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Abstract

A key phenemenom visual searchexperimentss thelinearrelationof RT to the number of
objectstorbessearchedsetsize). The dominant theory of visuaearchclaimsthatthis is a
result ofwcovert selective attention operatingsequentiallyto "bind" visual featuresinto
objects,andthis mechanisnoperatedifferently depending on the nature of thearchtask
and thevisualfeaturesnvolved, causing thslopeof theRT asa function ofsetsizeto range
from zeroto large values.However,a cognitivearchitecturalmodel pesentechere shows
theseeffeetson RT in threedifferentsearchtaskconditionscanbeeasilyobtainedrom basic
visual meehanisms,eye movements,and simple task strategies.No selective attention
mechanisms neededIn addition,therearelittle-explared effectsof visual crowdingwhich
is typically confoundedwith set size in visual searchexperiments. Including aimple
mechanisnior crowdingin themodelalsoallowsit to accountor significanteffectson error
rate (ER). The resulting model showsthe interactionbetweenvisual mechanismsand task
strategy,andthus representsa more comprehensive anfituitful approachto visual search

than the dominant theory.
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1. Introduction

Visual.searchthe process of finding desiredobjectin a visualscenejs a commonreatlife
task,and understanding betteris importantfor improved design o$ystemssuchas computer
displays. For the decades,an especially simple visual searchtask has been the focus of
considerableempirical and theoreticalwork, starting with the seminalwork of Triesman&
Gelade(1980),which was extended byVolfe and his coworkersstartingwith Wolfe, Cave,&
Franzel (1989).1n this task, subjects view a display containirsgveral objects, and decide
whether aspécifiedtarget objectis presenor not, andmakea corresponding keystrokesponse.
The main independenvariableis the number of objects on thasglay (setsizg, and the main
dependenvariableis the reactiontime (RT), thetime to maketheresponseNormally thetarget
is presenthalf the time (positivetrials), and absentthe other half (negativetrials). Additional
independentzariablesare the visual propertiesspecifiedfor the targetanddistractors and the
logical form_ef-thetargetspecification For example thetargetmight be a singleed bar among
greenbars,or thetargetmight be aconjunctivecombination oftwo features,suchasa blue X
shapeamangred X and blue Gshapes

The key resultin theseexperimentsgeereviewsby Wolfe, 2014; Hilleman& Olivers, 2017)
is a roughlylinearincreasan RT with setsize,with negativetrials producing a slope abotwice
as steepas'positive trials. This pattern suggests alassicalserial selfterminating processin
which eachobjectis examinedsequentially,and the searchterminatedas soonas the targetis
found. Depending othe task conditions, positiverial slopesrangefrom essentiallyzero (e.g.
the targetis a singlered bar amonggreenbars)to about 50ms/itemor more (e.g. a specific
detailedshapesamongimilar detailedshapes)Error rate (ER) is generallyfairly low, andsois

oftenignored, butsuallyincreasesvith setsizeandapparentaskdifficulty.

1.1. Covert tentiontheory of ¥sual search

An obvious explanatioffor the linear RT effectsis that subjectsmove theeyesto eachitem

sequentiallyto perform thesearch.However,the typical slopes observedare much fasterthan
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eye movements wouldllow. This discrepancyunderliesthe basictheoreticalclaim originally

made, and still dominantin this literature, that the sequentiasearchis donenot by overtly

moving the eyes, but instead by cowertly moving selective attention from one object
representatiomo_another.This covertselectiveattentiontheory of visuakearchhasits rootsin

Neisser’s (1967) assertion,basedon extremely early computervision concepts,that “focal

attention"1s_necessaryto bind togetherprimitive featuresinto a visual objectthis attention

based'binding™operatiorwasadvancedn Triesman& Gelade(1980)asan explanatiorfor why

conjunctivesearcheshad much steeperslopesthan singlefeature searchesWolfe, Cave, and
Franzel(1989)tried manydifferent visualfeaturesandsearchspecificationsanddiscoveredhat

conjunctivesearchescould havesmall slopessimilar to some singlefeature searchesThey

proposedthe first version of the GuidedSearchtheory which still involved covert attention
allocationasits fundamentaimechanism.

However,the covertattentiontheoryis seriouslyflawed, aseloquently pointeadut by Findlay
and Gilchrist (2003). Visual searchtheoristsandexperimenterdiave generally ignored thele
of powerfulypurely visualfactors such as how visual resolutiordecreasegrom the fovea
towards the periphenjut objectscanstill be recognizedn peripheralvision if they are large
enough (e:gAnstis, 1974;seereview in Rosenholt, 2016). Another visualactor is crowding
effects, inswhich objectsin peripheralvision become hardeo perceiveif other objectsare
nearby for reviews,seeLevi, 2008;Pelli & Tillman, 2008). This effect could beimportantin
visual searchtasksbe@useusuallythe objectsare displayedin afixed area,so asthe setsizeis
increasedt{heobjectstendto beclosertogetherput this confounding has usuallyeenignoredin
visual searckhexperimentsFinally, both of thesefactorsarethe basicreasorwhy eye movements
arenecessarnn visualtasks— moving theeyesto the object ointerestimproves theesolution
and eliminatescrowding effects, yielding accurateperception of the objecBut in fact thereis
little or no_mention ofeither visual factors nor eye movements Neisseis (1967) original
treatmentof focal attention norin the subsequenmainstreanof visual searchwork pioneered
by TreismanandWolfe, eventhoughseveralstudiesdemongratedtheir relevancee.g., Zelinsky
& Sheinberg,,1995Carrasco& Frieder,1996;Wertheim,Hooge, Krikke, & Johnson2006. It
has even been claimed that the RT effects are the sameregardlessof whether or not eye
movementsare made but this claim is problematic(c.f., CarrascoMclLean, Katz, & Frieder,

1998). Thus the dominartheory of visual searchignores known visuafactors and eye
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movements, anohsteadnsiststhatthe key mechanismn visualsearchs the allocationof covert

attention

1.2.Active vision dternative

Findlay ‘& Gilchrist (2003) proposedn active vision approachto visual searchin which
informationfrom peripheral visions usedto guide eye movements that bring thigh-resolution
portion .of the retina to bear on relevantparts of the scene.Furthermore,for many visual
propertiesanddisplays,morethan one objeatanbe perceivedn asinglefixation, which is the
long-standing concept of tleea of conspicuityEngel, 1977) ofunctionalviewingfield (FVF,
seereviewIn Hulleman& Olivers, 2017). Theclaim that theRT ms/itemslopesaretoo fast for
eye movementslearly fails if it is possiblefor more thanone objectto be processedt atime;
the notionthatindividual objects would havéo be foveatedis simply incorrect. Accordingly,
HullemanandOlivers (2017) proposed that thras/itemcharacterizatiorof visualsearchwas a
fundamentamistake becausehe number of fixationsjotthe number of displaytems,accounts
for visualsearchRT, andpresented simpleprocesamodelbasedon theFVF that accountedor
RT effects This papergoesfurtherandpresentanactivevision model using thEPIC cognitive
architecturgMeyer & Kieras,1997;Kieras,2016),which hasno conventionaselectiveattention
mechanismandis especiallysuitablefor modeing perceptuaimotortasksthatare controlled by
cognitive strategies. This model demonstratebat visual factorsand eye movements, together
with simple cognitivetask strategiesare sufficient to accountfor both RT anderror effectsin

visualseart taskswithout anymechanisnof covertselectiveattention.

1.3. Overview

This papemext presents the methodology asiataanalysis of a very high-qualitysual search
dataseton performancen threeclassicvisualsearchtasks madeavailableby Wolfe, Palmer,&
Horowitz (2010). Next comesan active vision model of theseresults basedon the EPIC
cognitivearchitecture This modelis then compareth detail to the Wolfe et al. (2010)datafor
bothRTranderrorrate(ER).

2. TheVisual SearchExperiment

Ratherthan spendtime andresourceollectingnew datéao testthe active vision model,it is
more usefulto testit with previous data of the typesedto support theoriginal theories.Many
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variationson the simple visual searchtask have been studied, andomeclassicexampleswere
reportedin Wolfe et al. (1989) in support of the Guided Searchtheory. Subsequently,
additionaldatain thesetaskswerereported byWolfe, Palmer,andHorowitz (2010)to support a
theoreticalanalysisbasedon thedetails of the RT distributionsfor individual subjects.They
made the data publicly available for download at
http://search.bwh.harvard.edu/new/data_set_files.hiihis datasetwas ideal for the present
modeling work“becauseit was collected by arguablythe most experiencedvisual search
laboratory*hadwell-specifiedstimuli andtask conditionssuitablefor replicationin a model, and
arelativelylargenumber of verywell-practicedsubjectswhich meanshat themeandata would
be reasonablyreliable and individual subjecstrategieswere likely to be stable, making the
resultsespeciallysuitablefor modeling.For completenesandclarity, ther experimentamethod
is re-statedhere; butwith additionaldetailson how the experimentas simulatedin the EPIC
modelbasedon thedetailsin Wolfe etal. (2010).

2.1. Method

TasksWolfe etal. (2010)usedthreedifferentpresent/absersiearchtasks;Fig. 1 shows aample
targetpresentisplay produced by th&PIC softwarefor eachtask condition.In this paper, he
three canditionsare referredto as Color SingleFeature(CSF), Color-OrientationConjunction
(COC),and ShapéSHP).The CSFtargetwasaredvertical baramonggreenverticaldistractors.
The COC targetwas a red vertical bar among diractorsthat werered horizontalbarsor green
verticalbars:The SHPtargetwasa"digital 2" shapeamong'digital 5" shapes.

Stimuli. The Wolfe et al. (2010) download datsetincludeseachindividual trial but does not
contain theactual display configuratiorusedin eachtrial, so for purposes of modelinghe
display hado.be generatedor eachsimulatedtrial usingtheir display parametersThe search
displaywasanarea22.5° x 22.5°treatedascontaining25 invisiblecells of 5° x 5°.In the CSF
task, the objectswere 1° x 3.5°vertical bars;in the COC task, the objectswere 1° x 3.5°bars,
orientedeitherhorizontallyor vertically. In the SHPtask,the objetswere1.5° x 2.7°character
like shapesEachobjectappearedn a randomocationwithin one of thecells, constrainedn the

model to keepthe horizontalor vertical edgeof an objectat least 0.25° away from the cell
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boundary, ensuring minimum sepaation of 0.5° betweenmadjacentobjects.Setsizeswere 3, 6,
12, and 18To generate thelisplay for eachtrial, the setsize number ofdistractorswere first

placedin randomlychosendisplay cells; if the trial was positive (target present),a randomly
choserdistractorwasreplacedwith atargetobject.

Design TheWolfe et al. (2010)experimenthad 10 subjects the COC task condition and 9n

eachof the,othettwo. Onesubjectwasin both COC andSHP,but the dataetdoes notdentify

this subject;so'the task conditionwas treatedas a purely betweersubject manipulatiomn this

paper.Thesetsize andpolarity werechoserat randomfor eachtrial. Therewereabout 50Qrials

per subjector eachcombination oketsizeandpositive/negativérial polarity.

Procedure.Eachtrial beganwith a centeredfixation cross.Subjectswere instructedto “keep
their eyesfocusedon this cross”but eye movemeniserenot monitoredThe searchdisplaywas
presentedndremainedvisible until the subjegbresseda keyfor targetpresenir targetabsent.
Subjectswere instructedto respondas "quickly andaccuratelyas possible."Correct/incorrect

feedbackvaspresentedor 500msaftereachtrial.

2.2.Results

The downleaded dataonsistedof the RT andcorrectincorrectstatusfor eachsubjectin each
trial at eachsetsize andtrial polarity. Followingcommonpracticein RT experimentsthe data
werereducedasfollows: For eachtaskcondition,for eachsubject,themeanRT for correcttrials
and thepropertian of errorsfor that subjectvascalculatedor positiveandnegativetrials at each
setsize, giving atotal of 8 data pointfor eachsubjectfor their RT anderrorrate (ER). These
subjectmeanswere thenaveragedo producethe observeddata points plited in Fig. 2 and3.
The 95% confidencentervalsaroundeachdata pointare basedthe standarderror of thatmean
using ther_underlying 9 or 10 individuaubject means, thus reflecting betweersubject
variability fhutnot within-subjectvariability.

Since theyswere concernedwith the detailedRT distributions,Wolfe et al. (2010) did not
report any*conventional overadtatisticaltestsof main effectsand interactions Therefore,for
this paper unequalN ANOVAs were performedusing theR ez package orthe meanvalues
provided byeachsubjectin eachcell of the designFor RT, the main effectsof Task Condition,
Trial Polarity, SetSize,andall two- andthreeway interactionswere significant ¢ < .05).For
ER, whoseoverallaveragevas2.4%, the Task Conditionmain effectwasnot significant jp > .1)
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but theTrial Polarity and Set Size main effects,and all two- andthreeway interactionswere
significant(p < .05).

2.3.Discussion

The RT resultsfollow the classicpatternobtainedin mostexperimentith this visual search
task wherethe slopgdeterminedoy regressioranalysis)is the keytheoreticaimeasureThe RT
functions for the CSF task are essentiallyflat for both positive and negativerials in CSF
(positivetrial regressiorslopeis about Ims/item) this prominent &ect with the color property
in a singlefeature searchtask is frequently describedas "pop out". Otherwise,positive and
negativetrial’RTs have asubstantiaklope,with the negativerial slope aboutwice that of the
positive trials. The color-orientationconjunctiontask COC hasa positivetrial slope of about 9
ms/itemand _theSHP positive trial task slopesare much greaterat 43 ms/item.The error rate
(ER) overalllis only 2.4%, which would justify the conventional approach of focusing the
theoretealanalysis only on theorrecttrial RT. However,notethat negativetrials havea fairly
constantlow_FalseAlarm error rate averaging 1.4%while positive trials producemore Miss
errorsassetsizeincreasesespeciallyfor the moreapparenthydifficult tasks.Overall, this pattern
rules out aspeedaccuracytradeoff effect in the RT data, but becausetheseER effects are
statistically reliable in spite of the small humber of subjects anthrge betweersubject

variability, a good theory wouldttemptto explain thenin additionto the RT effects.
3. An EPIC modelfor visual £archRT andER

3.1. Summaryof theEPIC cognitive achitecture

The EPICarchitecturgor human cognition angerformanceprovides ageneralcomputational
frameworkfer’simulating a humaninteractingwith an environmentto accomplisha task. The
original modeling domairwas skilled performancen multitasking; the EPIC acronymreflects
how Executive Processesexert Interactive Control over perceptualand mota systemsto
coordinateperformance.Meyer & Kieras(1997) orKieras(2016) providadetaileddescriptiors;

the following summarizeghe components dhe architecturerelevantto the modelpresented
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here.

EPIC is especiallysuitable for computationalsimulation modelingin humanperformance
domainsbecauset treatsboth perceptuabnd motomprocessesasfirst-classcomponents and has
a minimal set of cognitive mechanismsfor executingtask strategy instead of traditional
mechanismsdating from pre-compuational cognitive theory. ThusEPIC has components
which the visual perceptual ocular and manual motor, anstrategyaspectsof the modelare
explicitly representedThe visual perceptualcomponentapturesthe concept of thé=VF. The
oculomotor‘componentepresentshe mechanismghat generatesaccadesvith realistic timing
and variahility. The strategycomponentconsistsof productionrules applied by the cognitive
processorthatrdecidewhere to move the eyesand when to respondtargetpresentor target
absentA manual motor componengpresentshetime for the manuatesponse.

Of specialinterestin the presentwork, EPIC does not incorporate @vertselectiveattention
mechanismlIhatis, while historically attentionis clearlyassociatedavith overt behaviorsuchas
eye movementshe conceptof covertattentiongenerallyimplies somekind of top-downdirect
internal contrel of perception by cognitiorRather,in EPIC, a strategy usesthe available
perceptualinformation to decide whether a responsan be made or if more information is
needed, ‘andf so, what object should bdixated to collect that information. In terms of the
traditionaldlanguage ofttention,covertattentionis an early selectionmechaimsm, while EPIC
has avery late selectionapproacho attention.Thus,if a model builin EPIC can accountfor
visual searchphenomenat would show that the coveattentionconceptthat has dominated the
visualsearckHfield is notin factnecessary.

In the ERIC-architecture visual objectsandtheir propertiesare formed early in vision (see
Scholl, 2001).The eyeprocessorcomponent containacuity functionsthat specifywhethereach
visual property oeachobjectis currentlyavailableasa function ofthe size of theobjectandits
eccentricityfrom the currenteye position.The currently available visual propertiesfor each
objectarerepresentedh the sensorystore the perceptualprocessorthen encodes the properties
of eachobjeet; possiblyn relationto otherobjects,andpasseshe encodedepresentatiommn to
the perceptualstorewherethey areavailableto the cognitiveprocessorto matchthe conditions
of production rules which representthe cognitive strategy for performing thetask. The
perceptuaktorecontains theurrentrepresentatiof the visuaworld that cognitioncanreason
andmakedecisions about, including decisions abebereto move theeyesby commanding the
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ocular motorprocessor

Whenthe eyesmoveawayfrom an object,the propertiesof the objecipersistfor a shorttime
(e.g. 200ms) in the sensorgtore,and a longime (e.g. 4s)in the perceptuaktore.But if the
object disappearsompletely,it andall of its propertieswill be removedrom the perceptual
storefairly quickly. Thustherepresentatiopersistsor a considerabléme aslong asthescene
is presentthis is supported by studiesimmarizedy Henderson &astelhand2005);memory
for previouslyfixated objectswas assesseth naturalvisual scenesand retentiontimes of at
leastseveralsecondsvere observedThetaskstrategyusesthis retainedinformationto avoidre-
fixating analreadyexaminedbject(seeKieras,2011).

EPIC modelsfor other visualsearchtasksare presentedn Kieras (2011, 201§ Kieras &
Hornof (2014)yandieras & Marshall (2006). Constructing the modelr a specificsearchtask
requires a choice operceptualmechanismsand parametersmotor parametersand atask

strategy.Thesearedescribedn the followingsectiors.

3.2.Visual resolution

The many decadef researchon vision providessomeuseful psychophysicaksultson the
detectabilityof different perceptual propertiesf an objectasa function of thesccentricity(the
distancein degreesof visual anglefrom the centerof gaze)of the object, andthe size of the
object(alsomeasuredn degrees of visual anglej; the eccentricityis increasedthe size of the
object must be increasedto be equally discriminable; the effect is known as cortical
magnification.(e,qg,, Virsu & Rovamo, 1979 Different propertiesdiffer in detecability in
peripheral vision; forexample,in peripheral vision, color is very detectable(Gordon &
Abramov, 297Y; butletterscanberecognizednly if theyareverylarge(Anstis,1974. Findlay
and Gilehrist(2003) provide a useful overview oftheseresults However,the psychophysical
literaturedoesnot contain a comprehensive dntly parametricsetof measurementthat could
just be “plugged into” a modeso therelevantparametersnustbe estimatedo fit the modeled
data.

In thepresentmodel, the visugbrocessorcontains aseparatacuity functionfor eachproperty
of color, orientationandshapean which a Gaussiardetection function gives the probabilityat
the propertywill bedetectedbeavailable)for anobjectwith sizes at eccentricitye:

P(detection) =P(s> N(u, 0)); 1 = a + be,o = a constant
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The valueu canbeinterpretedasthe 50%threshodl for objectsize its valueincreasedinearly
with eccentricity providing asimple form of the cortical magnificationeffect The value ofo
governs thesteepnessf the ogivaldetectionfunction.

The colar propertyis usedin both theCSFand COC taks andwas constrainedo have the
sameparameteraluesin thesetasks;orientationwasusedonly in COC, and shape onlyn SHP.
Theatermwasheldat 0.0,b wasestimatecas0.11for color, 0.20for orientation,and 0.425or
shape.é& was*held at 0.5. This correspond® observations thatolor is widely available,
orientationlessso, anddetailedshapeevenlessso. Note that theshapepropertyis treatedas a
unitary propertylike color ororientation,butit is muchlessavailablein peripheralvision. The
availabilitysofseachpropertyis independentlyesampledor all objects whenever theyesare

moved.Thetotaltime for a propertyto appeain theperceptuaktorewassetat 50 ms.

3.3. Rerceptuabtorageduration

As theeyesmove around, the availabpeopertiesof thesameobjectcanfluctuate,andsowill
not be reliably available from one fixation to the next.However, as describedabove, the
information onceacquiredwill remainfor sometime in the perceptualktore,forming a stable
visualrepresentationl he retentiontime parametewassetat 4s, thevalueusedin Kieras(2011)

for modeling.esearchtaskthat requiedindividual objecfixations.

3.4. Crowding Hects

Crowdingrefersto the phenomenoim which the perceptionof an objectin peripheral visions
impairedif thereare surrounding flanking) objectsthatare spaceclosely enough(for reviews,
seelLevi, 2008;Pelli & Tillman, 2008; Rosenholtz, 2016)he critical spacingbetweenobjects
at which_crowding effects appear depends on tleecentricity in fact, the critical spacingis
roughly eenstaniat about0.5 eccentricity(first reported byBouma,1970), butthe magnitude of
the disruptionvarieswith the specificfeatures involved and howgimilar they are.For example,
lettershapesregreatlydisrupted by crowdingyhereasobjectcolorsmuchlessso.

As mentioned above, a commonly overlookeslein typical visualsearchexperimentss that
the objectarerandomly dstributedin afixed area sosetsizeis confoundedvith average object
spacing.While rarely testeddirectly, when spacingis manipulated independently skt size
crowding appeardo be themostimportantfactor in determiningRT (e.g., Wertheim, Hooge,

Krikke, & Johnson, 2006).In Monte-Carlo simulations using th&Volfe et al. (2010) displays,
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assumingthat the eye fixates each object, the probability that a given néirated objectis
crowded byat least one flanking objectincreaseswith set size from 0.16 to 0.74. Thus,
crowdingeffectscouldwell play arole in this dataset.

Theliteratureon crowdingeffectsis extensive, but theffectsandmechanismsemainunclear.
There is a_consensushat the visual systemattemptsto form visual objects byintegrating
informationover aretinal areathe size of which increasesvith eccentricity.If more than one
physical' object occupies a singlachintegrationfield, theintegrationprocesswill be disrupted
in someway. But if the point of fixation is closer,the smallersize of the integrationfields will
allow thesamevisual objectgo becorrectlyformed. The problemis that theempiricalwork has
not clarified, evenin simplesituations,the basicrulesfor the integrationprocessandthe nature
of crowding" disruption. Resultsusing a common psychophysicaprocedure suggestthat the
crowding disrupts the detection discriminationof properties of therowdedobject.

But a popular hypothesis that the existenceof the crowdedobjectis still detectedandits
basicperceptuafeaturesalsoare still detectedput the disruptedintegrationprocessassociates
thosefeatureswith the wrong objectsuchasa flanking object, and viceersa— thefeaturesare
essentiallyscrambledbetweenthe objectsthat crowd each other. Strong evidencéor this
hypothesisis_spase (e.g, Pdder & Wagemans, 2007jowever, more than other possible
mechanismsthe featurescramblingconcept has vermnterestingimplicationsfor errorsin visual
searchand therole played by thestrategyin mitigating theseerrors, and so was chosento
explorein this work.

Accordingly;sa simple architectural mechanismfor crowding was added to the visual
perceptualprecessorto randomly scramblethe propertiedetweenobjects thatare within the
critical spacingof eachother;an unavailable propertis represente@sa "blank” propertyand
participatesin this scrambling.As noted above, Shaps treatedas a unitary property. The
scramblingprocessis appliedwhen the display appearsand after every eye movementlf an
object has_no.crowders, antl af its propertiesare available,thesepropertiesthen become
"sticky" in_the'visual perceptuaktoreandare not scrambledn the future.To parameterizehe
magnitude“of, the crowdingffect, scrambling for each property type andeach object is
performed with a certain scrambling probability The estimatedvalues for the scrambling
probability parameterare 0.025for Color andOrientation,consistentwith the dissimilarity of

theirtwo values,and 0.Ifor Shapewhich hastwo highly similar values
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As the scramblingmechanismis appliedrepeatedlywhen the eyesmove during atrial, an
unavailable property might ge¢placedby someotherobject’s property, meaning that target
object might get a notargetproperty, becomingn illusory distractor, or a nontargetobject
might get_ atarget property (if it was available) and thus becomean illusory target The
likelihood of.theseeventsdependon what featuresare on the displayin positiveand negative
trials, and whethemorethan onegpropertyhasto be co-locatedto compriseatarget.This means
that crowdingeffectsplay adifferentrole in thedifferentsearchtaskconditions andtrategiesas

discussedelow:

3.5.Saccaddiming and @&curacy

The timein ms to executea saccadeof lengthe in degreess providedby Carpenter's1988)
estimateas:
saccade"duration = 21 + 2.2e
A variety of studiege.g, Abrams,Meyer, & Kornblum, 1989) havehownthatsaccadesend
to fall short of theactualfixation target,and thestandarddeviationof thesaccadelistancetends
to be proportionako the distance.Iln the architecture,the oculomotomprocessorsamplesthe
length of asaccade¢o an objectat eccentricitye from a Gaussiardistribution:
saccaddength= N(u, 0)); u = g-€,0 = Su
Typical empiricd valuesfor g (gain) rangefrom 0.85-0.95, and (spread)is typically around
10%. In the currentmodel,the parametersvere held constanéat the values suggested Wyarris
(1995) as optimal, namelyg=0.95,s=10%. In addition, the anguladirection of the saccadas
alsonoisy, but dueo the very few availablestudies (e.g., va@pstal& van Gisbergen1989) a
roughestimatewasused:the angleof the saccades perturbedoy asamplefrom N(0, 5a), where
oa = 1°FTFhudargeeye movement®ftenmissthe ofectto be fixated, reducing thehanceghat

its propertieswill beaccuratelydetected.

3.6. Taskdrateges

EPIC's cognitive processor applies productiamiles in parallel in a 50 ms cycle. The
productionrulesin the modelare a variation of a basicstrategyusedin previousEPIC visual
searchmodels;this Basic searchstrategyis shownas pseudocodén Fig. 4. Oncethe display
objects appear on tteereenafter a delaytime held constantat 100 ms, the strategyproduction

rules alternate betweena nomination phase,in which rules nominate objects (possiblyn

This article is protected by copyright. All rights reserved



Kieras 13

peripheral vision}hat are either the targetor are possible target®ecausea relevant property
eithermatchesor is unknown, and ahoicephasejn which anactionis chosenlf atargetobject
hasbeennominated, dargetpresentresponses madevia a manuamotor processoikeystroke
command.f thereare no nominations, then argetabsentresponsdas made.But if thereare
only possibletargetnominationsthe eyesare movedto the closestsuch object. Oncethe eye
movemenis complete the nomination phassartsagain. Thus, oveime, informationabout the
objectsaccumulatesintil eitherthetargetobjectbecomesknown, orthe known properties adll
objects show"that none of them could be tdrget. The main determinant oRT is how many

eye movementaremadein this process.

In generalthechoice ofstrategyhas dargeeffecton whether the modehnfit thedata,and a
satisfactoryfit.can only be obtained byhoosing a combination gparametervalues and a
strategy.Thesedatarequireda different strategyfor eachtaskcondition,whichis plausiblesince
the subjectswere extremelywell practicedin a single task, and thus had an opportunity to
optimizetheir performanceln this section, thalifferentstrategiesiecessaryo fit eachcondition
are describedand then the overall goodnessfibfis presentedn Fig. 1 and 2andthe Model
Resultssectionbelow.

Using the'parametervalueslisted above, theBasic strategyprovided a goodit to the SHP
conditiondatg but not the othertwo conditions -therewere no parametewaluesthat allowed
this strategyto fit theseRT andER datasatisfactorily Iterative testingof competingstrategies
revealedhattwo addtional strategiesvereneededo fit the othertaskconditions.

The CSFconditionRTs canbefit pretty well by the Basicstrategysincethe highavailability
of the color, propertyneansthat extremelyfew eye movementarerequiredevenat the largest
set size butthis did not accountfor why Miss errorswere more frequent tharfFalseAlarms.
Furthertestingshowedhata goodfit for bothRT andER wasprovided by thextremelysimple
FixedEye strategyshownin Fig. 5. No eye movementare done;instea thetargetpresentor

targetabsentesponsés choseraftera single nominatiophase.

Exploration ofdifferent strategiesshowed that th€OC conjunction conditiorrequiresthe
somewhatomplexTimeOut & ConfirmPresentstrategyshownin Fig. 6. Thefirst optionin the
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choice phasas to immediately respond abserif more than acertain number of fixations,
estimatedat 3, havealready beenmade.Also, if a target has been nominated,rather than
immediately responding, theeye is movedto that object, andf it indeed has the target
propertiesthen the responsdf made;if not, thestrategygoesto the nominationphaseagain.
Whatis noteworthy abouthis strategyis thatit dealswith possibleerrorsdueto illusory targets,
explainedmorebelow.

The nemination andchoicerulesin the CSF and SHP taskssimply test for a single object
property.Forexample,n the CSF condition,an objectis nominatedasthe targetif it has ared
color, oras a possibletargetif it hasan unknown color.n contrast,for COC, thereare three
possibletargetnominations, and thstrategychoosesoneto fixate in the following descending
priority order:iRed color and unknown orientation, unknown color arettical orientation,

unknown color ‘and unknown orientation.

3.7.How thetmodemakesarors

Errorshavetwo sources under th&rategiesusedin the modelFirstis a conventional idean
humanperformanceaesearchthat a certainnumber oferrorsstemfrom simple slip or "oops"
errorsagresponse executiorior example the subjecintendsto respondtargetabsent,but at
random happen® hit the targetpresentouttoninsteadIn the model,whenthe strategycalls for
a responseihe.oppositeresponses madewith an "oops" error probability. Since the False
Alarm rate'in the Fig. 3 ER datais very low andfairly constantacrosstasksandsetsizes,the
"oops"errorprobabilitywassetat the averagd-alseAlarm rate of 1.4%for all conditions.

The secandsource oferrorsareillusory targetsandillusory distractorsproduced by crowding
scrambling Note how theMiss error rate in Fig. 3 increaseswith setsize and apparentask
difficulty. Clearlyif aTime-Out strategyterminateghetrial beforeall the perceptualnformation
is availableya*Miss error could result. However, another easonfor a Miss error is that the
strategyrule'thatdetectsheabsencef possibleargetsfires whenthetargetis in fact presenton
the display.This would happenif all of the relevant perceptualinformation appearsto be
availableand all of the oljects appearto be distractors.This will be exactly the situation if
crowdingscramblingturned theargetinto anillusory distractorandat the sametime, all of the

otherobjectsappeato bedistractors.
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Thus, theconsequencesf crowdingscramblingdepend orthe searchtaskand thestrategyfor
that task. In CSF, a targetpresentresponse should bmade if the target color is visible,
regardles®f which objectit is associatedvith, and thewide availability of color meansthat it
will rarelygo uncetectedln this case crowdingscramblingwill beessentiallyirrelevant,and the
EyesFixedstrategyshouldsufficefor both lowER and veryfastRTsindependentf setsize.

The SHPtaskis similar in thatif thetarget2 shapes detectedjt doesn'tmatterwhetherit is
the correctobject ornot. However,becausehe shape propertg not very available,the Basic
strategyis“requiredto move theeyespossiblymany times until a shapehasapparentlybeen
detectedar all of the objects,leadingto a longRT. Also, the similarity of the2 and5 patterns
meansthatscramblingwill happerfairly frequently.The resultis thatrelatively often the target
will becomeanillusory distractor,and a Miss error will be madebeforeall of the objects have
beenfixated.

The CSF and SHP tasks and their strategieshave an important propertyin common.In a
negativetrial, the targetperceptual propertyvill not beavailableon the display, so crowding
scramblingwillsnever producean illusory target,and thestratey will never concludehat the
targetis presentwhenit is not. Sg, the FalseAlarm error rate in theseconditionsis just the
"oops"errofrate.

In contrastfor the COCtask,atargetis bothred andvertical, but someother objects have the
red target color, andsome other objectshave the vertical target orientation, so crowding
scramblinghas many opportunitiesto createillusory targetsevenon a negativerial, causing
potentiallymanyFalseAlarm errors To preventhis, thestrategyhasto confirm thatanapparent
targetis amsactual target by fixating it before responding —this is a fundamentaktrategic
property of theCOCtaskcomparedo the CSFandSHPtasks.Subjectscanlearnfrom practice
in COC that acceptableER and reasonablyast RTs can be achievedwith only afew eye

movementsIheresultis that theTime-Out & Confirm-Presenstrategyprovides a goofit.

3.8. Model esults

The parametewvaluesand choice obtrategiesdescribedabovewere determinedby informal
iterativefitting, with the model being run #otal of 100,000trials in eachtask x polarity x set
size condition. Fig. 2 and 3 show theredictedand observed®RT and ER values,with the

observedshownassolid linesand points, angredictedasdashedinesand open point®verall
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threesearchtask conditions, thdit for RT is very goodwith r’=0.98,averageabsoluterelative
error of 6%. Thefit for ER is goodin termsof r?=0.95, butthe averageabsoluterelativeerroris

21% even though almost all of the predicted points fall within the confidencentervals.In

addition to. the fit not being quiteas good as for RT, the combination of th&R databeing
relatively noisy. and havingsmall absolute magnitudesould have inflated the relative error
metric. But.on the what, the model provides a good account of ¢fffectsof setsizeandsearch
taskin boththeRT andER data.

Individual'differences.Someof the discrepanciesn the fits can be explainedby individual
differencesin strategyselectionandparametewralues,which dueto spacelimitations, canonly
be summarizedhere. In eachtask condition, there are about three subgroups of individual
subjectswhichcanbeidentifiedwith asimpleclusteranalysisbasedon RT andER metrics The
meanperformance oomeof thesesubgroups has markeddjfferent patternsof RT and ER
effectscomparedo the overallmeansfor that conditionshownin Fig. 2 and 3For example,in
the SHP condition, ahird of thesubjectshaveRT curvesthatarestrongly negativelyccelerated
with setsizeand very higlERs(asmuchas23%)atthelargestsetsizes.As anotherexamplejn
the COCtask,one subgroup hageepeRT slopesthan themeandata,and another subgroup has
much flatter, RT slopes than thenean data. These perfomance differencesimply both
parametrieand strategydifferencesbetweenindividual subjects meaningthatfitting a modelto
the overallaveragedatais problematicboth in the quality of the fit and whether that model
representsvhat those subjectactudly do. The modetlescribedn this papercan befit to the
meanRT andER for eachsubgroupin a straightforwardway by choosing one ahe strategies
describedabeve and making modest modificationgpafametervalues.So the modelitself can
provide a'atisfactoryaccount of the overatheanperformance, andppeargo works well to

explainperformancettheindividuallevel.

4. Conclusions

The modelbuilt in the EPIC computationatognitivearchitecturgrovidesanaccurateaccount
of theRTrandER data using aurprisinglysimple combination ofarchitecturaicomponents and
task strategy,which togetherimplementan active vision approachto visual search.Notably,
thereis no needfor a covertselectiveattentionmechanismas proposedn the dominant theory,

to successfullyaccountfor the effects; basic perceptualmechanisms.eye movements,and
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strateges that meet the task demandsare all that is required. The addition of a crowding
mechanisnto thevisualprocessonot only provides a novel approathaccountingor errorsin
visual search put alsomotivatesa more thoroughaccountof how thestrategyis affectedby the
task characteristics.In particular, as originally proposed byTriesman and Gelade (1980)
conjunctivesearchis indeeddifferent from singlefeature search,but rather than attentional
binding and_aspecial “pop out” mechanismthe differenceis due to how visual crowding
produces ambiguities in the perceived objects thatrequire a different strategy for eye
movements:These results demonstratethat the covert attention theory can be replacedby
guantitative computational models whaseshitecturalstructurecan take advantage of vision
sciencemuehmerethoroughly, and whose expligiépresentationf taskstrategyprovidesmuch
more articulatedand rigorous explanations dbw fundamentalmechanismsare deployedin
thesetasks.

The presenceof individual differencesin task strategiesshown bysubstantiaddifferencesin
the patternsof RT andER, wasbriefly summarizecabove .Most researcherassumehatample
amounts opracticewill resultin stableperformancéecauseubjectseekto optimizetheirtime
andaccuraceyln'this case theywere given accuracyfeedback.andsurely the tedious nature of
the experiment encouraged theamrespond quicklyBut theywerenot incentivizedo tradetime
andaccuracyin any particularway, so eachsubjectpickedtheir own tradeoffand astrategyto
meetit. This canproducdargevariability in what shouldtheoreticallybe a fundamental process,
as can be'seenin the individualsearchtime slopesreportedin Wolfe et al. (1989), andthe
clustersof subjectsliscussedbove.n contrast imposingan explicit payoff functioncaninduce
moreefficientstrategiesvhich showmore consistenpatternsof performancevenin seemingly
simple perceptuakasks,as powerfully demonstratedy ThompsonJyer, Simpson,Wakefield,
Kieras, & Brungart (2015)Certainly, future visualsearchstudies should usthis techniqueto
remove extraneousariability in performance andhereby facilitate modeling andtheory
building.

But in themeantimejdentifying subgroups afubjectan existingdatais a promising approach
to dealingwith,individual differences Normally, modeling individualdifferencesis impractical
becausehe datawill oftenbe too noisy, anfitting a modelto eachone ofmanydatasetss very
labor-intensive The clusteringapproachrsummarizedabove combines individuaubjectsinto a
smallnumberof subgroupsvith statisticallyreliable properties, ando makesit practicalto both
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describeand model the individualifferencesmore effectively. Futurework could explorethis
approacHurther.

Finally, the proposedsimple featurescrambling mechanismof crowding is especially
interesting becauseof its strong implications for the sourcesof errors and effective task
strategies as.mentioned aboveother mechanismsare possible, andcould be explored by
constructing_othesimple models,which in turn would suggestruitful empirical manipulations.
In this way,"more cognitive modelingivork on visualtaskscould help guide futurempirical

work to marequickly arriveat a comprehensivenderstandingf thevisual system.
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FigureFile Namesand Captions

KierasFigl.eps

Fig. 1. Samplesearchdisplaysproducedby the model using the information Wolfe et al.

(2010). Thestasks conditions, left-to-right, are color single feature (CSF), color-orientation
conjunction (COC), and shapgSHP). The concentricgray circles show thesimulated eye
positionat the initial fixation location;for scale,the innercircle has adiameterof 1°; the outer

circleis 10°.
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KierasFig2.eps
Fig. 2. Observedsolid points andines) andpredicted(openpoints and dottetines) for correct
trial RT in, eachtask condition. CSF: circles, COC: triangles,SHP: squares Positive (target

present)rialsired; negativetargetabsent}rials: black.

KierasFig3.eps
Fig. 3. Observedsolid points andines) andpredicted(open points and dottduhes) proportion
of errors (error rate, ER) in eachtask condition. CSF: circles, COC: triangles,SHP: squares.

Positivetrials (Miss errors):red; negativerials: (FalseAlarm errors)black.
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