (Figure 3-8C). The combined frequency of CD4+ T cells 

expressing at least two of the Th1-associated IFN-γ, IL2, and TNF-α cytokines were ~2-fold higher 

in animals vaccinated with rGP ICMV + MPLA, compared with the ICMV + MPLA control group 

(p < 0.05, Figure 3-8D). As for splenic CD8+ T cells, there was a trend for increased frequency 

of polyfunctional IFN-γ+/IL2+/TNF-α+/ CD8+ T cells for both rGP ICMV + MPLA and rGP NTA 

ICMV + MPLA vaccine groups (Figure 3-8E, F). 

 

3.5 Discussion 

Our main objective in this study was to assess the ability, feasibility, and immunogenicity 

of synthetic nanoparticles displaying a recombinant Ebola glycoprotein antigen. Optimization of 

the synthesis process included titration of ICMV components to preserve the inter-GP1/GP2 

disulfide bond as well as the quaternary structure of rGP, which were confirmed by SDS and Blue 

Native PAGEs, respectively (Figure 3-2). Furthermore, two ICMV formulations loaded with rGP 

were characterized using antigen recognizing antibodies and shown to present rGP in a 

configurational manner with slight differences in epitope presentation. However, these differences 

did not substantially impact the in vivo immune responses of either formulation. When 

administered in mice, both formulations induced robust anti-EBOV GP-specific humoral   
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Figure 3-8. T cell immunogenicity in spleens of vaccinated mice. (A) IFN-γ producing T cell frequencies from 

harvested spleens enumerated by ELISpot. 

 

Figure 3-8. T cell immunogenicity in spleens of vaccinated mice. (A) IFN-γ producing T cell frequencies 

from harvested spleens enumerated by ELISpot. (B) Representative flow cytometry gating of ICS stained 

CD4+ and CD8+ T cells from vaccinated mice (Pos. columns) and naïve mice (Neg. columns). (C, E) 

Relative frequency of CD4+ and CD8+ polyfunctional T-cell subsets. (D, F) Relative frequency of 

combined CD4+ and CD8+ polyfunctional T-cell responses from spleens of vaccinated mice. 

Measurements reported as mean ± SEM. Statistical analysis performed by one-way (A, D, F) or two-way 

(C, E) ANOVA followed by Tukey’s multiple comparisons test. *p<0.05, **p<0.01. 
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responses with neutralization capacity, promoted the formation of germinal center B cells, and 

elicited polyfunctional T cell responses.  

Initial characterization of ICMV formulations revealed that the addition of DOGS-NTA 

phospholipids to ICMVs increased the loading efficiency of rGP via the selective interaction with 

the polyhistidine tag of rGP (Table 3-1), consistent with a previous report [123]. Additionally, we 

evaluated surface rGP epitopes by immunofluorescence staining and observed reverse trends for 

linear and conformational EBOV GP-specific antibodies to either formulation (Figures 3-4 and 

3-5). Notably, while NTA ICMVs loaded ~2-fold more rGP than ICMVs, this trend was not 

observed for 6D8 or 13C6 binding. These observations may be explained in part by the high rGP 

density and concerted orientation on NTA ICMVs. Prior research has shown that 6D8 binds to the 

flexible mucin-like domain on the periphery of rGP, while 13C6 binds to the glycan cap domain 

at an angle in line with the rGP vertical axis [124, 125]. These data suggest that the 6D8 epitope would 

be more susceptible to occlusion by neighboring rGP complexes, whereas the 13C6 epitope would 

be less affected. However, while 13C6 epitopes are available for binding, the overall rGP density 

may lead to steric hindrance, limiting binding of all accessible epitopes [126]. 

Interestingly, we observed that after a prime-boost vaccination, mice generated potent 

isotype-switched antibodies against rGP for both nanoparticle groups as well as the rGP + MPLA 

control (Figure 3-6B-E). However, increased IgG1 and IgG2c titers were observed in mice 

immunized with rGP ICMV + MPLA, compared with other groups. When vaccination serum was 

tested for neutralization, immune sera from rGP ICMV + MPLA had higher neutralization 

capacity, compared with soluble rGP + MPLA as well as rGP NTA ICMV + MPLA (Figure 3-

6F-I). When challenged with a lethal dose of ma-EBOV, all mice from both nanoparticle groups 

and the adjuvanted soluble antigen survived; whereas, 0 and 10% of mice survived from the vehicle 
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control and soluble antigen groups, respectively (Figure 3-6J), suggesting an important role of 

MPLA in protective responses. However, it remains to be seen how long the protective responses 

are sustained, and if these results can be replicated in guinea pigs or nonhuman primates. 

Further interrogation of the immune responses demonstrated increased B and T cell 

responses for both nanoparticle formulations, but only the rGP ICMV + MPLA group generated 

statistically significant increases in both B cell and polyfunctional T cell responses, compared with 

the control groups (Figures 3-7 and 3-8). This was a surprise as we expected the increased antigen 

density and concerted display of rGP by NTA ICMVs would enhance humoral responses. The 

unexpectedly low performance of rGP NTA ICMVs may be attributed to (1) the high surface 

antigen density, (2) nanoparticle aggregation, and/or (3) instability of NTA- polyhistidine tag 

interactions in vivo. (1) As shown in Table 3-1, NTA ICMVs were loaded with approximately 

two-fold more rGP than ICMVs; however, we did not observe a two-fold increase in antibody 

binding to rGP NTA ICMVs during immunostaining (Figures 3-4 and 3-5), indicating potential 

steric hindrance due to high antigen density on NTA ICMVs or masked epitopes [126]. (2) We also 

observed that NTA ICMVs tended to aggregate more than ICMVs in vitro. While the aggregates 

could be disrupted by bath sonication in vitro, this could adversely affect both particle drainage to 

lymph nodes and proper epitope display to B-cell receptors in vivo. (3) Lastly, it is possible that 

NTA-polyhistidine tag was not strong enough to withstand the in vivo condition, leading to loss of 

antigens, as recently demonstrated with lipid-based vaccine formulations [78]. While our proof-of-

concept results presented here are encouraging, further analysis and optimization are required to 

address these remaining questions. 

In conclusion, we have shown that rGP can be incorporated into ICMVs without adversely 

affecting the quaternary structure or key conformational epitopes. Two ICMV variants (standard 
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and NTA containing) also provided the means to control rGP loading and potentially surface 

orientation. Administration of rGP-loaded nanoparticles containing adjuvant in mice induced 

germinal center B cells, neutralizing antibody responses, and polyfunctional T cell responses. 

Analysis of long-term immune responses will be a main focus of future studies.  Additionally, 

efforts are underway to optimize the nanoparticle formulation to achieve induction of cross-

filovirus neutralizing immune responses.  
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Chapter 4 

Development of an ICMV nanoparticle for preservation of the quaternary 

structure of a recombinant HIV antigen 

 

4.1 Abstract 

Thirty-five years after the discovery of human immunodeficiency virus (HIV) as the 

causative agent of acquired immune deficiency syndrome (AIDS) the incidence of HIV infection 

are declining due to the strategic use of anti-HIV medications. However, these medications are 

unable to cure hosts of the infection, transmission of HIV is still prevalent, and approximately 37 

million people are infected worldwide. The ability of HIV to evade host immune responses coupled 

with its targeted infection of immune cells has made the development of HIV especially difficult 

and progress had all but stagnated. Recently, the discovery of rare antibodies that can protect 

against multiple strains of HIV have reinvigorated the search for a HIV vaccine. Here, we report 

the development of a lipid-based nanoparticle loaded with the recombinant human 

immunodeficiency virus envelope glycoprotein, BG505 SOSIP.664 (SOSIP). The nanoparticle 

produced is a variant of interbilayer-crosslinked multilamellar vesicles (ICMVs) modified to 

preserve the recombinant modifications and structural features of SOSIP. This new ICMV, called 

ICMV-NHS, displays ~25% loading efficiency of SOSIP and a mean diameter of ~300 nm while 
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preferentially bound an antibody that recognize the native HIV envelope glycoprotein compared 

to one that binds an aberrant form of the HIV antigen. These data indicate both the preservation 

ofnative antigenic sites and the preservation of the native-like conformation of SOSIP which is 

believed necessary to produce protective and broadly neutralizing humoral responses. 

 

4.2 Introduction 

Despite the advances in treatment of human immunodeficiency virus (HIV), it remains one 

of the most prevalent chronic infections worldwide. The introduction and strategic use of 

antiretroviral therapies have increased life expectancies, reduced transmission, and returned those 

infected to a relatively normal life.[127, 128] However, after three and a half decades of intense 

research, both a vaccine and a cure remain unseen. It is estimated that as of 2016, approximately 

37 million individuals were infected with HIV worldwide, with 1.8 million new cases and 1 million 

acquired immunodeficiency syndrome (AIDS) related deaths that year.[41]  

The high mutation rate and immune cell specificity of HIV have so far prevented anti-HIV 

therapeutics from curing patients.[129, 130] The rise of antiretroviral therapeutic (ART) resistant HIV 

strains have been observed when ARTs are administered as monotherapies or when treatment is 

interrupted. Treatment regimens of ARTs with two or more mechanisms of action are required to 

adequately control HIV replication and prevent the emergence of ART resistance.[55, 131] 

Additionally, early diagnosis and treatment initiation are needed to maximize ART efficacy, 

minimize the loss of CD4+ T-cells, and reduce transmission rates.[131] Prior to diagnosis, infected 

individuals can transmit HIV unknowingly and transmission is still possible during ART therapies, 

though the probability is dramatically reduced compared to untreated individuals. 
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The development of a HIV vaccine has met with similar difficulties due to the mutations 

that arise in HIV;[50, 132] however, the discovery of broadly neutralizing antibodies (bNAbs) has 

shown that protective immune responses can be generated against HIV.[133, 134] BNAbs recognize 

conserved regions on the HIV envelope glycoprotein (Env), the only surface displayed viral 

antigen that facilitates binding and viral entry into CD4+ T cells.  

Conserved domains of Env are typically linked to functional domains, hence, why they are 

conserved between HIV strains. However, conserved domains are either masked or buried to 

minimize recognition and antibody production against these sites. As a result, other regions of Env 

are not involved in cell targeting or entry, highly antigenic, and variable (called variable domains). 

Antibodies are predominantly produced against these variable domains but are either non-

neutralizing or strain specific.[50] Interestingly, over time uncommon characteristics like a long 

epitope binding domain and extensive somatic hypermutation arise in a fraction of Env-specific 

antibodies and are the reason bNAbs can target conserved regions of Env.[51, 135] However, these 

uncommon attributes are also the reason for the prolonged generation of bNAbs.[135] Additional 

factors such as host genetics, viral diversity, and immune tolerance limit bNAb prevalence to 20-

30% of infected patients. Unfortunately, the long extensive time needed to generate bNAbs and 

simultaneous depletion of CD4+ T cells dramatically limit the benefit of bNAbs from clearing 

HIV, but they do provide a platform for vaccine candidates. 

Conventional vaccines like attenuated or inactivated viruses are not viable options due to 

the potential for the virus to revert back to a virulent form or the risk of incomplete activation; 

both of which have occurred for other viral vaccines.[63, 64] To avoid these risks, Env subunit 

vaccines are a safer alternative, yet there are challenges with their production and efficacy that 

must be elucidated and overcome.[132] Early attempts to produce a recombinant Env antigen were 
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unsuccessful due to solubility and stability issues.[136] Simplified antigens using soluble domains 

of Env did not elicit protective immune responses,[137] and revealed that the native display of Env 

as a trimer was necessary for neutralizing antibody recognition. Recombinant alterations to Env 

produced a soluble and stable Env trimer retaining neutralizing epitopes. In particular, the 

recombinant Env antigen, BG505 SOSIP.664 (SOSIP) is a fully processed antigen produced as a 

trimer with a near native conformation.[138, 139] When administered as a soluble antigen, SOSIP has 

been shown to induce mild to moderately cross-reactive antibodies.[140] We sought to improve the 

immunogenicity of SOSIP by incorporating it with a lipid-based nanoparticle called interbilayer 

cross-linked multilamellar vesicle (ICMV), which have been previously reported to generate 

potent and long-lasting immune responses.[73, 76]  

The production of a SOSIP ICMV was a challenging endeavor and eventually lead to the 

development of a new ICMV nanoparticle called ICMV-NHS. Specifically, to avoid the reduction 

of the introduced disulfide bond that covalently links the gp120 and gp41 subunits of SOSIP and 

is critical to trimer stability, the thiol-specific maleimide chemistry of ICMVs was replaced with 

amine specific NHS-ester (NHS) chemistry. Additionally, DTT and calcium were replaced with a 

polyamine containing polymer, branched polyethyleneamine (bPEI), which acted as both the 

cross-linking and fusion-inducing agent. Moreover, bPEI was recently reported to act as an 

immunostimulatory compound, eliciting balanced Th1/Th2 immune responses,[141, 142] and may 

serve to potentiate the induced immunological responses. Finally, we observed that a key step in 

ICMV production was leading to the dissociation of SOSIP trimers and upon modification of the 

nanoparticle synthesis method the trimer was preserved. These first trials culminated in a SOSIP 

nanoparticle displaying ~25% loading efficiency of SOSIP, a mean diameter of ~300 nm, and 
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demonstrated a preferential binding of the broadly neutralizing antibody PGV04 compared to the 

non-neutralizing antibody b6. 

 

4.3 Materials and Methods 

Antigen design, production and purification. 

The design, production, and purification of soluble BG505 SOSIP.664 (SOSIP) and wild 

type (WT) antigens from HIV-1 subtype A have been described in detail previously.[138] Briefly, 

the recombinant alterations shared between the two antigens include a truncation at residue 664 

and a point mutation (T332N) to introduce a glycan at a position commonly associated with Env 

immune evasion. SOSIP specific recombinant alterations include the point mutations A501C, 

T605C, and I559P, and modification of the cleavage sequence of gp120 from REKR to RRRRRR. 

To inhibit gp160 cleavage, the cleavage site of the WT antigen were altered from REKR to SEKS. 

The Env antigens were produced in CHO-K1 cells after stable transfection and the collected 

supernatants were purified by affinity chromatography with columns (GE Healthcare) loaded with 

either the broadly neutralizing antibody 2G12 or Galanthus nivalis lectin. The collected fractions 

were exchanged into buffer containing 10 mM Tris and 75 mM NaCl at a pH of 8.0, and size 

exclusion chromatography was used to specifically collect SOSIP trimers (GE Healthcare). The 

protein concentration of the collected trimers was determined by BCA assay (Thermo) or UV 

absorbance at a wavelength of 280 nm. 

Nanoparticle production. 

ICMV formulations were synthesized similar to those reported previously, with some 

modifications.[76] In brief, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-
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sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] sodium salt (MPB), 

(Avanti Polar Lipids), were mixed at a 1:1 molar ratio and dried to produce thin films. Hydration 

buffer containing 25 µg SOSIP or WT was added to the dried films and vortexed to produce large 

multilamellar vesicles (MLVs), which were probe tip sonicated (QSonica) at 40% amplitude for 5 

minutes to produce unilamellar vesicles (ULVs). ICMVs were formed by adding 200 mM CaCl2 

and 150 mM dithiothreitol (DTT), working concentrations of 33 mM and 1.24 mM, to ULV 

suspensions to induce nanoparticle fusion and crosslinking, respectively. The samples were 

incubated for one hour at 37°C to promote MPB crosslinking, then centrifuged at 14,000 r.c.f. at 

4 °C to remove unloaded antigens (supernatant was used for analysis), washed with DNA grade 

water (Fisher), and suspended in 0.22 µm filtered PBS (Gibco). 

The lipid composition of ICMV-NHSs consist of DOPC, 1,2-dioleoyl-sn-glycero-3-

phospho-(1'-rac-glycerol) (sodium salt) (DOPG, Avanti Polar Lipids), and n-(Succinimidyloxy-

glutaryl)-L-α-phosphatidylethanolamine, dioleoyl (DOPE-NHS, NOF America) at molar ratios of 

either 50:40:10, 50:30:20, or 50:0:50 (indicated in text). Immediately prior to ICMV-NHS 

synthesis, the antigens were buffer exchanged once into 10 mM BTP, pH ~8, via 7 kD MWCO 

Zeba spin desalting columns (Thermo) to remove tris buffer (amine containing) to avoid its 

conjugation with DOPE-NHS.  

For the initial ICMV-NHS trials, 200 µL of hydration buffer containing 25 µg WT or 25 

µg SOSIP antigen was added to dried lipid films and vortexed vigorously every minute for a total 

of 7 minutes and rested on ice. Samples were probe tip sonicated (QSonica) at 40% amplitude for 

5 minutes prior to addition of the crosslinker and/or fusion inducing agent. Samples were incubated 

at 37 °C for one hour to promote NHS crosslinking, then centrifuged at 14,000 r.c.f. at 4 °C to 



78 

remove unloaded antigens (supernatant was used for analysis), washed with DNA grade water 

(Fisher), and suspended in 0.22 µm filtered PBS (Gibco). 

The production of post sonication ICMV-NHSs (psICMV-NHS) proceeded similarly as 

ICMV-NHS with the exception that the hydration buffer volume was reduced to 100 µL (10 mM 

BTP, pH 7.58) without the presence of antigen to hydrate the lipid films. After probe tip sonication 

of the nanoparticles, 25 µg of antigen, in 100 µL of 10 mM BTP at pH ~8, was added and incubated 

at 37 °C for 30 minutes prior to addition of the crosslinker and/or fusion inducer. The nanoparticle 

mixture was incubated for another 30 minutes at 37°C then centrifuged and washed as previously 

described. 

Extruded ICMV-NHS were produced similarly as ICMV-NHS; however, probe tip 

sonication was replaced with serial extrusion using a mini extruder (Avanti Polar Lipids) through 

400 nm then 100 nm pore size membranes (Avanti Polar Lipids) following the manufacturer’s 

instructions. Any residual sample retained within the extruder was collected for analysis.  

To minimize sample loss and void sample dilution the extrusion method was adapted 

(ex2.0) where lipid films were hydrated with half the volume of antigen containing buffer (i.e. 100 

µL). After each membrane extrusion, ~50 µL of pure buffer was extruded through the membrane 

to collect the retained residual sample and minimize sample loss. All steps after extrusion 

proceeded as other ICMV-NHS synthesis.  

Calcium fused MLVs (Ca-MLVs) were produced by the indicated method in the text. Lipid 

compositions were either 50:50:0 or 50:40:10 DOPC:DOPG:DOPE-NHS, and only CaCl2 was 

used to induce fusion.  
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ICMV-NHSs produced for immunostaining assays and NanoFACS analysis were produced 

as above, and where indicated in text particles used were produced with the addition of the 

lipophilic fluorophore 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-

chlorobenzenesulfonate salt (DiD, Thermo Scientific) at less than 0.2 molar percent. 

Primary amine containing crosslinker calculations. 

Branched polyethylene amine (bPEI) polymer with a molecular weight (number-based 

average) of 1800 Da, L-lysine, and 2,2’ oxydiethylamine dihydrochloride salt (all from Sigma 

Aldrich), were tested as crosslinking/fusion inducing agents. Two primary amines are present on 

L-lysine and 2,2’ oxydiethylamine, whereas for bPEI a molar ratio of 1:2:1 of 1°:2°:3° amines, 

respectively, was used to calculate the average number of 1° amines per polymer,[143] An average 

of 10.47 1° amines was calculated for 1800 Da bPEI. 

Nanoparticle size. 

Particle diameter and zeta potential were measured by dynamic light scattering (DLS) of 

nanoparticles dilutes in 0.22 µm filtered PBS using a Malvern ZetaSizer Nano ZSP. 

Antigen loading and quaternary structure. 

Antigen loading was assessed by poly-acrylamide gel electrophoresis under non-reducing 

conditions (NR PAGE). Samples were prepared following manufacturer’s instructions, loaded into 

gradient (4-12%) or 8% Bis-Tris Plus gels (Invitrogen) for ICMVs and ICMV-NHSs, respectively. 

Gels of ICMVs ran for 35 minutes at 165 V, whereas, ICMV-NHS loaded gels ran for 45-60 

minutes at ~180 V to maximize the separation of bPEI from the antigens. Protein content was 

assessed by Silver Stain (Thermo), imaged with FluorChem M (Protein Simple) digital imager, 

and quantified using ImageJ software. 
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The preservation of quaternary structures after formulation was evaluated by Blue Native 

(BN) PAGE analysis via NativePAGE™ Novex® Bis-Tris gel system (Life Technologies) 

following manufacturer’s protocols with some minor modifications. Specifically, the samples were 

incubated in either n-Dodecyl β-D-maltoside (DDM, Invitrogen), Triton X-100 (Fisher) or octyl 

β-D-glucopyranoside (ODBG, Sigma) and various concentrations prior to loading and running BN 

PAGE gels. Any samples that were not detergent incubated were prepared in sample buffer and 

remained on ice until loaded. BN PAGEs of loaded ICMVs or antigens alone were run at room 

temperature using light or dark blue cathode buffer (contains Coomassie Stain) for approximately 

100 minutes. The analysis of the BN PAGEs was carried out following manufacturer’s 

instructions. For ICMV-NHS loaded gels, dark blue cathode buffer was used for migration 

followed by destaining according to manufacturer’s instructions and protein migration was 

assessed by silver stain (Thermo Fisher). All gels were imaged using a FluorChem M (Protein 

Simple) digital imager. 

Antigen conformation analysis. 

Immunofluorescence stained nanoparticles were prepared by incubating equal volumes of 

nanoparticles with 4 °C in 0.04 mg/mL antigen specific primary monoclonal antibodies PGV04 or 

b6 (kind gifts from the International AIDS Vaccine Initiative), or human IgG1 kappa isotype (EMD 

Millipore) in FACS buffer (1% BSA in PBS), or in FACS buffer alone. Samples were washed by 

centrifuging at 20,817 r.c.f. for 30-60 minutes at 4 °C, and the pellets suspended in FACS buffer. 

The wash step was repeated prior to incubation in 100 µL phycoerythrin (PE) conjugated α-human 

IgG (Fcγ) secondary antibody (ebioscience) for one hour at room temperature. Unbound secondary 

antibody was removed by washing and the particles were plated, and fluorescence signal was 

measured at 488/578 for PE and 644/670 nm for DiD (select samples). For NanoFACS analysis 
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Figure 4-1. Illustrations of HIV envelope glycoprotein antigens. 

the samples were transferred to FACS tubes after the plate-based measurements, and analyzed on 

a Beckman Coulter MoFlo Astrios with M1 and M2 masks. NanoFACS data was analyzed via 

FloJo software. 

 

Statistical Analysis. 

Determination of statistical significance was performed using Prism 7.0.3. One-way 

ANOVA significance tests with Tukey’s post-hoc multiple comparison test was used for group-

wise analysis as indicated in the figure legends.  

 

4.4 Results 

SOSIP ICMV trial formulations. 

Initial ICMV trials utilized both the fully cleaved SOSIP antigen along with an un-cleaved 

control Env antigen (WT) that does not form a native like trimer and is prone to binding non-

neutralizing antibodies (Figure 4-1). The introduced disulfide bond of SOSIP is critical for the 

Figure 4-1. Illustrations of HIV envelope glycoprotein antigens. Both SOSIP and wild type (WT) antigens 

are truncated at residue 664, removing the membrane proximal region (MPER), transmembrane domain 

(TM), and cytosolic tail (CT). Asterisk (*) indicates the site of the introduced glycan at the T332N point 

mutation. “X” indicates the approximate site of the I559P point mutation on SOSIP. Point mutations 

(A501C and T605C) are indicated for the introduced SOSIP disulfide bond. Diagram of the SOSIP trimer 

consisting of gp120 (dark blue), truncated gp41 (light blue), and the introduced disulfide bond (red line). 

 

Figure 4-1. Illustrations of HIV envelope glycoprotein antigens.Figure 4-1. Illustrations of HIV 

envelope glycoprotein antigens. Both SOSIP and wild type (WT) antigens are truncated at residue 664, 

removing the membrane proximal region (MPER), transmembrane domain (TM), and cytosolic tail (CT). 
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stability of the recombinant antigen. The placement and function of this disulfide bond is 

reminiscent of the endogenous GP1/GP2 disulfide bond of rGP (Figure 3-1) which was disrupted 

by DTT during ICMV production. To avoid a similar effect, WT and SOSIP loaded ICMVs were 

produced by the modified method for rGP loading where the DTT content was reduced by half for 

a 1:1 mole ratio of thiol to maleimide. Analysis of antigen loading by non-reducing SDS PAGE 

(NR PAGE) indicated ~80% loading efficiency of WT in ICMVs relative to the supernatant 

(unloaded antigen, Figure 4-2A). In comparison, SOSIP loading was comparable between the 

particles and supernatants, indicating ~50% loading efficiency, Figure 4-2B).  

SOSIP from the ICMV and supernatant samples showed no signs of reduction of the 

introduced disulfide bond (absence of lower molecular weight bands, Figure 4-2B). To assess if 

WT and SOSIP trimers were preserved, both samples were analyzed by non-denaturing and non-

reducing Blue Native PAGE. Due to the lipid composition of the nanoparticles, detergents were 

required to effectively disrupt and migrate the nanoparticle components. However, detergents may 

disrupt the weak hydrophobic interactions that contribute to the trimeric configuration. To account 

for this possibility, stock antigens were incubated with detergent at the same concentration as the 

samples, and no effect was observed on either trimer (Figure 4-2C, D). The antigen from WT 

ICMV samples appeared unaffected by ICMV synthesis and migrated similarly to the standards 

(~720 kD) and no visible lower molecular weight bands were observed (Figure 4-2C). In stark 

contrast, the SOSIP containing samples appeared at molecular weights of ~720 kD, ~480 kD, and 

~242 kD, indicating the presence of trimers, dimers, and gp140 monomers, respectively (Figure 

4-2D).  
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Figure 4-2. WT and SOSIP ICMV characterization. 

Probe tip sonication disrupts SOSIP trimers. 

Though the recombinant disulfide bond of SOSIP was retained after ICMV synthesis, the 

potential of DTT to reduce disulfides was observed previously (Chapter 3). To eliminate this 

potentially deleterious effect, a new nanoparticle using amine-reactive NHS chemistry was 

Figure 4-2. WT and SOSIP ICMV characterization. Loaded antigens (ICMV) were compared to 

supernatant (Super.) containing unloaded antigen, and antigen standards (std.). Evaluation of WT (A) and 

SOSIP (B) ICMV loading by non-reducing SDS PAGE. Blue Native PAGEs of WT (C) and SOSIP (D) 

ICMVs and supernatants to assess preservation of trimers.  
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selected to replace the thiol-reactive maleimide chemistry of standard ICMVs. The maleimide-

functionalized phospholipid MPB was replaced with the NHS-functionalized phospholipid DOPE-

NHS. In conjunction, DTT and calcium were replaced with branched polyethylene amine (bPEI). 

Initial production of SOSIP ICMV-NHS consisted of the same production method as standard 

ICMVs, depicted in Figure 4-3A. When the supernatant of SOSIP loaded ICMV-NHS was 

evaluated by BN PAGE the trimer was again dissociated (Figure 4-3B). In addition, bPEI migrated 

poorly and produced a large smear throughout the lane, making clear identification of the antigen 

difficult and potentially affecting antigen migration. To aid in migrating bPEI, additional detergent 

and charge shift molecules were added for BN PAGE analysis, though, the amphiphilic properties 

of these components may have contributed to the disruption of SOSIP trimers (Figure 4-3B). 

To elucidate if SOSIP trimer dissociation was a result of BN PAGE preparation or the 

nanoparticle synthesis process, simplified nanoparticles were produced using DOPG (anionic 

phospholipid) in place of DOPE-NHS and calcium in place of bPEI as the fusion inducer. The 

changes in lipid composition served two purposes: one, removing NHS and bPEI as variables for 

the analysis; and two, non-crosslinked MLVs are more easily disrupted by detergents, thus 

requiring less detergent and charge shift molecules for BN PAGE analysis. The calcium-fused 

MLVs (Ca-MLVs) were produced by the same method as ICMV-NHSs (Figure 4-3C), and a 

stepwise analysis was conducted to evaluate trimers at each stage of production. The pellets and 

respective supernatants from each step were analyzed by BN PAGE, and gp140 monomers 

appeared after the probe tip sonication step (Figure 4-3D). These results conflicted with prior data 

showing trimer retention after SOSIP (in buffer) sonicated across multiple settings (Figure 4-3E), 

including those used for ICMV-NHS and Ca-MLV production (5 minutes at 40% intensity). 
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Figure 4-3. ICMV-NHS design and trials. 

  

Figure 4-3. ICMV-NHS design and trials. (A) Schematic of each 

step of ICMV-NHS production. (B) Blue Native PAGE of SOSIP 

ICMV-NHS supernatant in increasing volumes. The relative 

amount of detergent, ODBG, is indicated below the gel (a “-“ 

indicates no ODBG). (C) Schematic of calcium fused MLV (Ca-

MLV) production. (D) Blue Native PAGE of samples removed at 

each step of SOSIP loaded Ca-MLV production. P = 

particle/pellet, S = supernatant. (E) Blue Native PAGE of stock 

SOSIP after 2 or 5 minutes of sonication at 20 and 40% amplitude. 
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Figure 4-4. Extrusion Ca-MLV trials. 

To confirm if probe tip sonication was leading to SOSIP trimer dissociation, Ca-MLVs 

were produced using extrusion in place of sonication and again evaluated by BN PAGE at each 

step of production (Figure 4-4A). All stages of extruded Ca-MLV synthesis displayed SOSIP 

trimers and confirmed that the dissociation of SOSIP trimers was occurring during the probe tip 

sonication. While gp140 monomers were observed, the majority of SOSIP was retained as trimers 

(Figure 4-4A). Additionally, gp140 monomer bands were present in all samples incubated with 

detergent, indicating some contribution of the detergent to trimer dissociation (Figure 4-4A, far 

right lanes). Unfortunately, SOSIP loading was much lower in extruded Ca-MLVs compared to 

sonicated Ca-MLVs (Figures 4-3D vs. 4-4A). When the extruded Ca-MLVs method was 

evaluated, it was determined that after each extrusion a portion of sample was retained in the 

extruder chamber. The residual sample was collected after each extrusion step, and assessed along 

with the final produced and was shown to contain large amounts of SOSIP trimers (Figure 4-4A, 

Figure 4-4. Extrusion Ca-MLV trials. Blue Native PAGE of extruded SOSIP Ca-MLVs (A) Ca-MLVs 

containing 10% DOPE-NHS (B) from each stage of production. P = particle/pellet, S = supernatant. (A) 

Residual samples (400 nm and 200 nm) from the extrusion chamber and SOSIP +/- detergent (det.) controls.  
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400 and 200 nm lanes). To increase the loading of SOSIP DOPE-NHS was reincorporated at 10% 

(mol/mol) into the lipid films, and calcium was again used in place of bPEI to allow for optimal 

DOPE-NHS conjugation to SOSIP. Unfortunately, SOSIP loaded remained low even in the 

presence of DOPE-NHS when calcium was used as a fusion inducing agent (Figure 4-4B).  

 

Extruded ICMV-NHSs preserve SOSIP trimers and conformational epitopes. 

The use of a cationic polymer as a fusion inducer may enhance antigen loading by 

electrostatically interacting with anionic residues on the antigen or phospholipids to reduce the 

electrostatic repulsion and promote loading of the antigen. While a similar effect can occur with 

calcium ions, a cationic polymer with multiple ionized residues could bind with more avidity and 

would be less easily displaced. The bPEI polymer used in this study has on average ≥ 10 ionized 

amines per polymer (only tertiary amines calculated) at pH 8. In addition to acting as a buffer 

between the antigen and ULVs, bPEI can react with DOPE-NHS via unionized primary and, less-

favorably, secondary amines. 

Trial productions of ICMV-NHSs were conducted using formulations containing 10% or 

20% molar DOPE-NHS. Since bPEI can compete with SOSIP for DOPE-NHS conjugation, the 

bPEI content (based on primary amines) was not added in extreme excess like calcium ions but 

added at either an equimolar or 1.5-fold excess of primary amines to the DOPE-NHS present in 

the specific formulation. Additionally, a final formulation was included where equimolar bPEI 

was supplemented with CaCl2 to observe any impact on antigen loading or nanoparticle formation 

or size. A trend emerged in which nanoparticle diameters and size homogeneity, measured as 

polydispersity indices (PDI), increased as the bPEI content increased (Figure 4-5A, B) to a point  
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Figure 4-5. Characterization of extruded WT and SOSIP ICMV-NHSs. 
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where large aggregates formed. In contrast, ICMV-NHSs produced with both bPEI and 

CaCl2
 displayed the lowest average diameters and PDIs of 0.19 and 0.30 for WT and SOSIP 

particles, respectively. Interestingly, despite the increasing content of bPEI or the presence of 

CaCl2, the zeta potential (measured in PBS) of the nanoparticles remained relatively unchanged, 

ranging from -18 to -24 mV and -20 to -27 mV for WT and SOSIP nanoparticle formulations, 

respectively. Analysis of the trial formulations by Blue Native PAGE revealed that increasing bPEI 

adversely affected the migration of the components (Figure 4-5C, D). Some apparent bands of 

WT trimer were visible in the particle fractions (indicated by triangles), but were difficult to 

discern (Figure 4-5C). Similar results were obtained with SOSIP where the particle lanes 

(indicated by circles) migrated poorly with no distinct evidence of SOSIP trimers (Figure 4-5D). 

Conversely, antigen bands from the supernatant fractions (unloaded antigen) migrated as trimers 

for both WT and SOSIP, albeit some monomer bands were observed in the SOSIP samples (Figure 

4-5C, D), suggesting the antigens were mainly retained as trimers throughout ICMV-NHS 

synthesis. 

Quantification of the protein content of the particle and supernatant fraction was attempted 

by non-reducing (NR) PAGE. While WT and SOSIP bands easily appeared in lanes loaded with 

the supernatants (Figure 4-5E, F), interference by bPEI was again observed in the particle fraction 

samples and interfered with protein content quantification. However, WT bands were clearly 

evident in the particle lanes, whereas, SOSIP bands were faint except for one formulation (Figure 

Figure 4-5. Characterization of extruded WT and SOSIP ICMV-NHSs. (A, B) Tables of Z-Avg diameters, 

polydispersity indices (PDI) and zeta potentials (ZP) of WT and SOSIP ICMV-NHSs containing 10 or 20% 

DOPE-NHS. Molar ratios of bPEI primary amine:NHS are indicated in parentheses. (C, D) BN PAGEs of 

WT and SOSIP ICMV-NHSs, with the respective supernatants next to particle lanes. (E, F) NR PAGEs of 

WT and SOSIP ICMV-NHSs, with the respective supernatants next to particle lanes. (G, H) Average 

secondary antibody signals from immunofluorescence stained WT or SOSIP ICMV-NHSs. Particles are 

color and shape matched. 
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4-5F, far right lanes). Nevertheless, the majority of SOSIP antigen was contained within the 

supernatant fractions, indicating low antigen loading. 

Lastly, the presence WT and SOSIP on ICMV-NHS surfaces was evaluated using the 

previously described indirect immunofluorescence staining assay[73] with the antigen-specific 

primary antibodies b6 and PGV04 (non-neutralizing and broadly neutralizing antibodies, 

respectively). Fluorescence signals of the fluorophore-conjugated secondary antibody revealed 

much greater levels of primary antibody binding to WT particles than SOSIP particles (Figure 4-

5G, H), aligning with the enhanced loading of WT that was observed compared to SOSIP (Figure 

4-5E, F). Notably, both SOSIP formulations containing 20% DOPE-NHS demonstrated 

approximately 2.8-fold increased binding of PGV04 compared to b6; whereas, PGV04 binding 

was only 1.2-1.6 fold higher for the 10% DOPE-NHS containing SOSIP formulations. Preferential 

binding of the broadly neutralizing antibody PGV04 over the non-neutralizing b6 is a desired trait 

for a HIV vaccine candidate. To evaluate if this trend was directly related to the DOPE-NHS 

content, ICMV-NHS formulations with further increased amounts of DOPE-NHS were produced 

and assessed for a greater selectivity of PGV04 binding.  

Modified ICMV-NHS method improves SOSIP loading but not nanoparticle size. 

SOSIP ICMV-NHSs containing 50% DOPE-NHS were produced by two methods. The 

first, termed post sonication (psICMV-NHSs), added SOSIP after the sonication step and the 

mixtures was incubated at 37°C prior to addition of the crosslinking agent. The second method 

utilized extrusion with a wash of the chamber between each extrusion step to aid with sample 

recovery. Additionally, both methods used half the initial volume of buffer for hydration, to 

prevent excessive dilution of the formulations during synthesis.  
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For these experiments the bPEI content was reduced to 0.6:1 and 0.7:1 (primary 

amine:NHS), resulting in total bPEI concentrations similar to that used for the 20% ICMV-NHSs. 

The rational for this alteration was that if the bPEI amount is lowered then then more DOPE-NHS 

would be available to bind to the antigen and unreacted bPEI would be less present, which may 

limit aggregation of the nanoparticles. Conversely, the observed interference of bPEI in the PAGE 

based quantification methods may be related to the poor migration of bPEI conjugated to DOPE-

NHS. Therefore, formulations using the small molecule crosslinkers, l-lysine and 2,2’ 

oxydiethylamine (22O) were produced to see if bPEI could be replace by a suitable small molecule 

crosslinker. L-lysine and 22O are diamine containing compounds and were added at primary 

amine:NHS molar ratios of 4:1 and 1:1. At these low concentrations CaCl2 was used to supplement 

fusion of the ULVs. 

When measured by DLS, psICMV-NHSs fused with 0.6:1 and 0.7:1 bPEI displayed 

diameters of ~500 and ~4000 nm, respectively, indicating aggregation of the nanoparticles (Figure 

4-6A). Similar results were measured for ICMV-NHSs produced by the modified extrusion 

method, with diameters of ~1850 and ~7300 nm. Interestingly, as the bPEI concentration increased 

for these samples, the zeta potential of the nanoparticles became less negative, a trend not observed 

previously. Conversely, all ICMVs produced with l-lysine or 22O ranged in size from 120-218 nm 

and displayed zeta potentials of approximately -24 mV (Figure 4-6A). Though the small molecule 

crosslinkers improved nanoparticle size and zeta potential, antigen loading was highest for 

psICMV-NHS produced with bPEI. (Figure 4-6B). These data suggest a beneficial effect of 

increasing bPEI on antigen loading but a deleterious effect on the nanoparticle size.  
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Figure 4-6. Characterization of post sonication (ps) and modified extrusion SOSIP ICMV-NHS trials. 

Optimization of SOSIP psICMV-NHSs.  

To optimize the bPEI content for ICMV-NHSs production, the polymer concentration was 

incrementally lowered to produce approximately ideal nanoparticle sizes without significantly 

reducing antigen loading. For this, SOSIP psICMV-NHSs were produced using bPEI at 0.3:1, 

0.35:1, and 0.4:1 1° amine:NHS ratios, and particle diameters were measured as 328, 314, and 381 

nm, respectively, with PDIs of 0.27, 0.28, and 0.36 and zeta potentials around -19 mV for all 

particles (Figure 4-7A). Though the sample intensities were outside the range of the standards, the 

Figure 4-6. Characterization of post sonication (ps) and modified extrusion SOSIP ICMV-NHS trials. (A) 

Tables of Z-Avg diameters, PDI, and ZP of SOSIP ICMV-NHSs synthesized via p.s. (top) or modified 

extrusion (bottom) method using various crosslinker/fusion inducer compounds. Indicated in parentheses 

are the molar ratios of primary amine:NHS ester. (B) Silver stained NR PAGE of SOSIP content of the 

above nanoparticles, loaded in equal volumes. Samples are shape and color matched. 
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Figure 4-7. Optimization of SOSIP psICMV-NHS production. 

loading efficiencies for the nanoparticles were calculated to be at least 26% (Figure 4-7A). The 

observed migration of SOSIP from the ICMV-NHS samples appeared at higher molecular weights 

than the standards or unloaded SOSIP, indicating conjugation of DOPE-NHS to the antigens 

(Figure 4-7B). From these formulations, the particle produced with 0.35:1 bPEI primary 

amine:NHS was selected to evaluate the surface antigen display, due to the balance of antigen 

loading, nanoparticle diameter and low PDI. SOSIP psICMV-NHSs were produced with the 

addition of the lipophilic fluorophore DiD, and the particles were analyzed by 

immunofluorescence assay and NanoFACS, a method adapted from others to evaluate antigen 

display on individual nanoparticles. [99-103]  

The retention of DiD in the immunofluorescence stained nanoparticles were not 

significantly different when measured in bulk, though ~75% of particles were lost during the 

Figure 4-7. Optimization of SOSIP psICMV-NHS production. (A) Table of Z-Avg diameters, PDI, and 

ZP of SOSIP psICMV-NHS using increasing amounts of bPEI crosslinker (molar ratio of primary 

amines:NHS ester indicated in parentheses). ((B) Silver stained NR PAGE of SOSIP content of the 

above nanoparticles, loaded in increasing volumes. Samples are matched by shape. 
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Figure 4-8. Surface antigen display on SOSIP psICMV-NHS. 

processing (Figure 4-8A). Binding of the broadly neutralizing primary antibody (PGV04) was 

significantly higher than any other primary antibody (p<0.0001), whereas, the non-neutralizing 

primary antibody (b6) bound at similar levels as the isotype control, indicating it may be non-

specifically bound to the nanoparticles (Figure 4-8B). Individual analysis of the nanoparticles via 

NanoFACS measured comparable DiD signals between sample groups, and a similar trend of 

selective PGV04 binding compared to control groups (Figure 4-8C, D).  

 

Figure 4-8. Surface antigen display on SOSIP psICMV-NHS. (A) DiD (left) and secondary antibody 

binding (right) signals of immunofluorescence stained nanoparticles as measured by plate reader. (B) DiD 

and secondary antibody signals of individual nanoparticles as measured by NanoFACS analysis. 

Measurements are reported as means ± s.d. Statistical analysis was conducted by one-way ANOVA 

followed by Tukey’s multiple comparison test. (n.s.) p > 0.05, (****) p < 0.0001. 
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4.5 Discussion 

The development of a new ICMV nanoparticle utilizing primary amine chemistry via NHS-

ester chemistry was prompted by the reduction sensitive recombinant SOSIP antigen (Figure 4-

1). Early in the development of NHS containing ICMVs (ICMV-NHS), dissociation of the SOSIP 

trimer was observed and determined to be caused by the probe tip sonication step during ICMV 

synthesis (Figure 4-3). Extrusion-based production methods were used to confirm that this was 

indeed the case (Figures 4-4); however, extruded ICMV-NHSs demonstrated poor recovery of the 

sample, which contributed to low antigen loading (Figure 4-4 and 4-5). It was determined that 

modification to the original method where SOSIP would be added after probe tip sonication 

yielded the highest amount of antigen recovery and loading (Figure 4-6).  

However, optimizing ICMV-NHS loading and size proved challenging when using the 

polycationic polymer bPEI. Initially, 1800 Da bPEI was a suitable choice for ICMV-NHS 

production since it could serve as both the crosslinking agent and fusion inducer, and low 

molecular weight bPEI are less cytotoxic.[144-146] Additionally, recent research has demonstrated 

bPEI as an immunostimulatory compound,[141, 142] which would be of added benefit for vaccine 

nanoparticles.  

Unfortunately, an unfavorable trend was discovered between antigen loading and particle 

size in relation to the bPEI amounts used, where increasing bPEI resulted in increased antigen 

loading but particle size also increased to the point of large aggregate formations (Figures 4-5A, 

B, 4-6A, and 4-7A). As a possible replacement for bPEI, diamine containing small molecules were 

also tested as crosslinking agents (reminiscent to DTT) along with CaCl2 as the fusion inducer, and 

observed sub-200 nm ICMV-NHSs, but the loading of SOSIP was poor compared to bPEI (Figure 

4-6A, B). Potentially, factors such as the salt form of the small molecules used or additional 
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negatively charged residues may have impacted the efficacy of the small molecule crosslinkers. 

Regardless, bPEI containing nanoparticles displayed the highest antigen loading and were further 

tuned for a more ideal nanoparticle diameter.   

Optimization of bPEI fused ICMV-NHSs using the post sonication method (psICMV-

NHSs) produced particles with approximately 20-30% loading efficiencies and diameters between 

310-330 nm (Figure 4-7A). One formulation in particular, bPEI content of 0.35:1 molar primary 

amine:NHS, was tested for Env-specific antibody binding via immunofluorescence staining. Bulk 

sample analysis revealed significantly higher binding of the broadly neutralizing antibody PGV04 

compared to the non-neutralizing antibody b6 and control groups (Figure 4-8A). Individual 

particle analysis displayed similar results, but statistical significance not observed between PGV04 

and b6 (Figure 4-8D).  

These efforts demonstrate the first steps in producing SOSIP loaded ICMV-NHSs, but 

further optimization is required. Specifically, NHS-esters are less stable than maleimides and 

subject to hydrolysis,[144-146] which is accelerated by increasing pH, water content, and 

temperature. These factors were accounted during production to mitigate hydrolysis prior to the 

addition of antigen and crosslinker, yet inconsistencies were still observed. Additionally, bPEI 

polymers are not uniform in size but range around the average molecular weight of 1800 Da. 

Refinement of the polymer size may lead to more consistent production of ICMV-NHSs. 

Furthermore, the negative zeta potentials of ICMV-NHSs indicate that bPEI is not extensively 

bound to the surfaces; however, it may still may bind to SOSIP antigens, effecting recognition by 

ENV-specific antibodies or impacting antibody generation. As an alternative to bPEI, the small 

molecules spermidine and spermine have well defined masses (145.25 and 202.34 Da, 

respectively), contain amines suitable for NHS-ester conjugation, and ionized amines that may 
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induce fusion of ULVs. While these data demonstrate a role for ICMV-NHSs in specific 

applications, further work is needed to develop and characterize the crucial components for the 

stable and consistent production of this new type of nanoparticle. 

 

4.6 Individual contributions 

J. Bazzill and J.J. Moon designed the experiments. J. Bazzill performed the experiments. 

L.J. Ochyl contributed to the NanoFACS data. J. Bazzill and J.J. Moon analyzed the data. J. Bazzill 

wrote this report. 
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Chapter 5 

Conclusions and Future Directions 

 

In this body of work three distinct viral sources have been tried and evaluated for 

incorporation with ICMVs. Two of the projects (HCV and EBOV) progressed to animal studies 

with no or minor alterations to ICMV composition, respectively. The third project (HIV) required 

extensive alterations to produce a viable nanoparticle, and are currently being optimized and 

validated. Even after applying lessons learned from the EBOV project in which the antigen, rGP, 

is structurally reminiscent to the HIV SOSIP antigen, modifications to the point of producing a 

new variant of ICMV were required. While this highlights the ability to modify ICMVs as needed, 

it also underscores how drastically antigens and antigen variants are incorporated into ICMVs, and 

that extensive characterization and validation are required for even the most minor alterations.  

While the projects summarized here focused on the immunogenicity aspect of vaccine 

formulation, in depth analysis of each formulation will likely yield valuable information as to how 

the antigens are altered, affected, or modified by the many processes and reactions involved in 

producing ICMVs and ICMV-NHSs. Notably, determining the extent and location of MPB or 

DOPE-NHS conjugation to antigens may provide insight into if important epitopes on the antigen 

are being masked by the bound lipids and help to select the suitable nanoparticle format or optimize 
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the formulation parameters. The location and extent of functionalized phospholipid binding can be 

evaluated by LC-MS after proteolytic digestion antigens from produced nanoparticles. When 

compared to stock antigen this data can yield the extent of conjugation (in terms or potential vs. 

bound residue), relative positions of the conjugated sites, and if specific residues are more prone 

to conjugation than others. In addition, analysis by LC-MS can provide data on where and to what 

extent DTT may reduce antigens and thus affecting their immunogenic properties. This method 

can provide greater resolution and less background compared to simpler colorimetric methods such 

as Ellman’s reagent.  

Another general facet of the ICMVs that was not elucidated was where the antigens were 

being loaded during ICMV formation. The two most likely sites are the inner-most core and the 

outer-most exterior of the nanoparticles. The inter-bilayer space, 5 nm distance, does not provide 

much room for most protein antigens. However, determining if antigens reside in this space is 

exceedingly difficult. Currently, a method is under development to determine the fraction of 

antigen on the exterior of ICMVs by using membrane impermeable, functionalized molecules to 

bind to externally bound antigens and the resulting shift in molecular weight can be used to resolve 

the internal versus external antigens. Specifically, NHS-functionalized polyethylene glycol (5 kD 

MW) is incubated in excess with ICMVs overnight to bind with lysine residues and analyzed by 

PAGE. PEGylated antigens (external) migrate at higher molecular weights than non-PEGylated 

antigens (internal). The resulting difference in band intensities between treated and untreated 

samples are used to calculate the internal and external antigen fractions. This method requires 

further optimization due to poor resolution using standard PAGE-based quantification methods. 

The use of functionalized fluorophores or dual fluorophore-tagged and NHS-functionalized PEG 

may yield better results. 
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Improvements to the immunofluorescence assay would help to move this form a qualitative 

to a quantitative technique. As it stands, the use of whole antibodies limits the quantification of 

presented epitopes due to steric hindrance as a result of the bulky antibody size and shape as well 

as uncertainties in whether one or both F(Ab)s are bound to an epitope. Furthermore, while indirect 

immunostaining methods greatly enhance the resolution of signals, the potential for 

disproportionate binding between samples detracts from accurate quantification by this method. 

Switching to direct immunofluorescence using F(Ab) fragments in place of whole antibodies could 

allow for greater binding to all or a higher fraction of antigens as well as providing a direct 

measurement of the epitope presence. However, some hurdles that may need troubleshooting 

would be to determine an output method that produces a strong signal from direct F(Ab) staining 

and optimizing the assays to avoid F(Ab) dissociation from the antigens. Additionally, this method 

does not capture the in vivo conditions of antibody binding to the nanoparticles, so may be best 

used as a supplementary method to the indirect immunofluorescence assay. 

Future directions for the HCV project include validating the display of E2.661 and E2c.661 

on the surface of ICMVs to evaluate if the C652 or basic residues of the back layer contribute to 

the display of the antigen on ICMV surfaces. Use of alanine mutagenesis of the sites along with 

immunofluorescence staining or electron microscopy may provide insight into the specific 

orientation of the antigens.[147] Additionally, further evaluation of the generated antibody responses 

are also needed to investigate vaccine efficacy and develop future vaccination schemes. The 

current work evaluated antibodies produced against two linear epitopes. Obviously, other epitopes 

contributed to the immune response, but to what extent and impact they had have yet to be 

analyzed. Lastly, enhancing the breadth of the generated neutralizing antibodies is the focus of 

future experiments, but without evaluating the factors above, this will be based on trial and error. 
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Rational design of vaccines will require feedback of the generated immune responses to then adapt 

the antigen to lead the immune response in the direction desired and in a timely manner. Taking 

lessons from chronic hepatitis C, researchers are utilizing antigenic diversity to induce broadly 

neutralizing antibodies (bNAbs) including altered glycosylation patterns.[148] The difficulty will 

lie in determining what factors are most important to bNAb generation and how to efficiently 

reproduce these factors within individuals. 

The next stages for the EBOV project include dose optimization including analysis of 

antigen density, display, and particle count on antibody generation, systemic delivery, and in vivo 

efficacy. Additionally, the current studies demonstrated protection in mice one month after 

vaccination; future studies will need to evaluate long-term protection, including memory B-cell 

responses, antigen-specific antibody titers, protection after challenge, and the impact or changes 

viral challenge may induce on the antibody repertoire. Specifically, secreted GP is believed to be 

an antigenic decoy, and its presence during viral challenge may induce a subversive antibody 

response.[29] Lastly, the positive results seen in mice warrant investigation of ICMV protection of 

higher order animals, particularly guinea pigs, which are the next step for EBOV vaccine candidate 

prior to non-human primates.  

Many of the near future experiments for the HIV project pertain to evaluating and 

characterizing SOSIP ICMV-NHSs and were highlighted above, but further in the future 

vaccination of mice will be used to assess general immunogenic responses and stability of the 

nanoparticles after administration. Once determined as safe and viable animal studies will utilize 

rabbits which have been shown to generate bNAbs with similar modifications as human bNAbs, 

unlike mice.[149-151] However, similar to the HCV vaccinations, rational antigen design will likely 

be needed to steer immune responses towards bNAbs. Previous research has demonstrated that 



102 

autologous neutralizing antibodies can be induced with the SOSIP antigen,[152, 153] but 

neutralization breadth was absent. Other reports utilizing sequential alterations in SOSIP to lead 

immune responses towards bNAbs.[154-156] Additionally, the importance of SOSIP glycans has 

been reported for induction of bNAbs to buried epitopes[157] as well as specifically against the 

glycans.[158, 159] These factors will need to be taken into account for a successful SOSIP ICMV 

vaccine, and may require additional analysis of individual animals to determine if a “one vaccine 

fits all” scheme is a viable option. 

Finally, the overarching and continuing goal for these projects is to produce protective 

immune responses while avoiding non-neutralizing responses. Given the unconventional 

progression and evasion mechanisms of these pathogens along with the trends of current research, 

it is possible that a new strategy will be required for effective vaccines against HCV, HIV, and 

EBOV. So far this has been alluded to in the literature given the difficulties of inducing broadly 

protective immune responses with static subunit vaccines. A recurring and growing trend is the 

use of dynamic antigens to steer immune responses towards specific fates. Whether or not this can 

occur using small or drastic alterations is uncertain and likely. In concert with the modulation of 

the vaccines is the response of the recipient. Virulent pathogens like those presented here will 

necessitate highly effective vaccines, and given the variability observed in bred animals the 

diversity in response by humans will likely be greater. In essence, our and others research appear 

to be pointing to a future of personalized vaccines where patients are monitored for efficacy, 

possibly resulting in tailored booster vaccines to re-orientate or reinforce the generated immune 

response. Obviously, this is a far cry from the desired one-shot fully-protective model, but an 

unconventional problem may dictate an unconventional answer.  
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