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Abstract 

Purpose 

Machine learning classification algorithms (classifiers) for prediction of 

treatment response are becoming more popular in radiotherapy literature. General 30 

machine learning literature provides evidence in favor of some classifier families 

(random forest, support vector machine, gradient boosting) in terms of 

classification performance. The purpose of this study is to compare such 

classifiers specifically for (chemo)radiotherapy datasets and to estimate their 

average discriminative performance for radiation treatment outcome prediction.  35 

Methods 

We collected 12 datasets (3496 3484 patients) from prior studies on post-

(chemo)radiotherapy toxicity, survival, or tumor control with clinical, dosimetric, 

or blood biomarker features from multiple institutions and for different tumor 

sites, i.e. (non-)small cell lung cancer, head and neck cancer, and meningioma. 40 

Six common classification algorithms with built-in feature selection (decision 

tree, random forest, neural network, support vector machine, elastic net logistic 

regression, LogitBoost) were applied on each dataset using the popular open-

source R package caret. The R code and documentation for the analysis are 

available online1. All classifiers were run on each dataset in a 100-repeated 45 

nested 5-fold cross-validation with hyperparameter tuning. Performance metrics 

(AUC, calibration slope and intercept, accuracy, Cohen’s kappa, and Brier score) 

were computed. We ranked classifiers by AUC to determine which classifier is 

likely to also perform well in future studies. We simulated the benefit for 

potential investigators to select a certain classifier for a new dataset based on our 50 

study (pre-selection based on other datasets) or estimating the best classifier for a 

dataset (set-specific selection based on information from the new dataset) 

compared to uninformed classifier selection (random selection). 

Results  

Random forest (best in 6/12 datasets) and elastic net logistic regression (best in 55 

4/12 datasets) showed the overall best discrimination but there was no single best 

classifier across datasets. Both classifiers had a median AUC rank of 2. Pre-

https://github.com/timodeist/classifier_selection_code
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selection and set-specific selection yielded a significant average AUC 

improvement of 0.02 and 0.02 over random selection with an average AUC rank 

improvement of 0.42 52 and 0.6665, respectively. 60 

Conclusion  

Random forest and elastic net logistic regression yield higher discriminative 

performance in (chemo)radiotherapy outcome and toxicity prediction than other 

studied classifiers. Thus, one of these two classifiers should be the first choice for 

investigators when building classification models or to benchmark one’s own 65 

modelling results against. Our results also show that an informed pre-selection of 

classifiers based on existing datasets can improve discrimination over random 

selection. 

Keywords: radiotherapy; classification; outcome prediction; machine learning; 

predictive modelling 70 
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Introduction 

Machine learning algorithms for predicting (chemo)radiotherapy outcomes (e.g., 

survival, treatment failure, toxicity) are receiving much attention in literature, for 

example in decision support systems for precision medicine2,3. Currently, there is no 75 

consensus on an optimal classification algorithm. Investigators select algorithms for 

various reasons: the investigator’s experience, usage in literature, data characteristics 

and quality, hypothesized feature dependencies, availability of simple implementations, 

and model interpretability. One objective criterion for selecting a classifier is to 

maximize a chosen performance metric, e.g., discrimination (expressed by the area 80 

under the receiver operating characteristic curve, AUC). Here, we discuss the 

performance of binary classifiers in (chemo)radiotherapy outcome prediction, i.e. 

algorithms that predict whether or not a patient has a certain outcome. We empirically 

study the behaviour of existing simple implementations of classifiers on a range of 

(chemo)radiotherapy outcome datasets to possibly identify a classifier with overall 85 

maximal discriminative performance. This is a relevant question for investigators who 

search for a rational basis to support their choice of a classifier or who would like to 

compare their own modelling results to established algorithms.  

We employ various open-source R packages interfaced with the R package caret4  

(version 6.0-73) that is readily available for investigators and has shown to produce 90 

competitive results5. With our results, we also wish to provide guidance in the current 

trend to delegate modelling decisions to machine learning algorithms. 

Large scale studies in the general machine learning literature5–7 provide 

evidence in favor of some classifier families (random forest (rf), support vector machine 

(svm), gradient boosting machine (gbm)) in terms of classification performance. In our 95 

study, we investigate how these results translate to (chemo)radiotherapy datasets for 
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treatment outcome prediction/prognosis. To the best of our knowledge, this is the first 

study to investigate classifier performance on a wide range of such datasets. The studied 

features are clinical, dosimetric, and blood biomarkers. 

Within the framework of existing classifier implementations, we attempt to 100 

answer three research questions: 

(1) Is there a superior classifier for predictive modelling in (chemo)radiotherapy? 

(2) How dataset-dependent is the choice of a classifier? 

(3) Is there a benefit of choosing a classifier based on empirical evidence from 

similar datasets (pre-selection)?  105 

Parmar et al. (2015)8 compared multiple classifiers and feature selection 

methods (i.e. filter-based feature selection) on radiomics data using the caret package. 

We build upon this work and extend the analysis to 12 datasets outside the radiomics 

domain. We omit filter methods because all classifiers in our study comprise built-in 

feature selection methods (i.e. embedded feature selection) and the main advantage of 110 

filter methods, i.e. low computational cost per feature, is not relevant for our datasets 

with only modest numbers of features. 

Material and Methods 

Data collection 

Twelve datasets (3496 3484 patients) with treatment outcomes described in previous 115 

studies were collected from public repositories (www.cancerdata.org) or provided by 

collaborators. Table 1 characterizes these datasets. Given availability, some datasets 

consist of subsamples of or contain fewer/more patients and/or features than the cohorts 

described in the original studies. Two datasets were excluded after a preliminary 

http://www.cancerdata.org/
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analysis (these datasets are also not mentioned in table 1) where none of the studied 120 

classifiers resulted in an average AUC above 0.51, which is evidence that they contain 

no discriminative power. Datasets without discriminative power are not suitable for this 

analysis as we would be unable to determine differences in discriminative performance 

across classifiers. The patient cohorts of 2 datasets, Wijsman et al. (2015 and 2017), 

partially overlap but each dataset lists a different outcome (esophagitis and 125 

pneumonitis). Datasets were anonymized in the analysis because their identity is not 

relevant for interpreting the results and to encourage investigators to share their 

datasets.  

Non-binary outcomes were dichotomized, e.g., overall survival was translated 

into 2-year overall survival in the dataset of Carvalho et al. (2016). Missing data was 130 

imputed for training and test sets (the splitting of datasets into training and test sets is 

described in section Experimental Design) by medians for continuous features and 

modes for categorical features based on the training set. Basing the imputation on the 

training set avoids information leakage from test to training sets. Categorical features in 

training and test sets were dummy coded, i.e. representing categorical features as a 135 

combination of binary features, based on the combined set for classifiers that cannot 

handle categorical features (see table 2). Dummy coding on the combined set ensures 

that the coding represents all values observed in a dataset. Features with zero variance 

in training sets were deleted in the training set and in the corresponding test set. 

Additionally, we removed near-zero variance features for glmnet to avoid the classifier 140 

implementation from crashing during the fitting process. Features in training sets were 

rescaled to the interval [0,1] and the same transformation was applied to the 

corresponding test sets. Rescaling is needed for certain classifiers, e.g., svmRadial. All 

these operations (imputation, dummy coding, deleting (near-)zero variance features, 
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rescaling) were performed independently for each pair of training and test sets (step 2 in 145 

figure 1). 

Classifiers 

Six common classifiers were selected and their implementations were used via their 

interfacing with the open-source R package caret. The selection includes classifiers 

frequently used in medical data analysis and advanced classifiers such as random forests 150 

or neural networks.  

 Elastic net logistic regression is a regularized form of logistic regression, which 

models additive linear effects. The added shrinkage regularization (i.e. feature 

selection) makes it is suitable for datasets with many features while maintaining 

the interpretability of a standard logistic regression. 155 

 Random forests generate a large number of decision trees based on random 

subsamples of the training set while also randomly varying the features used in 

the trees. Random forests allow modelling non-linear effects. A random forest 

model is an ensemble of many decision tree models and is therefore difficult to 

interpret. 160 

 Single-hidden-layer neural networks are simple versions of multi-layer 

perceptron neural network models, which are currently popularized by deep 

neural network applications in machine learning. In the hidden layer, auxiliary 

features are generated from the input features which are then used for 

classification. The weights used to generate auxiliary features are derived from 165 

the training set. The high number of weights require more training data than 

other simpler algorithms and reduce interpretability. However, if sufficient data 

is available, complex relationships between features can be modelled. 
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 Support vector machines with a radial basis function (RBF) kernel transform the 

original feature space to attain a better separation between classes. This 170 

transformation, however, is less intuitive than linear SVMs where a separating 

hyperplane is in the original feature space.   

 LogitBoost (if used with decision stumps as in this paper) learns a linear 

combination of multiple single feature classifiers. Training samples that are 

misclassified in early iterations of the algorithm are given a higher weight when 175 

determining further classifiers. The final model is a weighted sum of single 

feature classifiers.  Similar to random forests, it builds an ensemble of models 

which is difficult to interpret. 

 A decision tree iteratively subdivides the training set by selecting feature 

cutoffs. Decision trees can model non-linear effects and are easily interpretable 180 

as long as the tree depth is low. 

Classifier details can be found in general machine learning textbooks23,24. Table 2 

further characterizes these classifiers. We use the option in caret to return class 

probabilities for all classifiers, including non-probabilistic classifiers like svmRadial. 

Classifier hyperparameters, i.e. model-intrinsic parameters that need to be adjusted to 185 

the studied data prior to modelling, were tuned for each classifier using a random 

search: 25 randomly chosen points in the hyperparameter space are evaluated and the 

point with the best performance metric (we chose the AUC in this study) is selected. 

The boundaries of the hyperparameter space are given in caret.  
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Experimental Design 190 

For each classifier, test set (or out-of-sample) performance metrics (AUC, Brier score, 

accuracy, and Cohen’s kappa) were estimated for each of the 12 datasets. The 

performance metric estimator was the average performance metric computed from the 

outer test folds in a nested and stratified 5-fold cross-validation (CV). The experiment 

was repeated 100 times. The 100 times repeated nested cross-validation yields a better 195 

estimate of the true test set performance by randomly simulating many scenarios with 

varying training and test set compositions. 

The experimental design is depicted in figure 1: Each dataset was split into 5 random 

subsamples stratified for outcome classes (step 1 in figure 1), each of them acting once 

as a test set and 4 times as a part of a training set. The number of inner and outer folds 200 

was set to 5 following standard practice24(p242). Data pre-processing is done per pair of 

training and test sets (step 2; see details in section Datasets). The models were trained 

on the training set (step 6) and applied on the test set (step 7) to compute the 

performance metrics for the test set (step 8) resulting in 5 estimates per performance 

metric (i.e. 1 per outer fold). During the training in each outer fold, the best tuning 205 

parameters were selected from the random search (see section Classifiers) according to 

the maximum AUC of an inner 5-fold CV. In the inner CV, the training set was again 

split into 5 subsamples and models with different tuning parameters were compared 

(steps 3-5). The nested 5-fold CV was repeated 100 times with different randomization 

seeds which are used, e.g., for generating the outer folds in step 1. Note that the 210 

performance metrics computed on the outer test folds of any two classifiers can be 

analysed by pairwise comparison because the classifiers were trained (step 6) and tested 

(step 7) on the same training and test sets for a specific dataset within each of the 100 
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repetitions.  

The mean AUC, Brier score, accuracy, and Cohen’s kappa were computed from 215 

the 5 estimates of the 5 folds in the outer CV. Calibration intercept and slope were 

computed from a linear regression of outcomes and predicted outcome probabilities for 

each of the 5 outer folds. To attain aggregated calibration metrics over the 5 outer folds 

of the CV, the mean absolute differences from 0 and 1 were computed for the 

calibration intercept and slope, respectively. Classifier rankings were computed per 220 

dataset and repetition by ordering the classifiers’ CV-mean AUC (i.e. the average AUC 

for 5 test sets) in descending order and then assigning the ranks from 1 to 6. Using CV-

mean AUCs and CV-mean AUC ranks, we answer research questions 1 & 2. We chose 

AUC for the analysis following Steyerberg et al. (2010)31. They emphasize the 

importance of discrimination and calibration metrics when assessing prediction models. 225 

For the simplicity, we restricted the extended analysis to discrimination (AUC) but also 

report results for calibration and other metrics in appendix A.  

To address the question of pre-selection (research question 3), we assess the 

advantage of choosing a classifier based on performance metrics from similar datasets, 

which we call pre-selection below. To estimate the benefit of our classifier pre-selection 230 

for a new dataset and to compare it to alternative strategies, the results of the 

experiment above were used as input for a simulation. For each outer fold of the 1200 5-

fold CVs (12 datasets * 100 repetitions * 5 folds = 6000 folds), 3 classifier selections 

were made and tested on the test set that belongs to the specific outer fold:  

 pre-selecting the classifier according to the average AUC rank in all other 235 

datasets (excluding all folds from the current dataset), 

 selecting the classifier that performed best in the inner CV on the training set, 

 randomly selecting a classifier. 
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Pre-selecting the classifier for one dataset that had the best average AUC rank in 

the other datasets simulates the scenario in which an investigator bases their classifier 240 

choice on empirical evidence as is reported in this manuscript. Randomly selecting a 

classifier represents the case where an investigator chooses a classifier without any prior 

knowledge about the dataset that (s)he is about to analyze. Selecting the tuned classifier 

with best inner CV performance corresponds to evaluating multiple classifiers on the 

training dataset and thus including dataset-specific information in the classifier 245 

selection. The performance metrics are averaged over all 500 outer folds (5 folds * 100 

repetitions) for each of the 12 datasets. 

The documented R code used for the analysis is available online1. 

Results 

Running 1 nested 5-fold cross-validation and computing the metrics on 1 dataset 250 

for all 6 classifiers allows 1 comparison of classifiers. This was applied on 12 different 

datasets, with each run repeated 100 times for a total of 1200 comparisons. The total 

computation time was approximately 6 days on an Intel Core i5-6200U CPU (or 15 

seconds per classifier per dataset per outer fold, on average). 

The results are presented and discussed threefold: 255 

(1) results aggregated over all datasets and repetitions to determine the presence of a 

superior classifier, 

(2) separate results for each dataset but aggregated over repetitions to determine 

dataset dependency, 

(3) a simulation of classifier selection methods in new datasets to estimate the 260 

relative effect of classifier pre-selection. 

https://github.com/timodeist/classifier_selection_code
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The detailed analysis is restricted to the classifiers’ discriminative performance 

according to the AUC. Results for the remaining metrics (Brier score, calibration 

intercept/slope, accuracy, and Cohen’s kappa) are reported in appendix A. 

Results aggregated over all datasets 265 

Figure 2 shows the distribution of classifier rankings based on the average AUC (12 

datasets * 100 repetitions = 1200 data points per classifier). Figure 3 depicts pairwise 

comparisons for each classifier pair (1200 comparisons per pair). The numbers in the 

plot indicate how often classifier A (y-axis) achieved an AUC greater than classifier B 

(x-axis). Coloring indicates whether the increased AUCs of classifier A are statistically 270 

significant (violet) or not (light violet). Untested pairs are colored grey. The 

significance cutoff was set to the 0.05-level (one-sided Wilcoxon signed-rank test, 

Holm-Bonferroni correction for 15 tests). 

rf and glmnet showed the best median AUC rank, followed by nnet, svmRadial, 

LogitBoost, and rpart (figure 2). At the low end of the ranking, rpart showed poor 275 

discriminative performance. Manual inspection of the rpart models showed that rpart 

frequently returns empty decision trees for particular sets (for 34%, 19%, 6867%, 35%, 

58% of all outer folds for sets D, E, GF, K, L, respectively). In pairwise comparisons, rf 

and glmnet significantly outperformed all other classifiers (figure 3). rf exhibited a 

small but statistically insignificant better AUC rank than glmnet.  280 

The results in figures 2 and 3 indicate the existence of a significant classifier 

ranking for these datasets. However, the considerable spread per classifier in figure 2 

and the low pairwise comparison percentages (between 57% and 9188% in figure 3) 

also suggest a yet unobserved dependency for classifier performance. To this end, the 

relationship between datasets and varying classifier performance is investigated. 285 
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Results separate for each dataset  

Figure 4 shows the average AUC for each pair of classifier and dataset (100 repetitions 

= 100 data points per pair). Figure 5 depicts the average rank derived from the AUC 

(100 data points per pair).  

rf and glmnet generally yielded higher AUC values and AUC ranks per dataset 290 

(figures 4 & 5). However, this observation is not consistent over all datasets: e.g., nnet 

outperforms rf in sets HG, J, and K, and svmRadial outperformed glmnet in sets A and 

C. 

The results in the figures 4 and 5 indicate that dataset-specific properties impact 

the discriminative performance of classifiers. These results challenge our proposition 295 

that one can pre-select classifiers for predictive modelling in (chemo)radiotherapy based 

on representative datasets from the same field. 

Effects of empirical classifier pre-selection on discriminative performance 

Table 3 lists, for each dataset, the name and average AUCs, i.e. averaged over all 100 

repetitions, for random classifier selection, classifier pre-selection, and set-specific 300 

classifier selection. 

The pre-selection procedure always results in rf or glmnet. The mean benefit of 

empirically pre-selecting a classifier is small: the AUC improvement ranges between -

0.02 01 and 0.06 07 with a mean of 0.02. In a pairwise comparison over all datasets (p < 

0.05, one-sided Wilcoxon signed-rank test), the AUC values by pre-selection were 305 

significantly larger than the AUC values by random selection. The AUC rank improves 

by 0.542 on average. Including dataset-specific information by inner CV yields a mean 

AUC improvement of 0.02 and improves the rank, on average, by 0.656. In a pairwise 

comparison of set-specific and random classifier selection over all datasets (p < 0.05, 
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one-sided Wilcoxon signed-rank test), the AUC increase was also statistically 310 

significant. 

Given this simulation, the expected benefit of pre-selecting a classifier for a new 

dataset based on results from (chemo)radiotherapy-specific numerical studies is limited 

with an average increase in AUC of 0.02. 

Discussion 315 

Our results suggest that there is indeed an overall ranking of classifiers in 

(chemo)radiotherapy datasets, with rf and glmnet leading the ranking. However, we also 

observe that the performance of a classifier depends on the specific dataset. Pre-

selecting classifiers based on evidence from related datasets would, on average, 

provides a benefit for investigators because it increases discriminative performance. An 320 

increase in average discriminative performance is desirable in that an investigator would 

be less likely to discard their data because of a perceived absence of predictive or 

prognostic value. The estimated 0.02 mean AUC improvement might appear small but it 

comes ‘for free’ with classifier selection based on empirical evidence from multiple 

radiotherapy datasets. Furthermore, the 0.02 AUC improvement is relative to random 325 

classifier selection. If an investigator had initially chosen rpart, which is the overall 

worst performing classifier in our study, switching to the preselected classifier would 

result in an average AUC increase of 0.07. Switching from LogitBoost, which is the 

second worst performing classifier in our study, to the preselected classifier would 

result in an average AUC increase of 0.04. 330 

The results in table 3 show that classifier pre-selection and set-specific classifier 

selection, on average, yield the same AUC increase. We think that the usefulness of set-

specific classifier selection is dependent on the size of the training set: classifier pre-

selection is preferable for small datasets, set-specific classifier selection is better for 
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larger datasets. Classifier pre-selection represents choosing classifiers using evidence 335 

from a large collection of similar datasets from the general radiotherapy outcome 

domain. Set-specific classifier selection represents choosing classifiers based on the 

training set, which is a considerably smaller evidence base but comes from the patient 

group under investigation. If the training dataset is too small, selecting classifiers based 

on results from other datasets might be less-error prone. On the contrary, if an 340 

investigator has collected a large dataset, they have the option to conduct set-specific 

classifier selection (with all 6 classifiers) for their training data using our documented R 

code1. 

In table 3, one can observe that the pre-selected classifier is mostly rf and 

sometimes glmnet. To understand this behaviour, consider dataset A: glmnet was pre-345 

selected for set A by selecting the classifier with the best average AUC rank in all other 

sets (excluding set A). Note that, for all 12 datasets together, the average AUC rank for 

rf is only slightly better than for glmnet (2.298 for rf and 2.43 45 for glmnet; the average 

of the rows in figure 5). Since glmnet performs badly while rf performs best in set A, 

excluding this information leads to a better average AUC rank for glmnet and a worse 350 

average AUC rank for rf in the remaining 11 datasets. As a consequence, glmnet 

becomes the pre-selected classifier for this dataset. A similar behaviour is observed for 

sets C I and E but not in sets C, D, E, H, D, F, I, where glmnet also performs worse than 

rf but the difference between both classifiers is smaller and does not induce a switch in 

the pre-selected classifier.  355 

The result that classifier pre-selection is as good as set-specific selection in the 

studied datasets does not imply that one cannot determine a better classifier for a new 

dataset. Our implementation of set-specific classifier selection only evaluates the 

performance of various classifiers but does not directly take into account properties of 
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the dataset itself. For example, if an investigator collected a dataset in which the 360 

outcome has a quadratic dependency on a feature, glmnet would not be able to capture 

this relation (since it models only linear effects) but rf would. However, pre-selecting a 

classifier based on results from other (chemo)radiotherapy datasets works well on 

average. Furthermore, including set-specific classifier selection complicates the 

modelling process and therefore might not be desirable. 365 

In this study, we collected 12 datasets for different treatment sites, i.e. (non-) 

small cell lung cancer, head and neck cancer, meningioma with different outcomes, i.e. 

survival, pneumonitis, esophagitis, odynophagia, regional control. However, this 

collection is certainly not a complete representation of treatment outcome datasets 

analyzed in the field of radiotherapy. Furthermore, we only studied one implementation 370 

of classifiers while classifier performance may vary between implementations. Past 

studies, however, indicate that classifier implementations in R interfaced with caret are 

competitive5. Given the apparent lack of comparative classifier studies in radiotherapy, 

our intention has been to provide numerical evidence for classifier selection to 

investigators even though our analysis is not exhaustive. 375 

We intentionally limited the analysis to classifier selection while ignoring 

factors such as the investigator’s experience, usage in literature, hypothetical feature 

dependencies, and model interpretability. This restriction imitates the current trend to 

delegate modelling decisions to machine learning algorithms and/or non-domain 

experts. Nonetheless, we feel the need to emphasize that including these factors has 380 

merit. Furthermore, expertise on a specific classifier could warrant its selection: 

Lavesson and Davidsson (2006)32 observed in a study on 8 datasets from different 

research domains that the impact of hyperparameter tuning exceeds that of classifier 

selection. Therefore, the investigator could tune a classifier for better performance by 
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also tuning the hyperparameters outside the subset of hyperparameters tuneable inside 385 

caret. Even in those cases, however, we suggest comparing these results to simpler 

implementations of rf and glmnet as these classifiers on average have the best 

discriminative performance according to this study.  

Finally, for the clinical implementation of classifiers, model interpretability is 

arguably a major requirement33: this view is also convincingly motivated by Caruana et 390 

al.34. Fortunately, our study shows that glmnet, which is an intuitive classifier, is also 

one of the best performing classifiers.   

Conclusion 

We have modelled treatment outcomes in 12 datasets using 6 different classifier 

implementations in the popular open-source software R interfaced with the package 395 

caret. Our results provide evidence that the easily interpretable elastic net logistic 

regression and the complex random forest classifiers generally yield higher 

discriminative performance in (chemo)radiotherapy outcome and toxicity prediction 

than the other classifiers. Thus, one of these two classifiers should be the first choice for 

investigators to build classification models or to compare one’s own modelling results. 400 

Our results also show that an informed pre-selection of classifiers based on existing 

datasets improves discrimination over random selection. 
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Appendix A 545 

Table A1 lists performance metrics per classifier. These values are averaged over all 

repetitions and datasets (100 repetitions * 12 datasets = 1200 data points each). 

Accuracy and Cohen’s kappa were computed at the 0.5-cutoff. Calibration fails in some 

outer folds for every classifier resulting in either large or undefined values for intercept 

and/or slope. This failure occurs frequently with nnet and rpart. Undefined (NaN) 550 

values are excluded when calculating the median. 
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Figure 1. Experimental design: each dataset is split into 5 stratified outer folds (step 1). 

For each of the folds, the data is pre-processed (imputation, dummy coding, deleting 555 

zero variance features, rescaling) (step 2). The hyperparameters are tuned in the training 

set via a 5-fold inner CV (steps 3-5). Based on the selected hyperparameters, a model is 

learned on the training set (step 6) and applied on the test set (step 7). Performance 

metrics are calculated on the test set (step 8) and stored for all outer folds. This process 

is repeated 100 times for each classifier. Randomization seeds are stable across 560 

classifiers within a repetition to allow pairwise comparison. 
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Figure 2. Box- and scatterplot of the AUC rank (lower being better) per outer 5-fold CV 

aggregated over all datasets and repetitions (12 datasets * 100 repetitions = 1200 data 

points per classifier). 565 
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Figure 3. Pairwise comparisons of each classifier pair (12 datasets * 100 repetitions = 

1200 comparisons per pair). The numbers in the plot indicate how often classifier A (y-

axis) achieved an AUC greater than classifier B (x-axis). The color indicates whether 

the increased AUCs by classifier A are statistically significant (violet), insignificant 570 

(light violet), or have not been tested (grey). The significance cutoff was set to the 0.05-

level (one-sided Wilcoxon signed-rank test, Holm-Bonferroni correction for 15 tests). 
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Figure 4. The mean AUC for each pair of classifier and dataset (100 repetitions = 100 

data points per pair). 575 

 

Figure 5. The mean rank derived from the AUC (100 repetitions = 100 data points per 

pair). 
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Table 1. Dataset characteristics. The number of features is determined before pre-processing. 

Dataset Disease Outcome Prevalence 

(in %) 

Patients Features Feature types Source 

Belderbos et al. 

(2005)9 

Non-small cell lung cancer Grade ≥2 acute 

esophagitis 

27 156 22 Clinical, dosimetric, 

blood 

Private 

Bots et al. (2017)10 Head and neck cancer 2-year overall survival 42 137 10 Clinical, dosimetric Private 

Carvalho et al. 

(2016)11 

Non-small cell lung cancer 2-year overall survival 40 363 18 Clinical, dosimetric, 

blood 

Public12 

Janssens et al. 

(2012)13 

Laryngeal cancer 5-year regional control 89 179 48 Clinical, dosimetric, 

blood 

Private 

Jochems et al. 

(2016)14 

Non-small cell lung cancer 2-year overall survival 36 327 9 Clinical, dosimetric Private 

Kwint et al. 

(2012)15 

Non-small cell lung cancer Grade ≥2 acute 

esophagitis 

61 139 83 Clinical, dosimetric, 

blood 

Private 
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Lustberg et al. 

(2016)16,17 

Laryngeal cancer 2-year overall survival 83 922 7 Clinical, dosimetric, 

blood 

Private 

Morin et al. 

(forthcoming) 

Meningioma Local failure 36 257 18 Clinical Private 

Oberije et al. 

(2015)18 

Non-small cell lung cancer 2-year overall survival 3617 548536 20 Clinical, dosimetric Public19 

Olling et al. 

(2017)20  

Small and non-small cell lung 

cancer  

Odynophagia 

prescription medication 

67 131 47 Clinical, dosimetric Private 

Wijsman et al. 

(2015)21 

Non-small cell lung cancer Grade ≥2 acute 

esophagitis 

36 149 11 Clinical, dosimetric, 

blood 

Private 

Wijsman et al. 

(2017)22 

Non-small cell lung cancer Grade ≥3 radiation 

pneumonitis 

14 188 18 Clinical, dosimetric, 

blood 

Private 

 580 
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Table 2. Classifier characteristics. 

 585 

Classifier caret4 label  R package  Requires dummy 

coding 

 

Tuned hyper-

parameters 

Elastic net logistic 

regression 

glmnet glmnet25 Yes 𝛼, 𝜆 

Random forest rf randomForest26 No 𝑚𝑡𝑟𝑦 

Single-hidden-layer 

neural network 

nnet nnet27 No 𝑠𝑖𝑧𝑒, 𝑑𝑒𝑐𝑎𝑦 

Support vector 

machine with radial 

basis function (RBF) 

kernel 

svmRadial kernlab28 Yes 𝜎, 𝐶 

LogitBoost LogitBoost caTools29 Yes 𝑛𝐼𝑡𝑒𝑟 

Decision tree rpart rpart30 No 𝑐𝑝 
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Table 3. For each dataset, the AUC rank averaged over all repetitions when (a) randomly selecting a classifier (Random classifier), (b) pre-

selecting the classifier with the average best AUC rank in all other datasets, i.e. without any information about the current dataset (Pre-selected 

classifier), (c) selecting the classifier that yielded the highest AUC in the inner CV (Set-specific classifier). Improvements in average AUC and 

average AUC rank compared to (a) are reported. The average AUC improvements by pre-selection and set-specific selection were tested for 

statistical significance (p < 0.05, one-sided Wilcoxon signed-rank test) and found to be statistically significant (*). No other statistical tests 590 

besides the two aforementioned tests were conducted. 

Dataset 

Random 
classifier Pre-selected classifier Set-specific classifier 

Rank 

Name 

Rank AUC Rank AUC 

Mean Mean Increase Increase Mean Increase Increase 

Set A 3.43 glmnet 3.64 -0.21 0.00 3.10 0.33 0.02 

Set B 3.44 rf 2.92 0.52 0.02 3.31 0.13 0.00 

Set C 3.49 rf 1.94 1.55 0.05 2.78 0.71 0.03 

Set D 3.59 rf 2.60 0.99 0.05 3.31 0.28 0.02 

Set E 3.53 rf 1.89 1.63 0.05 2.58 0.94 0.03 

Set F 3.57 rf 2.99 0.58 0.04 3.52 0.05 0.01 

Set G 3.43 rf 3.81 -0.39 0.00 1.70 1.73 0.05 

Set H 3.65 rf 1.59 2.06 0.07 1.71 1.93 0.06 

Set I 3.49 glmnet 3.50 0.00 0.00 2.08 1.42 0.03 

Set J 3.52 rf 4.18 -0.67 -0.01 3.41 0.11 0.01 

Set K 3.59 rf 3.33 0.26 0.02 3.20 0.39 0.02 

Set L 3.44 rf 3.50 -0.06 0.00 3.66 -0.22 -0.01 

Mean 3.51   2.99 0.52 0.02* 2.86 0.65 0.02* 
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Table A1. Median performance metrics per classifier aggregated over repetitions and datasets (1200 data points each). Undefined (NaN) values 

are excluded when calculating the median. 

Classifier AUC 
Brier 
score Accuracy 

Cohen's 
kappa 

Calibration 
intercept 

error 
Calibration 
slope error 

rf 0.71 0.19 0.70 0.14 0.12 0.38 

glmnet 0.71 0.20 0.70 0.14 0.26 0.66 

nnet 0.69 0.22 0.67 0.11 0.31 0.87 

svmRadial 0.69 0.19 0.70 0.06 0.32 0.82 

LogitBoost 0.66 0.24 0.66 0.18 0.24 0.60 

rpart 0.62 0.23 0.67 0.17 0.22 0.55 

 


