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ABSTRACT 35 

Purpose: We are developing a computerized segmentation tool for the inner and outer bladder wall 

as a part of an image analysis pipeline for CT urography (CTU). 

Materials and Methods: A data set of 172 CTU cases was collected retrospectively with IRB 

approval. The data set was randomly split into two independent sets of training (81 cases) and 

testing (92 cases) which were manually outlined for both the inner and outer wall. We trained a 40 

deep-learning convolutional neural network (DL-CNN) to distinguish the bladder wall from the 

inside and outside of the bladder using neighborhood information. Approximately 240,000 regions 

of interest (ROIs) of 16 x 16 pixels in size were extracted from regions in the training cases 

identified by the manually outlined inner and outer bladder walls to form a training set for the DL-

CNN; half of the ROIs were selected to include the bladder wall and the other half were selected to 45 

exclude the bladder wall with some of these ROIs being inside the bladder and the rest outside the 

bladder entirely. The DL-CNN trained on these ROIs was applied to the cases in the test set slice by 

slice to generate a bladder wall likelihood map where the gray level of a given pixel represents the 

likelihood that a given pixel would belong to the bladder wall. We then used the DL-CNN likelihood 

map as an energy term in the energy equation of a cascaded level sets method to segment the inner 50 

and outer bladder wall. The DL-CNN segmentation with level sets was compared to the 3D hand-

segmented contours as a reference standard. 

Results: For the inner wall contour, the training set achieved the average volume intersection, 

average volume error, average absolute volume error, and average distance of 90.0±8.7%, -4.2± 

18.4%, 12.9±13.9%, and 3.0±1.6mm, respectively. The corresponding values for the test set were 55 

86.9±9.6%, -8.3±37.7%, 18.4±33.8%, and 3.4±1.8mm, respectively. For the outer wall contour, the 

training set achieved the values of 93.7±3.9%, -7.8±11.4%, 10.3±9.3%, and 3.0±1.2mm, 
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respectively. The corresponding values for the test set were 87.5±9.9%, -1.2±20.8%, 11.9±17.0%, 

and 3.5±2.3mm, respectively.   

 60 

Conclusions: Our study demonstrates that DL-CNN assisted level sets can effectively segment 

bladder walls from the inner bladder and outer structures despite a lack of consistent distinctions 

along the inner wall. However, even with the addition of level sets, the inner and outer walls may 

still be over segmented and the DL-CNN assisted level sets may incorrectly segment parts of the 

prostate that overlap with the outer bladder wall. The outer wall segmentation was improved 65 

compared to our previous method and the DL-CNN assisted level sets was also able to segment the 

inner bladder wall with similar performance. This study shows the DL-CNN assisted level set 

segmentation tool can effectively segment the inner and outer wall of the bladder. 

 

Key Words: Computer-Aided Diagnosis, Deep-Learning, Segmentation, CT Urography, Bladder, 70 

Bladder Wall 

 

1. INTRODUCTION 

The American Cancer Society estimates that in 2017, 76,900 people will be diagnosed with 

bladder cancer (58,950 in men and 18,010 in women) and that bladder cancer will be responsible for 75 

16,390 deaths (11,820 in men and 4,570 in women)1

Early detection of bladder cancer is possible using a multidetector row CT (MDCT) 

urography exam, which can image the bladder, kidneys, and ureters in a single scan

.  

2-6. Unfortunately, 

the interpretation of a CT urography (CTU) exam is a time-intensive process. A CTU scan has on 

average 300 slices in each exam with a range of 200 to 600 slices. Since multiple lesions are 80 

possible in different areas of the scan, the entire set of slices must be carefully examined by the 

radiologist to determine if a lesion is present, which involves frequent adjustment of images in order 

to best view each slice. Additionally, CTU scans often have many urinary anomalies and the 

radiologist must determine the likelihood that each anomaly is benign or cancerous. These 

challenges in CTU interpretation lead to large variance among radiologists in detecting bladder 85 

cancer.  Studies showed that the sensitivity ranges from 64% to 97% among radiologists7,8. 
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Due to the large inter-radiologist variability and the substantial chance that a radiologist may 

miss a potentially cancerous lesion, it is imperative to develop techniques that make diagnosing 

bladder cancer easier and more accurate. To accomplish this goal, we are developing a computer-

aided detection (CAD) system to assist with diagnosis of urothelial neoplasms including 90 

asymmetrical bladder wall thickenings.  A critical step in developing a CAD system is the 

segmentation of the bladder and bladder wall as it determines the search region for the subsequent 

steps.  If the bladder is under-segmented such that parts of the bladder are not included within the 

segmented region, the search may miss the lesions that appear outside the segmented region. 

Without segmentation or with an over-segmented bladder, non-bladder structures may be identified 95 

as lesions and also distract the detection of true lesions, thereby increasing the chance of both false 

positives and false negatives. Additionally, lesions typically manifest in the wall of the bladder. For 

these reasons, accurate segmentation of the bladder wall from the interior of the bladder and the 

outer structures is a crucial step in the development of a CAD system for urinary cancer.  

Segmentation of the bladder wall in CTU is a challenging task due to a number of 100 

confounding factors. Bladders may be partially or completely filled with intravenous contrast 

material or have no contrast material at all. The different conditions create an inconsistent boundary 

between the wall of the bladder, the interior, and the outside structures. The boundary between the 

contrast material inside the bladder, the bladder wall, and the surrounding structures is a weak 

boundary and the CTU images are often very noisy. A common difficulty in segmenting the bladder 105 

wall is the prostate in male patients. For some cases, the prostate protruding into the bladder has a 

similar appearance as the bladder wall. Often the interface between the bladder wall and the prostate 

is difficult to distinguish. A bladder wall segmentation method based on simple thresholding tends to 

leak into the portions of the prostate and the surrounding structures. The boundary between the non-

contrast and contrast regions of the bladder interior strongly resembles a wall, further confounding 110 

the segmentation process. Adding to these problems is the irregular sizes and shapes of the bladder. 

Even healthy bladders can be shaped oddly or appear to have anomalies, making it extremely 

difficult to accurately segment the bladders with any conventional methods.  

Previous researchers have attempted to segment the bladder. Li et al.9 and Duan et al.10 used 

magnetic resonance (MR) images to segment the bladder wall. Duan et al.11 used a window setting 115 

scheme to segment and detect tumors in MR images. Han et al.12 used a Markov random field model 
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and level sets to segment MR images. Chai et al13 developed a segmentation system for cone beam 

CT, but relied on population data as prior knowledge which can cause errors in cases that deviate 

from the training set. These methods have the advantage of being relatively fast on modern hardware, 

but these studies all employed small data sets of no more than 22 patients. Other researchers have 120 

attempted to use level sets to segment the bladder wall. Ma et al.14 used level sets to segment the 

inner wall in MR images, but relied on a separate Chan-Vese model to segment the outer wall. Chi et 

al. used coupled level sets to segment the bladder wall in MR images, but only on a small data set of 

11 patients15. Hadjiiski et al.16,17 initially proposed a level set segmentation method for bladders in 

CTU. They18 subsequently developed a new system based on the characteristics of bladder CTU 125 

images called conjoint level set analysis and segmentation system (CLASS). Cha et al.19

 In this study, we explored the use of a Deep Learning Convolutional Neural Network (DL-

CNN) to segment the bladder wall. Convolutional neural networks (CNN)

 further 

improved the segmentation accuracy of the CLASS method and expanded the data set to the one 

used in the current study. This method showed improved results over previous attempts to segment 

the bladder, but relied on two manually marked bounding boxes for the contrast-filled and non-

contrast filled regions, respectively human inputs as a starting point.  130 

20 was first applied to 

medical image pattern recognition by Lo et al.21 for lung nodule detection and has been used for the 

detection of breast lesions22-30 since the early 1990’s. These early applications used relatively shallow 

CNN and typically trained with smaller data sets due to the extensive training time and limited 135 

availability of medical images. As graphical processing units (GPU) become more commonly 

available and powerful, in combination with the design of better convergence and regularization 

techniques, the application of CNN with large number of layers and trained with larger data sets to 

complex pattern recognition tasks becomes more practical. Krizhevsky et al31,32 demonstrated the 

effectiveness of a DL-CNN in image classification on the ImageNet ILSVRC-2010 and ILSVRC-140 

2012 data sets33, and the CIFAR-10 data set34.  Since then there have been strong interests in 

applying DL-CNN to all kinds of medical imaging problems35. We explored the use of a DL-CNN 

in the segmentation of the entire bladder (Cha et al.36) and the bladder wall in previous pilot studies 

(Gordon et al.37). In Cha et al., a DL-CNN with level sets was shown to be more effective in 

segmenting the bladder than previous level set systems or other standard image segmentation 145 

techniques. In the current study, we further investigated the segmentation of the bladder wall as a 
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step towards bladder lesion detection. The DL-CNN in this study was trained to distinguish the 

bladder wall and the output of the DL-CNN was used to guide level set segmentation of the inner 

and outer bladder wall.  

This paper is organized as follows. First, the data set for this study is described. Second, the 150 

details and use of the DL-CNN is described. Third, the level set segmentation method is presented 

and lastly, the results are reported and discussed.  

 

2. MATERIALS AND METHODS 

 A DL-CNN was trained to distinguish between ROIs inside the bladder wall and ROIs not 155 

within the bladder wall. The DL-CNN outputs a likelihood map where the brightness of a given 

pixel represents the likelihood that the pixel falls within the bladder wall. The likelihood map is then 

used as a gradient image in cascaded level sets to segment the inner and outer bladder wall. The 

process is shown in the flowchart in Figure 1. 

 160 

2.1 Data set 

With IRB approval, a data set of 172 patients who had undergone CTU was collected for this 

study. The cases were collected retrospectively from the Abdominal Imaging Division of the 

Department of Radiology at Michigan Medicine.  All cases were acquired with established CTU 

protocol during the patients’ clinical care. Within this set of 172 cases, we designated 81 as part of 165 

the training set and the remaining 91 as part of the test set. The cases were balanced in difficulty by 

appearance and shape of the bladder between the training and the test set. 

In the training set, 42 bladders contained focal mass-like lesion, 21 had wall thickenings and 

18 were normal. 40 of the bladders that contained focal mass-like lesion were malignant. Sixteen of 

the wall thickened bladders were also malignant. Sixty-one bladders in the training set were partially 170 

filled with IV contrast material, 8 were fully filled, and 12 were not filled. In the test set, 42 bladders 

contained focal mass-like lesion, 36 had wall thickenings and 13 were normal. Forty-two of the 

bladders that contained focal mass-like lesion and 23 of the bladders with wall thickenings were 
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malignant. Eighty-four of the test set bladders were partially filled with contrast material, 4 were 

fully filled, and 3 were not filled.  175 

The inner and outer bladder walls were hand outlined by an abdominal radiologist with more 

than 20 years of experience for both the training and the test sets using an in-house developed 

graphical user interface that we named MiViewer. The hand outlines of the training set were used to 

classify the regions of interest for the DL-CNN training. The outlines were also used as the reference 

standard for the evaluation of the segmentation performance (see Section 2.4). Both the outer 180 

bladder wall and the inner bladder wall were outlined on each 2D slice to form a 3D surface contour 

of both bladder walls. The 172 bladders contained a total of approximately 16,000 slices, which 

equates to about 100 slices per bladder.  

 

2.2 Bladder likelihood map generation using deep-learning convolutional neural network (DL-185 

CNN) 

 We applied the DL-CNN called Cuda-Convnet developed by Krizhevsky31

2.2.1 DL-CNN components 

 to the 

classification of voxels of 2D CTU slices as being inside the bladder wall or outside the bladder wall. 

The DL-CNN was trained using regions of interest (ROIs) extracted from the 2D slices of the 

training cases and labeled as within or not within the bladder wall. After training, the DL-CNN was 190 

applied to all pixels of the CTU images in the training and test set to estimate the likelihood that an 

ROI was within the bladder wall. The output was then assigned to the center pixel of the ROI, 

resulting in a likelihood map where brighter pixels were more likely to be within the bladder wall 

and the stack of the resulting 2D likelihood maps on the CT slices formed a 3D likelihood map for 

the bladder wall.  195 

 The components and layers of the DL-CNN are described here. More information on these 

components can be found in the literature31,36. 

Neurons: �(�) = max(0, �)       (1) 200 

 A neuron is defined by the following function, A
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where x is the sum of the weighted inputs to the neuron. The activation function used in the DL-

CNN is a RE-LU (eq. (1)), which converges faster than the typically used sigmoid activation 

function38. 

Convolution layer: The convolutional layer uses convolutional kernels to convolve with the input 

ROI. The resulting values are then input to the corresponding neurons in the kernel maps within the 205 

convolutional layer. The output of these neurons is determined by the activation function in eq. (1). 

Locally-connected convolutional layer: The locally-connected convolutional layer performs the 

same set of operations as the convolutional layer, but different convolutional kernels are applied at 

each location of the input image and then collected into the corresponding neurons instead of using a 

single convolutional kernel. 210 

Fully-connected layer: The fully-connected layer connects all inputs from the previous layer. Every 

map element multiplied by a trained weight is used as input. The fully-connected layer outputs 

values, which are passed onto the next fully connected layer or finally to a Softmax layer to obtain 

the final output of the DL-CNN. There can be one or more fully -connected layers before the 

Softmax layer in a DL-CNN architecture.  215 

Pooling layer: Pooling layers summarize and reduce the outputs of groups of neighboring neurons. 

Our pooling layers use overlapping pooling due to its tendency to reduce overtraining. 

Local Response Normalization layer: Local normalization layers aid in the generalization of training 

by normalizing input parameters to subsequent layers of the DL-CNN39. 

 

The output of neurons was 

normalized by the following equation: 220 ��,�� =
��,���1 +

��∑ ���,�� �2min��,�+�2��=max�0,�−�2� �� 
(2) 

where ��,��  is the response-normalized neuron activity, ��,��  is the neuron activity computed by 

applying the kernel � at the coordinates (x, y), � is the number of kernel maps, and �, �, and � are 

constants. Our implementation of the DL-CNN used N = 9, τ = 0.001, and ɛ = 0.75, which was 

demonstrated to be effective31,36. These parameters were taken from Krizhevsky et al.31

2.2.2 DL-CNN architecture 

 and were 

further reinforced as ideal choices from our own experimentation. 225 
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The architecture of the DL-CNN used in this study consists of five main layers: two 

convolutional layers, two locally-connected convolutional layers, and one fully-connected layer, in 

that order (Figure 2). The first two convolutional layers are followed by a pooling and by a 

normalization layer before proceeding to the next layer.  230 

The first two convolutional layers consist of 64 kernels of size 5 x 5. An ROI is input to the 

first convolutional layer. The output of the first layer is pooled and normalized and then used as 

input in the second convolutional layer. After another pooling and normalization layers, the output 

of the second convolutional layer is sent to a locally-connected convolutional layer with 64 kernels 

of size 3 x 3. The second locally connected convolutional layer contains 32 kernels of size 3 x 3. The 235 

fully connected layer outputs two values used as input to the Softmax layer defined by the function: 

 �(��) =  
���∑ ����  (3) 

where xi

 

 is each input value. The layer outputs a single value in [0,1], which represents the 

likelihood of the input ROI being in the bladder wall.   

2.2.3 DL-CNN training 240 

 The DL-CNN was trained using the 81 cases in the training set. Each 2D axial slice of the 

CTU scan was divided into overlapping ROIs of M x M pixels. Following the inner and outer wall 

of the bladder of each slice hand outlined by a radiologist, the ROIs were labeled as within or 

outside the bladder wall. Three ROI sizes, M = 8, 16, and 32 were studied and the size of 16 x 16 

pixels was chosen. For each 16 x 16 ROI, the central 8 x 8 pixel image was used in the labeling 245 

criterion. If 70% of the inner 8 x 8 pixel image fell within the bladder wall, i.e., the pixels were 

located between the hand-outlined contours of the inner wall and the outer wall, the ROI was labeled 

as inside the bladder wall. 70% was chosen to ensure that a large fraction of the ROI area was within 

the wall, while not making the classification requirement so strict as to having too few ROIs that 

could be labeled as within the wall because some of the walls were very thin. If 95% of the inner 250 

ROI fell within the interior of the bladder, or if less than 10% of the ROI was located inside the 

bladder delineated by the outer wall contour, the ROI was labeled as not within the bladder wall. 

These classification requirements were chosen to properly label ROIs along the wall as not within 
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the wall while still obtaining a sufficient number of ROIs within the wall.  Figure 3 shows a bladder 

with the ROI images superimposed on top.  255 

Approximately 240,000 ROIs were extracted from the training cases after balancing. Exactly 

half of the ROIs were labeled as within the bladder wall and the other half as not within the bladder 

wall. Subsets of the ROIs are presented in Figure 4. 

The DL-CNN was trained for 1500 iterations based on our previous experience36

  

 on the 

training set to produce the bladder likelihood maps. The training process typically took about seven 260 

to eight hours to complete with a Nvidia Tesla K20 GPU. 

2.2.4 Bladder likelihood map generation 

 We applied the trained DL-CNN to the CTU scans to estimate the likelihood of a given voxel 

being within the bladder wall. For each scan, a rectangular box enclosing the bladder was drawn to 265 

denote the volume of interest (VOI). The trained DL-CNN was applied to each voxel within the VOI. 

For each voxel, a 16 x 16 pixel ROI of the axial slice centered at that voxel was input to the DL-

CNN, which output a likelihood score between 0 and 1 that represented the likelihood that the center 

pixel of the ROI was within the wall. The scores for each ROI were assigned to the center voxel in 

order to create a map of the output scores from the DL-CNN. The collection of likelihood scores for 270 

all voxels in the VOI provided the 3D bladder wall likelihood map. Examples of bladder wall 

likelihood maps on the axial slices are shown in Figure 5.  

 

2.3 Segmentation of bladder walls using level sets 

After the generation of the bladder likelihood maps, we developed a system to segment the 275 

inner and outer bladder wall using level sets.  The system takes in the 3D bladder wall likelihood 

map and incorporates it within the level set energy functions to guide the segmentation and creates a 

contour of the inner or outer wall depending on which set of parameters is used. The system consists 

of four stages: (1) preprocessing, (2) initial segmentation, (3) 3D level set segmentation, and (4) 2D 

level set segmentation.  280 
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 The first stage consists of preprocessing techniques to create a set of gradient vector images. 

Smoothing, anisotropic diffusion, gradient filters, and the rank transform of the gradient magnitude 

are applied to slices within the VOI. The vector images created at this stage are used during the 

propagation of the 3D level sets.  

 The second stage generates the initial segmentation surface and consists of three parts. First, 285 

we apply a threshold to the bladder wall likelihood maps to create a binary mask. The mask DLMask

������(�,�) = �1, �������(�,�) ≥ �
0, �������(�,�) < ��                                                (4) 

 

is generated according to the following criterion: 

where x and y are coordinates in the image, DLMask is the value of the resulting binary mask at the 

given coordinate, DLScore is the value of the likelihood map score at the given coordinate, and θ is a 290 

chosen value for the threshold. The value of θ was determined experimentally36

 The second part of the initial segmentation process is the creation of an ellipsoid as the object 

region for segmentation. An ellipsoid with major and minor axis 1.5 times the width and height of 

the VOI, respectively, is placed at the centroid of the bladder mask. The intersection between this 

ellipsoid and bladder mask is the object region. This ellipsoid prevents the segmentation from 

leaking into the surrounding structures outside the bladder by limiting the area to which the contours 300 

can expand. This limited object region prevents interference from non-bladder structures and solves 

the problem of high likelihood scores on other regions of the CT scan such as the pelvic bone, which 

often receives high likelihood scores.  

 by histogram 

analysis. By using the training cases a histogram of the DL-CNN likelihood scores for the pixels 

inside and outside of the bladder within the VOIs was generated. The threshold of 0.85 provided a 

good separation of the two classes and the best contours that did not leak to the outside of the 

bladder wall while closely approaching the hand segmentation for cases in the training set. 295 

 Finally, neighboring components in the object region are connected using a morphological 

dilation filter with a 2-voxel-radius spherical structuring element, a 3D flood fill algorithm, and a 305 

morphological erosion filter with a 2-voxel-radius spherical structuring element. This process allows 

for the extraction of an initial segmentation surface �0(�⃗) from the bladder wall likelihood map for 

use in the level set propagation. 
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The third stage of the system propagates the initial segmentation towards the inner or outer 

bladder wall using cascading level sets. The level set contours are generated according to the chosen 310 

level set equation: 

���Ψ(�⃗) = −��(�⃗)∇ Ψ(�⃗) − ��(�⃗)|∇ Ψ(�⃗)| +  ��(�⃗)|∇ Ψ(�⃗)|,               (5) 

 Ψ(�,� = 0) =  �0(�⃗) 

α, β, and γ are the coefficients for the advection, propagation, and curvature terms, respectively. A(�⃗) 

is a vector field image where each voxel in the image is a vector. P(�⃗) is a scalar speed term between 

0 and 123

κ(�⃗)= div(∇Ψ(�⃗)/|∇Ψ(�⃗)|).                                                          (6) 

. κ(�⃗) is the mean curvature of the level set at the point �⃗ and can be defined as  315 

 The symbol ∇ denotes the gradient operator, div is the divergence operator, �0(�⃗) is the initial 

segmentation, and n is the number of iterations. The bladder wall likelihood map is used as the Ψ(�⃗) 

term in the fourth level set as an integral part of the advection, propagation and curvature terms, 

while the original CTU volume is used for the first three level sets.  320 

 The advection term drives the contour towards regions of high gradient according to the A(�⃗) 

vector. The propagation term controls the expansion of the contours according to local pixel 

information. The curvature term causes the contour to maintain relative shape and curvature while 

expanding.   

 Four different 3D level sets are applied sequentially. The first level set expands the initial 325 

contours slightly and smooths edges. The second level set brings the contours towards sharp edges 

and draws it slightly in regions of low gradient. The third level set finishes drawing the contour 

toward edges. The fourth level set draws the contours towards the inner and outer bladder walls, 

using the bladder wall likelihood map for the ∇Ψ(�⃗) term in equation 5. The level set equations are 

run twice, once for the outer contour and once for the inner contour, using different parameters.  330 

As the final step in the level set system, 2D level sets are applied to each slice of the 3D 

segmented object, using the 3D level set generated contours on each slice as an initial contour, to 
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further refine the contours. Further details on the methods of cascading level sets and the necessity 

of 2D level sets to refine segmentation can be found in our previous publications16,36,40

 335 

. 

Table 1 shows the coefficient information for each round of level sets. The differences in the 

runs for outer and inner wall segmentation are the parameters α, β, and γ and the number of 

iterations (n) in the fourth level sets. Notably, the propagation coefficient β is positive when running 

the level set equations for the outer wall so the contour expands to the outer wall and negative for 

the inner wall so the contour propagates inwards. The coefficients used for the first 3 rounds of level 340 

sets are the same as those used in our previous bladder segmentation36.  The parameter q in Table 1 is 

defined by the linear function �� + �, where M is the 2D diagonal distance of the VOI in mm, � = 0.06,���  � = −0.11 as shown in previous work36

 

.  

2.4 Evaluation Methods 345 

Segmentation performance was evaluated by comparing the generated contours to 3-D hand 

segmented contours. The inner and outer walls were each independently compared to the hand 

outlined inner and outer wall contours. We calculated the volume intersection ratio, the volume error, 

the absolute volume error, and the minimum distance as performance metrics, defined below. 

Additionally, we compared the area between the inner and outer wall contours to that of the hand 350 

outlined-contours using the volume intersection, the volume error, and the absolute volume error. 

The volume intersection is the ratio of the intersection between the given volume enclosed by 

the contour generated by the level sets and the reference volume enclosed by the reference contour, 

to the reference volume: 

 �3� =
�� ∩ ����  (7) 

where VU is the given volume and VR

The volume error is defined as the ratio of the difference between the reference volume and 

the given volume to the reference volume: 

 is the reference volume. 355 A
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 �3� =  
�� − ����  (8) 

Since the given volume is segmented by the level sets, a positive error represents under-

segmentation of the bladder wall, while a negative error indicates over-segmentation. We also 

calculate the absolute volume error |E3D| to show the average deviation from the reference contours. 360 

Other performance indicators can be derived from the volume intersection ratio and the volume 

error41

AVDIST is the average distance between the closest points on the reference and the given 

contours: 

. 

 ������ =  
1

2
�∑ ���{�(�,�):� ∈ �}�∈� �� +

∑ ���{�(�,�):� ∈ �}�∈� �� � (9) 

R is the reference contour, U is the given contour and NR and NU

The volume intersection ratio, the volume error, and the absolute volume error are also 

calculated for the region between the inner and outer wall contours. These metrics are calculated in 

the same way as for the outer and inner wall contours, except that V

 are the number of voxels along 365 

each respective contour. The function d is the minimum Euclidian distance between a given voxel x 

on the contour R to a voxel ���⃗  on the contour U. The minimum distances of all points along R are 

calculated and then averaged. The minimum distances of all points along U are also calculated and 

averaged by repeating the process with the roles of R and U switched.  The overall average distance 

AVDIST between the two contours is then calculated from the two average minimum distances. 370 

R and VU

The volume intersection ratio is also calculated for the lesions and the outer wall contour to 375 

determine what percent of the lesions is successfully enclosed by the segmentation.  

 are the volume of the 

shell enclosed between the outer wall contour and the inner wall contour.  

3. RESULTS 

3.1 Segmentation performance of inner and outer wall contours 

Examples of segmentation results from the test cases are shown in Figure 6. The DL-CNN 

bladder wall likelihood maps that were used to guide the segmentation are also shown.  380 
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Histograms for the training and test sets for the volume intersection ratio, the volume error, 

and the average distance are shown in Figure 7.  

The average segmentation performances for the training and test sets using the different performance 

metrics are shown in Table 2. 

For the training set, the inner wall contour achieved average volume intersection ratio, average 385 

volume error, average absolute volume error, and average distance of 90.2±8.7%, -4.3± 18.2%, 

12.6±13.7%, and 3.0±1.6mm, respectively. For the test set, the inner wall achieved values of 

87.2±10.5%, -5.3±28.2%, 15.6±24.0%, and 3.2±1.7mm, respectively. For the training set, the outer 

wall contour achieved the values of 93.2±5.8%, -7.2±12.3%, 10.4±9.6%, and 3.0±1.2mm, 

respectively. For the test set, the outer wall contour achieved values of 89.5±9.8%, -6.2±20.5%, 390 

14.6±15.6%, and 3.5±2.0mm, respectively.  

 

3.2 Performance of combined wall contours 

For the segmented bladder wall, the training set achieved volume intersection ratio, volume 

error, and absolute volume error of 61.0±11.3%, -13.7±49.1%, and 34.5±37.3%, respectively. The 395 

test set achieved values of 54.6±10.4%, 10.7±28.0%, and 25.1±15.8%, respectively. 

 

Due to the small volume of the wall compared to the entire bladder volume enclosed by 

either the inner or the outer walls, small differences between the contours lead to large fluctuations 

in the measured values, which is the main reason that the performance metrics are worse for the 400 

segmented wall than the individual inner and outer wall contours.   

  

3.3 Lesion Intersection 

To determine if the DL-CNN with level sets enclosed bladder lesions within the contours, we 

evaluated the volume intersection between the lesion as the reference contour and the outer wall as 405 

the given contour. Histograms of the result are shown in Figure 8. For the DL-CNN outlined walls, 

the average volume intersection ratio is 80.3 ± 23.8% for the training set and 81.6 ± 16.6% for the 

test set. 70.2% of the lesions have a volume intersection ratio over 75% with the DL-CNN assisted 

level sets contours compared to 89.1% for the hand outlined contours.  
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3.4 Level Set Method Comparison 410 

Table 3 shows a comparison between performing segmentation by using the likelihood map as the Ψ(�⃗) term in only the fourth level set and by using the likelihood map as the Ψ(�⃗) term in all four 

stages of the cascading level sets. When the likelihood map was used only in the fourth level set the 

volume intersection index was significantly better (p-value < 0.01) for the outer wall in both the 

training and test set. For the inner wall, the difference was not significantly different in either the 415 

training or the test set. 

 To further demonstrate the effectiveness of the level set method with the DL-CNN, we 

compared the DL-CNN with level sets method to contours created using the DL-CNN without level 

sets (Table 4). The DL-CNN without level sets tended to over segment the inner wall but under-

segment the outer wall.  With the refinement by the level sets, both the over-segmentation of the 420 

inner wall and under-segmentation of the outer wall were reduced significantly (p < 0.01), as 

indicated by the volume error, absolute volume error, and average distance. 

 

4. Discussion 

We developed a segmentation method to extract the bladder wall from the interior of the 425 

bladder and the surrounding structures. The method uses a deep learning convolutional neural 

network combined with a series of cascading level sets to detect the contours for the inner and outer 

walls of the bladder in CTU scans. Segmentation of the wall presents many challenges; some are 

associated with segmentation of the bladder in general, and others are unique to the segmentation of 

the wall specifically. The training and test sets of CTU scans contain bladders completely filled with 430 

contrast material, partially filled, and not filled. The boundary between the wall and the interior of 

the bladder is drastically different depending on whether contrast material is present. The 

combination of the DL-CNN and level sets is able to account for the difference in the regions, 

demonstrating that the DL-CNN can overcome the strong barrier between regions, even for narrow 

regions such as the bladder wall. 435 

The small thickness of the bladder wall presents other problems for segmentation as well. 

Bladder walls can vary in thickness drastically compared to the full bladder. Thin walls can be only 
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few pixels wide compared to bladder walls with urothelial thickenings. The DL-CNN often has 

difficulties with this variation while the level sets are able to account for this difference.  The DL-

CNN and the level sets play complementary roles in segmenting the bladder wall and generating the 440 

likelihood maps.  

The presence of lesions also presents another confounding factor for segmentation of the 

wall. Our DL-CNN assisted level sets method often generates inner wall contours through the 

lesions rather than around them (Figure 9), although the bladder wall likelihood maps typically 

include the lesions accurately during the estimation of the bladder wall.   445 

 The 16 x 16 ROI size was chosen after experimenting with ROIs of 8 x 8, 16 x 16, and 32 x 

32 pixels in size. The 8 x 8 pixel ROIs tended to generate too much noise in the bladder wall 

likelihood maps, specifically along the barrier between the contrast and non-contrast region. 8 x 8 

pixel ROIs also had the tendency to create gaps in parts of the wall that were extremely thin (Figure 

10b). 32 x 32 pixel ROIs resulted in walls that were far too thick in the bladder likelihood maps. Due 450 

to the small thickness of the wall, ROIs of 32 x 32 pixels were too large to accurately represent the 

wall (Figure 10d). The 16 x 16 pixel ROIs were chosen as a middle ground because they provided 

bladder wall likelihood maps that did not have as many gaps or as much noise as those obtained with 

the 8 x 8 pixel ROIs, but provided thinner walls that resulted in more accurate contours than the 32 x 

32 pixel ROIs (Figure 10c).  455 

 To further prevent holes in the bladder wall likelihood maps, we developed a method for the 

generation of the ROIs that can capture the thin regions of the bladder wall, while still using an ROI 

size large enough to accurately capture the wall features in thicker walls. In this method, a 16 x 16-

pixel ROI is used to train the deep learning algorithm, but only the central 8 x 8-pixel area of the 

ROI is used for the labeling of the ROI, referred to as 8 x 8 jittering. If 70% of this inner 8 x 8 pixel 460 

area falls between the hand-outlined outer and inner wall contours, the ROI is labeled as within the 

bladder wall; otherwise, the ROI is classified as not within the bladder wall. Using the central 

smaller area rather than the whole ROI allows more ROIs to be correctly labeled as within a thin 

wall, while preventing more ROIs outside the wall from being mislabeled as within the wall.  

This jittering technique combined with the added level set equation were important 465 

methodological changes from the method used in Cha et al.36 The addition of another round of level 
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sets that incorporate the DL-CNN likelihood map in the equation allow the level sets to segment 

both the inner and outer bladder wall as opposed to just the entire bladder as a whole. 

 The only small drawback in the use of 16 x 16 ROIs is a slight increase in the training time; 

an increase from 5.5 to 6.5 hours due to an increase in the number of training ROIs compared to the 470 

use of 32 x 32 ROIs. However, both 16 x 16 and 32 x 32 ROI sizes take about 4 min to generate a 

bladder likelihood map during deployment so this drawback is a minor one. The ROI size does not 

affect the time required for running the level sets either, which takes about 2 to 5 minutes per 

contour.  

 The likelihood map was chosen to be used only in this fourth level set based on our 475 

experimental results (Table 3). When the likelihood map was used only in in the fourth level set the 

segmentation results were more accurate. The fourth level set is crucial to differentiating between 

the outer wall and the inner wall for the level set segmentation. 

 In the cascaded level sets pipeline, each level set shows progressively improved results over 

the previous level set, justifying the need for each subsequent level set. Table 5 shows the volume 480 

intersection ratios from the third to the last level sets. 

The inclusion of lesions within the bladder wall contours is important for the bladder wall 

segmentation as the segmented wall defines the search region for bladder lesions in the subsequent 

steps of a CAD system. A segmentation method that can reliably include all lesions is therefore 

critical for the CAD system to identify cancerous lesions or find wall thickenings. The results of this 485 

study show that our proposed method is promising for this application.  

 Compared to the study by Cha et al.36 on the same data set, the current study showed better 

performance. The purpose of the study by Cha et al.36 was to segment the entire bladder so that they 

only needed to segment the outer bladder wall and also used a DL-CNN with level sets. The volume 

intersection ratios for the training set and test set achieved in the current study were significantly 490 

better (p value < 0.01) than those in the previous study. The volume intersection ratios were 93.7% 

and 89.5% for the training and test sets, respectively, in this study compared to 84.2% and 78.0%, 

respectively, by Cha et al36.  The differences in the absolute percent volume errors for the training set 

and test set are not significant, however.   
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In order to demonstrate the effectiveness of our proposed deep learning approach to this problem, we 495 

compared the performance for the outer wall segmentation from this study with the previous attempt 

at segmenting the same data set using an adaptive level set system (CLASS)16. We also applied a 

commonly used image segmentation tool, ITK-SNAP, to a subset of our CTU data as it was used by 

Ma et al. 13,14

 510 

  to segment the bladder walls in T2-wieghted MR images.  The performance of the 

DL-CNN with level sets is significantly better (p-value < 0.01) than that of ITK-SNAP and CLASS 500 

for the metrics of volume intersection and absolute volume error. Table 6 shows the comparison of 

the performances by CLASS and DL-CNN. CLASS is a level set system that does not use a DL-

CNN to assist with segmentation. The improved results of the DL-CNN with level sets show the 

value of a deep learning approach to bladder segmentation. Table 7 shows the average values for a 

smaller data set of 30 bladders used for ITK-SNAP alongside values from the same data set for 505 

CLASS and DL-CNN. Even with the limited scope of previous experiments, the performance of the 

DL-CNN with level sets is significantly better than that of ITK-SNAP and CLASS with a p value 

less than 0.01 for the metrics of volume intersection and absolute volume error on the smaller data 

set. 

 One limitation of our current segmentation method was observed for CT scans with thick 

slices and an unusually small bladder. For small bladders, the level sets cannot change fast enough to 

account for the rapid differences between slices when slices are 5mm thick. This problem could 

potentially be overcome by selecting a different set of parameters that is optimized for thick slices 

and the small bladders.  An automated pre-processing triage stage that can recognize small bladders 515 

with thick slices has to be developed and call for the specific set of parameters for the segmentation 

of these outlier cases. We will continue to optimize the parameters of the level sets in future studies. 

The small thickness of the wall also presents problems in the evaluation of the DL-CNN and 

level set contours. While the outer and inner contours individually achieved good results compared 

to the reference standard, the overlap of the wall between the inner and outer contours achieved 520 

much lower results in terms of the volume intersection and the volume error. Since the bladder wall 

can be very thin, small deviations in the wall contours can lead to massive errors that are not 

observed when comparing the bladder as a whole. Cases in both the training and the test sets with 
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good performance for the inner and outer wall contours had noticeably poorer performance in the 

wall between the two contours due to these small deviations.  Examples of bladder wall 525 

segmentations are presented in Figure 11. 

 

Another limitation associated with the method is the reliance on hand outlines from a single 

radiologist. Generating outlines from multiple radiologists and taking the average will reduce the 

bias for the reference standard, which will allow better estimation of the DL-CNN performance. 530 

However, due to the excessive time required to generate manual hand outlines for such a large data 

set (a total of approximately 16,000 slices of bladder outlines), only one set of hand outlines was 

obtained and used for evaluation. 

5. Conclusions 

 Our results in this study show that the DL-CNN assisted level set method is useful for 535 

segmentation of the bladder wall in CTU scans. This method can specifically segment the bladder 

wall by detecting both the inner and outer wall contours of the bladder. The DL-CNN can accurately 

differentiate the bladder wall from the interior of the bladder and the surrounding structured 

background. The segmentation of the wall is an important first step for automated lesion detection 

and bladder analysis. Further studies are underway to improve the performance of the wall 540 

segmentation process, especially for the inclusion of lesions within the wall contours. This study 

lays the important groundwork for further efforts to develop computerized decision support systems 

for diagnosis and treatment of bladder cancer.  
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Figure 1: Flowchart of DL-CNN segmentation that shows generation of a bladder wall likelihood 710 

map and use of level sets to obtain inner and outer wall contours. The DL-CNN likelihood map was 

used as a gradient image in the energy equation of a cascaded level sets method. 

 

Figure 2. Block diagram showing our DL-CNN architecture. The input layer is the classified ROIs 

and the output of the trained DL-CNN creates a likelihood map. 715 

 

Figure 3: ROIs superimposed on a CTU slice. The darker boxes are ROIs determined to be within 

the wall and the lighter boxes are ones determined not to be within the wall. The number of ROIs are 

balanced so that the training ROIs contain exactly half within each category. 

 720 

Figure 4: 16 x 16 pixel ROIs. (a) ROIs labeled as being within the wall; (b) ROIs labeled as not 

within the wall. 

 

Figure 5: Bladder wall likelihood maps (b), (d) shown with the CTU slices (a), (c) from which they 

were generated. The brighter pixels represent a higher likelihood of that pixel occurring in the wall. 725 

 

Figure 6: (a) and (c) are bladder wall likelihood maps generated from CTU scans from the test set (b) 

and (d), respectively. The level set contours are overlaid on the CTU slices. 

 

Figure. 7: Histograms of the volume intersection % (a, b), volume % error (c, d), and average 730 

distance (e, f) for the training and test sets, respectively. 
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Figure 8: Histogram of the lesion volume intersection. The graph (a,b) shows results both for the 

radiologist hand-outline contours and the DL-CNN with level set contours for the training and test 

set, respectively. 735 

 

Figure 9: Segmented contours on a CTU slice. The inner contour goes through the lesion rather than 

around it. The small contours in the lower right of the image are ignored. 

 

Figure 10: Likelihood maps of the CTU slice shown in (a). (b) was generated using 8 x 8 ROIs, (c) 740 

by 16 x 16 ROIs, and (d) by 32 x 32 ROIs. All likelihood maps were shown with the same 

brightness and contrast window settings. 

 

Figure 11: Comparisons between the hand-outlined contours and the computer segmented contours.  

(a), (c), and (e) show the outer wall contour, and (b), (d), and (f) the inner contour. The dark and 745 

light contours in each image represent the hand-outlined contour and the computer-segmented 

contour, respectively. The 2D area intersection ratio of the thin wall between the inner and outer 

wall contours (a) 50.0%, (c) 53.0%, and (e) 55.9%. 
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Table 1: Level set parameters. The parameters listed in the “Fourth” row are listed as inner wall 

parameter/ outer wall parameter. 

Level Sets α ȕ Ȗ n 

First 1 2 1 10 

Second 1 0.6 q 150 

Third 0 1 0 10 

Fourth 4.5/3 -2.5/2 2/2 150/100 

2D Slices 4 0.2 0.5 100 

 

 

Table 2: Summary of the performance metrics for the inner and outer bladder walls 

  

Volume 

Intersection 

(%) 

Volume 

Error       

(%) 

Absolute 

Volume Error 

(%) 

Average 

Distance 

(mm) 

Training 
Inner 90.2±8.7 -4.3± 18.2 12.6±13.7 3.0±1.6 

Outer 93.2±5.8 -7.2±12.3 10.4±9.6 3.0±1.2 

Test 
Inner 87.2±10.5 -5.3±28.2 15.6±24.0 3.2±1.7 

Outer 89.5±9.8 -6.2±20.5 14.6±15.6 3.5±2.0 

 

 

Table 3: Comparison between using the likelihood map for all level sets and using the likelihood 

map for only the fourth level set. 

  

 
Volume 

Intersection 

(%) 

Volume 

Error 

(%) 

Absolute 

Volume 

Error 

(%) 

Average 

Distance 

(mm) 

Training Inner 
All level sets 93.5±4.5 -14.0±25.0 16.5±23.3 3.0±1.4 

4th level set only 90.2±8.7 -4.3± 18.2 12.6±13.7 3.0±1.6 
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Outer 
All level sets 81.8±8.0 13.3±9.8 14.1±8.5 3.8±1.5 

4th level set only 93.2±5.8 -7.2±12.3 10.4±9.6 3.0±1.2 

Test 

Inner 
All level sets 88.5±10.3 -8.0±27.7 16.8±23.4 3.3±1.7 

4th level set only 87.2±10.5 -5.3±28.2 15.6±24.0 3.2±1.7 

Outer 
All level sets 76.1±11.9 18.0±15.5 19.8±13.0 4.7±2.4 

4th level set only 89.5±9.8 -6.2±20.5 14.6±15.6 3.5±2.0 

 

 

Table 4: Comparison between bladder contours generated by using the DL-CNN with level sets 

and contours generated directly from the DL-CNN likelihood map without applying level sets. 

  

 
Volume 

Intersection 

(%) 

Volume 

Error 

(%) 

Absolute 

Volume 

Error 

(%) 

Average 

Distance 

(mm) 

Training 

Inner 
DL-CNN without Level Sets 97.6±2.1 -33.8±36.1 33.8±36.1 4.0±1.9 

DL-CNN with Level Sets 90.2±8.7 -4.3± 18.2 12.6±13.7 3.0±1.6 

Outer 
DL-CNN without Level Sets 72.8±8.7 24.3±8.8 24.3±8.8 5.2±1.6 

DL-CNN with Level Sets 93.2±5.8 -7.2±12.3 10.4±9.6 3.0±1.2 

Test 

Inner 
DL-CNN without Level Sets 94.2±8.0 -29.3±32.6 30.9±31.1 4.1±2.2 

DL-CNN with Level Sets 87.2±10.5 -5.3±28.2 15.6±24.0 3.2±1.7 

Outer 
DL-CNN without Level Sets 76.5±12.0 17.7±15.2 19.5±13.0 4.6±2.5 

DL-CNN with Level Sets 89.5±9.8 -6.2±20.5 14.6±15.6 3.5±2.0 

 

 

Table 5: The volume intersection ratios after the 3rd level set, the 4th level set, and the full level 

set cascade. The segmentation by the full cascaded level sets achieved the best performance. 

 
After 3rd level set 

(%) 

After 4th level set 

(%) 

Full level set cascade 

(%) 
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Outer Training Set 77.7±7.9 89.7±6.8 93.2±5.8 

Inner Training Set 77.7±7.9 79.3±7.0 90.2±8.7 

Outer Test Set 72.4±11.8 84.3±11.4 89.5±9.8 

Inner Test Set 72.3±11.5 74.9±10.6 87.2±10.5 

 

 

Table 6. Comparison of the outer wall segmentation using CLASS versus the proposed DL-

CNN assisted level set method. 

 Volume 

Intersection   

(%) 

Volume Error 

(%) 

Absolute 

Volume Error             

(%) 

Average 

Distance      

(mm) 

DL-CNN 89.5±9.8 -6.2±20.5 14.6±15.6 3.5±2.0 

CLASS 84.0±11.4 8.2±17.4 13.0±14.1 3.5±1.9 

 

 

Table 7. Comparison of the outer wall segmentation by the proposed DL-CNN 

assisted level set method to those using the ITK-SNAP and CLASS on 30 cases 

 Volume 

Intersection  

(%) 

Volume 

Error  

(%) 

Absolute Volume 

Error  

(%) 

Average 

Distance  

(mm) 

DL-CNN 94.4±3.2 -8.5±9.8 10.0±8.3 3.0±1.2 

ITK-SNAP 78.8±16.3 8.3±33.1 24.2±23.7 5.2±2.6 

CLASS 79.0±8.2 16.1±16.3 19.9±11.1 3.5±1.3 
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