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Abstract : System ic sclerosis (SSc)  is a complex auto- immune connect ive t issue disease combining 

inflammatory, vasculopathic and fibrot ic manifestat ions. Skin features, which give their  name to the disease 

and are considered as diagnost ic as well as prognost ic markers, have not  been thoroughly invest igated in 

terms of therapeut ic targets. CCN proteins (CYR61/ CCN1, CTGF/ CCN2, NOV/ CCN3, and WI SP1-2-3 as CCN4-

5-6)  are a fam ily of secreted mat r icellular proteins implicated in major cellular processes such as cell growth, 

m igrat ion, different iat ion. They have already been implicated in key pathophysiological processes of SSc, 

namely fibrosis, vasculopathy and inflammat ion. I n this review, we discuss the possible im plicat ion of CCN 

proteins in SSc pathogenesis, with a special focus on skin features, and ident ify the potent ial act ionable CCN 

targets. 

 

 

Introduction 

Systemic sclerosis (SSc), or scleroderma is defined as a systemic connective tissue disease 

characterized by auto-immune and vascular manifestations ultimately leading to organ fibrosis [1]. Like 

most auto-immune diseases, SSc develops on a genetically predisposed background (the polymorphisms 

that have been identified concern mostly the immune system), and is probably triggered by environmental 

factors. However, the interplay between the vascular, immune, and fibrotic components remains poorly 

understood and no real breakthrough has been made in terms of targeted treatments. The classical 

pathophysiological features as well as the underlying molecular processes are presented in Figure 1. 

Skin manifestations, which give the name to the disease, are considered as diagnostic, 

subclassification, severity, and prognosis markers [2]. SSc skin effectively recapitulates the main 

pathogenic processes of the disease, namely fibrosis, vasculopathy and inflammation. Moreover, evidence 

emerges that key events initiating the disease could take place in the skin, whereas “inside-out” or even 

“outside-in” as in the field of atopic dermatitis [3]. Besides classically known features affecting the 

dermis, skin features also include various types of pigmentary disorders, which affect up to half of the 

patients, such as perifollicular depigmentation [4] or diffuse hyperpigmentation [5]. A recent study from 

our group found a significant association between diffuse hyperpigmentation and vascular involvement in 
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SSc, particularly digital ulcers [6]. Current knowledge of SSc epidermal features includes overexpression 

of PDGR-β, which was the starting point for targeting the PDGF-pathway [7]. Another aspect is abnormal 

terminal differentiation, with an altered expression of key proteins of the barrier, such as involucrin, 

loricrin, and filaggrin [8]. The skin barrier function could be altered through the increase of IL-31 [9], 

which has been shown in vivo to be responsible for transepidermal water loss (TEWL) [10]. However, 

TEWL seems not altered in SSc skin [11]. .  

Paradoxically, skin manifestations have not been thoroughly investigated as possible indicators of 

actionable targets. Deciphering the molecular mechanisms behind skin features could be applicable to 

other organs and of importance for SSc, particularly from a therapeutic point of view.  

In this context, taking aim at the CCN family of matricellular proteins could be promising, as they are 

implicated in key pathophysiological processes in SSc as well as in skin homeostasis. This family of six 

matricellular proteins plays critical regulatory roles in inflammation, angiogenesis and wound healing 

[12–16]. Initially identified as growth factors [17–19], they have been shown to be involved in several 

major cellular processes such as cell growth, adhesion, migration, and extracellular matrix homeostasis.  

The first member of the CCN family (CYR61 for cysteine-rich angiogenic protein 61) was initially 

characterized in 1990 in the 3T3 murine cell line, as a an immediate early gene whose transcription was 

triggered within a few minutes upon serum stimulation [17]. Along this line, CTGF (connective tissue 

growth factor) was rapidly identified in human endothelial cells (HUVEC) using PDGF-IgG affinity 

chromatography [18]. NOV (nephroblastoma overexpressed) was discovered in chicken while sequencing 

the flanking sequences of a virus used to induce nephroblastoma [19]. The conserved primary sequence, 

as well as the similar tetramodular organization of CYR61, CTGF and NOV led to their designation as 

CCN (an acronym coined from the first letter of the three names) family of proteins [20]. Soon after, 

WISP1/ CCN4 (WNT1 inducible signaling pathway protein 1), WISP2/ CCN5, and WISP3/CCN6, were 

discovered as upregulated in a mouse mammary epithelial cell line after Wnt-1 induction [21]. Due to 

their similar multimodular structure (except CCN5, which lacks the C-terminal module), WISP proteins 

were integrated into the CCN family of proteins [22]. The common structure as well as binding sites for 

proteins of interest in SSc are presented in Figure 2.  

Characterization of CCN proteins in human skin rapidly followed, both at the cellular and tissue level, 

as well as the transcriptional and protein level [23–25]. Total skin transcriptomic analysis showed that 

CCN5 is the most abundantly expressed CCN member in healthy skin in vivo, followed by CCN2, then 

CCN3 and CCN1 [24].  

Roles of CCN proteins are difficult to characterize due to several factors: ubiquitous expression, 

multimodular organization, different isoforms; from a functional point of view, they can act on a wide 
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range of cellular processes, and sometimes present overlapping functions.  To date, most studies in the 

scleroderma field focus on the first three family members (CCN1-3) and on specific cellular processes or 

tissues. A summary of the expression of CCN proteins in healthy and SSc skin can be found in Table 1.  

In this review, we discuss the role of CCN proteins in the key pathophysiological processes of SSc, 

with a special focus on skin features, and their implication as potential new targets for therapies.  

CCN proteins in fibrosis 

One of the most studied actors in SSc is CCN2, a major mediator of various fibrotic conditions 

including skin, heart, lung, liver and kidney [26]. CCN2 is increased in SSc skin, both at the mRNA and 

protein level. CCN2 is also upregulated in SSc fibroblasts (mRNA) [27]. It is elevated in the serum [28] 

and correlated with the severity of skin and lung fibrosis. Moreover, polymorphisms of the CCN2 gene 

have been found to be associated with SSc  [29,30]. CCN2 itself is not sufficient to induce fibrosis in a 

mouse model [31]. However, it is needed for the maintenance of fibrosis when induced by TGF-β [32,33], 

by promoting fibroblast adhesion to ECM components [34]. Indeed, CCN2 is part of an autocrine pro-

fibrotic loop, independent of TGF-β, initiated by endothelin-1 and inducing fibroblasts to synthetize and 

contract ECM [14,27]. In this context, CCN2 acts by enhancing adhesive responses to TGF-β and 

endothelin-1 in fibroblasts, downstream of the anti-fibrotic protein PTEN (phosphatase and tensin 

homologue) [35]. PTEN, which is reduced in SSc skin fibroblasts [36], acts by suppressing PI3K-Akt 

signaling (phosphatidylinositol 3-kinase (PI3K) and Akt/Protein Kinase B) [37]. Its fibroblast-specific loss 

in an in vivo model induces collagen deposition in the lung in a CCN2-dependent manner [38]. Overall, 

inactivation of CCN2 is a promising lead – more specific than a targeted TGF-β therapy - in anti-fibrotic 

therapies: notably, fibroblast-specific ablation of CCN2 reduces skin fibrosis in the bleomycin mouse 

model [33]. 

CCN3 counteracts CCN2 profibrotic pathway, although this has never been demonstrated directly in 

the skin. In the kidney, CCN3 is upregulated in response to TGF-β signaling as shown by several studies 

of diabetic renal fibrosis, and is regulated in an opposite manner to CCN2 [39,40]. Treatment with 

recombinant CCN3 succeeded in reducing glomerular fibrosis in a mouse model of diabetic nephropathy, 

showing a capacity to reverse the disease [41]. The anti-fibrotic effect of CCN3 could work through the 

regulation of multiple pathways, possibly via repression of CCN2 but also CCN4 [42]. Moreover, CCN3 

overexpression in a mouse fibroblast cell line blocked TGFβ- and Wnt-regulated profibrotic gene 

expression [12]. Of note, CCN3 mRNA has been found to be increased in SSc skin [12].  

The role of CCN1 has not been extensively studied in fibrosis, although its role in promoting tissue 

repair in wound healing is becoming clearer [13]. One study has found that CCN1 is induced in dermal 

fibroblasts by TGF-β along with CCN2 and α-SMA [43].  
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CCN5 is the most abundant CCN in the dermis in terms of mRNA expression [25]. Contrary to 

CCN2, CCN5 has been found to be downregulated after TGF-β exposure in human skin fibroblasts [44]. 

Moreover, CCN2 and CCN5 present an opposite expression pattern in vascular smooth muscle cells 

(although they have not been studied together) [45]. However, no study has been conducted to 

characterize the expression of CCN5 in SSc.  

Little is known concerning the role of the other CCN proteins in skin. CCN4 has been identified in 

skin fibroblasts and seems to play role in a paracrine manner, by binding to decorin and biglycan [46]. 

Moreover, CCN4 has been shown to regulate wound healing by modulating proliferation, migration and 

ECM expression in dermal fibroblasts via α5β1 integrin and TNFα [47]. 

 

CCN proteins in angiogenesis and vasculopathy 

CCN1, 2 and 3 are all known as pro-angiogenic. In particular, CCN1 and CCN2 are important actors 

in endothelial cells homeostasis, working at least partly through binding to cell surface integrins; their 

expression in endothelial cells is enhanced by VEGF [48]. However, although the role of CCN2 role in 

SSc is well-documented, CCN1 and CCN3 have been less studied in scleroderma.  

CCN1 is known to enhance tubule formation in vitro via integrin α6β1 and integrin αvβ3 [49].CCN1 

has been implicated in SSc impaired angiogenesis in a recent study [50], showing that CCN1 expression 

was markedly decreased in dermal microvessels of patients with SSc as well as in the serum of SSc 

patients with digital ulcers. Another recent study showed that simultaneous knock-down of histone 

deacetylase 5 and CCN1 inhibited in vitro angiogenesis, while overexpressing CCN1 in SSc endothelial 

cells led to increase in tube formation [51], suggesting that a decrease in CCN1 plays an important 

functional role in SSc impaired  angiogenesis.  

In vitro, CCN2 effectively recapitulates angiogenic events by promoting endothelial cell adhesion, 

migration, proliferation, and tubule formation [52]. In vivo, CCN2 enhances neovascularization in a 

mouse model of retinopathy [53]. However, recent in vitro studies using cells and tissues from the CCN2-

null mouse eye did not indicate any effect of CCN2 deletion on neovascularization and angiogenesis. This 

finding suggests that CCN2 may be tissue-specific concerning angio/vasculogenesis, possibly via  

interaction with VEGF [54]. Moreover, the results from the knock-out (KO) studies could indicate that the 

upregulation of CCN2 observed in SSc is mainly responsible for enhanced fibrosis and is not sufficient to 

correct vascular dysfunction. Accordingly, we have observed a decrease of CCN2 expression in cultured 

SSc endothelial cells, whereas an increase was observed in SSc fibroblasts (unpublished data).  

CCN3 has been shown to be pro-angiogenic in several studies: addition of recombinant CCN3 to rat 

corneas induces neovascularization [55]; CCN3 is highly expressed at a basal state in endothelial cells and 

is implicated in vascular repair as well as induced in HUVECs by laminar shear stress [15,56]. The 
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mechanism underlying its pro-angiogenic action is probably at least partly mediated by binding to several 

integrins such as αv

Last, CCN4 promotes vascular smooth muscle cells migration in vitro via an integrin-dependent 

pathway [59], but its action has not been studied in the vascular SSc system.  

β5 [57]. Interestingly, CCN3 and CCN1 are decreased in placental endothelial cells of 

women suffering from pre-eclampsia, a pathological pregnancy condition characterized by hypoxic 

vascular lesions [58]. The pathophysiology underlying pre-eclampsia is strikingly similar to SSc renal 

crisis. Unpublished data from an ongoing study of our group focusing on human microvascular dermal 

endothelial cells points towards an important role for CCN3 in angiogenesis in vitro.  

 

CCN proteins in dermal inflammation and auto-immunity 

A growing body of evidence supports the concept that CCN1 as a pro-inflammatory factor in skin. In 

the dermis, CCN1 is elevated during the inflammatory phase of wound healing and downregulated during 

the extra-cellular matrix remodeling phase [24]. CCN1 has also been shown to regulate macrophage 

function during inflammation in mice, by supporting macrophage adhesion as well as upregulating pro-

inflammatory cytokines such as TNF-α [60]. Moreover, CCN1 is able to activate the cytotoxic potential of 

TNF-α and thus to induce fibroblast apoptosis [61]. Interestingly, CCN1 is highly produced by thymic 

epithelial cells and boosts T-cell production in mice [62]. Several studies have found an overexpression of 

CCN1 in the epidermis of inflammatory skin conditions such as psoriasis, where it promotes the 

production of pro-inflammatory mediators such as IL-8 [63], IL-1β[64] or CCL-20 [65]. 

CCN3 is present at a high levels in the supernatant of T regulatory lymphocytes in the central nervous 

system, where it promotes oligodendrocyte differentiation and myelination [66]. Preliminary data from 

our team indicat high production of CCN3 by lymphocyte infiltrating the dermis in vitiligo. Moreover, 

CCN3 expression is regulated by TNF-α and IL-1 [67], and CCN3 physically interacts with IL33 [68], a 

T-helper-2 associated cytokine able to induce fibrosis in SSc [69]. 

Similar to CCN3, CCN6 gene expression is induced by TNF-α and IL-1; of note, CCN6 is 

overexpressed in the synovial tissue of patients suffering from rheumatoid arthritis [70]. However, such 

observations have not been made in the skin. 

 

CCN proteins and accelerated aging 

There is increasing evidence that SSc skin presents several hallmarks of cellular aging, such as 

enhanced production of reactive oxygen species (ROS), methylation abnormalities and impaired 

autophagy [71]. CCN1 has been associated with skin aging in several studies [72–75]. Notably, it has been 

shown to upregulate ROS production and induce skin fibroblasts senescence by binding to integrin α6β1 

and heparin sulfate proteoglycan during wound repair [75]. Of note, knock-in (KI ) mice for a mutant 
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CCN1 lacking the α6β1 integrin-binding (so-called senescence-defective CCN1) showed exacerbated 

fibrosis in wound healing. Another study implicates CCN1 in  aberrant collagen homeostasis associated 

with dermal fibroblasts senescence, suggesting an important role for CCN1 in collagen loss [72]. Indeed, 

CCN1 is a known regulator of type I collagen production and degradation [73].  

CCN proteins in pigmentation 

CCN3 mRNA is the most highly expressed CCN gene in the epidermis [25]. Its role in epidermal 

homeostasis and particularly pigmentation regulation remains unclear. Its epidermal expression seems to 

be increased in pigmented phototypes [76] (interestingly, CCN5 seems to vary inversely). CCN3 plays a 

major role in melanocyte homeostasis and is implicated in melanocyte adhesion [67]. Conversely, 

downregulation of CCN3 in melanocytes results in cell detachment from the epidermis in vitro and could 

be implicated in pigmentary disorders such as vitiligo [77]. To date, however, the implication of CCN3 in 

the development of pigmentary changes often observed in SSc has not been proven.  

UV radiation upregulates CCN1 and CCN2 expression in whole skin in vivo, whereas UV radiation 

downregulates CCN3, 4, 5 and CCN6 expression, at the mRNA level [24]. Interestingly, CCN1 has 

recently been found to stimulate melanogenesis through integrin α6β1 binding as well as p38 MAPK and 

ERK1/2 signaling [78]. The authors suggested that CCN1 is a fibroblast-derived melanogenic paracrine 

mediator, secreted under UVB irradiation. This finding, along with the role of CCN1 in accelerated aging, 

could be consistent with the “photo-aging” pattern observed in some SSc patients.  

 

CCN proteins in epidermal differentiation 

CCN2 is increased in the epidermis of SSc patients, particularly in the basal membrane [8]. This 

increase was predominantly seen in recent SSc (< 2 years). Accordingly, CCN2 expression has been 

shown to be induced by TGF-β in human keratinocytes [79]. CCN2 is also thought to regulate 

keratinocyte migration via the RAS-MEK-ERK pathway [80]. 

Differential expression of CCN3 and CCN5 within epidermal layers also suggest that these factors 

are associated with epidermal differentiation, although the precise mechanism is unknown to date [25]. 

CCN3 expression is reported as nuclear or peri-nuclear in basal keratinocytes, as opposed to cytoplasmic 

in the upper layers, whereas CCN5 expression is reported weak and perinuclear in the basal layer and 

strong and cytoplasmic in the upper layers.  

 

CCN proteins in animal models: what can we learn about key pathophysiological processes of SSc? 
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Knock-out (KO) and knock-in (KI) animal models provide relevant information concerning the role 

of CCN proteins in key pathophysiological processes of SSc. The KO models interestingly point out the 

major role of CCN1 and CCN2 (and to a lesser extent CCN3 and CCN5) in vasculogenesis. Moreover, 

CCN1 and CCN2 seem to play a prominent role in fibrosis regulation, CCN1 being responsible for wound 

healing resolution and CCN2 for a persistent fibrotic phenotype as shown by the KI models. CCN5 also 

appears as an anti-fibrotic molecule. Lastly, CCN1 seems to be an important actor in inflammatory 

processes. Surprisingly, CCN4 may come off both as a pro-angiogenic and anti-fibrotic protein, which 

makes it an interesting actor in scleroderma. A summary of the phenotypes of transgenic mice models can 

be found in Table 2. 

 

Are CCN proteins potential druggable targets in SSc? 

Since CCN proteins are downstream effectors, they could be therapeutically targeted without affecting 

major upstream signaling pathways. However, very few studies have reported the use of anti-CCN 

antibodies in pre-clinical studies, and the proof of concept remains to be obtained. Figure 3 summarizes 

the potential roles of CCN proteins in SSc pathways and suggested targets for therapy.  

Recently, a monoclonal antibody against CCN2 (FG-3019) has been shown to inhibit skin fibrosis in 

the angiotensin-II induced SSc mouse model [81]. In this study, the intra-peritoneal injection of FG-3019 

(concomitant to Ang-II injection) significantly reduced dermal thickness and collagen content in skin from 

Ang-II challenged mice, as well as the number of αSMA-positive cells, PDGFRβ and procollagen 

expression in the upper dermis. Of note, the same antibody has been tested in an open-label phase II 

clinical trial designed for patients suffering from idiopathic pulmonary fibrosis [82]. For one third of 

treated subjects, pulmonary function improved as well as lung fibrosis. A randomized placebo-controlled 

phase 2 clinical trial is currently underway.    

Since CCN1 is pivotal for many pathophysiological pathways of SSc, a CCN1-based therapy, whether 

topical or systemic, could also be promising for SSc. Topical application of CCN1 has indeed shown to 

reverse the enhanced fibrosis of cutaneous wounds in the α6β1 integrin-binding defective CCN1-KI  mice 

[75]. Conversely, a neutralizing anti-CCN1 polyclonal antibody inhibited angiogenesis in an oxygen-

induced retinopathy mouse model [83] as well as a bone fracture mouse model [84]. A monoclonal 

neutralizing antibody against CCN4 has also been used in a murine model of pulmonary fibrosis and 

showed promising results in reducing the expression of genes implicated in fibrosis and epithelial-to-

mesenchymal transition [85]. However, these two antibodies have never been used, to our knowledge, in 

the skin or for scleroderma. Finally, a recombinant CCN3 has been used successfully in a mouse model of 

renal fibrosis [41], and could be considered for skin issues.  
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In conclusion, knowledge gained from studies of the roles of CCN proteins in dermal and epidermal 

biological processes can be applicable for other organs. Moreover, due to multiple functions of CCN 

protein, effective therapeutic strategies may rely on downregulating or upregulating specific CCN proteins 

in SSc. Based on emerging evidence, there is a growing need to systematically determine the roles of all 

CCN family members in the pathophysiological pathways that are characteristic of scleroderma skin. SSc 

models provide an ideal opportunity to test the concept of therapeutic targeting of CCN proteins for the 

treatment of SSc.  
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Table 1

mRNA=messenger RNA, ND = not described.  

. CCN proteins in human skin and expression in SSc. 

Expression in SSc skin cells: compared to healthy control cells. 
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endothelial cells 
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fibroblasts: 

Osteopenia 

(skin and 

vessels not 

analyzed) 

ND 

Vascular 

congestion in 

kidney and liver; 

enhanced 

neointimal 

hyperplasia in 

response to 

endothelial injury 

ND 

Viable: 

modest 

skeletal and 

cardiac 

abnormalities, 

muscle 

atrophy and 

cataract 

[98

–

100

] 
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Table 2

ND = not described 

. Phenotypes of genetically-modified mouse models. 

CCN4 ND 

Increased 

intimal 

thickening 

due to 

smooth 

muscle cell 

migration 

ND ND 

Delayed 

wound 

healing, 

reduced 

collagen 

expressio

n 

ND ND 

Impaired 

motor 

coordination 

[47,

59,

101

] 

CCN5 

Decreased 

cardiac 

fibrosis in 

response to 

pressure 

overload 

ND ND ND ND 

Hyperproliferatio

n of vascular 

smooth muscle 

cells in response 

to injury 

ND 

Both reported: 

early 

embryonic 

lethality and 

normal 

phenotype   

[45,

97,

102

,10

3] 

CCN6 Normal Normal Normal 
Normal 

phenotype 
Normal Normal 

Norma

l 

Normal 

phenotype  

[10

4,1

05] 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t
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