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Abstract 

Background: We evaluated mocetinostat (Class I/IV histone de-acetylase [HDAC] inhibitor) 

in urothelial carcinoma harboring inactivating mutations or deletions in CREBBP and/or 

EP300 (histone acetyltransferase genes) in a single-arm, open-label Phase II study. 

Methods: Eligible patients with platinum-treated, advanced/metastatic disease received 

oral mocetinostat (70 mg three times per week [TIW] escalating to 90 mg TIW) in 28-day 

cycles in a 3-stage study (NCT02236195). The primary endpoint was objective response rate 
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(ORR). 

Results: Genomic testing was feasible in 155/175 patients (89%). Qualifying tumor 

mutations were: CREBBP (15%), EP300 (8%), and both CREBBP and EP300 (1%). Seventeen 

patients were enrolled into Stage 1 (ITT population); no patients were enrolled in 

subsequent stages. One partial response was observed (11% [1/9; efficacy evaluable 

population which comprised 9/15 planned patients]); activity was deemed insufficient to 

progress to Stage 2 (null hypothesis: ORR ≤15%). All patients experienced ≥1 adverse event, 

most commonly nausea (77% [13/17]) and fatigue (71% [12/17]). Median treatment 

duration was 46 days; treatment interruptions (82% [14/17]) and dose reductions (29% 

[5/17]) were common. Mocetinostat exposure was lower than anticipated (dose-normalized 

Cmax

 

 following TIW dosing 0.2 ng/mL/mg). 

Conclusions: To our knowledge, this study represents the first clinical trial using genomic-

based selection to identify patients with urothelial cancer likely to benefit from selective 

HDAC inhibition. Mocetinostat was associated with significant toxicities that impacted drug 

exposure and may have contributed to modest clinical activity in these pretreated patients. 

The efficacy observed was considered insufficient to warrant further investigation of 

mocetinostat as a single agent in this setting. 

Key words: mocetinostat, urothelial carcinoma, CREBBP, EP300, histone deacetylase 

Running head: Mocetinostat in advanced urothelial cancer 

 

Condensed abstract:  

Following genomic-based selection of urothelial cancer patients with inactivating 

mutations/deletions in the histone acetyltransferase genes CREBBP and/or EP300, single-

agent mocetinostat was associated with significant toxicities that limited drug exposure. 

This may have contributed to limited activity (response rate 11%) in the heavily pretreated 

platinum-refractory patients in this Phase II study. 
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Introduction 

Urothelial carcinoma of the upper urinary tract and bladder results in 165,000 deaths 

annually worldwide 
1
. Most patients with metastatic disease progress despite platinum-

based chemotherapy, and salvage chemotherapy has only modest efficacy 
2, 3

. Recently, five 

immune checkpoint inhibitors were approved for platinum-refractory urothelial carcinoma, 

and while the anti-programmed death protein-1 (PD1) agent, pembrolizumab has improved 

overall survival (OS) versus chemotherapy in this setting, many patients do not benefit from 

such therapy 
4

Dysregulated histone acetylation is implicated in the pathogenesis of several cancers, 

including urothelial carcinoma. Acetylation of chromatin by histone acetyltransferases 

(HATs) is generally associated with elevated transcription, while deacetylation, mediated by 

histone de-acetylases (HDACs), is associated with repressed transcription 

. Consequently, new treatment options are needed. 

5, 6
. Histone 

acetylation can become dysregulated through the upregulation of HDACs, and/or genetic 

inactivation of HATs, resulting in silencing of tumor supressor and other genes 
5, 6

. Inhibition 

of HDAC1 and HDAC2 resulted in antitumor activity in urothelial carcinoma in vitro, while in 

urothelial carcinoma patients elevated HDAC1 is linked with poor prognosis 
7, 8

. HDAC 

inhibitors have shown promise in clinical trials across a range of tumor types and several are 

approved by the FDA including vorinostat for cutaneous T-cell lymphoma (CTCL), romidepsin 

for CTCL and peripheral T-cell lymphoma (PTCL), belinostat for PTCL, and panobinostat for 

multiple myeloma 
9

Mocetinostat is an investigational HDAC inhibitor that targets Class I and IV HDACs (isoforms 

1, 2, 3, and 11) 

.  

10
, and has demonstrated anti-tumor activity in patients with hematologic 

malignancies 
11-13

. In vivo, mocetinostat induces cell cycle arrest, apoptosis and inhibits 

tumor growth 
10

. Furthermore, a HAT inactivation signature associated with muscle-invasive 

bladder cancer was inversely influenced by mocetinostat in breast cancer cells 
14

. 

Mocetinostat also demonstrated preferential activity in CREBBP- and EP300-mutated (HAT 

genes) xenograft models and solid tumor cell lines, including urothelial cell carcinoma 

(Supplementary Tables S1, S2; Supplementary Figure S1). Thus, we hypothesized that 

treating urothelial carcinoma harboring inactivating mutations in CREBBP and EP300 with 

selective HDAC inhibitors may restore expression of tumor suppressor genes, resulting in 

anti-tumor responses. 
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This Phase II study investigated single-agent mocetinostat in patients with locally advanced 

or metastatic urothelial carcinoma previously treated with platinum-based chemotherapy 

and inactivating tumor mutations or deletions in CREBBP and/or EP300.  

 

Methods 

Patients and study design 

This Phase II, open-label, single-arm, 3-stage, multicenter study was conducted between 

November 2014 and July 2016 (ClinicalTrials.gov, NCT02236195). Patients with histologically 

confirmed, locally advanced, unresectable or metastatic urothelial (transitional cell) 

carcinoma who progressed following platinum-based chemotherapy were recruited. Eligible 

patients had adequate bone marrow, hepatic and renal function and an inactivating 

mutation or deletion (homozygous or hemizygous) in CREBBP and/or EP300 (see 

supplementary appendix). Genomic prescreening of tumor tissue (primary or metastatic, 

archival tissue was permitted if a fresh biopsy was not available) was performed centrally 

using next-generation sequencing (NGS; Foundation Medicine; Cambridge, MA, USA) or a 

Sponsor-approved, local sequencing platform (FoundationOne®, MSK-IMPACT™) or NGS 

(Oncopanel, Center for Advanced Molecular Diagnostics, Brigham and Women’s Hospital, 

Boston, MA, USA) capturing the full coding regions for CREBBP and EP300. Key exclusion 

criteria included prior or current treatment with an HDAC inhibitor and symptomatic or 

uncontrolled brain metastases.  

Oral mocetinostat (Mirati Therapeutics, Inc. San Diego, US) was administered in continuous 

28-day cycles at a starting dose of 70 mg three times per week (TIW) for Stage 1. Escalation 

to 90 mg TIW on Cycle 2 Day 1 was planned for patients without treatment-related Grade ≥3 

adverse events (AEs), and 90 mg TIW was the planned starting dose for the Stage 2 and 3 

cohorts. Mocetinostat was continued until disease progression or unacceptable AEs.  

The protocol was approved by the Institutional Review Boards at each institution, and the 

study was conducted in accordance with the Declaration of Helsinki and the International 

Conference on Harmonization Guidelines for Good Clinical Practice. All patients provided 

written, informed consent. 
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Study endpoints and assessments 

The primary endpoint was objective response rate (ORR: complete response [CR] and partial 

response [PR] per RECIST v1.1 ). Secondary endpoints included duration of response (DoR), 

progression-free survival (PFS: overall and at month 4), OS, 1-year survival rate, safety and 

pharmacokinetics.  

CT scans for tumor evaluation were performed at baseline, 8-week intervals for the first 12 

months, and 12-week intervals thereafter. AEs were graded per NCI CTCAE Version 4.03.  

Plasma concentrations of mocetinostat were determined using high performance liquid 

chromatography and tandem mass spectrometry during Stage 1 (pre-dose and 1 h post-dose 

on day 1 of cycles 1 and 2) with more timepoints planned for Stage 2.  

Tumor total mutation burden (TMB) was estimated retrospectively in the 322 target genes 

included in FoundationOne for patients with central testing (see supplementary appendix).  

 

Statistical analyses 

The primary endpoint (ORR) was assessed using an exact test for single proportion (two-

sided α=5%; ORR ≤15% [H0] vs >15% [ H1

 

]) in a three-stage study design to include 15, 18, 

and 67 patients, respectively, in the efficacy evaluable population (patients meeting the 

entry criteria who received mocetinostat and had at least baseline and one on-study disease 

assessments; see supplementary appendix). Safety was assessed in patients receiving ≥1 

dose of mocetinostat. Pharmacokinetics were evaluated in all patients with sufficient data. 

Time-to-event efficacy endpoints were estimated using Kaplan-Meier methodology (see 

supplementary appendix). 

Results 

Patient disposition and baseline disease characteristics 
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Of 175 patients consenting to genomic screening, testing was feasible for 155 (89%; sample 

quantity/quality was insufficient for 20 patients). Frequently altered genes included TP53, 

ARID1A, MLL2 (KMT2D), KDM6A, MLL3 (KMT2C), RB1, and CDKN2A/B (Figure 1).  

Thirty-three (21%) patients had ≥1 of the 40 qualifying tumor mutations in CREBBP or EP300 

identified: 27 CREBBP mutations among 23 patients (15%); 13 EP300 mutations among 12 

patients (8%); mutations in both genes in 2 patients (1%). Each qualifying mutation was 

observed only once within the study. Qualifying CREBBP alterations were most commonly 

nonsense (8 [5%]), frameshift (7 [5%]) or missense (5 [3%]) mutations. EP300 mutations 

were most commonly missense mutations (5 [3%]). Non-qualifying mutations in CREBBP and 

EP300 (putative passenger mutations) were detected in 18 (12%) individuals (see 

Supplementary Table S3).  

Seventeen of 33 patients with qualifying mutations were enrolled into Stage 1 (Figure 2); 

baseline demographic and disease characteristics of the enrolled patients are shown in 

Table 1. Twenty-two qualifying mutations were identified in these 17 patients: 14 CREBBP 

mutations in 12 patients and 8 EP300 mutations in 7 patients; two patients had qualifying 

mutations of both CREBBP and EP300 (Supplementary Table S3). Sixteen patients with 

qualifying mutations were not enrolled, most commonly because they were receiving an 

earlier line of therapy (Figure 2). The patients received a median (range) of 2 (1–5) prior 

systemic therapies (Table 1) and all had discontinued mocetinostat at the time of analysis, 

most due to disease progression (53%) or AEs (24%; Figure 2). Based on Sponsor decision, 

the study was closed after enrolment of 17 patients, including 9 patients in the efficacy 

evaluable population (8 patients stopped mocetinostat treatment prior to on-study disease 

assessment: 4 due to AEs, 3 due to symptomatic deterioration and 1 withdrew consent); 

Stages 2 and 3 were not recruited. 

 

Efficacy 

One objective response was observed (efficacy evaluable population). This PR lasted 3.9 

months and occurred in a 67-year old man with disease restricted to lymph nodes. His 

primary tumor contained two qualifying EP300 missense mutations (G1347E and P925T) and 

other mutations (truncating mutations in ARID1A, MLL2 [KMT2D], and CHEK2; missense 
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mutation in ATM; and amplification of TERC and PRKCI). The ORR (95% CI) of 11% (0.3, 48%) 

was not statistically significant (null hypothesis of ≤15% could not be rejected, P=1.00). 

Stable disease lasting 3.5 months and 3.8 months was reported in two patients (22%) and 

progressive disease was reported in 6 patients (67%; Supplementary Figure S2). Median PFS 

(95% CI) was 57 days (23, 117 days) in the efficacy evaluable population. Estimated PFS at 4 

months was 10% (0, 40%); PFS at 1 year could not be estimated. Median OS (95% CI) was 3.5 

months (2.1, 15.7 months) and 1-year survival was 30% (10, 60%) in the ITT population (all 

patients receiving study medication). Similar efficacy results were observed in the efficacy 

evaluable and ITT populations.  

 

Safety 

Median (range) duration of mocetinostat therapy was 46 days (8, 225 days), and the 

cumulative median dose (range) administered was 930 mg (280, 7,730 mg). Median (range) 

relative dose intensity was 99% (37, 117%) during cycle 1 and 84% (14, 117%) in subsequent 

cycles. Eleven of the 17 enrolled patients initiated ≥2 treatment cycles. Mocetinostat dose 

was escalated from 70 mg TIW to 90 mg TIW in 9 patients (4 received ≤1 full cycle of 

mocetinostat 90 mg TIW). Five patients (29%) underwent dose reductions due to AEs (n=3, 

18%) or other reasons (n=2, 12%), and 14 patients (82%) had at least 1 dose interruption, 

most commonly due to AEs (n=11, 65%). 

All patients experienced ≥1 treatment-emergent (all causality) AE, and most (n=14, 82%) 

experienced ≥1 treatment-related AE. The most frequent treatment-emergent AEs were 

nausea (n=13, 77%), fatigue (n=12, 71%), decreased appetite (n=8, 47%) and diarrhea (n=8, 

47%; Table 2); these events were also the most frequent treatment-related AEs. Grade ≥3 

treatment-related AEs were fatigue and hyponatremia (n=2, 12%, each). Twenty-one 

treatment-emergent serious adverse events (SAEs) were reported in 10 patients (59%), 

including vomiting, lower gastrointestinal hemorrhage, abdominal pain and pericardial 

effusion (n=2, 12%, each). One SAE of pericardial effusion was assessed as related to 

mocetinostat (both pericardial effusion events resolved). Ten patients died during the study, 

all due to their underlying disease.  
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Pharmacokinetics 

Due to the limited blood sampling schedule for Stage 1, the 1 h post-dose sample was 

considered representative of maximum serum concentration (Cmax) based on data from 

prior studies (see supplementary appendix), and pharmacokinetic analyses were restricted 

to Cmax and time to Cmax (tmax

Following a single 70 mg dose of mocetinostat, mean C

).  

max was 105 ng/mL. Mean dose-

normalized Cmax was 1.2 ng/mL/mg and inter-subject variability (coefficient of variation, 

geometric mean) was 90%. Following multiple TIW doses of mocetinostat 50 mg and 90 mg, 

mean Cmax was 41 ng/mL and 39 ng/mL, respectively (Supplementary Table S4). The mean 

dose-normalized Cmax

 

 was 0.2 ng/mL/mg and inter-subject variability was 423%. 

Discussion 

Inactivating alterations of CREBBP and EP300 are relatively frequent (~13% and ~15%, 

respectively) in urothelial carcinoma 
14-16

 and are implicated in dysregulation of key 

acetylation pathways and oncogenesis 
17, 18

. Based on promising findings in urothelial 

carcinoma cell lines and tumor models (Supplementary Tables S1, S2 and Supplementary 

Figure S1), we postulated that patients with urothelial carcinoma and inactivating 

alterations in CREBBP and/or EP300 could be treated by Class I HDAC inhibition via a 

mechanism of increased histone acetylation leading to an open chromatin state with 

decreased transcriptional repression of tumor suppressor genes. While the maximum 

tolerated dose of mocetinostat as a single agent was determined to be 110 mg TIW in other 

tumor settings, a lower recommended dose of 90 TIW was considered for this study based 

on prior observations of pericardial infusion and balancing pharmacodynamic and clinical 

data as well as regulatory guidance 
19

. However, single-agent mocetinostat at doses up to 90 

mg TIW showed only modest activity in this cohort of heavily pretreated patients with 

factors indicative of poor prognosis. The ORR of 11% and of 9 evaluable patients only 1 

patient (with lymph node-only disease and multiple genomic alterations) remaining alive 

and progression-free for 4 months was not consistent with meaningful clinical activity. 

While mocetinostat-related AEs, including gastrointestinal events and fatigue, were 

consistent with the safety profiles reported in other settings 
11, 12, 20

, frequent dose 
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interruptions and reductions were required. Mocetinostat exposure (mean dose-normalized 

Cmax

Studies of other HDAC inhibitors in urothelial carcinoma patients reported mixed results, 

with responses seen with single-agent vorinostat but not when vorinostat was combined 

with doxorubicin or docetaxel 

 0.2 ng/mL/mg) was lower than in prior mocetinostat TIW trials (0.8 to 1.6 ng/mL/mg). 

It is feasible that underlying disease and prior treatments may have contributed to limited 

functional reserve, resulting in poor tolerability. These findings underscore the limitations of 

preclinical models in predicting clinical activity and toxicity issues related to anticancer 

treatments. Further evaluation of mocetinostat at lower doses may be useful to guide dose 

reduction guidance in future study protocols in order to maximize each patient’s exposure 

to treatment. 

21-23
. An ORR of 20% was reported in a small study of 

belinostat or panobinostat, and prolonged stable disease in one of 3 patients with urothelial 

carcinoma treated with entinostat plus 13-cis retinoic acid 
24, 25

. These data suggest that 

HDAC inhibitors can be active in urothelial carcinoma, but predictive biomarkers are needed 

for patient selection. To our knowledge, data regarding genomic predictors of response to 

HDAC inhibitors are limited. In a Phase II study of panobinostat in patients with relapsed 

diffuse large B-cell lymphoma, mutations in MEF2B were associated with response, while 14 

genes including TOX4, PSMD13 and CCNK were associated with resistance to vorinostat 

based on a study of human colon cancer cell lines 
26, 27

There was considerable genomic variation in CREBBP and EP300, with each qualifying 

mutation observed only once in this study. Interestingly, the patient with a confirmed PR 

harbored two EP300 mutations in trans, P925T and G1347E, suggesting biallelic loss of 

function in this pathway could be therapeutically meaningful; however this patient had 

lymph node-only metastasis, a favorable prognostic factor. It is feasible that mocetinostat 

activity might be greater as an earlier line of therapy when a longer treatment duration may 

be feasible and potentially confer meaningful disease-modifying activity. Furthermore, we 

hypothesized a mechanism of action of mocetinostat to reactivate transcription of tumor 

suppressor genes, but a relatively high frequency of inactivating alterations in the tumor 

. To our knowledge, this is the first 

clinical trial using genomic-based selection to identify patients with urothelial carcinoma for 

treatment with selective HDAC inhibition. This study demonstrates the feasibility of this 

approach while also providing genomic tumor characterization for this population.  
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suppressor genes TP53, CDKN2A/B, and RB1 may have limited the potential of epigenetic 

modulation by mocetinostat to induce tumor response. Potential future treatment 

strategies could include combining mocetinostat with an inhibitor of the PD1/ programmed 

death 1 ligand (PD-L1) to take advantage of the former’s potential immunomodulatory 

effects. Indeed, mocetinostat has been shown to increase expression of PD-L1 and augment 

PD-1/PD-L1 checkpoint blockade immunotherapy 
28

In summary, single-agent mocetinostat was associated with significant toxicities and limited 

activity in heavily pretreated patients with advanced/metastatic urothelial carcinoma and 

poor prognostic factors. Few patients received the intended dose of 90 mg TIW which may 

have compromised efficacy. Nevertheless, the clinical activity observed does not warrant 

further investigation as single agent in this setting. Mocetinostat is currently being 

investigated in other tumors and in combination with immunotherapy.  

. Other combination partners could be 

considered in the appropriate molecular context. 
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Tables and figures 

 

Table 1. Patient demographics and disease characteristics (ITT population) 

Patient characteristic Mocetinostat 

(N=17) 

Age, years; median (range) 67 (35–83) 

Male gender, n (%) 15 (88)  
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Race, n (%)  

White 15 (88) 

Asian 1 (6) 

Black 1 (6) 

Smoking history, n (%)  

Past smoker 8 (47) 

Never smoker 7 (41) 

Current smoker 2 (12) 

AJCC/UICC TNM Stage  
a
 

IVA 1 (6) 

IVB 16 (94) 

ECOG PS, n (%)  

0 5 (29) 

1 10 (59) 

2 2 (12) 

Bellmunt scores, n (%)  
b
 

0 5 (29) 

1 7 (41) 

2 5 (29) 

Baseline albumin (g/dL), median (range) 4.1 (3.1, 4.7) 

Baseline hemoglobin (g/dL), median (range) 12.5 (9.0, 14.5) 

Time from diagnosis of urothelial carcinoma, months (range) 26.4 (4.3–95.5) 

Location of disease, n (%)  
c
 

Lung  13 (77) 
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Liver 6 (35) 

Lymph node 15 (88) 
d
 

Bladder 3 (18) 

Bone 4 (24) 

Other 8 (47) 

Prior systemic therapy, n (%) 17 (100) 

Number of prior regimens, median (range) 2 (1–5) 

Patients with prior neoadjuvant/adjuvant regimens, n (%) 10 (59) 

Patients with prior advanced disease regimens, n (%) 12 (71) 

Patients who completed prior systemic therapy ≤3 months 

before starting study treatment, n (%)  

7 (41) 

Prior radiotherapy, n (%) 6 (35) 

Prior surgery, n (%) 15 (88) 
b
 

Cystectomy 10 (59) 

Transurethral resection of bladder tumor 9 (53) 

Urethrectomy 4 (24) 

Other 4 (24) 

AJCC/UICC TNM, American Joint Committee on Cancer / Union for International Cancer 

Control (T) tumor, (N) lymph nodes (M) metastasis; ITT; intent-to-treat (all patients receiving 

study medication); ECOG PS, Eastern Cooperative Oncology Group Performance Status 

a
Disease subsite (bladder, ureter, or renal pelvis) and disease stage were not specifically 

collected in this study; disease stage using definitions for bladder cancer were assessed 

retrospectively 

b
Bellmunt Scores were assessed retrospectively 

29
 

c
Patients may have more than 1 disease location or surgery 

d
Baseline disease was confined only to lymph nodes in two patients 
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Table 2. Treatment-emergent (all causality) adverse events occurring in at least 3 patients 

(safety population) 

MedDRA preferred term 

n (%) 

All grade 

(N=17) 

Grade 3/4 

(N=17) 

Nausea 13 (77) 1 (6) 

Fatigue 12 (71) 3 (18) 

Decreased appetite 8 (47) N/R 

Diarrhea 8 (47) N/R 

Hyponatremia 6 (35) 3 (18) 

Vomiting 6 (35) 1 (6) 

Abdominal pain 5 (29) 2 (12) 

Anemia 5 (29) 2 (12) 

Back pain 5 (29) N/R 

Constipation 5 (29) N/R 

Hypoalbuminemia 5 (29) N/R 

Hematuria 4 (24) N/R 

Muscular weakness 4 (24) N/R 

Alkaline phosphatase increased 3 (18) N/R 

Chills 3 (18) N/R 

Cough 3 (18) N/R 

Creatinine increased 3 (18) N/R 

Dehydration 3 (18) 1 (6) 

Dizziness 3 (18) N/R 
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Dysgeusia 3 (18) N/R 

Hypocalcemia 3 (18) N/R 

Lymphocyte count decreased 3 (18) 1 (6) 

Pain 3 (18) 1 (6) 

Urinary tract infections 3 (18) N/R 

MedDRA, Medical Dictionary for Regulatory Activities; N/R, not reported 
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Figure 1. Oncoprint of genetic alterations of 150 of the 155 patients in whom genetic 

profiling of tumor was feasible. 

Alterations include truncating mutations, gene amplifications, homozygous deletions, 

annotated recurrent missense mutations, and missense variants of uncertain significance 

(variants of unknown significance are excluded from the main study analysis) present in 

≥10% of the population. The 150 patients included 144 patients tested centrally at 

Foundation Medicine and 6 patients tested at local institutions. An arrow (↓) denotes a 

patient enrolled in the clinical trial (reports from 5 patients tested locally were not available, 

including 4 patients pre-screened using FoundationOne® testing and including two enrolled 

patients). 

a

 

In cases of CCND1 amplification, this co-occurred with FGF3, FGF4, or FGF19 amplification 

in >80% of cases.  In addition, a significant correlation for the co-occurrence of RB1 and 

TP53 mutations and CREBBP and STAG2 mutations and the mutual exclusivity of CDKN2A 

homozygous deletion and TP53 mutation or MDM2 amplification and TP53 mutation was 

observed. 

Figure 2. Patient disposition. 

a
Safety population and ITT population include all patients who received at least one dose of 

study medication 

b

 

Efficacy evaluable population includes all ITT patients who met prespecified entry criteria 

and have at least baseline and one on-study disease assessments adequate for evaluation 

using RECIST v1.1  

ITT, intent to treat 
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CREBBP 19%

EP300 15%

TP53 52%

CDKN2A/B 34%

ARID1A 31%

MLL2 (KMT2D) 29%

MLL3 (KMT2D) 21%

KDM6A 26%

RB1 20%

FGFR3 19%
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STAG2 10%
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Patients consenting to genomic

prescreening (N=175 ) 

Enrolled (n=17)

• Safety population (n=17)a

• ITT population (n=17)a

• Efficacy evaluable population (n=9)b

Discontinued (n=17)

• Objective disease progression (n=9)

• Adverse event (n=4)

• Symptomatic deterioration (n=3)

• Patient decision (n=1)

Not enrolled (n=158)

• No qualifying mutation detected (n=142)

• Receiving earlier line of therapy (n=6)

• Died prior to screening (n=3)

• Health deterioration prior to screening (n=3)

• Patient decision (n=1)

• Other (n=3)
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