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Abstract 

A key phenomenon in visual search experiments is the linear relation of RT to the number of 

objects to be searched (set size). The dominant theory of visual search claims that this is a 

result of covert selective attention operating sequentially to "bind" visual features into 

objects, and this mechanism operates differently depending on the nature of the search task 

and the visual features involved, causing the slope of the RT as a function of set size to range 

from zero to large values. However, a cognitive architectural model presented here shows 

these effects on RT in three different search task conditions can be easily obtained from basic 

visual mechanisms, eye movements, and simple task strategies. No selective attention 

mechanism is needed. In addition, there are little-explored effects of visual crowding which 

is typically confounded with set size in visual search experiments. Including a simple 

mechanism for crowding in the model also allows it to account for significant effects on error 

rate (ER). The resulting model shows the interaction between visual mechanisms and task 

strategy, and thus represents a more comprehensive and fruitful  approach to visual search 

than the dominant theory. 
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1. Introduction 

Visual search, the process of finding a desired object in a visual scene, is a common real-life 

task, and understanding it better is important for improved design of systems such as computer 

displays. For the decades, an especially simple visual search task has been the focus of 

considerable empirical and theoretical work, starting with the seminal work of Triesman & 

Gelade (1980), which was extended by Wolfe and his coworkers, starting with Wolfe, Cave, & 

Franzel (1989). In this task, subjects view a display containing several objects, and decide 

whether a specified target object is present or not, and make a corresponding keystroke response. 

The main independent variable is the number of objects on the display (set size), and the main 

dependent variable is the reaction time (RT), the time to make the response. Normally the target 

is present half the time (positive trials), and absent the other half (negative trials). Additional 

independent variables are the visual properties specified for the target and distractors, and the 

logical form of the target specification. For example, the target might be a single red bar among 

green bars, or the target might be a conjunctive combination of two features, such as a blue X 

shape among red X and blue O shapes. 

The key result in these experiments (see reviews by Wolfe, 2014; Hulleman & Olivers, 2017) 

is a roughly linear increase in RT with set size, with negative trials producing a slope about twice 

as steep as positive trials. This pattern suggests a classical serial self-terminating process in 

which each object is examined sequentially, and the search terminated as soon as the target is 

found. Depending on the task conditions, positive trial slopes range from essentially zero (e.g. 

the target is a single red bar among green bars) to about 50 ms/item or more (e.g. a specific 

detailed shape among similar detailed shapes). Error rate (ER) is generally fairly low, and so is 

often ignored, but usually increases with set size and apparent task difficulty. 

1.1. Covert attention theory of visual search  

An obvious explanation for the linear RT effects is that subjects move the eyes to each item 

sequentially to perform the search. However, the typical slopes observed are much faster than 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Kieras   

This article is protected by copyright. All rights reserved 

3 

eye movements would allow. This discrepancy underlies the basic theoretical claim originally 

made, and still dominant in this literature, that the sequential search is done not by overtly 

moving the eyes, but instead by covertly moving selective attention from one object 

representation to another. This covert selective attention theory of visual search has its roots in 

Neisser’s (1967) assertion, based on extremely early computer vision concepts, that "focal 

attention" is necessary to bind together primitive features into a visual object; this attention-

based "binding" operation was advanced in Triesman & Gelade (1980) as an explanation for why 

conjunctive searches had much steeper slopes than single-feature searches. Wolfe, Cave, and 

Franzel (1989) tried many different visual features and search specifications and discovered that 

conjunctive searches could have small slopes similar to some single-feature searches. They 

proposed the first version of the Guided Search theory which still involved covert attention 

allocation as its fundamental mechanism.  

However, the covert attention theory is seriously flawed, as eloquently pointed out by Findlay 

and Gilchrist (2003). Visual search theorists and experimenters have generally ignored the role 

of powerful purely visual factors, such as how visual resolution decreases from the fovea 

towards the periphery, but objects can still be recognized in peripheral vision if  they are large 

enough (e.g. Anstis, 1974; see review in Rosenholtz, 2016). Another visual factor is crowding 

effects, in which objects in peripheral vision become harder to perceive if  other objects are 

nearby (for reviews, see Levi, 2008; Pelli & Tillman, 2008). This effect could be important in 

visual search tasks because usually the objects are displayed in a fixed area, so as the set size is 

increased, the objects tend to be closer together; but this confounding has usually been ignored in 

visual search experiments. Finally, both of these factors are the basic reason why eye movements 

are necessary in visual tasks — moving the eyes to the object of interest improves the resolution 

and eliminates crowding effects, yielding accurate perception of the object. But in fact there is 

little or no mention of either visual factors nor eye movements in Neisser’s (1967) original 

treatment of focal attention, nor in the subsequent mainstream of visual search work pioneered 

by Treisman and Wolfe, even though several studies demonstrated their relevance (e.g., Zelinsky 

& Sheinberg, 1995; Carrasco & Frieder, 1996; Wertheim, Hooge, Krikke, & Johnson,  2006). It 

has even been claimed that the RT effects are the same regardless of whether or not eye 

movements are made, but this claim is problematic (c.f., Carrasco, McLean, Katz, & Frieder, 

1998). Thus the dominant theory of visual search ignores known visual factors and eye 
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movements, and instead insists that the key mechanism in visual search is the allocation of covert 

attention.  

1.2. Active vision alternative 

Findlay & Gilchrist (2003) proposed an active vision approach to visual search in which 

information from peripheral vision is used to guide eye movements that bring the high-resolution 

portion of the retina to bear on relevant parts of the scene. Furthermore, for many visual 

properties and displays, more than one object can be perceived in a single fixation, which is the 

long-standing concept of the area of conspicuity (Engel, 1977) or functional viewing field (FVF, 

see review in Hulleman & Olivers, 2017). The claim that the RT ms/item slopes are too fast for 

eye movements clearly fails if  it is possible for more than one object to be processed at a time; 

the notion that individual objects would have to be foveated is simply incorrect.  Accordingly, 

Hulleman and Olivers (2017) proposed that the ms/item characterization of visual search was a 

fundamental mistake, because the number of fixations, not the number of display items, accounts 

for visual search RT, and presented a simple process model based on the FVF that accounted for 

RT effects. This paper goes further and presents an active vision model using the EPIC cognitive 

architecture (Meyer & Kieras, 1997; Kieras, 2016), which has no conventional selective attention 

mechanism and is especially suitable for modeling perceptual-motor tasks that are controlled by 

cognitive strategies.  This model demonstrates that visual factors and eye movements, together 

with simple cognitive task strategies, are sufficient to account for both RT and error effects in 

visual search tasks without any mechanism of covert selective attention.  

1.3. Overview 

This paper next presents the methodology and data analysis of a very high-quality visual search 

data set on performance in three classic visual search tasks, made available by Wolfe, Palmer, & 

Horowitz (2010). Next comes an active vision model of these results based on the EPIC 

cognitive architecture. This model is then compared in detail to the Wolfe et al. (2010) data for 

both RT and error rate (ER).  

2. The Visual Search Experiment 

Rather than spend time and resources collecting new data to test the active vision model, it is 

more useful to test it with previous data of the type used to support the original theories. Many 
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variations on the simple visual search task have been studied, and some classic examples were 

reported in Wolfe et al. (1989) in support of their Guided Search theory. Subsequently, 

additional data in these tasks were reported by Wolfe, Palmer, and Horowitz (2010) to support a 

theoretical analysis based on the details of the RT distributions for individual subjects. They 

made the data publicly available for download at 

http://search.bwh.harvard.edu/new/data_set_files.html. This dataset was ideal for the present 

modeling work because it was collected by arguably the most experienced visual search 

laboratory, had well-specified stimuli and task conditions suitable for replication in a model, and 

a relatively large number of very well-practiced subjects, which means that the mean data would 

be reasonably reliable and individual subject strategies were likely to be stable, making the 

results especially suitable for modeling. For completeness and clarity, their experimental method 

is re-stated here, but with additional details on how the experiment was simulated in the EPIC 

model based on the details in Wolfe et al. (2010). 

2.1. Method 

Tasks. Wolfe et al. (2010) used three different present/absent search tasks; Fig. 1 shows a sample 

target-present display produced by the EPIC software for each task condition. In this paper, the 

three conditions are referred to as Color Single Feature (CSF), Color-Orientation Conjunction 

(COC), and Shape (SHP). The CSF target was a red vertical bar among green vertical distractors. 

The COC target was a red vertical bar among distractors that were red horizontal bars or green 

vertical bars. The SHP target was a "digital 2" shape among "digital 5" shapes.  

-------------------------------- Insert Fig. 1 about here ---------------------------- 

Stimuli. The Wolfe et al. (2010) download data set includes each individual trial but does not 

contain the actual display configuration used in each trial, so for purposes of modeling, the 

display had to be generated for each simulated trial using their display parameters. The search 

display was an area 22.5° × 22.5°, treated as containing 25 invisible cells of 5° × 5°. In the CSF 

task, the objects were 1° × 3.5° vertical bars; in the COC task, the objects were 1° × 3.5° bars, 

oriented either horizontally or vertically. In the SHP task, the objects were 1.5° × 2.7° character-

like shapes. Each object appeared in a random location within one of the cells, constrained in the 

model to keep the horizontal or vertical edge of an object at least 0.25° away from the cell 
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boundary, ensuring a minimum separation of 0.5° between adjacent objects. Set sizes were 3, 6, 

12, and 18. To generate the display for each trial, the set size number of distractors were first 

placed in randomly chosen display cells; if  the trial was positive (target present), a randomly 

chosen distractor was replaced with a target object.  

Design. The Wolfe et al. (2010) experiment had 10 subjects in the COC task condition and 9 in 

each of the other two. One subject was in both COC and SHP, but the data set does not identify 

this subject, so the task condition was treated as a purely between-subject manipulation in this 

paper. The set size and polarity were chosen at random for each trial. There were about 500 trials 

per subject for each combination of set size and positive/negative trial polarity.   

Procedure. Each trial began with a centered fixation cross. Subjects were instructed to “keep 

their eyes focused on this cross” but eye movements were not monitored. The search display was 

presented and remained visible until the subject pressed a key for target-present or target-absent. 

Subjects were instructed to respond as "quickly and accurately as possible." Correct/incorrect 

feedback was presented for 500 ms after each trial.  

2.2. Results 

The downloaded data consisted of the RT and correct/incorrect status for each subject in each 

trial at each set size and trial polarity. Following common practice in RT experiments, the data 

were reduced as follows: For each task condition, for each subject, the mean RT for correct trials 

and the proportion of errors for that subject was calculated for positive and negative trials at each 

set size, giving a total of 8 data points for each subject for their RT and error rate (ER). These 

subject means were then averaged to produce the observed data points plotted in Fig. 2 and 3. 

The 95% confidence intervals around each data point are based the standard error of that mean 

using the underlying 9 or 10 individual subject means, thus reflecting between-subject 

variability, but not within-subject variability.  

Since they were concerned with the detailed RT distributions, Wolfe et al. (2010) did not 

report any conventional overall statistical tests of main effects and interactions. Therefore, for 

this paper, unequal-N ANOVAs were performed using the R ez package on the mean values 

provided by each subject in each cell of the design. For RT, the main effects of Task Condition, 

Trial Polarity, Set Size, and all two- and three-way interactions were significant (p < .05). For 

ER, whose overall average was 2.4%, the Task Condition main effect was not significant (p > .1) 
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but the Trial Polarity and Set Size main effects, and all two- and three-way interactions were 

significant (p < .05).  

-------------------------------- Insert Fig. 2 about here ---------------------------- 

-------------------------------- Insert Fig. 3 about here ---------------------------- 

2.3. Discussion 

The RT results follow the classic pattern obtained in most experiments with this visual search 

task, where the slope (determined by regression analysis) is the key theoretical measure. The RT 

functions for the CSF task are essentially flat for both positive and negative trials in CSF 

(positive trial regression slope is about 1 ms/item); this prominent effect with the color property 

in a single-feature search task is frequently described as "pop out". Otherwise, positive and 

negative trial RTs have a substantial slope, with the negative trial slope about twice that of the 

positive trials. The color-orientation conjunction task COC has a positive trial slope of about 9 

ms/item and the SHP positive trial task slopes are much greater at 43 ms/item. The error rate 

(ER) overall is only 2.4%, which would justify the conventional approach of focusing the 

theoretical analysis only on the correct trial RT. However, note that negative trials have a fairly 

constant low False Alarm error rate averaging 1.4%, while positive trials produce more Miss 

errors as set size increases, especially for the more apparently difficult tasks. Overall, this pattern 

rules out a speed-accuracy tradeoff effect in the RT data, but because these ER effects are 

statistically reliable in spite of the small number of subjects and large between-subject 

variability, a good theory would attempt to explain them in addition to the RT effects.  

3. An EPIC model for visual search RT and ER 

3.1. Summary of the EPIC cognitive architecture 

The EPIC architecture for human cognition and performance provides a general computational 

framework for simulating a human interacting with an environment to accomplish a task. The 

original modeling domain was skilled performance in multitasking; the EPIC acronym reflects 

how Executive Processes exert Interactive Control over perceptual and motor systems to 

coordinate performance.  Meyer & Kieras (1997) or Kieras (2016) provide detailed descriptions; 

the following summarizes the components of the architecture relevant to the model presented 
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here.  

EPIC is especially suitable for computational simulation modeling in human-performance 

domains because it treats both perceptual and motor processes as first-class components and has 

a minimal set of cognitive mechanisms for executing task strategy instead of traditional 

mechanisms dating from pre-computational cognitive theory. Thus, EPIC has components in 

which the visual perceptual, ocular and manual motor, and strategy aspects of the model are 

explicitly represented. The visual perceptual component captures the concept of the FVF. The 

oculomotor component represents the mechanisms that generate saccades with realistic timing 

and variability. The strategy component consists of production rules applied by the cognitive 

processor that decide where to move the eyes and when to respond target-present or target-

absent. A manual motor component represents the time for the manual response.  

Of special interest in the present work, EPIC does not incorporate a covert selective attention 

mechanism. That is, while historically attention is clearly associated with overt behaviors such as 

eye movements, the concept of covert attention generally implies some kind of top-down direct 

internal control of perception by cognition. Rather, in EPIC, a strategy uses the available 

perceptual information to decide whether a response can be made or if  more information is 

needed, and if  so, what object should be fixated to collect that information. In terms of the 

traditional language of attention, covert attention is an early selection mechanism, while EPIC 

has a very late selection approach to attention. Thus, if  a model built in EPIC can account for 

visual search phenomena, it would show that the covert attention concept that has dominated the 

visual search field is not in fact necessary.  

In the EPIC architecture, visual objects and their properties are formed early in vision (see 

Scholl, 2001). The eye processor component contains acuity functions that specify whether each 

visual property of each object is currently available as a function of the size of the object and its 

eccentricity from the current eye position. The currently available visual properties for each 

object are represented in the sensory store; the perceptual processor then encodes the properties 

of each object, possibly in relation to other objects, and passes the encoded representation on to 

the perceptual store where they are available to the cognitive processor to match the conditions 

of production rules which represent the cognitive strategy for performing the task. The 

perceptual store contains the current representation of the visual world that cognition can reason 

and make decisions about, including decisions about where to move the eyes by commanding the 
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ocular motor processor.  

When the eyes move away from an object, the properties of the object persist for a short time 

(e.g. 200 ms) in the sensory store, and a long time (e.g. 4s) in the perceptual store. But if  the 

object disappears completely, it and all of its properties will  be removed from the perceptual 

store fairly  quickly. Thus the representation persists for a considerable time as long as the scene 

is present; this is supported by studies summarized by Henderson & Castelhano (2005); memory 

for previously fixated objects was assessed in natural visual scenes, and retention times of at 

least several seconds were observed. The task strategy uses this retained information to avoid re-

fixating an already examined object (see Kieras, 2011). 

EPIC models for other visual search tasks are presented in Kieras (2011, 2016), Kieras & 

Hornof (2014), and Kieras & Marshall (2006). Constructing the model for a specific search task 

requires a choice of perceptual mechanisms and parameters, motor parameters, and a task 

strategy. These are described in the following sections.  

3.2. Visual resolution 

The many decades of research on vision provides some useful psychophysical results on the 

detectability of different perceptual properties of an object as a function of the eccentricity (the 

distance in degrees of visual angle from the center of gaze) of the object, and the size of the 

object (also measured in degrees of visual angle); if  the eccentricity is increased, the size of the 

object must be increased to be equally discriminable; the effect is known as cortical 

magnification (e,g,, Virsu & Rovamo, 1979). Different properties differ in detectability in 

peripheral vision; for example, in peripheral vision, color is very detectable (Gordon & 

Abramov, 1977), but letters can be recognized only if  they are very large (Anstis, 1974).  Findlay 

and Gilchrist (2003) provide a useful overview of these results. However, the psychophysical 

literature does not contain a comprehensive and fully  parametric set of measurements that could 

just be “plugged into” a model, so the relevant parameters must be estimated to fit  the modeled 

data.  

In the present model, the visual processor contains a separate acuity function for each property 

of color, orientation, and shape in which a Gaussian detection function gives the probability that 

the property will  be detected (be available) for an object with size s at eccentricity e: 

P(detection) = P(s > N(μ, σ)); μ = a + be, σ = a constant 
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The value μ can be interpreted as the 50% threshold for object size; its value increases linearly 

with eccentricity, providing a simple form of the cortical magnification effect. The value of σ 

governs the steepness of the ogival detection function.   

The color property is used in both the CSF and COC tasks and was constrained to have the 

same parameter values in these tasks; orientation was used only in COC, and shape only in SHP. 

The a term was held at 0.0, b was estimated as 0.11 for color, 0.20 for orientation, and 0.425 for 

shape. σ was held at 0.5. This corresponds to observations that color is widely available, 

orientation less so, and detailed shape even less so. Note that the shape property is treated as a 

unitary property like color or orientation, but it is much less available in peripheral vision. The 

availability of each property is independently resampled for all objects whenever the eyes are 

moved. The total time for a property to appear in the perceptual store was set at 50 ms. 

3.3. Perceptual storage duration 

As the eyes move around, the available properties of the same object can fluctuate, and so will  

not be reliably available from one fixation to the next. However, as described above, the 

information once acquired will  remain for some time in the perceptual store, forming a stable 

visual representation. The retention time parameter was set at 4s, the value used in Kieras (2011) 

for modeling a search task that required individual object fixations.  

3.4. Crowding effects  

Crowding refers to the phenomenon in which the perception of an object in peripheral vision is 

impaired if  there are surrounding (flanking) objects that are spaced closely enough (for reviews, 

see Levi, 2008; Pelli & Tillman, 2008; Rosenholtz, 2016). The critical spacing between objects 

at which crowding effects appear depends on the eccentricity; in fact, the critical spacing is 

roughly constant at about 0.5·eccentricity (first reported by Bouma, 1970), but the magnitude of 

the disruption varies with the specific features involved and how similar they are. For example, 

letter shapes are greatly disrupted by crowding, whereas object colors much less so.  

As mentioned above, a commonly overlooked issue in typical visual search experiments is that 

the objects are randomly distributed in a fixed area, so set size is confounded with average object 

spacing. While rarely tested directly, when spacing is manipulated independently of set size, 

crowding appears to be the most important factor in determining RT (e.g., Wertheim, Hooge, 

Krikke, & Johnson,  2006). In Monte-Carlo simulations using the Wolfe et al. (2010) displays, 
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assuming that the eye fixates each object, the probability that a given non-fixated object is 

crowded by at least one flanking object increases with set size from 0.16 to 0.74.  Thus, 

crowding effects could well play a role in this data set. 

The literature on crowding effects is extensive, but the effects and mechanisms remain unclear. 

There is a consensus that the visual system attempts to form visual objects by integrating 

information over a retinal area the size of which increases with eccentricity. If  more than one 

physical object occupies a single such integration field, the integration process will  be disrupted 

in some way. But if  the point of fixation is closer, the smaller size of the integration fields will  

allow the same visual objects to be correctly formed. The problem is that the empirical work has 

not clarified, even in simple situations, the basic rules for the integration process and the nature 

of crowding disruption.  Results using a common psychophysical procedure suggest that the 

crowding disrupts the detection or discrimination of properties of the crowded object. 

But a popular hypothesis is that the existence of the crowded object is still detected, and its 

basic perceptual features also are still detected, but the disrupted integration process associates 

those features with the wrong object, such as a flanking object, and vice-versa — the features are 

essentially scrambled between the objects that crowd each other. Strong evidence for this 

hypothesis is sparse (e.g., Põder & Wagemans, 2007). However, more than other possible 

mechanisms, the feature scrambling concept has very interesting implications for errors in visual 

search and the role played by the strategy in mitigating these errors, and so was chosen to 

explore in this work. 

Accordingly, a simple architectural mechanism for crowding was added to the visual 

perceptual processor to randomly scramble the properties between objects that are within the 

critical spacing of each other; an unavailable property is represented as a "blank" property and 

participates in this scrambling. As noted above, Shape is treated as a unitary property. The 

scrambling process is applied when the display appears and after every eye movement. If  an 

object has no crowders, and all  of its properties are available, these properties then become 

"sticky" in the visual perceptual store and are not scrambled in the future. To parameterize the 

magnitude of the crowding effect, scrambling for each property type and each object is 

performed with a certain scrambling probability. The estimated values for the scrambling 

probability parameter are 0.025 for Color and Orientation, consistent with the dissimilarity of 

their two values, and 0.1 for Shape, which has two highly similar values. 
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As the scrambling mechanism is applied repeatedly when the eyes move during a trial, an 

unavailable property might get replaced by some other object’s property, meaning that a target 

object might get a non-target property, becoming an illusory distractor, or a non-target object 

might get a target property (if  it was available) and thus become an illusory target. The 

likelihood of these events depends on what features are on the display in positive and negative 

trials, and whether more than one property has to be co-located to comprise a target. This means 

that crowding effects play a different role in the different search task conditions and strategies, as 

discussed below. 

3.5. Saccade timing and accuracy 

The time in ms to execute a saccade of length e in degrees is provided by Carpenter's (1988) 

estimate as: 

saccade duration = 21 + 2.2e 

A variety of studies (e.g., Abrams, Meyer, & Kornblum, 1989) have shown that saccades tend 

to fall short of the actual fixation target, and the standard deviation of the saccade distance tends 

to be proportional to the distance. In the architecture, the oculomotor processor samples the 

length of a saccade to an object at eccentricity e from a Gaussian distribution:  

saccade length = N(μ, σ)); μ = g·e, σ = s∙μ 

Typical empirical values for g (gain) range from 0.85-0.95, and s (spread) is typically around 

10%. In the current model, the parameters were held constant at the values suggested by Harris 

(1995) as optimal, namely g=0.95, s=10%. In addition, the angular direction of the saccade is 

also noisy, but due to the very few available studies (e.g., van Opstal & van Gisbergen, 1989) a 

rough estimate was used: the angle of the saccade is perturbed by a sample from N(0, σA), where 

σA

3.6. Task strategies 

 = 1°. Thus large eye movements often miss the object to be fixated, reducing the chances that 

its properties will  be accurately detected. 

EPIC's cognitive processor applies production rules in parallel in a 50 ms cycle. The 

production rules in the model are a variation of a basic strategy used in previous EPIC visual 

search models; this Basic search strategy is shown as pseudocode in Fig. 4. Once the display 

objects appear on the screen, after a delay time held constant at 100 ms, the strategy production 

rules alternate between a nomination phase, in which rules nominate objects (possibly in 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Kieras   

This article is protected by copyright. All rights reserved 

13 

peripheral vision) that are either the target or are possible targets because a relevant property 

either matches or is unknown, and a choice phase, in which an action is chosen. If  a target object 

has been nominated, a target-present response is made via a manual motor processor keystroke 

command. If  there are no nominations, then a target-absent response is made. But if  there are 

only possible-target nominations, the eyes are moved to the closest such object. Once the eye 

movement is complete, the nomination phase starts again. Thus, over time, information about the 

objects accumulates until either the target object becomes known, or the known properties of all 

objects show that none of them could be the target. The main determinant of RT is how many 

eye movements are made in this process.  

-------------------------------- Insert Fig. 4 about here ---------------------------- 

In general, the choice of strategy has a large effect on whether the model can fit  the data, and a 

satisfactory fit  can only be obtained by choosing a combination of parameter values and a 

strategy. These data required a different strategy for each task condition, which is plausible since 

the subjects were extremely well practiced in a single task, and thus had an opportunity to 

optimize their performance. In this section, the different strategies necessary to fit  each condition 

are described, and then the overall goodness of fit  is presented in Fig. 1 and 2 and the Model 

Results section below.  

Using the parameter values listed above, the Basic strategy provided a good fit  to the SHP 

condition data, but not the other two conditions - there were no parameter values that allowed 

this strategy to fit  these RT and ER data satisfactorily. Iterative testing of competing strategies 

revealed that two additional strategies were needed to fit  the other task conditions.  

The CSF condition RTs can be fit  pretty well by the Basic strategy since the high availability 

of the color property means that extremely few eye movements are required even at the largest 

set size, but this did not account for why Miss errors were more frequent than False Alarms. 

Further testing showed that a good fit  for both RT and ER was provided by the extremely simple 

Fixed-Eye strategy shown in Fig. 5. No eye movements are done; instead the target-present or 

target-absent response is chosen after a single nomination phase.  

-------------------------------- Insert Fig. 5 about here ---------------------------- 

Exploration of different strategies showed that the COC conjunction condition requires the 

somewhat complex Time-Out & Confirm-Present strategy shown in Fig. 6. The first option in the 
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choice phase is to immediately respond absent if  more than a certain number of fixations, 

estimated at 3, have already been made. Also, if  a target has been nominated, rather than 

immediately responding, the eye is moved to that object, and if  it indeed has the target 

properties, then the response if  made; if  not, the strategy goes to the nomination phase again. 

What is noteworthy about this strategy is that it deals with possible errors due to illusory targets, 

explained more below. 

The nomination and choice rules in the CSF and SHP tasks simply test for a single object 

property. For example, in the CSF condition, an object is nominated as the target if  it has a red 

color, or as a possible target if  it has an unknown color. In contrast, for COC, there are three 

possible-target nominations, and the strategy chooses one to fixate in the following descending 

priority order: Red color and unknown orientation, unknown color and vertical orientation, 

unknown color and unknown orientation. 

-------------------------------- Insert Fig. 6 about here ---------------------------- 

3.7. How the model makes errors 

Errors have two sources under the strategies used in the model. First is a conventional idea in 

human performance research, that a certain number of errors stem from simple slip or "oops" 

errors at response execution; for example, the subject intends to respond target-absent, but at 

random happens to hit the target-present button instead. In the model, when the strategy calls for 

a response, the opposite response is made with an "oops" error probability. Since the False 

Alarm rate in the Fig. 3 ER data is very low and fairly constant across tasks and set sizes, the 

"oops" error probability was set at the average False Alarm rate of 1.4% for all conditions.  

The second source of errors are illusory targets and illusory distractors produced by crowding 

scrambling. Note how the Miss error rate in Fig. 3 increases with set size and apparent task 

difficulty. Clearly if  a Time-Out strategy terminates the trial before all the perceptual information 

is available, a Miss error could result. However, another reason for a Miss error is that the 

strategy rule that detects the absence of possible targets fires when the target is in fact present on 

the display. This would happen if  all of the relevant perceptual information appears to be 

available and all of the objects appear to be distractors. This will  be exactly the situation if  

crowding scrambling turned the target into an illusory distractor and at the same time, all of the 

other objects appear to be distractors.  
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Thus, the consequences of crowding scrambling depend on the search task and the strategy for 

that task. In CSF, a target-present response should be made if  the target color is visible, 

regardless of which object it is associated with, and the wide availability of color means that it 

will  rarely go undetected. In this case, crowding scrambling will  be essentially irrelevant, and the 

Eyes-Fixed strategy should suffice for both low ER and very fast RTs independent of set size.  

The SHP task is similar in that if  the target 2 shape is detected, it doesn't matter whether it is 

the correct object or not. However, because the shape property is not very available, the Basic 

strategy is required to move the eyes possibly many times until a shape has apparently been 

detected for all of the objects, leading to a long RT. Also, the similarity of the 2 and 5 patterns 

means that scrambling will  happen fairly frequently. The result is that relatively often the target 

will  become an illusory distractor, and a Miss error will  be made before all of the objects have 

been fixated. 

The CSF and SHP tasks and their strategies have an important property in common. In a 

negative trial, the target perceptual property will  not be available on the display, so crowding 

scrambling will  never produce an illusory target, and the strategy will  never conclude that the 

target is present when it is not. So, the False Alarm error rate in these conditions is just the 

"oops" error rate. 

In contrast, for the COC task, a target is both red and vertical, but some other objects have the 

red target color, and some other objects have the vertical target orientation, so crowding 

scrambling has many opportunities to create illusory targets even on a negative trial, causing 

potentially many False Alarm errors. To prevent this, the strategy has to confirm that an apparent 

target is an actual target by fixating it before responding — this is a fundamental strategic 

property of the COC task compared to the CSF and SHP tasks. Subjects can learn from practice 

in COC that acceptable ER and reasonably fast RTs can be achieved with only a few eye 

movements. The result is that the Time-Out & Confirm-Present strategy provides a good fit. 

3.8. Model results 

The parameter values and choice of strategies described above were determined by informal 

iterative fitting, with the model being run a total of 100,000 trials in each task × polarity × set 

size condition. Fig. 2 and 3 show the predicted and observed RT and ER values, with the 

observed shown as solid lines and points, and predicted as dashed lines and open points. Over all 
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three search task conditions, the fit  for RT is very good, with r2=0.98, average absolute relative 

error of 6%. The fit  for ER is good in terms of r2

Individual differences. Some of the discrepancies in the fits can be explained by individual 

differences in strategy selection and parameter values, which due to space limitations, can only 

be summarized here. In each task condition, there are about three subgroups of individual 

subjects, which can be identified with a simple cluster analysis based on RT and ER metrics. The 

mean performance of some of these subgroups has markedly different patterns of RT and ER 

effects compared to the overall means for that condition shown in Fig. 2 and 3. For example, in 

the SHP condition, a third of the subjects have RT curves that are strongly negatively accelerated 

with set size and very high ERs (as much as 23%) at the largest set sizes. As another example, in 

the COC task, one subgroup has steeper RT slopes than the mean data, and another subgroup has 

much flatter RT slopes than the mean data.  These performance differences imply both 

parametric and strategy differences between individual subjects, meaning that fitting a model to 

the overall average data is problematic both in the quality of the fit  and whether that model 

represents what those subjects actually  do. The model described in this paper can be fit  to the 

mean RT and ER for each subgroup in a straightforward way by choosing one of the strategies 

described above and making modest modifications of parameter values. So the model itself can 

provide a satisfactory account of the overall mean performance, and appears to works well to 

explain performance at the individual level. 

=0.95, but the average absolute relative error is 

21% even though almost all of the predicted points fall within the confidence intervals. In 

addition to the fit  not being quite as good as for RT, the combination of the ER data being 

relatively noisy and having small absolute magnitudes could have inflated the relative error 

metric. But on the whole, the model provides a good account of the effects of set size and search 

task in both the RT and ER data. 

4. Conclusions 

The model built in the EPIC computational cognitive architecture provides an accurate account 

of the RT and ER data using a surprisingly simple combination of architectural components and 

task strategy, which together implement an active vision approach to visual search. Notably, 

there is no need for a covert selective attention mechanism, as proposed in the dominant theory, 

to successfully account for the effects; basic perceptual mechanisms, eye movements, and 
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strategies that meet the task demands are all that is required. The addition of a crowding 

mechanism to the visual processor not only provides a novel approach to accounting for errors in 

visual search, but also motivates a more thorough account of how the strategy is affected by the 

task characteristics. In particular, as originally proposed by Triesman and Gelade (1980) 

conjunctive search is indeed different from single-feature search, but rather than attentional 

binding and a special “pop out” mechanism, the difference is due to how visual crowding 

produces ambiguities in the perceived objects that require a different strategy for eye 

movements. These results demonstrate that the covert attention theory can be replaced by 

quantitative computational models whose architectural structure can take advantage of vision 

science much more thoroughly, and whose explicit representation of task strategy provides much 

more articulated and rigorous explanations of how fundamental mechanisms are deployed in 

these tasks.  

The presence of individual differences in task strategies, shown by substantial differences in 

the patterns of RT and ER, was briefly summarized above. Most researchers assume that ample 

amounts of practice will  result in stable performance because subjects seek to optimize their time 

and accuracy. In this case, they were given accuracy feedback, and surely the tedious nature of 

the experiment encouraged them to respond quickly. But they were not incentivized to trade time 

and accuracy in any particular way, so each subject picked their own tradeoff and a strategy to 

meet it. This can produce large variability in what should theoretically be a fundamental process, 

as can be seen in the individual search time slopes reported in Wolfe et al. (1989), and the 

clusters of subjects discussed above. In contrast, imposing an explicit payoff function can induce 

more efficient strategies which show more consistent patterns of performance even in seemingly 

simple perceptual tasks, as powerfully demonstrated by Thompson, Iyer, Simpson, Wakefield, 

Kieras, & Brungart (2015). Certainly, future visual search studies should use this technique to 

remove extraneous variability in performance and thereby facilitate modeling and theory-

building.  

But in the meantime, identifying subgroups of subjects in existing data is a promising approach 

to dealing with individual differences. Normally, modeling individual differences is impractical 

because the data will  often be too noisy, and fitting a model to each one of many datasets is very 

labor-intensive. The clustering approach summarized above combines individual subjects into a 

small number of subgroups with statistically reliable properties, and so makes it practical to both 
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describe and model the individual differences more effectively. Future work could explore this 

approach further.  

Finally, the proposed simple feature-scrambling mechanism of crowding is especially 

interesting because of its strong implications for the sources of errors and effective task 

strategies; as mentioned above, other mechanisms are possible, and could be explored by 

constructing other simple models, which in turn would suggest fruitful  empirical manipulations. 

In this way, more cognitive modeling work on visual tasks could help guide future empirical 

work to more quickly arrive at a comprehensive understanding of the visual system. 
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Figure File Names and Captions 

 

KierasFig1.eps 

Fig. 1. Sample search displays produced by the model using the information in Wolfe et al. 

(2010). The tasks conditions, left-to-right, are color single feature (CSF), color-orientation 

conjunction (COC), and shape (SHP). The concentric gray circles show the simulated eye 

position at the initial fixation location; for scale, the inner circle has a diameter of 1°; the outer 

circle is 10°. 
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KierasFig2.eps 

Fig. 2. Observed (solid points and lines) and predicted (open points and dotted lines) for correct 

trial RT in each task condition. CSF: circles, COC: triangles, SHP: squares. Positive (target-

present) trials: red; negative (target-absent) trials: black.  

 

KierasFig3.eps 

Fig. 3. Observed (solid points and lines) and predicted (open points and dotted lines) proportion 

of errors (error rate, ER) in each task condition. CSF: circles, COC: triangles, SHP: squares. 

Positive trials (Miss errors): red; negative trials: (False Alarm errors) black. 

 

 

 

 

 

 

Text-only Figures and Captions  

(Please maintain indentation as shown; font & box can be changed if  necessary).  
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