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Abstract  

The self is the core of our mental life. Previous investigations have demonstrated a 

strong neural overlap between self-related activity and resting state activity. This 

suggests that information about self-relatedness is encoded in our brain’s spontaneous 

activity. The exact neuronal mechanisms of such “rest-self containment”, however, 

remain unclear. The present EEG study investigated temporal measures of resting state 

EEG to relate them to self-consciousness. This was obtained with the self-

consciousness scale (SCS) which measures Private, Public, and Social dimensions of 

self. We demonstrate positive correlations between Private self-consciousness and 

three temporal measures of resting state activity: scale-free activity as indexed by the 

power-law exponent (PLE), the auto-correlation window (ACW), and modulation index 

(MI). Specifically, higher PLE, longer ACW, and stronger MI were related to higher 

degrees of Private self-consciousness.  Finally, conducting eLORETA for spatial 

tomography, we found significant correlation of Private self-consciousness with activity 

in cortical midline structures such as the perigenual anterior cingulate cortex and 
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posterior cingulate cortex.  These results were reinforced with a data-driven analysis; a 

machine learning algorithm accurately predicted an individual as having a “high” or “low” 

Private self-consciousness score based on these measures of the brain’s 

spatiotemporal structure. In conclusion, our results demonstrate that Private self-

consciousness is related to the temporal structure of resting state activity as featured by 

temporal nestedness (PLE), temporal continuity (ACW), and temporal integration (MI). 

Our results support the hypothesis that self-related information is temporally contained 

in the brain’s resting state. “Rest-self containment” can thus be featured by a temporal 

signature. 

Introduction 

From the resting state’s temporal signature to the self 

The self and its neural correlates have been extensively investigated in neuroscience. 

Several lines of research show that the self is associated strongly - though not 

exclusively - with neural activity, especially in the cortical midline structures (CMS) [Hu 

et al., 2016; Murray et al., 2012; Murray et al., 2015; Northoff and Heinzel, 2006; Sui 

and Humphreys, 2016]. Most interestingly, various studies observed neural overlap 

between self-related activity and spontaneous activity in CMS [Bai et al., 2015; 

D’Argembeau et al., 2005; Davey et al., 2016; Huang et al., 2016; Qin et al., 2016; Qin 

and Northoff, 2011; Schneider et al., 2008; Whitfield-Gabrieli and Ford, 2012]. Such 

“rest-self overlap” suggests that information about the self can be represented [Sui and 
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Humphreys, 2016] in the resting state activity, which is known as “rest-self containment” 

[Northoff, 2016]. The exact neuronal mechanisms of such “rest-self containment”, 

however, remain unclear.  

There is evidence that the brain’s spontaneous activity shows an elaborate 

spatiotemporal structure. Various neural networks, including the default-mode network 

(DMN), have been described on the spatial side [Power et al., 2013; Yeo et al., 2011]. 

On the temporal side, spontaneous activity shows fluctuations and oscillations in 

different frequencies, ranging from infraslow (0.01 - 0.1Hz), over slow (0.1 - 1Hz), to 

faster (1-240Hz) frequencies [Buzsáki, 2007; Buzsáki and Draguhn, 2004]. Moreover, 

slower frequencies show much stronger power than faster ones. Together, these two 

characteristics – fluctuations in spontaneous activity at different frequencies and slower 

frequencies having more power than faster ones - obey what is described as scale-free 

properties [He, 2011; He, 2013; He, 2014; Huang et al., 2016; Huang et al., 2017; 

Linkenkaer-Hansen et al., 2001]. This can be measured using the power law exponent 

(PLE) in the frequency domain. 

Scale-free properties indicate fractal organisation where the faster frequencies are 

nested within the more powerful slower ones – this amounts to ‘temporal nestedness’. 

Such temporal nestedness on the neuronal level may also be relevant on the 

psychological level of the self. As the self is preserved and manifested in both shorter 

and longer time scales, ranging from milliseconds over hours and weeks to years and 
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decades, one would suspect ‘temporal nestedness’ to hold on the psychological level. 

This has been supported by a recent study of ours which demonstrated a relation 

between scale-free properties and Private self-consciousness in the infraslow frequency 

range, as obtained with fMRI [Huang et al., 2016]. In contrast, the relation of the EEG-

based faster frequencies’ temporal nestedness, their scale-free properties (1-40Hz), 

with the self remains unclear.  

Yet another measure of the temporal structure of spontaneous activity is the 

autocorrelation window (ACW) [Honey et al., 2012; Murray et al., 2014]. Simply put, the 

ACW measures the correlation in neural activity patterns across different points in a 

time series; the stronger the correlation between distant points in time, the longer the 

ACW. It thus indexes sameness or ‘temporal continuity’ of neural activity. It is still 

unclear how such ‘temporal continuity’ on the neuronal level is related to the self on the 

psychological level. This is of high interest given that, on a psychological level, our self 

can be characterized by temporal continuity as we perceive ourselves in an extended 

way [Ersner-Hershfield et al., 2009b; Ersner-Hershfield et al., 2009a; Northoff, 2017]. 

The relationship between temporal continuity on the neuronal level and the 

psychological level of self-consciousness remains unclear though.  

In addition to the temporal nestedness of scale-free properties and the temporal 

continuity of the ACW, spontaneous activity also shows coupling between different 

frequencies. This amounts to cross-frequency coupling (CFC) [Aru et al., 2015; 
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Bonnefond et al., 2017; Canolty et al., 2009; He et al., 2010; Hyafil et al., 2015; Lakatos 

et al., 2008; Tort et al., 2008]. CFC can be quantified by measuring the modulation 

index (MI) of the signal [Canolty and Knight, 2010; He et al., 2010]. The CFC refers to 

dynamic interactions between oscillations in the brain that operate at different frequency 

bands [Hyafil et al., 2015]. This has been shown in both slow and fast frequencies [Aru 

et al., 2015; Buzsáki et al., 2013; Hyafil et al., 2015], and in the infraslow ranges [Huang 

et al., 2017]. CFC demonstrates the relationship between varying neural oscillations, 

thus allowing for what is described as ‘temporal integration’. It is still unclear, however, 

how such temporal integration of different frequencies is related to the self. 

The question of temporal integration becomes even more powerful given that, on a 

psychological level, the self has been associated with the integration of different 

functions: sensory [Sui et al., 2012; Sui et al., 2013], motor [Frings, C. & Wentura, 

2014], affective [Northoff et al., 2009], cognitive [Nakao et al., 2012; Nakao et al., 2013; 

Nakao et al., 2016], and Social [Schilbach et al., 2013]. Strikingly, these functions 

operate in different frequency ranges [Buzsáki, 2007] and their integration on the 

psychological level may ultimately be traced to temporal integration on the neuronal 

level. Therefore, what on the psychological level is described as the integrative function 

of the self may, on the neuronal level, be realized by temporal integration of different 

frequencies as mediated by CFC. One would consequently expect resting state CFC 
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(as measured by MI) to predict the degree of self-consciousness. That is yet to be 

investigated. 

Taken together, there is strong empirical evidence that (i) the brain’s resting state 

activity - its spontaneous activity - is closely related to our sense of self, or self-

consciousness [Davey et al., 2016; Northoff, 2016; Qin and Northoff, 2011]; and that (ii) 

on a purely psychological level, the self can be characterized by strong temporal 

integration which includes temporal nestedness (manifest over different time scales or 

frequency ranges), temporal continuity (as in self-continuity), and temporal integration 

(as in the integrative function of self). Aiming to bridge the gap between psychological 

and neuronal levels, we therefore applied measures to the brain’s spontaneous activity, 

specifically the PLE, ACW, and CFC, which index those psychological temporal features 

- temporal nestedness, continuity, and integration - on the neuronal level and we 

correlated them with self-consciousness. 

Aims and Hypotheses  

The main and overarching aim of our study was to investigate how the various 

measures of the resting state’s temporal signatures are related to self-consciousness. 

For that purpose, we conducted resting state EEG with eyes closed (EC). The resting 

state’s temporal signature was analysed in a whole-brain manner with measures for 

temporal nestedness (scale-free activity as with PLE), temporal continuity (the ACW), 
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and temporal integration (CFC as measured with MI). The same participants also 

underwent psychological assessment of their self with the self-consciousness scale 

(SCS) which includes Private, Public and Social subscales [Abe and Bagozzi, 1996; 

Fenigstein et al., 1975; Scheier and Carver, 1985]. Generally, we hypothesized a direct 

relationship between the various measures of the resting state’s temporal signature and 

Private self-consciousness. This was further tested by applying machine learning as a 

data-driven method of validation.  

The first specific aim was to measure the resting state’s temporal nestedness through 

its scale-free properties and relate them to self-consciousness. In one of our previous 

fMRI studies [Huang et al., 2016], it was found that the PLE in the infraslow frequency 

range (0.01 to 0.1Hz) in the medial prefrontal cortex correlated significantly with the 

Private self-consciousness scale subscore, while the Public and Social subscores did 

not.  Based on these previous fMRI results, we hypothesized that higher degrees of 

scale-free properties in the resting state as measured by the power law exponent are 

related to higher degrees of Private self-consciousness (as distinguished from Public 

and Social self-consciousness).  

The second specific aim was to measure the resting state’s temporal continuity through 

the ACW and relate it to self-consciousness. Based on the strong determination of ACW 

by slower frequencies specifically [Honey et al., 2012], and the finding that the infraslow 

frequencies (in fMRI) correlated with private self-consciousness [Huang et al., 2016], we 
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hypothesized that a longer ACW was related to both higher degrees of scale-free 

activity and Private self-consciousness. 

The third specific aim was to associate the resting state’s temporal integration with self-

consciousness. This was done by examining CFC as measured by modulation index 

(MI). Based on the close link between scale-free properties and cross-frequency 

coupling [He et al., 2010; He, 2014] with strong impact of the slow frequencies on both 

CFC [He et al., 2010] and private self-consciousness [Huang et al., 2016], we 

hypothesized that higher degrees of MI are related neuronally to higher degrees of PLE 

and ACW, and psychologically to stronger Private self-consciousness.  

Using eLORETA for topographical analyses, our fourth specific aim was to test for the 

relevance of EEG-based resting state activity in cortical midline structures such as the 

perigenual anterior cingulate cortex (pACC) and posterior cingulate cortex (PCC) for 

self-consciousness. Based on previous results [Davey et al., 2016; Huang et al., 2016; 

Northoff et al., 2006], we hypothesized that the degree of EEG-based resting state 

activity in pACC/PCC (as measured by eLORETA values) is related to the degree of 

Private self-consciousness. 

Finally, we wanted to evaluate the relationship between PLE, ACW, MI and eLORETA 

values for determining the SCS scores using a data-driven approach. For this, we 

employed a supervised classifier. A classifier is a system that divides data into different 

classes, by learning the relationship between the selected features and the selected 
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classes. Specifically, we used a Support Vector Machine (SVM), which is a popular and 

useful classifier algorithm, to do this. As this was a data-driven analysis we did not have 

an a priori hypothesis, but rather we used it to supplement our other findings.  

Materials and Methods 

Subjects 

Fifty (25 female) healthy subjects were included in the subsequent analysis. Sixty 

participants completed the resting state session.  Of these, four were excluded due to 

technical issues related to EEG recording and three were excluded due to excessive 

movements during the resting state session.  A further three participants tested positive 

for marijuana through the E-Z Split Key cup 5 (testing for marijuana, opiates, cocaine, 

methamphetamine, and phencyclidine).  This urine drug test was performed the day of 

the EEG session as part of an adjacent study.  Due to the possibility that the drug would 

affect the EEG data [Banoczi, 2005], their data was excluded from all analyses. 

All participants were between the ages of 18 and 55 and were right-handed as per the 

Edinburgh Handedness Tool [Oldfield, 1971]. The Handedness Tool subscores were 

the following: Writing had a mean of 100, and standard deviation (SD) of 0; Throwing 

had a mean of 90.24 and SD of 20.06; Toothbrush had a mean of 87.80 and a SD of 

26.88; Spoon had a mean of 91.46 and SD of 19.05; Laterality Quotient had a mean of 

92.38 and SD of 11.48.  Participants completed a self-report health questionnaire in 
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which all reported no history of neurological or psychiatric diagnosis, no history of 

concussion or other head injury, and no history or current use of substances of abuse. 

The experimental protocol was approved by the research ethics committee of the 

University of Ottawa Institute of Mental Health Research, and the study was carried out 

with their permission. Written informed consent was obtained from each participant prior 

to study participation. 

Self-Consciousness Scale 

The Self-Consciousness Scale (SCS) [Abe and Bagozzi, 1996; Fenigstein et al., 1975; 

Scheier and Carver, 1985], a twenty item self-report questionnaire, investigates the 

concept of the self. It breaks this ambiguous concept down into three concrete 

dimensions: Private, Public and Social self-consciousness. Each of these dimensions is 

a subscale which is comprised of responses from six questions. 

The Private subscale is concerned with thoughts and reflections about oneself, while 

the Public subscale concerns oneself in interactions with others in the Public arena 

[Fenigstein et al., 1975]. The Social subscale, on the other hand, relates to Social 

anxiety; its questions concern feelings of discomfort while in the presence of others 

[Abe and Bagozzi, 1996]. 

All participants completed the SCS prior to the EEG resting state session, and the 

subscale scores were calculated after the session according to the scoring key. All 
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remaining correlations between resting state measures were one-tailed bootstrapped 

correlations based on 1000 samples. 

Electrophysiological recording 

EEG data was recorded using a Neuroscan amplifier (Compumedics Neuroscan, 

Charlotte, NC, USA) and Ag/AgCl electrodes through a 64-channel cap (according to 

the International Ten-Twenty System) referenced to the right mastoid. The data was 

sampled at 1000 Hz with DC recording. The impedance of each electrode was kept 

under 5 KΩ. An electrooculogram was recorded for each participant with a pair of 

electrodes above and below the right eye, and another pair on the outer canthi of each 

eye. The EEG data pre-processing was preformed using the EEGLAB toolbox for 

MATLAB. The CB1 and CB2 channels were deleted from the data because of 

irrelevance, and the data was referenced to two mastoid channels (M1 and M2). The 

data was filtered with a low-pass filter at 40 Hz and a high-pass filter at 1 Hz. 

Five minutes of eyes closed resting-state data was recorded, with the participant sitting 

down. From this five minutes, four uninterrupted minutes in which no data had been cut 

out (due to artifacts) was extracted. All subsequent analyses were done on this four 

uninterrupted minutes.  

Artifact Rejection 
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Artifacts such as eye blinks and muscle related potentials were left in the data for the 

independent component analysis (ICA). The ICA was performed via EEGLAB software 

on the data to create 62 ICs. A visual inspection of the ICs determined which 

components were the result of electrode and physiological noise. Rejection was based 

on time course data. As stated above, from the five minutes of eyes closed resting-state 

data recorded, four uninterrupted minutes was extracted and used in all subsequent 

analyses. 

Power and Power Law Exponent (PLE) Analysis 

The power law exponent was calculated using an in-house MATLAB script according to 

the methods of previous papers [He, 2011; He, 2014; Huang et al., 2016]. First, 

uninterrupted data files of 4 minutes underwent a windowed Fast Fourier Transform 

(FFT). The window length was 2000ms, the window overlap was 50%, and the number 

of points used in the FFT was 120,000. One FFT was extracted per window before 

averaging them. This averaged FFT was log-log transformed in both the frequency 

range (1-40Hz) and power spectrum according to previous studies [Bullmore and 

Sporns, 2009; He et al., 2010; Huang et al., 2016]. MATLAB’s polyfit function was then 

used to do a linear fit between the log-log transform, and the slope of this line was 

extracted as the PLE value. One PLE value was extracted per channel, and the mean of 

all channels was used in all subsequent analyses. 

13 
 

This article is protected by copyright. All rights reserved.



Corr author: A. Wolff  awolf037@uottawa.ca 

Absolute power was extracted for each of the bands (delta 1-4Hz, theta 4-8Hz, alpha 8-

12 z, and beta 13-30Hz) separately, also using a custom MATLAB script. They were 

then partially correlated with all three self-consciousness subscores. This was done to 

determine if the power of any one band correlated significantly with the subscores, and 

it was this power that was responsible for the significant correlations with the PLE. 

Autocorrelation Window (ACW) 

The autocorrelation window (ACW) was calculated in MATLAB (v2016a) using custom 

scripts according to Honey 2012. The ACW is defined as the full-width-at-half-maximum 

of the autocorrelation function (Fig 3A) for the EEG time course. It estimates the width 

of the mean lobe of the autocorrelation.  

To calculate the ACW, we examined the autocorrelation function at the following lag-

times: 0.1s, 0.5s and 1.0s. The number of steps for all three lag-times was 23, though 

the 0.1s lag computed 101 coefficients, 0.5s lag computed 501 coefficients, and 1.0s 

lag computed 1001 coefficients. The ACW values (Fig 3B) computed for all three lag-

times agreed. 

All data was sampled at 500Hz, the size of the window was 20 seconds, and the 

overlap of the window was 50%. 

Modulation Index (MI) 
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The modulation index (MI) was calculated in MATLAB (v2016a) using custom scripts 

according to Canolty 2006, Tort 2010, and Richter 2017. The MI measures the intensity 

of phase amplitude coupling between the nested and nesting frequencies during the 

time interval being examined [Tort et al., 2010]. In this study, the MI was calculated for 

the full four-minute Eyes Closed resting state for each participant, with delta (1-4Hz) as 

the ‘phase-modulating’ band, and all other frequencies (4-40Hz) as the ‘amplitude-

modulated’ band. Specifically, as done in previous papers [Richter et al., 2017; Tort et 

al., 2010], the signal – each EEG channel here – was first filtered at the phase (1-4Hz) 

and the amplitude (4-40Hz) frequencies to extract filtered signals.  The Hilbert transform 

was then applied to both the phase and amplitude filtered signals to obtain timeseries of 

the phases and amplitude envelope, respectively.  The composite timeseries of both 

filtered signals was constructed and the phases of this composite were binned.  The 

mean of the filtered amplitude signal in each phase bin was calculated.  Finally, this 

mean amplitude was normalized by dividing it by the sum over all the bins. 

Exact Low-Resolution Brain Electromagnetic Tomography (eLORETA) Analysis 

Low-resolution brain electromagnetic tomography (LORETA) is a source analysis 

technique which aims to estimate the location and activity of the neural generators 

which give rise of EEG activity recorded at the scalp. Known as the inverse problem, the 

goal is to determine the most probable source of the EEG activity. There are several 

methods to resolve this problem, however LORETA is one approach which provides a 
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linear solution to the question of where in the cortex is the source of the EEG activity 

recorded at the scalp. 

It was developed at the KEY Institute for Brain-Mind Research at the University of 

Zurich [Pascual-Marqui et al., 1994] to compute the three-dimensional intracerebral 

distribution of neural current density sources. eLORETA (exact Low-Resolution Brain 

Electromagnetic Tomography) is a refinement of the original sLORETA method. It does 

not require standardization for correct localization [Pascual-Marqui, 2007] and is more 

precise in the location of the probable current density sources. When eLORETA is 

measured in specific brain regions as done here, the current density, based on the 

configuration of the EEG electrodes and the activity recorded at each of these 

electrodes, is computed. Since it is a current, the calculated values can be positive or 

negative. 

The current implementation of eLORETA uses a realistic head model [Fuchs, 2002] and 

electrode coordinates [Jurcak et al., 2007]. The 4-minute artifact-free blocks were 

exported into text files from the EEGLAB software for eLORETA analysis. The steps to 

calculate eLORETA values were as follows: (1) computing EEG cross-spectra from the 

raw 64-channel EEG recordings; (2) computing cortical generators of surface oscillatory 

activity using the cross-spectra; and (3) computing these values for the region of 

interest (ROI) voxels, according to Huang 2016. Here the ROI was defined as PCC and 

pACC using all voxels within 12cm of the following seeds (MNI coordinates): 
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 X Y Z 

PCC: -5/5 -54 22 

PACC: -5/5 47 11 

 

Statistical Correlations 

For each resting-state measure (PLE, ACW, MI, eLORETA), three partial correlations 

were performed, with Private, Public and Social subscores. The other two subscores 

were controlled for in the partial correlations. In addition, to examine the relationship 

between resting state measures, and for the control correlations with the power of each 

frequency band, one-tailed bootstrapped correlations (1000 samples) were carried out. 

For all correlations, partial or bivariate, the Pearson correlation coefficient was 

measured since the relationship between the resting-state measure and the SCS 

subscores was expected to be linear. Though PLE is a nonlinear measure, the 

relationship between the PLE and SCS scores, which the correlations measure, is linear 

[Huang et al., 2016] in that they are related by the equation y = mx + b, with m being the 

slope of the line. The significance level for each of the correlations is .05.  

To account for the multiple correlations performed in this study, the Benjamini-Hochberg 

False Discovery Rate (FDR) [Benjamini and Hochberg, 1995] was applied to all p-

values, as was done in recent papers [Arazi et al., 2017; Cruzat et al., 2018; Huang et 
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al., 2018].  All statistical tests from the study were listed together and the FDR was 

applied to all p-values at once. Therefore, the p-values in the results and figures are 

FDR corrected for multiple comparisons. 

Support Vector Machine (SVM) 

The LibSVM MATLAB toolbox (Version 3.22) was used as an implementation of the 

SVM algorithms [Chang and Lin, 2011]. This method was employed to test our findings 

mentioned above of strong significant correlations between our measures and Private 

subscores. Due to our small number of observations (50) for this method, only the 

Private subscore was tested.  

A linear SVM constructs an optimal linear hyperplane in the feature space, which 

classifies the data into two classes. We divided our participants into two classes: a ‘high 

Private self-consciousness’ class, and ‘low Private self-consciousness’ class. We 

determined that the mean Private SCS score among participants was 15.1, so each 

participant below the mean was labeled as ‘low Private self-consciousness’, and each 

above the mean was labelled as ‘high Private self-consciousness’. We used the results 

of the PLE, ACW, MI and eLORETA (both PCC and pACC) analyses as features, which 

resulted in five-dimensional data points. The SVM was trained on 30 random 

participants and then tested on the remaining 20 participants. It was trained to find the 

optimal model parameters in three successive search spaces, each with a 3-fold cross 

validation. First, we searched for the optimal model parameters (c and gamma) in a 
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large search space, then the searching space was narrowed two more times into 

smaller and smaller spaces. When the optimal parameters are determined, the model is 

applied to the test set for classification. After classification, we extracted the feature 

weights to evaluate the importance of each feature for classification. 

Results 

Behavioral data  

The Self-Consciousness Scale (SCS) yielded three subscores, one for Private, Public 

and Social (Fig 1). The distribution of the subscores were as follows: the mean of the 

Private subscore was 15.10, with the standard deviation 3.78 and the range from 7 to 

25; the Public subscore had a mean of 10.52, standard deviation of 4.51 and range from 

0 to 21; in the Social subscore, the mean was 7.60, the standard deviation of 3.56, and 

a range from 2 to 16. 

Power law exponent (PLE) and self-consciousness  

The PLE was calculated based on the methods of He 2010, and Huang 2016 from the 

power spectrums of all 50 participants (Fig 2A). The distribution of the PLE values 

included a mean of 0.851, a standard deviation of 0.099, and a range of 0.665 to 1.076 

(Fig 2B).  

In one-tailed partial correlations with the SCS subscores (Fig 1), the Pearson correlation 

values for the PLE were the following: for the Private subscore, r = 0.329, p = .047; for 
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the Public subscore, r = 0.100, p = .377; for the Social subscore, r = -0.058, p = .411 

(Fig 2C). 

To determine if the significant correlation between PLE and Private SCS was due to the 

power of any individual frequency band, we partially correlated the power - while 

controlling for the other two subscores - in delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), 

and beta (13-30Hz) with all three subscores. 

The partial correlation results for the Private subscore were the following: in the delta 

band, r = 0.198, p = .204; in the theta band, r = 0.072, p = .386; in the alpha band, r = 

0.107, p = .377; in the beta band, r = 0.124, p = .477. None of these partial correlations 

were found to be significant. 

For the partial correlations with the Public subscore, the results were the following: in 

the delta band, r = 0.100, p = .459; in the theta band, r = -0.092, p = .474; in the alpha 

band, r = 0.098, p = .491; in the beta band, r = -0.013, p = .420. 

Finally, with the Social subscore, the results were the following: in the delta band, r = -

0.035, p = .386; in the theta band, r = -0.028, p = .386; in the alpha band, r = -0.137, p = 

.151; in the beta band, r = -0.146, p = .332. 

Auto-correlation window (ACW) and self-consciousness 

The ACW was calculated based on the methods of Honey 2012 from all EEG channels 

for the 50 participants. The ACW was determined from the autocorrelation function of 
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each participant (Fig 3A). The distribution of the ACW values included a mean of 0.051, 

a standard deviation of 0.018, and a range of 0.026 to 0.103 (Fig 3B).  

To determine the relationship of the ACW to the PLE, a one-tailed bootstrapped 

correlation was done which found a Pearson coefficient of r = 0.394, p = .023, 95% CI 

[.077, .622] (Fig 3C). 

In one-tailed partial correlations with the SCS subscores (Fig 1), the correlation values 

for the ACW were the following: for the Private subscore, r = 0.367, p = .045; for the 

Public subscore, r = -0.048, p = .420; for the Social subscore, r = -0.214, p = .181 (Fig 

3D). 

Modulation index (MI) and self-consciousness 

The MI was calculated based on the methods of Canolty 2006, Tort 2010, and Richter 

2017 from all EEG channels for the 50 participants. It was also calculated in He et al, 

2010 which examined scale-free brain activity and temporal structure, therefore this 

measure was calculated in addition to the PLE and ACW. The distribution of the MI 

values included a mean of 7.272, a standard deviation of 4.135, and a range from 1.151 

to 18.963 (Fig 4A). 

To determine the relationship of the MI to the PLE and ACW, two one-tailed correlations 

were done. The correlation between the MI and the PLE was found to be significant, 

with a Pearson correlation value of r = 0.493, p = .000, 95% CI [.292, .668] (Fig 4B). 
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The correlation between the MI and the ACW was also found to be significant, with a 

Pearson correlation value of r = 0.474, p = .020, 95% CI [.124, .717]. 

In one-tailed partial correlations with the SCS subscores (Fig 1), the correlation values 

for the MI were the following: for the Private subscore, r = 0.312, p = .047; for the Public 

subscore, r = 0.192, p = .205; for the Social subscore, r = -0.147, p = .293 (Fig 4C). 

Private self-consciousness partial correlations controlling for other measures 

From the results stated above, one further correlation was carried out. In this instance, 

however, the remaining two measures were also added as covariates. This would 

determine if the relationship between the Private subscore and the measure remained 

significant if the partial correlation included the other two measures as covariates, in 

addition to the public and social subscores. 

Therefore, three one-tailed bootstrapped correlations were done. The first measured the 

partial correlation between the Private subscore and the ACW, while controlling for the 

public and social subscores, and the PLE and MI. The Pearson correlation value was r 

= .376, p = .045. 

When the same correlations were performed with the PLE and MI – controlling for the 

MI and ACW, and the PLE and ACW, respectively – the correlations were no longer 

significant. The respective Pearson correlation values were r = -.166, p = .279, and r = 

.191, p = .226. 
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This indicates that only the ACW and Private subscore relationship was significant when 

the public and social subscores and the PLE and MI were controlled for. 

Tomography and self-consciousness  

From the regions of interest for the Default Mode Network (DMN) in Huang 2016, we 

chose two regions to examine eLORETA activity in our data. These two regions were 

the pACC (Fig 5A) and the PCC (Fig 6A). With this activity, we did partial correlations 

with the SCS subscores (controlling for the other two subscores) to determine the 

relationship between self-consciousness and the activity in these two DMN areas. 

These regions were contrasted with two controls areas, not a part of the DMN, the 

cortex of the Dorsal Attention Network (DAN) and the cortex of the Motor Network (M1), 

and the whole cortex with no ROIs. In addition, these values of eLORETA activity were 

one-tail correlated with the other resting-state measures (PLE, ACW, MI) (Table 1). 

Significant p-values were found in correlations with all measures for both the pACC and 

PCC, but not in control regions. 

In one-tailed partial correlations with the SCS subscores (Fig 1), the correlation values 

for the pACC eLORETA data were the following: for the Private subscore, r = 0.315, p = 

.047; for the Public subscore, r = 0.082, p = .386; for the Social subscore, r = -0.103, p = 

.377 (Fig 5B). 
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The Pearson correlation values for the PCC eLORETA data with the SCS subscores 

were the following: for the Private subscore, r = 0.327, p = .047; for the Public subscore, 

r = 0.076, p = .386; for the Social subscore, r = -0.083, p = .386 (Fig 6B). 

Finally, the Pearson correlation values for the DAN eLORETA data with the SCS 

subscores were the following: for the Private subscore, r = 0.303, p = .234; for the 

Public subscore, r = 0.047, p = .969; for the Social subscore, r = -0.099, p = .969. The 

values for M1 eLORETA data with the SCS subscores were the following: for the 

Private subscore, r = 0.293, p = .234; for the Public subscore, r = 0.07, p = .969; for the 

Social subscore, r = -0.098, p = .969 (Fig 6B). As a last control measure, none of the 

correlations between the eLORETA activity in the whole cortex, with no ROI, and the 

SCS subscores were significant (p = .466, p = .302, p = .327, respectively). 

Support Vector Machine 

The trained SVM could accurately distinguish ‘low Private self-consciousness’ and ‘high 

Private self-consciousness’ individuals from the test group. The trained SVM was tested 

using an independent testing set. It was 95% accurate, correctly labelling 19 of the 20 

individuals in the test set. For this study, we were interested in the relative importance of 

each feature for classification, so we extracted the weights of each feature used to 

construct the separating hyperplane. The weight coefficient for the PLE was 0.37, for 

the ACW was 0.72, for the MI was 0.20 and for the eLORETA was 0.55 for the pACC 

and 0.56 for the PCC. 
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Discussion  

We here investigated how the EEG-based temporal signature of the brain’s 

spontaneous activity is related to self-consciousness. First, we demonstrated the 

positive relationship of temporal nestedness, as indexed by PLE, with Private self-

consciousness. Second, the degree of the resting state’s temporal continuity, as 

measured by ACW, correlated positively with both PLE and Private self-consciousness. 

Third, the temporal integration of the spontaneous activity, as measured by MI, was 

related to PLE and ACW as well as to Private self-consciousness. Finally, Private self-

consciousness correlated positively with the EEG-source current density estimation 

from cortical midline structures, the pACC and PCC specifically. In both DMN regions, 

as the eLORETA current source density increased in participants, so did the Private 

subscore. This contrasts with the non-DMN control regions, which did not show a 

significant relationship with Private self-consciousness. 

Our results strongly support our hypotheses. All measures of the resting state’s 

temporal signature – PLE, ACW and MI - correlated positively with the degree of Private 

self-consciousness. In contrast, no such relationship was found for Public and Social 

self-consciousness. Moreover, our data show a significant relationship between two of 

the core cortical midline regions, pACC and PCC, and Private self-consciousness, but 

not the control regions. Together with our results on machine learning, our data strongly 

support the hypothesis that information about our self or self-representation is encoded 

25 
 

This article is protected by copyright. All rights reserved.



Corr author: A. Wolff  awolf037@uottawa.ca 

and contained in the brain’s resting state. This is known as rest-self containment. Most 

importantly, we find that such rest-self containment occurs on a temporal basis, 

specifically by the resting state’s degree of temporal nestedness, temporal continuity, 

and temporal integration. As these three neuronal features find their direct analogues on 

the psychological level of the self, our results support a temporal basis of self as 

featured by the temporal signature of the brain’s spontaneous activity (see also 

Northoff, 2017). 

Taken together, our data shows that the temporal structure of the spontaneous activity 

encodes and contains information specifically about Private self-consciousness. This is 

further reinforced by our machine learning results, which shows that features extracted 

from the brain’s spontaneous activity can be used to classify high versus low Private 

self-consciousness. Thus, the temporal signature of the brain’s spontaneous activity can 

characterize our self and its self-consciousness. This suggests that temporal 

nestedness, continuity, and integration also hold on the psychological level of self, 

which therefore may be characterized in a temporal way (see Northoff 2016, 2017).  

“Temporal nestedness” of spontaneous activity and self-consciousness  

Our first main finding shows a positive relationship between the resting state’s scale-

free properties and Private self-consciousness. Higher values of the PLE were related 

to higher degrees of Private self-consciousness. Previous findings show a relation of 

scale-free properties with personality traits [Hahn et al., 2012; Lei et al., 2013] and self-
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consciousness [Huang et al., 2016] in the infraslow frequency domain (0.01 - 0.1Hz) as 

measured with fMRI. Our data shows an analogous relationship in the faster frequency 

domain (1 - 40Hz) of EEG. The higher the degree of the resting state’s scale-free 

properties in these frequencies, the higher the degree of Private self-consciousness. 

Most interestingly, as in our previous fMRI study [Huang et al., 2016], this relationship 

only holds for Private, but not Public and Social dimensions of self-consciousness.   

Scale-free properties describe the power relationship between slower and faster 

frequencies. As slower frequencies show stronger power than faster ones, the latter are 

temporally nested within the former – there is thus ‘temporal nestedness’ that indexes a 

fractal organisation between the different frequencies in the brain’s spontaneous activity 

[He, 2011; He, 2014; Linkenkaer-Hansen et al., 2001; Palva et al., 2013]. Both our past 

[Huang et al., 2016] and present results suggests that such temporal nestedness on the 

neuronal level is closely related to our self through Private self-consciousness. This is 

further supported by the fact that the power of the single frequency ranges themselves 

did not predict Private self-consciousness. Hence, it is really the fractal organisation, 

and thus temporal nestedness, that encodes Private self-consciousness.  

Psychologically, our self spans across different time ranges. Our self may exert impact 

on the level of seconds as, for instance, when impacting and modulating stimuli in terms 

of different degrees of self-relatedness [Northoff et al., 2006; Sui et al., 2012; Sui et al., 

2013; Sui and Humphreys, 2015]. This amounts to what has been described as 
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“synchronic self” [Northoff, 2016]. At the same time, our self is also manifest in 

extremely long timescales and thus slower frequency ranges, as over days, weeks, and 

even years and decades. This thus reflects a ‘self-continuity’ as ‘diachronic self’ [Ersner-

Hershfield et al., 2009b; Ersner-Hershfield et al., 2009a; Northoff, 2017] which, following 

our data, may be traced to the temporal nestedness between the different frequencies 

in the brain’s spontaneous activity.  

“Temporal continuity” of spontaneous activity and self-consciousness 

Our second main finding concerns the relationship of the autocorrelation window (ACW) 

of our data to Private self-consciousness. What do these results mean? For that, we 

must go back to the neuronal level and consider what exactly the ACW measures. The 

ACW measures the degree of sameness of neural activity patterns across time when 

correlating the different time points with each other. As the slower frequencies, due to 

their long cycle duration and strong power, shape the ACW more strongly that shorter 

and less powered faster frequencies [Honey et al., 2012], one would expect positive 

correlation between scale-free properties such as the PLE, and the ACW. This is 

exactly what our results revealed.  

Longer ACW indicates that neuronal activity remains the same over time. Hence, ACW 

can be said to measure the degree of “temporal continuity” of the brain’s spontaneous 

activity. Most importantly, our results show that such temporal continuity on the 

neuronal level is related to our self, specifically Private self-consciousness; the higher 
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the degree of temporal continuity on the neuronal level, the higher the degree of Private 

self-consciousness. In contrast, no such correlation was observed for Public and Social 

self-consciousness. Hence, temporal continuity on the neuronal level may be directly 

related to self on the psychological level. This relationship is embodied by our machine 

learning model, in which the ACW was the most heavily weighted feature for 

classification. This reinforces the special relationship of the brain’s temporal continuity 

to self-consciousness. 

The relationship between temporal continuity on the neuronal level and self-

consciousness on the psychological level is of interest given that psychologically the 

self can indeed be characterized by its continuous nature, specifically self-continuity 

resulting in personal identity [Northoff, 2017]. The self has been demonstrated to delay 

reward choice more strongly than non-self [Ersner-Hershfield et al., 2009b] – the self 

thus appears to infuse temporal delay with temporal continuity into psychological 

functions such as reward. This is even more interesting given that the ACW on the 

cellular level has been related to the degree to which monkeys can delay reward 

delivery [Murray et al., 2014]. Temporal continuity, on both the neuronal and 

psychological levels, thus seem to provide the “glue”, or “common currency”, between 

the brain and the self.    

“Temporal integration” of spontaneous activity and self-consciousness 
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Our third main finding consists in the relationship between cross-frequency coupling (as 

indexed by MI) and Private self-consciousness. As in the other measures, we observed 

a positive correlation between MI and Private self-consciousness. No such relation was 

observed for Public and Social dimensions of self.  

Cross-frequency coupling describes the relation between slower and faster frequencies; 

the slower frequency couples to the faster frequency [Aru et al., 2015; Hyafil et al., 

2015]. Interestingly, we observed the degree of CFC to be related to both PLE and 

ACW. Higher degrees of CFC were directly related to stronger PLE and longer ACW. 

Given that all three measures are strongly driven by the slower frequencies as featured 

by long cycle duration, one would have expected their correlation. This is also in line 

with the findings by He (2010) who observed a close relation between scale-free 

properties and CFC (as measured with MI) in ECoG. Our results replicate and extend 

these findings by showing that CFC correlates not only with PLE, but also with ACW.  

Psychologically, the self has been associated with integration in various functions. The 

self promotes integration of sensory [Sui et al., 2012; Sui et al., 2013], motor [Frings, C. 

& Wentura, 2014], reward [Sui et al., 2013; Sui, 2016], cognitive, specifically attention 

[Sui et al., 2013] and decision making [Nakao et al., 2012; Nakao et al., 2013], and 

emotional [Northoff et al., 2009] functions. Therefore, Sui and Humphreys (2015) 

characterized the self by integration, therefore self-integration, where the self provides 

some sort of “glue” on the psychological level. 
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How does the integrative function of self on the psychological level stand in relation to 

temporal integration on the neuronal level as in CFC? Integration on the psychological 

level is possible only by integrating the different time scales of the various functions and 

their respective contents. Hence, integration on the psychological level is possible only 

if integrating different time scales and their respective frequencies. We now assume that 

such temporal integration on the psychological level is mediated by temporal integration 

on the neuronal level, which in turn is mediated by CFC.  

Based on the MI, which measures CFC, we assume that the integrative function of self 

allows one to relate short, fast frequency stimuli (as in the beta and gamma frequency 

range) to the brain’s ongoing spontaneous activity, with its stronger power in the slower 

frequency ranges of delta, theta, and possibly even the infraslow ranges (0.01 to 

0.1Hz). Specifically, one would hypothesize that the fast frequency stimuli are 

processed by equally fast frequencies whose amplitude, as evoked during task-evoked 

activity, may then be coupled to, and thus integrated with, the spontaneous activity’s 

long phase durations of the slower frequencies. This would produce slow-fast phase-

amplitude coupling. We consecutively hypothesize that such coupling from the slower 

frequencies’ phase to the faster frequencies’ amplitude - crossing between spontaneous 

and task-evoked activity - may signify the integrative function of self as described by Sui 

and Humphreys [Sui and Humphreys, 2015]. However, to demonstrate that, future 
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studies are needed which link self-integration on the psychological level to phase-

amplitude coupling on the neuronal level.   

Limitations  

We here tested only for resting state; we did not include an explicit self-related task in 

our study. Future studies may therefore want to test how the applied measures of PLE, 

ACW, and MI are modulated during task-evoked activity and how that is related to 

Private self-consciousness.  

Next, we are not able to disentangle self and consciousness. Previous investigations 

suggest that the self may already be processed unconsciously, for example during the 

absence of consciousness [Huang et al., 2014; Qin and Northoff, 2011]. Future studies 

may therefore dissociate self and consciousness and investigate which is related to the 

various measures of the temporo-spatial signature.  

Thirdly, we were unable to locate exactly the temporal measures in specific regions of 

the brain due to the spatial limitations of EEG. Our data does however support the 

involvement of cortical midline structures, such as the pACC and PCC, as their 

eLORETA-based activity correlated only with Private self-consciousness. 

Finally, our support vector machine analysis employed a rather small amount of training 

data. As this analysis was merely to supplement our main findings, we did not view this 

as a major issue. 

32 
 

This article is protected by copyright. All rights reserved.



Corr author: A. Wolff  awolf037@uottawa.ca 

Conclusion  

We investigated the temporal signature of the brain’s spontaneous activity with EEG 

and linked that to self-consciousness. Our findings show that specifically Private self-

consciousness is positively related to neuronal measures of temporal nestedness 

through PLE, temporal continuity through ACW, and temporal integration through 

CFC/MI. Together with our results from machine learning, these findings suggest that 

the self is encoded (or represented) in the brain’s spontaneous activity in a temporal 

way. The temporal signature of the brain’s spontaneous activity may thus encode or 

represent self-related information in a temporal way. Though not demonstrated here 

explicitly, our data suggest that the temporal features of the brain’s spontaneous activity 

- temporal nestedness, continuity, and integration - translate into corresponding 

temporal features on the psychological level. Temporal features may thus provide the 

“common currency” between brain and self such that the latter can then be 

characterized primarily in a temporal way. 
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Table 1: Correlation between pACC and PCC eLORETA source current density and 
PLE, ACW, and MI 

Correlation between eLORETA 
and: 

pACC r* 
value 

pACC p† 
value 

PCC r* 
value 

PCC p† 

value 
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PLE 0.339 0.023 0.332 0.023 

ACW 0.331 0.047 0.322 0.047 

MI 0.402 0.047 0.402 0.052 

* Pearson r value for one-tailed bootstrapped (1000 samples) correlation 
† FDR corrected for multiple comparisons  
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Figure 1: Self-Consciousness subscale score distributions. Private (left), Public (center) and 

Social (right) are illustrated. The width of the plots denotes the number of observations, with 

wider areas having more observations. The horizontal line in the boxplots signifies the mean of 

the distributions, with crosses signifying outliers. 

Figure 2: Power Law Exponent (PLE) distribution and correlation with SCS subscales. A: Log-

log power spectrum of all participants for four minutes of eyes closed resting state, from which 

the PLE was calculated. Power spectrums are the mean of all channels. Alpha peak at roughly 

10Hz is prominent since the resting state is eyes closed. Data was bandpass filtered from 1-

40Hz. B: Distribution of PLE’s for all participants from power spectrums seen in A. The width of 

the plots denotes the number of observations, with wider areas having more observations. The 

horizontal line in the boxplots signifies the mean of the distributions. C: One-tailed, bootstrapped 

partial correlations between PLE’s and SCS subscale scores. The other two subscores were 

included as covariates in the partial correlations. Of the three subscales, only Private had a 

significant correlation with PLE’s. Circle = Private, Cross = Public, Triangle = Social. P-values 

are FDR corrected. 
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Figure 3: Autocorrelation Window (ACW) distribution and correlation with SCS subscales. A: 

Autocorrelation function of all participants for four minutes of eyes closed resting state, from 

which the ACW (arrow) was calculated. The ACW was calculated by a 20 second window with 

50% overlap and at lag of 0.5 seconds. B: Distribution of ACW’s for all participants from 

Autocorrelation Function seen in A. The width of the plots denotes the number of 

observations, with wider areas having more observations. The horizontal line in the boxplots 

signifies the mean of the distributions, with crosses signifying outliers. C: One-tailed, 

bootstrapped correlation between ACW and PLE, which is significant (p-value stated). D: 

One-tailed, bootstrapped partial correlations between ACW’s and SCS subscale scores. The 

other two subscores were included as covariates in the partial correlations. Of the three 

subscales, only Private had a significant correlation with ACW’s. Circle = Private, Cross = 

Public, Triangle = Social. P-values are FDR corrected. 

Figure 4: Modulation Index (MI) distribution and correlation with SCS subscales. A: 

Distribution of MI’s for all participants calculated from four minutes of eyes closed resting 

state. The width of the plots denotes the number of observations, with wider areas having 

more observations. The horizontal line in the boxplots signifies the mean of the distributions, 

with cross signifying outlier. B: One-tailed, bootstrapped correlations between MI and PLE 

and ACW, both of which were significant (p-values stated). C One-tailed, bootstrapped partial 

correlations between MI’s and SCS subscale scores. The other two subscores were included 

as covariates in the partial correlations. Of the three subscales, only Private had a significant 

correlation with MI’s. Circle = Private, Cross = Public, Triangle = Social. P-values are FDR 

corrected. 
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Figure 5: Perigenual Anterior Cingulate Cortex (pACC) eLORETA correlation with SCS 

subscales. A: eLORETA localization of pACC (a cortical midline structure) based on MNI 

coordinates from a previous paper. B: One-tailed, bootstrapped partial correlations between 

pACC eLORETA values and SCS subscale scores. The other two subscores were included as 

covariates in the partial correlations. Of the three subscales, Private was just below the level 

of significance with the FDR correction applied. Circle = Private, Cross = Public, Triangle = 

Social. P-values are FDR corrected. 

Figure 6: Posterior Cingulate Cortex (PCC) eLORETA correlation with SCS subscales. A: 

eLORETA localization of PCC (a cortical midline structure) based on MNI coordinates from a 

previous paper. B: One-tailed, bootstrapped partial correlations between PCC eLORETA 

values and SCS subscale scores. The other two subscores were included as covariates in the 

partial correlations. Of the three subscales, only Private had a significant correlation with PCC 

activity. Circle = Private, Cross = Public, Triangle = Social. P-values are FDR corrected. 

Figure 7: Schema of role and interaction of all three measures. PLE measures the temporal 

nestedness of frequencies, ACW measures the temporal continuity of frequencies, and MI 

measures the temporal integration of frequencies during the resting state. 
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