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ABSTRACT

Purpose: We_aredevelopng a computerizedegmentatioool for the inner and outer bladder wall
as a part of an'image analysis pipefmeCT urography(CTU).

Materials and Methods: A data set of 17ZTU cases was collectectrospectivelywith IRB
approval The data set was randomly split irtt@o independent sets of training (81 cases) and
testing (92 casesyhich were manuallyoutlined for both the inner and outer wale trained a
deeplearning, convolutional neural network (BEZNN) to distinguish the blater wall from the
inside andoutsideof the bladder using neighborhood informatidpproximately240,000 regions

of interest (ROIS)of 16 x 16 pixels in sizewere extractedrom regions in the training cases
identified by the manually outlined inner and outer bladder walferm a trainingset for the DL
CNN; half of the ROIs wereelectedo include the bladder wall and the other half were selected to
exclude the bladder wall with some of these Rdsg inside the bladder and the rest outside the
bladder entirely..The DICNN trained on these ROIs was applied todases in the test sglice by
slice to generate"a bladder wall likelihood map where the gray level of a given pixel represents the
likelihoodthata'given pixel would belong to the bladder wall. We then used tlE&\DLKkelihood

map as an energy term in the energy equation of a cascaded level sets method to segment the inner
and outer bladder walllhe DL-CNN segmentation with level setsas compared to the 3D hand
segmented contours as a reference standard.

Results: Forthe inner wall contourthe training set achieved the average volume intersection
average volume error, average absoldkime error, and average distance of 90.0+8.7%2+
18.4%, 12.9£13.9%, and 3.0t1.6mmnespectively The corresponding values fdre test setvere
86.919.6%, 8.3+37.7%, 18.4+33.8%, and 3.4+1.8nmmespectively. Fothe outer wall contouthe
training set achieved the values O8.7+£3.9%, -7.8411.4%,10.3£9.3%, and 3.0£1.2mm
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respectively.The corresponding values ftre test setvere 87.5+£9.9%, 1.2+20.8%, 11.9+17.0%,

and 3.5+2.3mnespectively.

Conclusions: Our study demonstrates that fINN assistedlevel sets can effectively segment
bladderwalls from the inner bladder and outer structures despite a lack of consistertidis

along the,inner.wall. However, even with the addition of level sets, the inner andwvall'emay

still be over:segmented and the -OINN assistedevel sets may incorrectly segment parts of the
prostate that overlap with the outer bladder wall. The outer wall segmentation was improved
compared to our previous method and the CNIN assistedevel sets was also able to segment the
inner bladder wall with simélr perfamance This study shows th®L-CNN assistedlevel set

segmentation toalan effectively segment the inner and outer wall of the bladder.

Key Words: ComputerAided Diagnosis, Deepearning, Segmentation, CT Urography, Bladder,
Bladder Wall

1. INTRODUCTION
The American Cancer Society estimates that in 2017, 76,900 people will be diagnosed with
bladder cancer (58,950 in men and0l® in women) and that bladder cancer will be responsible for
16,390 deaths (11,820 in men and 4,570 in woimen)

Early detectionof bladder cancer is possible usingnailtidetector row CT (MDCT)
urography exam, which can image the bladder, kidneys, and ureters in assarfifleUnfortunately,
the interpretation of a CT urography (CTU) exam is a {imensive process. A CTU scan has on
average 300 slices in each exam with a range of 200 to 600 slices. Since multiple lesions are
possible indifferent areas of the scan, the emstteof slices must be carefully examined by the
radiologisttordetermine if a lesion is presenthich involves frequent adjustment of images in order
to best view each slice. Additionally, CTU scans often have many urinary anomalies and the
radiologist metudetermine the likelihood that each anomaly is benign or cancerous. These
challengesin CTU interpretationlead tolarge variance among radiologista detecing bladder

cancer Sudies showed that the sensitivity ranges f@#t% to 97% among radiologss®.
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Due tothe large interadiologist variabilityand thesubstantial chandbat a radiologisinay
miss a potentially cancerous lesion, it is imperative to develop techniques that malasidgagn
bladder cancer easier and more accurate. To accomplish this goal, we are developing a-computer
aided detection (CAD) system to assist with diagnosis of urothelial neoplashsgling
asymmetrical kadder wall thickenings A critical step in developing a CAD system is the
segmentation,of,the bladdand blader wall as it determines the search region for shbsequent
steps If the bladder is undesegmented such that parts of the bladder arénohtdedwithin the
segmented/regigrthe searchmay miss the lesions that appear outside the sege@ntegion
Without segmentation or with an oveegmented bladder, nditadder structuremay be identified
as lesionsnd/also distract the detection of true lesidinsrebyincreasing the chance bbthfalse
positivesand false negativeg\dditionally, lesions typically manifest in the wall of the bladder. For
these reasons, accurate segmentation of the bladder wall fromtehier of the bladder and the

outer structures is a crucial step in the develpnof a CAD system for urinary cancer.

Segmentation of the bladdevall in CTU is a challenging task due to a number of
confounding factors. Bladders may be partially or completely filled with intravenoosast
material or have no contrast materiablt The different conditiongreate an inconsistent boundary
between the wall of the bladdehe interior, and the outside structuréhe boundary betweethe
contrast material side the bladder, the bladder wall, and the surrounding structures is a weak
boundaryand:ithe-CTU images are often very noi&ycommon difficultyin segmentinghe bladder
wall is the prostate in male patients. For some cases, the prostate protruding biéaldiee has a
similar appearance as the bladder wall. Often the interface between the bladder wall and the prostate
is difficult to distinguish A bladder wall segmentatianethodbased on simple thresholding tends to
leakinto the portions of the prostate and the surrounding structures. The boundary between the non
contrastand eontrastegiors of the bladdeinterior strongly esembles a walfurther confounding
the segmentation process. Addingheseproblemsis the irregulasizes and shapes the bladder.

Even healthy bladders can be shaped oddly or appear to have anomalies, making ityextremel

difficult to accurately segment thadders with any conventional methods.

Previousresearchers have attempted to segrttenbladderLi et al® and Duan et af.used
magnetic resonance (MR) images to segment the bladderDmalh et &' used a window setting

scheme to segment and detect tumors in MR images. Hatt asedl a Mar&v random field model
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and level sets to segment MR imag€bai et af developed a segmentation system for cone beam
CT, but relied on population data as prior knowledge which carecausrs in cases that deviate
from the training sefThese methods have the advantage of being relafeslgn modern hardware,

120 but these studiesll employedsmall data setef no moe than 22 patiets. Other researchers have
attempted to use level sets to segment the bladder wall. M&*eisall level sets to segment the
inner wallin.MR.imagesbutrelied on a separate Chafesemodel to segment the outer wall. Chi et
al. used coupled.level sets to segment the bladder wall in MR imagesnly on a small data set of
11 patient8 Hadjiiski et al**'" initially proposeda level setsegmentation metid for bladders in

125 CTU. They® subsequently developet new system based on the characterigifcsladder CTU
images called conjoint level set analysis and segmentation system (CLASS). Chafuathedr
improvedthe segmentation accuracy of the CLASS metaod expanded the data set to the one
used inthe currentstudy. This method showed improved results over previous attempts to segment
the bladder, butelied ontwo manually marked bounding boxes for the contfiiletl and non

130 contrast filled regions, respectively human inputs as a starting point.

In this study we explored the use of a Deep Learning Convolutional Neural Network (DL
CNN) to segment the bladderall. Convolutional neural networks (CNWN)was first applied to
medical image pattern recognition by Lo et*dbr lung nodule detectioand has been used for the
detection of breast lesiofts’ since the early 1990'These earlhapplicationsused relativly shallow
135 CNN andtypically trained withsmaller data setdue to the extensive training tinand limited
availability ©f medical imagesAs graphical processing units (GPU) become mooenmonly
available and powerful, in combination with the design of better conveegand regularization
techniquesthe application o€NN with large number of layend trained with larger data séts
complex patternrecognition taskecomes more practicakrizhevsky et af*> demonstrated the
140 effectiveness ofia DICNN in image classification on tHenageNet ILSVRGE2010 and ILSVRE
2012 data 'sets“and the CIFARLO data sé& Since then therdave beerstrong interests in
applying BI=CNN to all kinds of medical imaging probleth&Ve explored the use of a BECNN
in the segmentation of the entildadder(Cha et aff) and the bladder wall in previous pilot studies
(Gordonet al®). In Cha et al.,, a DICNN with level sets was shown to Ineore effectivein
145 segmenting the bladder thamevious levelset system®r other standard imagsegmentation
techniquesin the current study, we further investigated the segmentation ofatddslwall as a
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step towards bladder lesion detectidime DL-CNN in this study was trained to distinguish the
bladder walland the output of the DCNN was used to guide level set segmentation of the inner

and outer bladder wall.

This paper is organizeakfollows. First, the data set for this study is described. Second, the
details and-use‘ofithe DCNN is described Third, the level set segmentation method is presented

andlastly, the results areported and discussed

2. MATERIALSAND METHODS

A DL-CNN was trained to distinguish between ROIs inside the bladder wall and ROIs not
within the bladder wall. The DICNN outputsa likelihood map where the brightness of a given
pixel represents:the likelihood tHhte pixel falls within the bladder wall. The likelihood map is then
used as a gradient image cascaded level sets to segment the inner and outer bladdef keall.

process is shawn in the flowchart in Figure 1.

2.1 Data set

With IRB approvala data set of 17@atientsvho had undergon€TU was collected for this
study. The.ecases werenllected retrospectively from the Abdominal Imaging Division of the
Departmentof Radiology at MichigarMedicine All cases were acquired with established CTU
protocolduring‘the patients’ clinical car&Vithin this set ofL72cases, we designated 81 as part of
the training'set and the remaining & part of the test set. The cases were balanced in diffipulty

appearance and shape of the blat@ween the training and the test set.

In the training set, 42 bladders contained focal Hikkedesion, 21 had wall thickenings and
18 were normald0 of the bladderghat contained focal madge lesionwere malignant. Sixteeof
the wall thickened bladders were atsalignant.Sixty-onebladdersan the training set were partially
filled with IV contrast material, 8 were fully filled, and 12 were nibd. In the test set, 4Bladders
contained focal madike lesion, 36 had wall thickenings and 13 were norrRalty-two of the

bladders thatontained focal madge lesionand 23 of the bladders witlall thickeningswere
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malignant. Eighty-fourof the test set bladders were patrtially filled with contrast matetialere

fully filled, and 3 were not filled.

The inner and outer bladder walls were hand outlined by an abdominal radiologist with more
than 20 years of experience for both the trginamd the test sets using anhiouse developed
graphical userinterface that we named MiViewdre hand outlines of the training set were used to
classify the regions of interest for the flINN training. The outlines wewrdso used as the reference
stanard for the_evaluationof the segmentation performance (sesct®n 2.4). Both the outer
bladder wall,and/the inner bladder wall were outlined on each 2D slice to formwfaBescontour
of both bladder walls. The 17@adderscontained a total of approximately 16,000 slices, which

equates to about 100 slices per bladder.

2.2 Bladder'likelihood map generation using deep-lear ning convolutional neural network (DL -
CNN)

We ‘applied the DICNN called Cuda&Conwet developed byKrizhevsky/® to the
classification‘ofvoxelsof 2D CTU slices as being inside the bladaell or outside the bladder wall.
The DL-CNN.was trainedusing regions of interest (ROIs) extracted from the 2D slices of the
training cases and labeled as within or not within the bladder wall. After training, H@&NDLwas
applied toall pixels of theCTU images in the training and test set to estimate the likelihood that an
ROI was within_the bladder wall. The outputas then assigned to the center pixel of the ROI
resulting in‘a likelihood map where brighter pixelsre more likely to be within thdladder wall
and thestackof'the resulting 2D likelihood maps on tBd slicesformeda 3D likelihood map for
the bladdewall:

2.2.1 DL-CNN+components
The eomponents and layers of the BNN are described here. More information on these
comporents«carbe found in the literatufe®.

Neurons. A neuren is defined by the following function,

f(x) = max(0, x) (1)
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where x is the sum of the weighted inputs to the neuron. The activation function used in the DL
CNN is aRE-LU (eqg. (1)), which convergefaster than the typically used sigmoid activation

functiorte.

Convolution dayer: The convolutional layer uses convolutional kernels to conveftie the input

ROI. The resulting=values are then input to the corresponding neurons in the kernel tiigphevi

convolutional layer. The output of these neurons is determined by the activation functiorijn eq. (

Locally-connected convolutional layer: The locallyconnected convolutional layer performs the

same set of operations as the convolutional layer, but different convolutionakkamelpplied at
each location/of the input image and then collected into the corresponding nestead of using a

single convolutional kernel.

Fully-connected-ayer: The fully-connected layer connects all inputs from the previous layer. Every

map elerentsmultiplied by atrainedweight is used as input. The fultpnnected layer outputs
values, which are passed onto the next fully connected layer or finalytftmax layeto obtain

the final output of the DICNN. There can be one or mofally-connected laysrbefore the
Softmaxlayerina DL-CNN architecture.

Pooling layer: Pooling layers summarize and reduce the outputs of groups of neighboring neurons.
Our pooling layers use overlapping pooling due to its tendenmduce overtraing.

Local ResponseNermalization layer: Local normalization layers aid in the generalization of training

by normalizing input parameters sabsequent layers of the BINN*. The output of neurons was
normalized by'the following equation:

i
QAyxy

<1 +£ m1n(nl+ (axy) > (2)

N j= max(Ol

i
byy =

Whereb,‘;,y is=the" responseormalized neuron activit)q;’y is the neuron activity computed by
applying the kernel at the coordinatesx(y), n is the number okernelmaps, anV, t, ande are
constantsOur implementation of the BCNN used N = 9z = 0.001, and € = 0.75, which vas
demonstrated to beffectiveé**®, These parameters were taken from Krizhevsky étaid were

further reinforced as ideal choices from our own experimentation.

2.2.2 DL-CNN architecture
This article is protected by copyright. All rights reserved



The architecture of the DCNN used in this study consists of five main layers: two
convolutonal layers, two localkgonnected convolutional layers, and one fabnnected layer, in
that order(Figure 2).The first two convolutional layes arefollowed by apooling and by a
230 normalizationlayer before proceeding to the next layer.

The firstitwoconvolutional layers consist of 64 kernels of size 5 ArbROI is input to the
first convolutional layer. The output of the first layer is pooled and normalizédhen used as
input in the second convolutional layer. After another pooling and norratidayers the output
of the second _convolutional layergent toa locallyconnected convolutional lay&ith 64 kernels
235 of size3 x 3¢ The second locally connected convolutional layer contains 32 kernels of size 3 x 3. The

fully connected layer outputs two values used as input to the Softmax layer defined by iba:funct

eXi
e’
where x is each, input value. The layer outputs a single vatu¢0,1], which represents the
likelihood of the input ROI beingn the bladder wall

flx) = (3)

240 2.2.3DL-CNN'training
The DL-CNN wastrainedusing the 81 cases in the training set. Each 2D axial slice of the
CTU scan was divided into overlapping ROIsMx M pixels.Following the inner and outer wall
of the bladder of each slice hand outlined by a radiolotist ROIswere labeledas within @
outsidethe bladder wall. ThreROI sizes, M= 8, 16,and 32 were studied and the size of 16 x 16
245 pixels waschosen For eachl6 x 16 ROI, the cerdl 8 x 8 pixel image was used in the labeling
criterion If /0% of the inner 8 x 8 pixel image fell within the bladder waé,, the pixels were
located betweethe handoutlined contows of the inner wall and the outer wall, th©Rwaslabeled
asinside the.bladder wall. 70% was chosen to ensure that a large fractiorR@theea wasvithin
the wall, while not making the classification requirement so strict astmg too fewROls that
250 could be labeled, awithin the wallbecause some of the walls were very thir95% of the inner
ROI fell within theinterior of the bladderor if lessthan 10% of theROI was locatednside the
bladder delineatetly the outer wall contouthe ROI was labeled as not within the bladdel.wa

These classification requirements were choseoraperly labelROIs along the wall as not within
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the wall while still obtaining a sufficient number of RQWithin the wall Figure 3shows a bladder

with the ROI imagesuperimposed on top.

Approximately 240,000 ROIs were extracted from the training asesbalancingExactly
half of the ROIS\weréabeled as withithe bladder wall and the other hal not withinthe bladder
wall. Subset®fthesROIs are presentedhigure 4.

The DL.CNN was trained for 1500 iterations based on our preveoyerienc& on the
training sett0 producethe bladder likelihood maps. The training process typically took about seven
to eight hours to completeith a Nvidia Tesla K20 GPU

2.2.4 Bladder likelihood map generation

We applied the trained DCNN tothe CTU scans to estimate thkelihood of a given voxel
being within'the-bladder walFor each scana rectangular bornclosing the bladdevasdrawnto
denote the yolume of interest (VOThetrained DL-=CNN was applied to each voxel within the VOI
For each voxel, a 16 x 16 pixBIOI of the axial slicecentered at that vox&as input to the DL
CNN, whichoutput a likelihood score between 0 and 1 that repeeéetlikelihoodthatthe center
pixel of the"ROIlwaswithin the wall. The scores for each R@lereassigned to the center voxel in
order to create a map of the output scores from th&€BN. Thecollection of likelihood scores for
all voxels inntheVOI providedthe 3D bladderwall likelihood map Example of bladderwall

likelihood maps on thexial slices areshown in Figure 5.

2.3 Segmentation-of bladder wallsusing level sets

After'the generation of the bladder likelihood maps,dseelopeda system to segment the
inner and outer bladder wall using level sets. The system takbs 3D bladderwall likelihood
map ad incorporated within thelevel setenergyfunctionsto guide the segmentati@amd creates a
contour ofithe inner or outer wall depending on which spacdmeterss used The systentonsists
of four stages: (1) preprocessing, {@fial segmentation, (3) 3D level set segmentation, and (4) 2D

level set segmentation
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The first stage consists of preprocessing techniqueretde a set of gradient vector images.
Smoothing, anisotropic diffusiomgradient filters, and the rank transform of the gradient magnitude
are applied to slices within the VOThe vector images created this stage are used during the
propagation of th8D level sets.

The second stage generates the initial segmentatitatsand consists dhreeparts First,
we apply.a threshold to the bladdeall likelihood maps to create a binary mask. The niislga«
is generatedhaccording to the followiagterion

_ 1, DLgcore(x,y) = 0
DLyqask(x,y) = {()’ DLgcore(x,y) < 6 ?

where x and.y. are coordinates in the imdgley.s is the value of the resulting binary mask at the
given coordinate;, Décoreis the value of the likelihood map score at the given coordinate, and 6 is a
chosen value for the threshol@the value of 6 was determined experimentally®* by histogram
analysis.By“using the training caseshastogram of the DYCNN likelihood scors for the pixels
inside and outside of the bladder within the VOIs was generatetthresholdof 0.85provided a
good separation_of the two classasd the best contosrthat did not leak to the outside of the
bladderwall while,closely approaching the hand segmentation for cases in the training set.

Thessecond part of the initial segmentation process is the creation of an ellipsoid as the object
region for segmentation. An ellipsoid with major and minor axis 1.5 times the width and dieigh
the VOI, respectivelyis placed at the centroid of the bladder masie intersection between this
ellipsoid and bladder mask is the object regidhis ellipsoid prevents theegmentatiorfrom
leaking intothe surrounding structures outside the bladder by limiting the area to which the sontour
can expandrhis limited object region preveminterference from nobladder structures and solves
the problem-efshigh likelihood scores on other regions of the CT scan such as théqadviahich
often receives high likelihoostcores.

Finally, neighboring components in the object region are connected using a morphological
dilation filter with a 2voxel+adius spherical structuring element, a 3D flooddijorithm,and a
morphological erosion filter with a2oxel+adius spherical structuring elemenhis process allows
for the extraction of an initial segmentation surfegéx) from the bladdewall likelihood mapfor

use in the level sgiropagation.
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The third stage of the systgmnopagateshe initial segmentation towards the inner or outer
310 bladderwall using cascading level sefthe level set contours are generated according to the chosen

level set equatian
%‘P(J?) = —aA(X)V Y (x) — BPIVE)| + ye()IVE ()], (5)

Y(x,n=0)= ¢o(x)

a, B, and y ar€'thé'coefficients for the advection, propagation, and curvature termsspectively. Af)
is a vector fieldimage where eaabixel in the imagés a vector P) is a scalaspeed ternbetween

315 0and % k(%) is the mean curvature of the level set at the pbanid can be defined as
K(X)= div(VP(X)/|VE(X))). (6)

The symbolV denotes the gradient operator, div is the divergence opefg(@) is the initial
segmentation, and n is the number of iteratidhg bladdewall likelihood map is used as tH&x)
termin the fourth level seés an integral part of the advection, propagation and curvature, terms

320 while theroriginalCTU volumeis used for the first three level sets

Thesadvection term drives the contour towards regions of high gradient according td@)the A(
vector. The propagation term controls the expansion of the contours according to local pixel
information, Fhe.curvature term causes the contour to maintain relative shape and curvaterre whil

expanding.

325 Fou different 3D level setsare applied sequentiallyrhe firstlevel setexpands the initial
contous slightly=and smooths edges. The sedewnél setbrings the contours towards sharp edges
and draws it slightly in regions of low gradiefithe thirdlevel setfinishes drawing the contour
toward edges. The fourth level sdtawsthe contours towards the inner and outer bladder walls
using the bladder wall likelihooshapfor theV¥W(X) term in equation 5The level set equations are

330 run twice;ence for the outer contour and once for the inner contour, using differenttpasame

As the final step in the level set system, 2D level sets are applied to each slice of the 3D

segmented object, using the 3D level set generated contours on each slice as aontuotial to
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further refine the contours. Further details on the methodaswfadindevel sets and the necessity

of 2D level sets to refine segmentation can be found in our previous publi€éti®ns

Table 1 shows the coefficient information for each round of level sets. The differences in the
runs for outer.and inner wall segmentatiare the parameters o, B, and y and the number of
iterations (n)n.the fourth level setNotably, the propagation coefficient 3 is positive when running
the level set equations for the outer wall so the contour expands to the outer wall divé hega
the inner wall so the contour propagates inwarte coefficients used for the first 3 roundslevel
sets are the same as those usealr previous bladder segmentatforThe parameteg in Table 1is
defined by thdinear functionoM + ¢, where M is the 2D diagonal distance of the VOI in mm,

o = 0.06,and ¢ = —0.11 as shown in previous wofk

2.4 Evaluation Methods

Segmentatiomperformance was evaluated by comparing the generated contoub hargl
segmented contours. The inner and outer walls were each independently compared to the hand
outlined inner.and outer wall contours. We calculated the volume interseatio, the volume error,
the absolute volume error, and the minimum distaas@erformance metrigsdefined below.
Additionally; we=compared the area between the inner and outer wall contouas & the hand

outlined-contours usinghevolume intersection, the waine error, anthe absolute volume error.

The yolume intersection is the ratio of the intersection between the given volulosedrty
the contour‘generated by the level satd the reference volunemclosed by the reference contour

to the reference vomme

o _ Va0V
Vi ()

where \{ is thegiven volume and ¥ is the referenceolume.

The volume error is defined as the ratio of the difference between the reference volume and

the given volume to the reference volume:
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Ve = Vy

3D _
= )

Since thegiven volumeis segmentedby the level sets, a positive error represents under
segmentation..of the bladder wall, while a negative error indicatessegenentation. We also
calculate the. absolute volume errof-]J&o show the average deviatiaorh the reference contours.
Other performance indicators can be derived from the volume intierseatio and the volume

errors,

AVDIST=is the average distance between the closest points on the referertbe given

contours:

1 (erR min{d(x,y):y € U} N Yyeymin{d(x,y):x € R}) o
9

AVDIST = —
2 NR NU

R is the reference contour, U is the given contour apcahd N, are the number of voxekong
each respective contour. The function d isrtiieimum Euclidian distance between a given voxel

on the contour Ro avoxely on the contour U. The minimunlistances of all points along &e
calculated andhen averaged. Thainimum distances of all points along U are also calculated and
averagedy-repeatinghe process with the roles ofdRd U switched The overallaverage distance

AVDIST between the two contouisthen calculateftom the twoaveraganinimum distances.

The velume intersection ratighe volume error, andhe absolute volume erroare also
calculated for.the region between the inner and outer wall contours. These areticasculatedh
the samavay as for the outer and inner wall contsugxceptthatVg and \, are the volumef the

shellenclosedetweerthe outer wall contour and tlrener wall contour.

The volume intersection ratie also calculated for the lesions and the outer wall contour to
determine what percent of the lesionsuscessfully enclosed by the segmentation.

3.RESULTS
3.1 Segmentation performance of inner and outer wall contours

Examples of segmentatiaesuls fromthe testcasesare show in Figure6. The DL-CNN
bladderwall likelihood maps that were used to guide segmentatiomrealsoshown.
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Histograms for the training and testssktr the volume intersection ratidhe volume error,

and theaveragalistance are shown in Figure 7.

The average segmentation performances for the training and test sets using the different performance

metrics are shown in Table 2.

For the training.set, the inner wall contour achieved average volume intersetiioravaage
volume error,. average absolute volume error, and average distance of 90.2:4832%418.2%,
12.6+13.P6{ and)3.0+1.6mmrespectively For the test set, the inner wall achieved values of
87.2+10.5%, 5.3+28.2%, 15.6£24%, and 3.2+1.ihm, respectively. For the training set, the outer
wall cortour /achieved the values of 93.2+5.8%.2+12.3%, 10.419.6%, and 3.0+1.2mm
respectively:"For the test set, the outetl wantour achieved values of 89.5+9.8%,2+20.%%,
14.6+15.686and 3.5+2.thm, respectively.

3.2 Performance of combined wall contours

For the 'segmented bladder watlhe training seaichieved volume intersection ratimlume
error, and absolute alume error of 61.0+11.3%,-13.7+49.%, and 34.5+37.3%respectively. The
testsetachievedvalues of 54.6+10.4%, 10.7+28.0%, and 25.1+159bectively.

Dueto the small volume of the wall compared to ¢idire bladdervolume enclosed by
either the inner or the outer wallsmall differences betwedhe contours lead to large fluctuations
in the measured valuewhich is the main reason that the performance metréze worsefor the

segmented wathan the individual inner and outer wall contours.

3.3 Lesion Intersection

To determine if th®L-CNN with level sets encleslbladder lesions within the contours, we
evaluated the velume intersection between the lesion agfdrencecontour and the outer wall as
the givencentour. Histogramsf the result are shawnin Figure8. For the DL-CNN outlinedwalls,
the average volume intersection ratil@& 3+ 23.8% for thetraining set and 81.6 16.6% for the
test set 70.2% of the lesions have a volume intersection ratio over 75% withLt{@&NI assisted

level setcontours compared to 89.1% for tiend outlined contours.
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3.4 Level Set Method Comparison

Table 3 shows a comparison between performing segmentation by using the likelihoad thap
Y(x) term_in_only the fourth level saind by using the likelihood mags the¥(x) termin all four
stages of the"cascading level sets. When the likelihood map was used only in the folust kiree
volume intersectionndex was significantly better {gpalue < 0.01) for the outer wall in both the
training and, test set. For the inner wall, the difference was not significantly differenten thih

training or the test set.

To further demonstrate the effectiveness of the level set method with tR&NDI_we
compared the DL-CNN with level sets method to contours created using tG&NLwithout level
sets (Table4)."The DCNN without level sets tended to over segment the inner wall but under-
segment the outer wall. With the refinement by the level sets, both the over-ségmenhtihe
inner wall and undesegmentation of the outer wall were wedd significantly (p < 0.01), as

indicated by the volume error, absolute volume error, and average distance.

4. Discussion

We developed a segmentation methodeidractthe bladdemall from the interior of the
bladder anduthe. surrounding structures. The method uses a deep learning convoluti@hal neur
network combined with aeriesof cascading level sets tietect thecontours for the inner and outer
walls of the bladder in CTU scanSegmentation of the wall presemmny challengessome are
assocated with segmentation of the bladder in general,adinelrs arainique to the segmentation of
the wall specificallyThe training ad test setof CTU scans contaibladders completely filled with
contrast materialpartially filled, and not filledThe mundary between the wall and timeerior of
the bladder=is=drastically different depending evhether contrast material is present The
combination”of the DICNN and level sets is able to account for the difference irragmns
demonstratinghat the -CNN can overcome the strong barrmtween regions, even faarrow

regions such as the bladder wall.

The smallthicknessof the bladder wall presents other problems for segmentation as well.

Bladder wals can vary inthicknessdrasticallycompared to the full bladder. Thin walls can be only
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few pixels wide compared tbladderwalls with urothelial thickeningsThe DL-CNN often has
difficulties with this varigion while the level sets are able to account for this differeridee DL-
CNN andthe level setplay complementaryoles in segmenting the bladder wall and generating the
likelihood maps.

The presence of lesions also presents another confounding factor for segmentaimn of t
wall. Our DL-CNN assistedlevel ses methodoften generatesnner wall contours through the
lesions rather than around theigure 9),although the bladdewall likelihood maps typically
include he lesions accuratetjuringthe estimation of the bladder wall.

The 16 x 16 ROI size was choserea#ixperimentingvith ROIs of8 x 8, 16 x 16, and 32 x
32 pixek in"sizeThe 8 x 8 pixel ROIs tended to generate too much noise in the bladaer
likelihood maps; specifically along the barrier between the contrast ardontnast region. 8 x 8
pixel ROIs also had the tendency to create gaps in parts of the wall that were extrem@ligtie
10b). 32 x 32 pixel ROIs resulted in walls that were far too thick in the bladder likelihquxd Dize
to the smalthicknessof the wall, ROIs of 32 x 32 pixglwere too large to accurately represent the
wall (Figure™20d)The 16 x 16 pixelROIls werechosenas a middlegroundbecausehey provided
bladder wall likelthood maps that did not have as many gaps or as much nbisseabtained with
the 8 x 8 pixel ROIs, buytrovidedthinner walls that resulted in more accurate contours than the 32 x
32 pixel RQIs Figure1Qc).

To furtherprevent holes in the bladdeall likelihood maps, we developed a method for the
generation of the ROIs that can capture the tegions of the bladder wall, while still using ROI
size large enough to accurately capture the wall features in thicker hwaliss methoda 16 x 16
pixel ROI isiusedi to train the deep learning algorithmt only the cemal 8 x 8-pixel areaof the
ROl is usediorthelabeling of the RQlreferred to as 8 x 8 jitteringf 70% of ths inner 8 x 8pixel
area falls betweethe hanebutlined outer and inner wall conteutheROI is labeledas within the
bladder wall“otherwise, theROI is classfied as not withinthe bladder wallUsing thecentral
smaller areaather than the whole ROI all@wmore ROIs to be correctlabeledaswithin a thin

wall, while preventingnoreROlIs outside the wall from beingislabeledas within the wall.

This jittering technique combined with the added level set equation were important

methodological changes from the methusd in Cha et &.The addition of another round of level
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sets that incorporate the BENN likelihood map in the equation allow the level sets to segment

both the inner and outer bladder wall as opposed to just the entire addamhole.

The only small drawback in the use of 16 x 16 ROIs is a slight increase in thegttaime;
an increasedromy5.5 to 6.5 hours due to an increase in the number of tRigwpmpared tohe
use of 32 x:32:R0Ols. However, both 16 x 16 and 32 x 32 ROI sizes take abouidgemnerate a
bladder likelihood mapluring deployment so this drawback is a minor @i ROI sizedoes not
affect the timerequired for runninghelevel setsither, which takes about 2 to 5 minutes per

contour.

The ‘likelihood mapwas chosen to be used only in this fourth level set based on our
experimental‘results (Table 3). When the likelihood map was used only in in the fourtbetietred
segmentationesults were more accurate. The fourth lewtlis crucial to differentiatig between

the outer wall and the inner wall firelevel setsegmentation

In the cascadeldvel setgipeling eachlevel setshowsprogressivelymproved results over
the previous level set, justifying the need for each subsequent levEabkt.5showsthe volume

intersectiorratiesfrom the third to the last level sets

The inclusion of lesions within the bladder wall contours is importanthibladderwall
segmentatigras the segmented wall defines the search region for bladder lesions in the subsequent
steps of a CAD systenA segmentatiormethodthat can reliably include all lesions tiserefore
critical for the CAD system to identify cancerous lesions or find wall thickenings. The redutis

study showthateur proposed method is prorgifor this application.

Compared: to thetudy byCha et af® on the same data set, tba@rrent studyshowed better
performanceFhe-purpose of the study I§ha et af® was to segment the entire bladder so that they
only needed-torsegment thater bladder walind also used a BCNN with level setsThe volume
intersectionsratie for the training set and test sathieved in the current studyere significantly
better(p value <:0.01}hanthose in the previous studyhe volume intersection rasavere 93.7%
and 89.5% for the training and test sets, respectively, in this study compared to 84.2% and 78.0%,
respectivelyby Cha et &f. Thedifferences in thabsolute percent vatoe errors for the training set

and test set amot significant, however.
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In order to demonstrate the effectiveness of our proposed deep learning approachdadblérs pre
compared the performance for the outer wall segmentation from this studyevjihetvious attempt

at segmenting the same data set using an adaptive level set system (ELW®S3Iso applied a
commonly used image segmentation tool, {I$KAP, to a subset of our CTU data as it was used by
Ma et al*¥
DL-CNN with.level sets is significantly better-¢alue < 0.01) than that of IF6NAP and CLASS

for the metries,of volume intersectiondaabsolute volume error. TablesGowsthe comparison of

to segment the bladder walls in-W2eghted MR images. The performance of the

the performances by CLASS and fINN. CLASS is a level set system that does not use a DL
CNN to assist with segmentation. The improved results of th&€ RN with level sets show the
value of a deep_dearning approach to bladder segmamt@fible 7shows the average values for a
smaller data sedf 30 bladders used for IFRNAP alongside values from the same data set for
CLASS and DECNN. Even with the limited scope of previous experiments, the performance of the
DL-CNN with level sets isignificantly better than that of IF6NAP and CLASS with a p value
less than 0.01 for the metrics of volume intersection and absolute volume errorsomatltes data

set.

One limitation ofour current segmentation method was observedCforiscans withthick
slicesand an unusually small bladder. For small bladders, the level sets cannot chagsigeuigistto
account for the rapid differences between slices when slices aretttisknThis problem could
potentially be overcome bgelectinga differentsetof parametershat is optimized fothick slices
and thesmallbladders An automated pr@rocessing triage stage that can recognize small bladders
with thicksliceshas to be developazhdcall for the specificset of parameters for the segmentation
of these outlier case¥ve will continue tooptimize the parameters of the level sets in future studies

The small‘thicknes®f the wall also presents problems in the evaluation of th& NN and
level set contours. While the outer and inner contdiwidually achievedgoodresults compared
to thereferencestandard, the overlap of the wall between the inner and outer contours achieved
much lower results iterms ofthevolume intersection anithe volume errorSince the bladder wall
can be very thin, small deviations ithe wall contourscan lead to massive errors thae not
observedvhen comparing the bladder as a whole. Cases in both the training and thesteghset
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good performance for the inner and outell contours had noticeably poorer performaircéhe
wall between the two contourdue to these small deviations.Examples ofbladder wall

segmentations are presentedrigure1l.

Another limitation associated with the method is the reliance on hand outlinea Gimgle

radiologist. Generating outlines from multiple radiologists and taking the average will reduce th

bias for the/reference standard, which will allow better esomaif the DL-CNN performance.
However,due to the excessive time required to generate manual hand outlines for such a large data
set (a total oapproximately 16,000 slices of bladder outlines), only one set of hand outlines was

obtained and“tsed for evaluation.
5. Conclusions

Our results in this study show that the -ONN assistedevel setmethodis useful for
segmerdtion ofthe bladder wall in CTU scans. This et canspecifically segment the bladder
wall by detectingyoth the inner and outer walbntous of the bladdeThe DL-CNN can accurately
differentige the~bladder wall from the interior of tH#@adder and the surroundingructured
backgroundThe segmentation of the wall is an important first step for automated lesion detection
and bladder analysig-urther studies are underwato improve the performance of the wall
segmentation_process, especially for the inclusion of lesions within thecaveturs This study
lays theimpertant groundwork for further efforts ttevelopcomputerized decision support systems

for diagnosistand'treatment lofadder cancer
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710 Figure 1: Flowchart of DLCNN segmentation that shows generation of a bladder wall likelihood
map and use of level sets to obtain inner and outer wall conftheg<dDL-CNN likelihood map was

used as a gradient image in the energy equation of ad=stevel sets method.

Figure 2. Block.diagram showing our BENN architecture. The input layer is the classified ROIs
715 and the output.of.the trained DLNN creates a likelihood map.

Figure 3: ROIs superimposed on a CTU slice. The darker boxes are &&isided to be within
the wall and'thelighter boxes are ones determined not to be within the wall. The nuiRBbds afe

balanced so'that the training ROIs contain exactly half within each category.
720

Figure 4: 16 x 16 pixel ROIs. (a) ROIs labeled asigewithin the wall; (b) ROIs labeled as not

within thexwalls

Figure 5: Bladder wall likelihood maps (b), (d) shown with the CTU slices (a),af) frhich they
725 were generated. The brighter pixels represent a higher likelihood of that pixeling in the wall.

Figure 6:«(a)»and:(c) are bladder wall likelihood maps generated from CTU scans from the test set (b)

and (d), respectively. The level set contours are overlaid on the CTU slices.

730 Figure. 7¢ Histograms of the volume intersection % (a, b), volume % error (c, d), aageave

distance (e, f) for the training and test sets, respectively.
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Figure 8: Histogram of the lesion volume intersection. The graph (a,b) shows resufty oe
radiologist hanebutline contours and the DENN with level setontours for the training and test

set, respectively.

Figure 9: . Segmented contours on a CTU slice. The inner contour goes through theatasiotihan

around it. The.small contours in the lower right of the image are ignored.

Figure 10: Likelihood mapsf the CTU slice shown in (a). (b) was generated using 8 x 8 ROIs, (c)
by 16 x 16"ROIs, and (d) by 32 x 32 ROIs. All likelihood maps were shown with the same

brightness and“contrast window settings.

Figure 1l: Comparisons between the hamatlined contours and the computer segmented contours.
(@), (c), and=(e)'show the outer wall contour, and (b), (d), and (f) the inner contour. The dark and
light contours«in each image represent the kauttined contour and the compusggmented
contour, respectivelyThe 2D area intersection ratio of the thin wall between the inner and outer
wall contours (a) 50.0%, (c) 53.0%, and (e) 55.9%.
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Table 1: Level set parameters. The parameters listed in the “Fourth” row are listed as inner wall

parameter/ outer wall parameter.

Level Sets (v} B Y n
First 1 2 1 10
Second 1 0.6 q 150
Third 0 1 0 10
Fourth 4.5/3 -2.5/2 2/2 150/100
2D Slices 4 0.2 0.5 100
Table 2: Summary of the performance metrics for the inner and outer bladder walls
Volume Volume Absolute Average
I nter section Error VolumeError Distance
(%) (%) (%) (mm)
| - Inner 90.2+8.7 -4.3+£18.2 12.6+13.7 3.0+1.6
Training
Outer 93.2+5.8 -7.2£12.3 10.4+9.6 3.0+1.2
Inner 87.2+10.5 -5.3£28.2 15.6+24.0 3.2+1.7
T, Outer 89.5+9.8 -6.2+20.5 14.6+15.6 3.5+2.0

Table 3: Comparison between using the likelihood map for all level sets and using the likel

map for only the fourth level set.

Absolute
Volume Volume Average
_ Volume _

Intersection Error Distance

(%) o | ] m

0 () mm

(%)
All level sets 93.5+4.5 -14.0£25.0| 16.5+23.3 | 3.0+x1.4
Training | Inner

4™ level set only 90.2+8.7 -4.3+18.2 | 12.6x13.7 | 3.0£1.6

This article is protected by copyright. All rights reserved




All level sets 81.8+8.0 13.3+9.8 14.1+85 | 3.8%£1.5

outer 4™ level set only 93.2+5.8 -7.2+¥12.3 10.4#9.6 | 3.0+1.2

All level sets 88.5+10.3 -8.0+£27.7 | 16.8423.4 | 3.3+1.7

Test nnet 4" level set only 87.2+10.5 -5.3+28.2 | 15.6+24.0 | 3.2+1.7
All level sets 76.1+11.9 18.0£15.5| 19.8+13.0 | 4.7+2.4

e 4™ level set only 89.5+9.8 -6.2+20.5 | 14.6+15.6 | 3.5+2.0

Table 4: Comparison between bladder contours generated by using the DL-CNN with leve

and contours'generated directly from the DL-CNN likelihood map without applying level s

Absolute
Volume Volume Average
_ Volume _
I nter section Error Distance
%) @ | | m
() () mm
(%)
DL-CNN without Level Sets| 97.6+2.1 | -33.8+36.1| 33.8+36.1| 4.0+1.9
Inner
Traini DL-CNN with Level Sets 90.2+8.7 -4.3+18.2 | 12.6+13.7| 3.0+1.6
raining
= DL-CNN without Level Sets| 72.8+8.7 243+8.8 | 24.348.8 | 5.2+1.6
uter
DL-CNN with Level Sets 93.2+5.8 -7.2412.3 | 10.4+9.6 | 3.0+1.2
DL-CNN without Level Sets| 94.2+8.0 | -29.3+32.6| 30.9+31.1| 4.1+2.2
Inner
Test DL-CNN with Level Sets 87.2+10.5 | -5.3+28.2 | 15.6+24.0| 3.2+1.7
O DL-CNN without Level Sets| 76.5+12.0 | 17.7+15.2 | 19.5+13.0| 4.6+2.5
uter
DL-CNN with Level Sets 89.5+9.8 -6.2+20.5 | 14.6%15.6| 3.5+2.0

Table 5: The.velume intersection ratios after tilde¥el set, the @ level set, and the full level

set cascade. The segmentation by the full cascaded level sets achieved the best perform:

After 3% level set
(%)

After 4" level set
(%)

Full level set cascade
(%)
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Outer Training Set 77.7£7.9 89.7+6.8 93.215.8
Inner Training Set 77.7£7.9 79.3£7.0 90.248.7
Outer Test Set 72.4+11.8 84.3+11.4 89.5+9.8
Inner Test Set 72.3+11.5 74.9+10.6 87.2+10.5

Table 6. Comparison of the outer wall segmentation using CLASS versus the proposed [

CNN assisted level set method.

Volume Absolute Average
_ VolumeError '
I nter section VolumeError Distance
(%) (%) (mm)
DL-CNN 89.5+9.8 -6.2+20.5 14.6+15.6 3.5+2.0
CLASS 84.0+11.4 8.2+17.4 13.0+14.1 3.5+1.9

Table 7. Comparison of the outer wall segmentation by the propos&NDL -

assisted level set method to those using the ITK-SNAP and CLASS on 30 cases

Volume Volume Absolute Volume Average
| nter section Error Error Distance

(%) (%) (%) (mm)
DL-CNN 94.4+3.2 -8.5+9.8 10.0+8.3 3.0+1.2
ITK-SNAP 78.8+16.3 8.3+33.1 24.2+23.7 5.2+2.6
CLASS 79.018.2 16.1+16.3 19.9+11.1 3.5+1.3
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