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Summary

In this paper, we propose a novel approach to the linear quadratic (LQ) optimal con-
trol of unknown discrete-time linear systems. We first describe an iterative procedure
for minimizing a partially-unknown static function. The procedure is based on simul-
taneous updates in the estimation of unknown parameters and in the optimization
of controllable inputs. We then employ the procedure for the control optimization
in unknown discrete-time dynamic systems – we consider applications to the finite-
horizon and to the infinite-horizon LQ control of linear systems in detail. To illustrate
the approach, an example of the pitch attitude control of an aircraft is considered. We
also compare our proposed approach to several other approaches to finite/infinite-
horizon LQ control problems with unknown dynamics from the literature, including
extremum seeking and adaptive dynamic programming/reinforcement learning. Our
proposed approach is competitive to these approaches in speed of convergence and
in implementation and computational complexity.
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1 INTRODUCTION

An optimal control problem typically involves constructing an open-loop control function or a closed-loop/feedback control

policy that minimizes a specified cost function subject to the dynamics of the system to be controlled1. A state-space model of

the system in the form of differential or difference equations is typically used to represent the dynamic coupling between control

inputs and system outputs, imposed as a constraint when control optimization is performed. Such a model may be derived based

on physics or obtained via system identification2.
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In practical applications, the system dynamics may be uncertain or evolve over time, due to, for instance, 1) the system

operating point changing, such as the trim condition of an aircraft, 2) some unmodeled factors that influence the system dynamics

changing, such as weather or ambient temperature and humidity for an automotive engine, or 3) the system parameters changing,

e.g., as a result of aging or part-to-part variability. Such evolution in dynamics may cause the model used in the derivation

of the control strategy to become inaccurate and degrade the control performance. In particular, a control strategy may be

designed based on a linearization about an operating point of a nonlinear model. When the system operating point changes, the

original linearization becomes inaccurate and the original control may no longer provide satisfactory performance. While gain

scheduling/gain interpolation may be used, scheduling on all possible parameters that can cause variability is often impractical

as these parameters may be numerous and some of them may not be measured.

To cope with the lack of accurate models or the changes in dynamics, control techniques such as adaptive control3 and robust

optimal control4 can be applied. The goal of adaptive control is in principle different from that of optimal control: Adaptive

control usually concerns itself with the adaptation of a fixed-form controller to initially uncertain system parameters to achieve

typical control requirements such as stabilization and reference tracking. On the other hand, the goal of optimal control is to find

a control that minimizes a specified cost function, while stabilization and reference tracking may be achieved through the cost

function design. Robust optimal control pursues such a goal for systems with uncertain parameters: It optimizes the control to

minimize the worst cost (in a min-max formulation)5,6 or the cost expectation (in a probability-weighted-average formulation)7

over an uncertainty set.

An alternative technique is optimal control for unknown systems, also referred to as model-free optimal control, i.e., optimal

control without the need of prior knowledge of the system dynamics. Differently from the problem setting of robust optimal

control, model-free optimal control typically pursues control optimization to minimize the true cost associated with a given but

unknown system.

Model-free optimal control approaches relying on learning and dynamic programming have been developed, for example,

in references8,9,10. In Dierks et al8, a neural network is used to learn the plant dynamics online, then, an adaptive dynamic

programming (ADP) algorithm is exploited to obtain an optimal control law offline based on the learned neural network model.

In Lewis and Vamvoudakis9, policy iteration and value iteration reinforcement learning (RL) algorithms are developed to learn

an optimal controller offline from a sufficiently rich set of measured input/output data. In Wang et al10, three neural networks

are used to identify the plant model, approximate the value function and its derivative, and compute the control, respectively,

based on an actor-critic scheme. References11,12 provide surveys on the application of ADP and RL for feedback control. Such

approaches attempt to approximately solve the Hamilton-Jacobi-Bellman equation and create an optimal feedback policy. Their

scalability may be limited due to the “curse of dimensionality13.”
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Alternatively, a known low-complexity model that approximates the dynamics of a possibly-unknown high-complexity system

with an error may be used to solve for the control, where the low-complexity model and the control solution are iteratively

refined to improve their matches to, respectively, the original system and the optimal control14. A possible option for the low-

complexity model is a linear time-varying model defined in a neighborhood of the current state-and-input trajectory pair. It can

be identified through perturbation-based sensitivity analysis and then used to estimate gradient information for updating control

to decrease cost15,16.

Linear quadratic (LQ) optimal control is one of the most fundamental problems in optimal control theory and practice. The

control of many engineering systems can be formulated as a finite-horizon or an infinite-horizon LQ control problem17. For

infinite-horizon LQ problems, due to the fact that the optimal solution, as a state-feedback policy, and the Bellman value13, as a

function of the states, are time-invariant, approaches based on model-free policy/value iteration RL can be effective. This route

has been pursued in references18,19,20,21,22,23. On the other hand, many practical tasks, such as spacecraft landing or docking,

involve maneuvers over finite time durations, which lead to optimal control problems defined over a finite horizon. Fewer results

exist for the finite-horizon LQ control of unknown systems. Approaches based on ADP and RL have recently been investigated

in Zhao et al24 and Fong et al25; an approach based on multiparameter extremum seeking (ES)26 has been proposed in Frihauf

et al27 and extended to handle measurement noise in Liu et al28.

In this paper, we also consider the LQ optimal control of unknown, discrete-time, linear systems. Our contributions include:

1) We propose a novel iterative approach that can be applied to both finite-horizon and infinite-horizon LQ problems. 2) Our

approach involves simultaneous updates in the estimates of unknown parameters of amodel, that represents the system dynamics,

and in the control. A similar-in-spirit but different-in-detail strategy based on the interplay between system identification and

control optimization is discussed in Dean et al29,30, where only infinite-horizon LQ problems are considered. On the other hand,

our approach can also be applied to finite-horizon LQ problems. Furthermore, the updates in our approach rely only on input

and cost measurements, i.e., our approach does not rely on full-state measurements. 3) Probing signals are usually needed in

model-free optimal control approaches, e.g., in references8,10,18,19,20,21,22,23,24,25,27,28. On the other hand, our approach can achieve

significant cost decrease even without using probing signals, especially when applied to finite-horizon LQ problems. 4) Our

approach is easy to understand and to implement, and it exhibits fast convergence and low computational complexity.

This paper is organized as follows: In Section 2, we describe a problem of minimizing a partially-unknown function, and

propose an iterative approach to treat the problem. In Section 3, we apply the approach to the finite-horizon LQ optimal control

of unknown discrete-time linear systems; in addition, we present an algorithm based on ES for comparison. In Section 4, we

apply the approach to the infinite-horizon LQ optimal control of unknown discrete-time linear systems; in addition, we present

an algorithm based on RL and an algorithm based on ES for comparison. In Section 5, we illustrate the approach by an example
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representing the pitch attitude control of an aircraft, and compare its performance to the other algorithms. The paper is concluded

in Section 6.

The notations used in this paper are standard.ℝm1×m2 represents the set ofm1×m2matrices with real entries;ℤ≥m represents the

set of integers that are no less than m. For a scalar twice-continuously-differentiable real-valued function �(�1, �2) ∈ 2
(

ℝn1 ×

ℝn2 ,ℝ
)

, where �1 ∈ ℝn1 and �2 ∈ ℝn2 , the operator ∇ is defined as

∇�i� =
)�
)�i

=
[

)�
)�i1

,
)�
)�i2

,⋯ ,
)�
)�ini

]

∈ ℝ1×ni ,

∇�i,�j� = ∇�j
(

∇�i�
)⊤ =

[

∇⊤�j
( )�
)�i1

)

,∇⊤�j
( )�
)�i2

)

,⋯ ,∇⊤�j
( )�
)�ini

)

]⊤

∈ ℝni×nj ,

where i ∈ {1, 2}, j ∈ {1, 2}, and �ik denotes the kth component of �i. For a matrixM ∈ ℝm1×m2 , the operator vec(M) is defined

by stacking the columns ofM , i.e.,

vec(M) = vec
(

[

M1,M2,⋯ ,Mm2

]

)

=
[

M⊤
1 ,M

⊤
2 ,⋯ ,M⊤

m2

]⊤ ∈ ℝm1m2 ,

where Mi denotes the ith column of M . We also define the operator vec−1(⋅,ℝm1×m2) ∶ ℝm1m2 → ℝm1×m2 as the inverse of

vec(⋅), such that vec−1
(

vec(M),ℝm1×m2
)

= M . When without ambiguity, we simply write vec−1(⋅). For a matrix pair (M,N),

the operatorM ⊗N is defined as the Kronecker product ofM and N 31. For a symmetric matrix with real entriesM = M⊤,

�min(M) (or �max(M)) represents the smallest (or largest) eigenvalue ofM . Furthermore, we use ‖ ⋅ ‖ to represent the vector

2-norm and its induced matrix norm. In represents the identity matrix of ℝn×n.

2 PROBLEM FORMULATION AND METHODOLOGY

2.1 Problem formulation

We describe our approach to LQ optimal control of unknown discrete-time linear systems by first considering the following

optimization problem,

min
x
f (x, v∗), (1)

where the function f ∈ 2
(

ℝnx×ℝnv ,ℝ
)

, that is, f ∶ ℝnx×ℝnv → ℝ is a twice-continuously-differentiable real-valued function

of the variable x ∈ ℝnx and the parameter v∗ ∈ ℝnv .

We make the following assumptions:

Assumption 1. The true value of v∗ ∈ ℝnv is unknown.

Assumption 2. For each value of x ∈ ℝnx , the value of f (x, v∗) can be measured.
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Assumption 3. For each value of v̄ ∈ ℝnv , the minimizer

x̄ ∈ argmin
x

f (x, v̄) (2)

exists and can be computed. In particular, the minimizer x̄ satisfies the first order and second order necessary conditions for

optimality,

∇xf (x̄, v̄) = 0, ∇x,xf (x̄, v̄) ⪰ 0. (3)

Assumptions 1, 2 and 3 characterize the function f as a grey-box type system – only the structure of the system is known,

but the parameters of the system are unknown. Such a problem formulation covers a range of practical situations. For instance,

it may represent the control optimization for an unknown dynamic system, where the variable x represents the sequence of

control inputs or the parameters of a feedback law to be optimized, and the parameter v∗ represents the parameters of a model

that reflects the dynamic coupling between inputs and outputs. Details are discussed in Sections 3 and 4.

A common approach to treat the above problem involves first identifying the value of v∗ (e.g., by sampling inputs x, measuring

outputs f (x, v∗), and exploiting known information about f to estimate v∗), then solving the optimization problem (1) with the

identified value of v∗ substituted in. Depending on the application, this sequential identification and optimization process, when

used for control, can have several potential drawbacks. Firstly, both stages of the process need to be repeated when parameters

of the system change due to a change in operating conditions, aging, etc. This can entail a significant effort and may require the

system to be temporarily decommissioned in order to perform the identification. Secondly, sampling inputs in the identification

phase may not instantly benefit the optimization and performance improvement until the identification is completed. Thirdly, the

inputs used for identification, as well as the conditions under which the identification is performed, and those occurring during

the system online operation may be different. This can cause situations where the identified v∗ does not translate into good

control performance. For these and other reasons, alternative procedures, including those that perform optimization without the

need of knowing v∗ 26,27,28 and those that perform identification and optimization concurrently10,29,30, are of interest.

2.2 Procedure for minimizing a partially-unknown function

In this paper we propose an iterative procedure to solve the problem (1) under the Assumptions 1, 2 and 3. Our approach involves

concurrently updating the estimate of x∗ ∈ argminx f (x, v∗) and the estimate of v∗.

Let (xk, vk) denote the estimate of (x∗, v∗) at the kth iteration. At the (k+ 1)st iteration, we first minimize f (x, vk) according

to the first order and second order necessary conditions for optimality (3), i.e., based on the conditions

∇xf (xk+1, vk) = 0, ∇x,xf (xk+1, vk) ⪰ 0, (4)

to obtain the minimizer xk+1 as the updated estimate of x∗.
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We then update the estimate of v∗. The Taylor expansion of f at (xk+1, vk) to the second order yields,

f (xk+1, v∗) = f (xk+1, vk) + ∇vf (xk+1, vk)(v∗ − vk) (5)

+ 1
2
(v∗ − vk)⊤∇v,vf (xk+1, vk)(v∗ − vk) +H.O.T .,

f (xk, v∗) = f (xk+1, vk) + ∇xf (xk+1, vk)(xk − xk+1) + ∇vf (xk+1, vk)(v∗ − vk) (6)

+ 1
2

⎡

⎢

⎢

⎢

⎣

xk − xk+1

v∗ − vk

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

∇x,xf (xk+1, vk) ∇x,vf (xk+1, vk)

∇⊤x,vf (x
k+1, vk) ∇v,vf (xk+1, vk)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xk − xk+1

v∗ − vk

⎤

⎥

⎥

⎥

⎦

+H.O.T .,

whereH.O.T . stands for “higher order terms.”

Combining (4), (5) and (6), we obtain,

f (xk+1, v∗) − f (xk, v∗) = (xk+1 − xk)⊤∇x,vf (xk+1, vk)(v∗ − vk) (7)

− 1
2
(xk+1 − xk)⊤∇x,xf (xk+1, vk)(xk+1 − xk) +H.O.T .

In particular, theH.O.T . in the Taylor expansions (5), (6) and (7) are characterized by

H.O.T . = O

⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎣

xk+1 − xk

v∗ − vk

⎤

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

3
⎞

⎟

⎟

⎟

⎠

. (8)

We now treat theH.O.T . in (7) as some unknown noise wk+1 ∈ ℝ and obtain,

f (xk+1, v∗) − f (xk, v∗) = (xk+1 − xk)⊤∇x,vf (xk+1, vk)(v∗ − vk) (9)

− 1
2
(xk+1 − xk)⊤∇x,xf (xk+1, vk)(xk+1 − xk) +wk+1,

which is a linear equation in v∗.

Assumption 4. There exists " ≥ 0 such that |wk+1
| ≤ ", for all k ∈ ℤ≥0.

We note that the " in Assumption 4 is typically a small number. This is reasonable when 1) xk+1 is sufficiently close to xk,

e.g., through a sufficiently small step size value in the update of the estimate of v∗, and 2) vk is sufficiently close to v∗, e.g.,

through a sufficiently good initial guess v0. We also note that when f is at most quadratically dependent on (x, v∗), " = 0.

We write (9) as

�k+1 = �k+1v∗ +wk+1, (10)
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where

�k+1 = (xk+1 − xk)⊤∇x,vf (xk+1, vk) ∈ ℝ1×nv , (11)

�k+1 = �k+11 + �k+12 ∈ ℝ, (12)

�k+11 = f (xk+1, v∗) − f (xk, v∗) + 1
2
(xk+1 − xk)⊤∇x,xf (xk+1, vk)(xk+1 − xk) ∈ ℝ, (13)

�k+12 = (xk+1 − xk)⊤∇x,vf (xk+1, vk) vk = �k+1vk ∈ ℝ. (14)

Define

Φk+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1

⋮

�k+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Zk+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1

⋮

�k+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, W k+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

w1

⋮

wk+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

The least squares estimate of v∗ is

vk+1 =
(

(Φk+1)⊤Φk+1)−1(Φk+1)⊤Zk+1, (16)

assuming that (Φk+1)⊤Φk+1 is full-rank.

The least squares estimate (16) can be computed recursively using the recursive least squares (RLS) algorithm:

Πk+1 = Πk −
Πk(�k+1)⊤�k+1Πk

1 + �k+1Πk(�k+1)⊤
, (17)

vk+1 = vk + �k+1Πk+1(�k+1)⊤
(

�k+1 − �k+1vk
)

, (18)

where �k+1 ∈ [0, 1] is an update step size, and Πk =
(

(Φk)⊤Φk)−1 ∈ ℝnv×nv .

After both the updated estimate of x∗, xk+1, and the updated estimate of v∗, vk+1, are obtained, we let k← k+1 and proceed

with the next iteration.

We now describe convergence properties of the iterates {vk}∞k=0.

Proposition 1. Suppose that the update step size �k+1 is selected to satisfy

0 ≤ �k+1 ≤ min
( Γ(1 − )k

‖Πk+1(�k+1)⊤‖ |�k+11 |

, 1
)

, (19)

for all k ∈ ℤ≥0, where Γ > 0 and  ∈ (0, 1) are design parameters. Then, {vk}∞k=0 converges, i.e., there exists v
∞ ∈ ℝnv such that

lim
k→∞

vk = v∞. (20)

Proof. Equation (18) can be written as

vk+1 − vk = �k+1Πk+1(�k+1)⊤
(

�k+1 − �k+1vk
)

= �k+1Πk+1(�k+1)⊤�k+11 . (21)
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By (19),

‖vk+1 − vk‖ ≤ �k+1 ‖Πk+1(�k+1)⊤‖ |�k+11 | ≤ Γ(1 − )k. (22)

Then, the series of non-negative terms,

∞
∑

k=0
‖vk+1 − vk‖ ≤ Γ

∞
∑

k=0
(1 − )k = Γ


<∞, (23)

is convergent, and as a result, for any � > 0, there exists k∗ ∈ ℤ≥0, such that

∞
∑

k=k∗
‖vk+1 − vk‖ ≤ �. (24)

Then, by the triangle inequality, for any k1 ∈ ℤ≥k∗ and any k2 ∈ ℤ≥k1 ,

‖vk2 − vk1‖ ≤
k2−1
∑

k=k1

‖vk+1 − vk‖ ≤
∞
∑

k=k∗
‖vk+1 − vk‖ ≤ �. (25)

That is,

lim
k1,k2→∞

‖vk2 − vk1‖ = 0. (26)

Therefore, {vk}∞k=0 is a Cauchy sequence in ℝ
nv , thus, converges.

Remark 1. In the implementation, a constant update step size �k+1 = � ∈ [0, 1] for all k ∈ ℤ≥0 is used, which usually achieves

the convergence of the iterates. Note that such a constant step size can satisfy (19) over an arbitrarily large number of iterations

if Γ > 0 is selected sufficiently large and  ∈ (0, 1) is selected sufficiently small. The feasibility of using a constant update step

size is also supported by the analysis of the robustness of our approach to step size selection through simulations in Section 5.1.

We next provide an error estimate of our approach for the case when the step size is equal to 1.

Proposition 2. Suppose that (i) �k+1 = 1 for all k ∈ ℤ≥0, and (ii) Assumption 4 holds. Then, (I) the estimation error of v∗ at

the kth iteration is bounded by

‖vk − v∗‖ ≤
√

k
�min

(

(Φk)⊤Φk
) ", (27)

where the right-hand side is unbounded if (Φk)⊤Φk is not full-rank.

Suppose further that (iii) in the Taylor expansion of ∇xf at (xk+1, vk) to the first order,

∇⊤xf (x
∗, v∗) = ∇⊤xf (x

k+1, vk) + ∇x,xf (xk+1, vk)(x∗ − xk+1) + ∇x,vf (xk+1, vk)(v∗ − vk) + w̃k+1, (28)
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where w̃k+1 ∈ ℝnx and is characterized by w̃k+1 = O

⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎣

x∗ − xk+1

v∗ − vk

⎤

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

, it holds that ‖w̃k+1
‖ ≤ �, for all k ∈ ℤ≥0. Then, (II)

the estimation error of x∗ at the (k + 1)st iteration is bounded by

‖xk+1 − x∗‖ ≤ ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk (Φk)⊤‖‖

‖

√

k " + ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1

‖

‖

‖

�, (29)

where the right-hand side is unbounded if ∇x,xf (xk+1, vk) is not full-rank.

Suppose further that (iv) there exists � > 0, such that ‖f (x1, v∗) − f (x2, v∗)‖ ≤ � ‖x1 − x2‖, for all x1, x2 ∈ ℝnx . Then, (III)

‖f (xk+1, v∗) − f (x∗, v∗)‖ ≤ (30)

�
(

‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk (Φk)⊤‖‖

‖

√

k " + ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1

‖

‖

‖

�
)

.

Proof. (I) vk and v∗ satisfy, respectively,

(

(Φk)⊤Φk)vk = (Φk)⊤Zk, (31)
(

(Φk)⊤Φk)v∗ = (Φk)⊤(Zk −W k). (32)

Then,
(

(Φk)⊤Φk)(vk − v∗) = (Φk)⊤W k. (33)

Multiply by (vk − v∗)⊤ on both sides to obtain

‖Φk(vk − v∗)‖2 =
(

Φk(vk − v∗)
)⊤W k. (34)

By the Cauchy-Schwarz inequality,

‖Φk(vk − v∗)‖2 =
(

Φk(vk − v∗)
)⊤W k ≤ ‖Φk(vk − v∗)‖ ‖W k

‖. (35)

Then, by Assumption 4,

‖Φk(vk − v∗)‖ ≤ ‖W k
‖ =

√

√

√

√

k
∑

t=1
(wt)2 ≤

√

k "2 =
√

k ". (36)

The left-hand side can be bounded by

√

�min
(

(Φk)⊤Φk
)

‖vk − v∗‖ ≤ ‖Φk(vk − v∗)‖. (37)

Therefore,

‖vk − v∗‖ ≤
√

k
�min

(

(Φk)⊤Φk
) ". (38)
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(II) By the first order necessary conditions for optimality (3), (4) and the equations (28), (33),

∇x,xf (xk+1, vk)(xk+1 − x∗) = −∇x,vf (xk+1, vk)(vk − v∗) + w̃k+1

= −∇x,vf (xk+1, vk)
(

(Φk)⊤Φk)−1(Φk)⊤W k + w̃k+1

= −∇x,vf (xk+1, vk) Πk (Φk)⊤W k + w̃k+1. (39)

Assume that ∇x,xf (xk+1, vk) is full-rank,

xk+1 − x∗ = −
(

∇x,xf (xk+1, vk)
)−1(∇x,vf (xk+1, vk) Πk (Φk)⊤W k − w̃k+1). (40)

By (ii) and (iii),

‖xk+1 − x∗‖ ≤ ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk (Φk)⊤‖‖

‖

‖W k
‖ + ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1

‖

‖

‖

‖w̃k+1
‖

≤ ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk (Φk)⊤‖‖

‖

√

k " + ‖

‖

‖

(

∇x,xf (xk+1, vk)
)−1

‖

‖

‖

�. (41)

(III) follows from (II) and (iv).

Remark 2. As the number of data points, k, increases in the RLS algorithm, it usually holds that �min((Φk)⊤Φk) increases and

goes to infinity, while ‖Πk‖ decreases and goes to zero. If k
/

�min((Φk)⊤Φk) decreases as k increases, the error bound (27)

shrinks, which can bemonitored at run time. Similarly, the growth or decrease of the error bounds (29) and (30) can bemonitored

at run time. The bounds (27), (29), and (30) can be used to define criteria to terminate the iterations. For instance, if there exists

k∗ ∈ ℤ≥0 such that ‖vk
∗−v∗‖ ≤ �1, or ‖xk

∗−x∗‖ ≤ �2, or ‖f (xk
∗ , v∗)−f (x∗, v∗)‖ ≤ �3, where �1, �2, �3 > 0 are user-specified,

then iterations terminate at k∗. Otherwise, iterations terminate after the maximum number of iterations is reached.

Sometimes a monotone non-increase in the cost values
{

f (xk+1, v∗)
}

k∈ℤ≥0
during the iterations is desired. For the case of

control, this may facilitate maintenance of stability, supposing the initial control is stabilizing. In what follows we provide a

guideline for selecting the update step size so that the cost does not increase after the current iteration, which can be checked

before the iteration is performed.

The guideline is developed based on several approximations. In particular, we make the following assumptions:

Assumption 5.

1) In (9), wk+1 = 0.

2) In the following equation obtained based on the Taylor expansion of f at (xk+1, vk) to the second order,

f (xk+2, v∗) − f (xk+1, v∗) = (xk+2 − xk+1)⊤∇x,vf (xk+1, vk)(v∗ − vk) (42)

+ 1
2
(xk+2 − xk+1)⊤∇x,xf (xk+1, vk)(xk+2 − xk+1) + w̄k+1,
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the higher order terms w̄k+1 = 0.

3) In the Taylor expansion of ∇xf at (xk+1, vk) to the first order,

∇⊤xf (x
k+2, vk+1) = ∇⊤xf (x

k+1, vk) + ∇x,xf (xk+1, vk)(xk+2 − xk+1) + ∇x,vf (xk+1, vk)(vk+1 − vk) + ŵk+1, (43)

the higher order terms ŵk+1 = 0.

Proposition 3. Suppose that Assumption 5 holds. Then, if the update step size �k+1 ∈ [0, 1] is selected such that

Σk+11 − �k+1Σk+12 ⪰ 0, (44)

where

Σk+11 =
(

∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk) Πk+1∇⊤x,vf (x

k+1, vk) (45)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)

)

+
(

∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤

∇x,vf (xk+1, vk) Πk+1∇⊤x,vf (x
k+1, vk)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)

)⊤
,

Σk+12 =
(

∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk)

)(

Πk+1∇⊤x,vf (x
k+1, vk) (46)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk+1

)(

∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk)

)

,

then the cost does not increase after the (k + 1)st iteration, i.e.,

f (xk+2, v∗) ≤ f (xk+1, v∗). (47)

Proof. By the first order necessary conditions for optimality ∇xf (xk+2, vk+1) = ∇xf (xk+1, vk) = 0, (43) yields

xk+2 − xk+1 = −
(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)(vk+1 − vk). (48)

Substituting (48) into (42),

f (xk+2, v∗) − f (xk+1, v∗) = −(vk+1 − vk)⊤∇⊤x,vf (x
k+1, vk)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)(v∗ − vk) (49)

+ 1
2
(vk+1 − vk)⊤∇⊤x,vf (x

k+1, vk)
(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)(vk+1 − vk).

The update law (18) yields

vk+1 − vk = �k+1Πk+1∇⊤x,vf (x
k+1, vk)(xk+1 − xk) (50)

(

f (xk+1, v∗) − f (xk, v∗) + 1
2
(xk+1 − xk)⊤∇x,xf (xk+1, vk)(xk+1 − xk)

)

.
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Substituting (9) with wk+1 = 0 into (50) yields

vk+1 − vk = �k+1Πk+1∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk)(v∗ − vk). (51)

Substituting (51) into (49), we obtain

f (xk+2, v∗) − f (xk+1, v∗)

= − �k+1(v∗ − vk)⊤∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk) Πk+1

∇⊤x,vf (x
k+1, vk)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk)(v∗ − vk) +

(�k+1)2

2
(v∗ − vk)⊤

∇⊤x,vf (x
k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤∇x,vf (xk+1, vk) Πk+1∇⊤x,vf (x

k+1, vk)

(

∇x,xf (xk+1, vk)
)−1∇x,vf (xk+1, vk) Πk+1∇⊤x,vf (x

k+1, vk)(xk+1 − xk)(xk+1 − xk)⊤

∇x,vf (xk+1, vk)(v∗ − vk)

= − �k+1

2
(v∗ − vk)⊤

(

Σk+11 − �k+1Σk+12

)

(v∗ − vk), (52)

where Σk+11 and Σk+12 are defined in (45) and (46).

If Σk+11 − �k+1Σk+12 ⪰ 0, then f (xk+2, v∗) − f (xk+1, v∗) ≤ 0 for any v∗ ∈ ℝnv .

Note that in the expression (52), all parameter values, except for the unknown v∗ and the controllable update step size �k+1,

are already known before the update of vk+1 at the (k + 1)st iteration. Therefore, if �k+1 is selected such that (44) holds, which

can be checked before the (k+1)st iteration is performed, then, under Assumption 5, the cost is guaranteed to not increase after

the (k + 1)st iteration.

In practice, a monotone non-increase in the cost values
{

f (xk+1, v∗)
}

k∈ℤ≥0
can be achieved by solving the following linear

matrix inequality (LMI) problem32,

maximize: � ∈ [0, 1], (53)

subject to: Σk+11 − �Σk+12 ⪰ 0,

and set � = 0 if the constraint is infeasible, to select the update step size �k+1, for each k ∈ ℤ≥0.

Remark 3. If the update step sizes �k+1 are selected by solving (53) for all k ∈ ℤ≥0, then, under Assumption 5, the sequence
{

f (xk+1, v∗)
}

k∈ℤ≥0
is monotone non-increasing. Since

{

f (xk+1, v∗)
}

k∈ℤ≥0
is also lower-bounded by f (x∗, v∗), by the monotone

convergence theorem,
{

f (xk+1, v∗)
}

k∈ℤ≥0
converges. This provides another sufficient condition, aside from Proposition 1, for

the convergence of the iterates.

This article is protected by copyright. All rights reserved.



Li ET AL 13

Remark 4. In the iterative procedure, at the (k+1)st iteration, k ∈ ℤ≥0, on the one hand, xk+1 is required to satisfy the necessary

conditions for optimality (4); on the other hand, xk can be arbitrary. Therefore: 1) To initialize the iterative procedure, k = 0,

we start from an initial guess v0, compute x1 ∈ argminx f (x, v0), and then create x0 by adding a small perturbation to x1. 2) At

the (k + 1)st iteration, k ∈ ℤ≥1, we may add a small random perturbation ek ∈ ℝnx to the xk obtained from the kth iteration,

and use the perturbed xk ← xk + ek at the (k+ 1)st iteration. Such perturbations play the role of probing signals and generate a

persistency of excitation (PE)33 to the RLS algorithm, to promote the RLS estimate to approach v∗ 34,35. We have found that such

perturbations are not necessary in the application of our approach to finite-horizon LQ problems, but can benefit the application

of our approach to infinite-horizon LQ problems. Further details can be found in Sections 3 and 4.

2.3 Examples

2.3.1 Minimization of an unknown quadratic function

Consider the minimization of the following function:

f (x, v∗) = a x2 + b x + 1, v∗ = (a, b) = (1,−2). (54)

Clearly, the minimizer is x∗ = 1 and the corresponding function value is f (x∗, v∗) = 0.

Suppose we do not know v∗ = (a, b). We can use our proposed approach to treat this problem. In particular, we start from an

initial guess v0 = (a0, b0) = (2, 4). At the (k+1)st iteration, the minimizer xk+1 is computed from xk+1 = −bk∕(2ak); the update

step size �k+1 is selected by solving the LMI problem (53). The evolutions of xk+1 and of f (xk+1, v∗) over the iterations are

plotted in Fig. 1 (a) and (b). It can be observed that xk+1 converges to x∗ = 1 and f (xk+1, v∗) converges to f (x∗, v∗) = 0. Also,

we plot the history of �k+1 and the history of the smallest eigenvalue of Σk+11 − �k+1Σk+12 over the iterations in Fig. 1 (c). In this

example, the solution to (53) is 1 for all k ∈ ℤ≥0, which can be observed from Fig. 1 (c.1); and the matrix Σk+11 − �k+1Σk+12 is

positive semi-definite for all k ∈ ℤ≥0, which can be observed from Fig. 1 (c.2). This guarantees the monotone non-increase in

the cost values
{

f (xk+1, v∗)
}

k∈ℤ≥0
, which is verified in Fig. 1 (b).

2.3.2 Minimization of the Rosenbrock function with unknown parameters

The second example we consider is minimizing the Rosenbrock function:

f (x, v∗) = (a − x1)2 + b (x2 − x21)
2, x = (x1, x2), v∗ = (a, b) = (1, 100). (55)

The Rosenbrock function is often used as a benchmark problem to test optimization algorithms36. Note that it is non-convex

and admits a global minimum at (x∗1, x
∗
2) = (a, a2). We use the Rosenbrock function to show that the procedure described in

Section 2.2 can be successful for functions that are not quadratic.
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FIGURE 1 Quadratic function minimization. (a) The plot of
(

k, xk+1
)

. (b) The plot of
(

k, f (xk+1, v∗)
)

. (c) The plots of
(

k, 1−
�k+1

)

and of
(

k, �min(Σk+11 − �k+1Σk+12 )
)

.

Suppose we do not know (a, b) and start from an initial guess (a0, b0) = (0.5, 200). At the (k+ 1)st iteration, the minimizer is

computed from xk+1 =
(

xk+11 , xk+12

)

=
(

ak, (ak)2
)

; the update step size is selected as a constant �k+1 = 0.25 for all k ∈ ℤ≥0. The

evolutions of xk+11 and of f (xk+1, v∗) over the iterations are plotted in Fig. 2 (a) and (b). It can be observed that xk+11 converges

to the minimizer at x∗1 = a = 1 and f (x
k+1, v∗) converges to f (x∗, v∗) = 0.
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FIGURE 2 Rosenbrock function minimization. (a) The plot of
(

k, xk+11

)

. (b) The contour of f (x, v∗) and the evolution of xk+1.
The red cross indicates x1 =

(

a0, (a0)2
)

, the green cross indicates the solution after 25 iterations.

3 FINITE-HORIZON LQ CONTROL OF UNKNOWN DISCRETE-TIME LINEAR SYSTEMS

In Section 2, we have introduced an optimization problem where the objective function f is of a known form but depends on an

unknown parameter v∗. We have presented an iterative approach to address this problem and discussed its theoretical properties.
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In this section, we exploit the proposed approach to treat the finite-horizon LQ optimal control problem for unknown discrete-

time systems. Our iterative approach requires multiple evaluations of the cost as a function of the control, thus, it is applicable to

situations where the cost can be evaluated through simulations subject to the same initial condition, or to batch processes where

experiments with the same initial condition can be repeated37,38. Such a setting is the same as in the application of extremum

seeking (ES) to the finite-horizon LQ control27,28. Therefore, we choose to compare the performance of our approach to that of

the ES approach.

3.1 Iterative approach to finite-horizon LQ control of unknown systems

A finite-horizon discrete-time optimal control problem may be stated as:

min
ui, i=0,⋯,N−1

f
(

u0, u1,⋯ , uN−1, y1, y2,⋯ , yN
)

, (56)

subject to the dynamic equation,

yi+1 =  (yi, ui), (57)

and an initial condition y0, where ui ∈ ℝnu , i ∈ {0, 1,⋯ , N − 1}, denotes the input sequence, yi ∈ ℝny , i ∈ {0, 1,⋯ , N},

denotes the state sequence, andN is the prediction horizon.

Given an initial condition y0, the subsequent states, yi, i ∈ {1, 2,⋯ , N}, are determined by the input sequence
{

u0, u1,⋯ , uN−1
}

.

If the dynamic equation (57) is parameterizable, the problem (56) may be converted into the form:

min
x
f (x, v∗), (58)

where x =
[

u⊤0 , u
⊤
1 ,⋯ , u⊤N−1

]⊤, and v∗ represents the parameters of a model that reflects the dynamic coupling between
{

u0, u1,⋯ , uN−1
}

and
{

y0, y1,⋯ , yN
}

through (57). Then, the iterative approach presented in Section 2 may be used to solve

the problem (58).

Now we discuss the approach to achieve the conversion from (56) and (57) to (58) for the finite-horizon LQ control of

discrete-time linear systems.

A discrete-time finite-horizon LQ problem involves minimizing a cost function,

min
ui, i=0,⋯,N−1

f =
N−1
∑

i=0

(

y⊤i+1Qyi+1 + u
⊤
i Rui

)

, (59)

subject to

yi+1 = Ayi + B ui, (60)

where Q = Q⊤ ⪰ 0 and R = R⊤ ≻ 0.
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The dynamic equation (60) yields

yi = Ai y0 +
i−1
∑

j=0
Ai−j−1B uj . (61)

Substituting (61) into the objective function (59), we obtain,

f =
N−1
∑

i=0

(

(

Ai+1y0 +
i

∑

j=0
Ai−jBuj

)⊤Q
(

Ai+1y0 +
i

∑

j=0
Ai−jBuj

)

+ u⊤i Rui

)

=
N−1
∑

i=0

(

y⊤0 (A
i+1)⊤QAi+1y0 + 2 y⊤0 (A

i+1)⊤Q
(

i
∑

j=0
Ai−jBuj

)

(62)

+
(

i
∑

j=0
Ai−jBuj

)⊤Q
(

i
∑

j=0
Ai−jBuj

)

+ u⊤i Rui

)

.

Suppose the matrix pair (A,B) is unknown1; we can list the unknown entries in some order and define an unknown parameter

vector, e.g.,

v∗ =
[

vec⊤(A), vec⊤(B)
]⊤ =

[

a11, a21,⋯ , anyny , b11, b21,⋯ , bnynu
]⊤, (63)

where apq denotes the (p, q)-entry (p-th row, q-th column) of matrix A and bp′q′ denotes the (p′, q′)-entry of matrix B. Then, the

problem (59) and (60) is converted into the form:

min
x
f (x, v∗), (64)

where f is given by (62), x =
[

u⊤0 , u
⊤
1 ,⋯ , u⊤N−1

]⊤, and v∗ is given by (63). Therefore, we can use the approach in Section 2 to

update the estimate of v∗ while improving the control sequence x =
[

u⊤0 , u
⊤
1 ,⋯ , u⊤N−1

]⊤.

We note that the needed derivatives can be explicitly computed. Specifically,

∇umf = 2
N−1
∑

i=m

(

y⊤0 (A
i+1)⊤Q(Ai−mB) +

(

i
∑

j=0
Ai−jBuj

)⊤Q(Ai−mB)
)

+ 2 u⊤mR, (65)

∇um,unf =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
∑N−1
i=m

(

(Ai−mB)⊤Q(Ai−nB)
)

if n < m,

2
∑N−1
i=m

(

(Ai−mB)⊤Q(Ai−mB)
)

+ 2R if n = m,

2
∑N−1
i=n

(

(Ai−mB)⊤Q(Ai−nB)
)

if n > m,

(66)

∇um,apqf = 2
N−1
∑

i=m

(

(Ai−mB)⊤QĀ{i+1,pq}y0 +
(

Ā{i−m,pq}B
)⊤QAi+1y0 (67)

+ (Ai−mB)⊤Q
(

i
∑

j=0
Ā{i−j,pq}Buj

)

+
(

Ā{i−m,pq}B
)⊤Q

(

i
∑

j=0
Ai−jBuj

)

)

,

where Ā{�,pq} is a matrix given by

Ā{�,pq} =
�−1
∑

r=0
Ar

[

1pq
]

AA
�−r−1, (68)

where
[

1pq
]

A is a matrix of size(A) where the (p, q)-entry is 1 and all other entries are 0.

1The case where only some entries of (A,B) are unknown can be treated similarly.
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We can obtain a similar expression for ∇um,bp′q′f ,

∇um,bp′q′f = 2
N−1
∑

i=m

(

(

Ai−m
[

1p′q′
]

B

)⊤QAi+1y0 +
(

Ai−m
[

1p′q′
]

B

)⊤Q
(

i
∑

j=0
Ai−jBuj

)

(69)

+ (Ai−mB)⊤Q
(

i
∑

j=0
Ai−j

[

1p′q′
]

Buj
)

)

,

where
[

1p′q′
]

B is a matrix of size(B) where the (p′, q′)-entry is 1 and all other entries are 0.

Then, we can formulate the matrices in (9) as

∇x,xf (xk+1, vk) =
[

∇um,unf
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇u0,u0f ∇u0,u1f ⋯ ∇u0,uN−1f

∇u1,u0f ∇u1,u1f ⋯ ∇u1,uN−1f

⋮ ⋮ ⋱ ⋮

∇uN−1,u0f ∇uN−1,u1f ⋯ ∇uN−1,uN−1f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (70)

∇x,vf (xk+1, vk) =
[

∇um,apqf,∇um,bp′q′f
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇u0,a11f ∇u0,a21f ⋯ ∇u0,anynyf ∇u0,b11f ⋯ ∇u0,bnynuf

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

∇uN−1,a11f ∇uN−1,a21f ⋯ ∇uN−1,anynyf ∇uN−1,b11f ⋯ ∇uN−1,bnynuf

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The minimizer xk+1 =
[

(uk+10 )⊤, (uk+11 )⊤,⋯ , (uk+1N−1)
⊤]⊤ at the (k + 1)st iteration can be analytically computed by, at first,

performing the backward-in-time calculations,

F {k+1}i−1 = −
(

R + (B{k})⊤S{k+1}i B{k}
)−1(B{k})⊤S{k+1}i A{k}, (71)

S{k+1}i−1 = Q + (A{k})⊤S{k+1}i A{k} + (A{k})⊤S{k+1}i B{k}F {k+1}i−1 ,

where S{k+1}N = Q, and the matrix pair
(

A{k}, B{k}
)

is constructed from vk; and then, performing the forward-in-time

calculations,

uk+1i = F {k+1}i yk+1i , (72)

yk+1i+1 = A
{k}yk+1i + B{k}uk+1i ,

where yk+10 = y0. Note that in the above expressions the superscripts k + 1 and {k + 1} indicate the iteration index, not the

matrix power.

We remark that we treat the finite-horizon LQ control as an open-loop control problem, that is, at the (k + 1)st iteration, we

use the computed input sequence
{

uk+1i
}

to control the system.

Our iterative algorithm for the finite-horizon LQ control of unknown discrete-time linear systems is formally presented as

Algorithm 1.

In the algorithm, ei ∈ ℝnu , i = 0,⋯ , N − 1, are small perturbations.
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Algorithm 1 Iterative algorithm for finite-horizon LQ control

Initialize the v∗-estimate v0 = vec
(

[A0, B0]
)

∈ ℝn2y+nynu ;
Initialize the RLS parameter Π0 ∈ ℝ(n2y+nynu)×(n

2
y+nynu);

[A0, B0] = vec−1(v0);
Solve

{

F {1}i
}N−1
i=0 using (71); Solve x1 = vec

(

[u10,⋯ , u1N−1]
)

using (72);
Obtain x0 = vec

(

[u00,⋯ , u0N−1]
)

by u0i = u
1
i + ei, i = 0,⋯ , N − 1;

f (x0, v∗) = Cost(x0);
for k = 0 ∶ kmax − 1 do

f (xk+1, v∗) = Cost(xk+1);
Compute �k+1 using (11); Compute �k+1 using (12) (13) and (14);
Update Πk+1 using (17); Update vk+1 using (18);
[Ak+1, Bk+1] = vec−1(vk+1);
Solve

{

F {k+2}i
}N−1
i=0 using (71); Solve xk+2 = vec

(

[uk+20 ,⋯ , uk+2N−1]
)

using (72);
end for

By Assumption 2, the value of f (xk, v∗) can be measured for each k ∈ ℤ≥0. In the case of state measurement, the cost

evaluation function Cost(⋅) takes the form of Algorithm 2.

Algorithm 2 Cost evaluation for finite-horizon LQ control
Function Cost(xk)
Input xk = vec

(

[uk0 ,⋯ , ukN−1]
)

Output f (xk, v∗)
[uk0 ,⋯ , ukN−1] = vec−1(xk);
yk0 = y0;
for i = 0 ∶ N − 1 do

yki+1 =  (yki , u
k
i , v

∗);
end for
f (xk, v∗) =

∑N−1
i=0

(

(yki+1)
⊤Qyki+1 + (u

k
i )
⊤Ruki

)

.

The  (⋅, ⋅, v∗) represents the true system (60).

3.2 Finite-horizon LQ control via extremum seeking

Extremum seeking (ES) is a non-model-based method for real-time optimization26. In Frihauf et al27, an algorithm based on

multiparameter extremum seeking for the finite-horizon LQ control of unknown discrete-time linear systems is proposed. The

approach is extended to handle measurement noise in Liu et al28. To estimate gradients of the cost function, sinusoidal probing

signals are added to the nominal control inputs. In this section, we review the algorithm, and will later compare the performance

of our iterative algorithm to that of ES.

The control input sequence x =
[

u⊤0 , u
⊤
1 ,⋯ , u⊤N−1

]⊤ is updated according to Algorithm 3.
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Algorithm 3 Extremum seeking algorithm for finite-horizon LQ control

Initialize the nominal control sequence x̂0 = vec
(

[û00,⋯ , û0N−1]
)

∈ ℝnuN ;
Initialize the parameter �0 ∈ ℝ;
for k = 0 ∶ kmax − 1 do

xk = x̂k + �Sk;
f (xk, v∗) = Cost(xk);
x̂k+1 = x̂k − �KMk+1(f (xk, v∗) − �k

)

;
�k+1 = (1 − �ℎ) �k + �ℎf (xk, v∗);

end for

In the algorithm, � > 0 is a small parameter, K is a positive diagonal matrix, ℎ > 0 and � > 0 are design parameters, and

Mk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos(k!1 −  1)

⋮

cos(k!nuN −  nuN )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Sk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos(k!1)

⋮

cos(k!nuN )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (73)

where !i = bi�, bi is a rational number such that !i ≠ !j for all distinct i, j ∈ {1, 2,⋯ , nuN}, and  i = −!i.

The ES algorithm uses the sinusoidal perturbationsMk and Sk to estimate, and drive to zero, the gradient of the cost function

f (⋅, v∗). Thus, if xk converges to x∞, x∞ satisfies the first order necessary condition for optimality,

∇xf (x∞, v∗) = 0. (74)

The convergence of xk to x∞ is discussed in Frihauf et al27 and Liu et al28. If f is (locally) convex, x∞ is a (local) minimizer.

4 INFINITE-HORIZON LQ CONTROL OF UNKNOWN DISCRETE-TIME LINEAR

SYSTEMS

In this section, we describe how to exploit our proposed approach to treat the infinite-horizon LQ optimal control problem for

unknown discrete-time systems. Similar to the finite-horizon case, our iterative approach is applicable to situations where the

cost can be evaluated through simulations, or to batch processes.

4.1 Iterative approach to infinite-horizon LQ control of unknown systems

A discrete-time infinite-horizon LQ problem involves minimizing a cost function,

min
ui, i=0,1,⋯

f =
∞
∑

i=0

(

y⊤i Qyi + u
⊤
i Rui

)

, (75)

subject to

yi+1 = Ayi + B ui, (76)
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where Q = Q⊤ ⪰ 0 and R = R⊤ ≻ 0.

It is known that, under the standard stabilizability and detectability assumptions17, the optimal solution to the above problem

is a time-invariant feedback law,

ui = F yi. (77)

Substituting (77) into (75) and (76), we obtain an “equivalent” problem:

min
F

f =
∞
∑

i=0
y⊤i
(

Q + F ⊤RF
)

yi, (78)

subject to

yi+1 = (A + BF ) yi. (79)

Note that the “equivalence” here is in a sense that the optimal solution to (75) and (76) takes the form of ui = Fyi, where F

is the global optimal solution to (78) and (79).

The dynamic equation (79) yields

yi = (A + BF )i y0. (80)

Substituting (80) into (78),

f = y⊤0
∞
∑

i=0

(

(

(A + BF )i
)⊤(Q + F ⊤RF

)(

(A + BF )i
)

)

y0. (81)

If we list the entries of F to optimize in some order and define a vector, e.g.,

x = vec(F ) =
[

f11, f21,⋯ , fnuny
]⊤, (82)

where fmn denotes the (m, n)-entry of matrix F , and list the unknown entries of (A,B) in some order and define an unknown

parameter vector, e.g.,

v∗ =
[

vec⊤(A), vec⊤(B)
]⊤ =

[

a11, a21,⋯ , anyny , b11, b21,⋯ , bnynu
]⊤, (83)

then, the problem (78) and (79) is converted into the form:

min
x
f (x, v∗), (84)

where f is given by (81), x is given by (82), and v∗ is given by (83). Therefore, we can use the approach in Section 2 to update

the estimate of v∗ while improving the feedback gain F = vec−1(x).

Suppose the closed-loop system (79) is asymptotically stable. Then, the series

T ∶=
∞
∑

i=0

(

(

(A + BF )i
)⊤(Q + F ⊤RF

)(

(A + BF )i
)

)

(85)
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converges and T satisfies
(

Q + F ⊤RF
)

+ (A + BF )⊤T (A + BF ) = T , (86)

which is in the form of a discrete-time Lyapunov equation.

The analytic solution to (86) is given by

vec(T ) = Λ−1 vec
(

Q + F ⊤RF
)

, (87)

where

Λ ∶= In2y − (A + BF )
⊤ ⊗ (A + BF )⊤. (88)

The objective function (81) can be written as

f = vec(f ) = vec
(

y⊤0 T y0
)

=
(

y0 ⊗ y0
)⊤vec(T ). (89)

The first order partial derivatives have the following form,

∇fmnf =
(

y0 ⊗ y0
)⊤
(

− Λ−1
(

∇fmnΛ
)

Λ−1 vec
(

Q + F ⊤RF
)

+ Λ−1∇fmn

(

vec
(

Q + F ⊤RF
)

)

)

(90)

=
(

y0 ⊗ y0
)⊤
(

Λ−1Ωmn Λ−1 vec
(

Q + F ⊤RF
)

+ Λ−1 vec
(

Ξmn
)

)

,

where

Ωmn ∶= −
(

∇fmnΛ
)

= (B
[

1mn
]

F )
⊤ ⊗ (A + BF )⊤ + (A + BF )⊤ ⊗ (B

[

1mn
]

F )
⊤,

Ξmn ∶= ∇fmn

(

Q + F ⊤RF
)

=
[

1mn
]⊤
FRF + F

⊤R
[

1mn
]

F ,

and
[

1mn
]

F is a matrix of size(F ) where the (m, n)-entry is 1 and all other entries are 0.

The second order partial derivatives have the following form,

∇fmn,fm′n′f

=
(

y0 ⊗ y0
)⊤
(

− Λ−1
(

∇fm′n′Λ
)

Λ−1Ωmn Λ−1 vec
(

Q + F ⊤RF
)

+ Λ−1
(

∇fm′n′Ωmn
)

Λ−1 vec
(

Q + F ⊤RF
)

− Λ−1Ωmn Λ−1
(

∇fm′n′Λ
)

Λ−1 vec
(

Q + F ⊤RF
)

+ Λ−1Ωmn Λ−1∇fm′n′

(

vec
(

Q + F ⊤RF
)

)

− Λ−1
(

∇fm′n′Λ
)

Λ−1 vec
(

Ξmn
)

+ Λ−1∇fm′n′

(

vec
(

Ξmn
)

)

)

=
(

y0 ⊗ y0
)⊤
(

Λ−1
(

Ωm′n′ Λ−1Ωmn + ∇fm′n′Ωmn + Ωmn Λ−1Ωm′n′
)

Λ−1 vec
(

Q + F ⊤RF
)

(91)

+ Λ−1Ωmn Λ−1 vec
(

Ξm′n′
)

+ Λ−1Ωm′n′ Λ−1 vec
(

Ξmn
)

+ Λ−1 vec
(

∇fm′n′Ξmn
)

)

,
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where

∇fm′n′Ωmn = (B
[

1mn
]

F )
⊤ ⊗ (B

[

1m′n′
]

F )
⊤ + (B

[

1m′n′
]

F )
⊤ ⊗ (B

[

1mn
]

F )
⊤,

∇fm′n′Ξmn =
[

1mn
]⊤
FR

[

1m′n′
]

F +
[

1m′n′
]⊤
FR

[

1mn
]

F ;

and

∇fmn,apqf =
(

y0 ⊗ y0
)⊤
(

− Λ−1
(

(

∇apqΛ
)

Λ−1Ωmn − ∇apqΩmn + Ωmn Λ
−1(∇apqΛ

)

)

(92)

Λ−1 vec
(

Q + F ⊤RF
)

− Λ−1
(

∇apqΛ
)

Λ−1 vec
(

Ξmn
)

)

,

where

∇apqΛ = − (
[

1pq
]

A)
⊤ ⊗ (A + BF )⊤ − (A + BF )⊤ ⊗ (

[

1pq
]

A)
⊤,

∇apqΩmn = (B
[

1mn
]

F )
⊤ ⊗ (

[

1pq
]

A)
⊤ + (

[

1pq
]

A)
⊤ ⊗ (B

[

1mn
]

F )
⊤;

and

∇fmn,bp′q′f =
(

y0 ⊗ y0
)⊤
(

− Λ−1
(

(

∇bp′q′Λ
)

Λ−1Ωmn − ∇bp′q′Ωmn + Ωmn Λ
−1(∇bp′q′Λ

)

)

(93)

Λ−1 vec
(

Q + F ⊤RF
)

− Λ−1
(

∇bp′q′Λ
)

Λ−1 vec
(

Ξmn
)

)

,

where

∇bp′q′Λ = − (
[

1p′q′
]

BF )
⊤ ⊗ (A + BF )⊤ − (A + BF )⊤ ⊗ (

[

1p′q′
]

BF )
⊤,

∇bp′q′Ωmn = (B
[

1mn
]

F )
⊤ ⊗ (

[

1p′q′
]

BF )
⊤ + (

[

1p′q′
]

BF )
⊤ ⊗ (B

[

1mn
]

F )
⊤

+ (
[

1p′q′
]

B

[

1mn
]

F )
⊤ ⊗ (A + BF )⊤ + (A + BF )⊤ ⊗ (

[

1p′q′
]

B

[

1mn
]

F )
⊤.

Then, we can formulate the matrices in (9) as

∇x,xf (xk+1, vk) =
[

∇fmn,fm′n′f
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇f11,f11f ∇f11,f21f ⋯ ∇f11,fnuny
f

∇f21,f11f ∇f21,f21f ⋯ ∇f21,fnuny
f

⋮ ⋮ ⋱ ⋮

∇fnuny ,f11
f ∇fnuny ,f21

f ⋯ ∇fnuny ,fnuny
f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (94)

∇x,vf (xk+1, vk) =
[

∇fmn,apqf,∇fmn,bp′q′f
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇f11,a11f ∇f11,a21f ⋯ ∇f11,anyny
f ∇f11,b11f ⋯ ∇f11,bnynu

f

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

∇fnuny ,a11
f ∇fnuny ,a21

f ⋯ ∇fnuny ,anyny
f ∇fnuny ,b11

f ⋯ ∇fnuny ,bnynu
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

This article is protected by copyright. All rights reserved.



Li ET AL 23

Theminimizer xk+1 = vec
(

F {k+1}
)

at the (k+1)st iteration can be analytically computed by solving the discrete-time algebraic

Riccati equation,

T {k+1} = Q + (A{k})⊤T {k+1}A{k} − (A{k})⊤T {k+1}B{k}
(

R + (B{k})⊤T {k+1}B{k}
)−1(B{k})⊤T {k+1}A{k},

F {k+1} = −
(

R + (B{k})⊤T {k+1}B{k}
)−1(B{k})⊤T {k+1}A{k}. (95)

Note that the superscript {k + 1} indicates the iteration index, not the matrix power.

We remark that in the infinite-horizon LQ control case, we apply our methodology to search for an optimal feedback matrix

F ; while, in the finite-horizon LQ control case considered in Section 3, we apply our methodology to search for an optimal

open-loop control sequence.

Our iterative algorithm for the infinite-horizon LQ control of unknown discrete-time linear systems is formally presented as

Algorithm 4.

Algorithm 4 Iterative algorithm for infinite-horizon LQ control

Initialize the v∗-estimate v0 = vec
(

[A0, B0]
)

∈ ℝn2y+nynu ;
Initialize the RLS parameter Π0 ∈ ℝ(n2y+nynu)×(n

2
y+nynu);

[A0, B0] = vec−1(v0);
Solve x1 = vec(F {1}) using (95), x0 = x1 + e{0};
f (x0, v∗) = Cost(x0);
for k = 0 ∶ kmax − 1 do

f (xk+1, v∗) = Cost(xk+1);
Compute �k+1 using (11); Compute �k+1 using (12) (13) and (14);
Update Πk+1 using (17); Update vk+1 using (18);
[Ak+1, Bk+1] = vec−1(vk+1);
Solve xk+2 = vec(F {k+2}) using (95);
if Perturbation = True then

xk+1 ← xk+1 + e{k+1};
f (xk+1, v∗) = Cost(xk+1);

end if
end for

In the algorithm, e{k} ∈ ℝnuny , with e{k} → 0 as k → ∞, are small perturbations. When Perturbation = True, perturbations

are added, playing the role of probing signals, to generate persistent excitations to the RLS algorithm. It will be shown in the

example in Section 5 that adding perturbations in the algorithm can effectively help the algorithm escape local minima, at the

cost of slower convergence.

By Assumption 2, the value of f (xk, v∗) can be measured for each k ∈ ℤ≥0. In the case of state measurement, the cost

evaluation function Cost(⋅) takes the form of Algorithm 5, with imax ∈ ℤ≥0 sufficiently large.
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Algorithm 5 Cost evaluation for infinite-horizon LQ control

Function Cost(xk)
Input xk = vec(F {k})
Output f (xk, v∗)
F {k} = vec−1(xk);
yk0 = y0;
for i = 0 ∶ imax − 1 do

yki+1 =  (yki , F
{k}yki , v

∗);
end for
f (xk, v∗) =

∑imax
i=0 (y

k
i )
⊤(Q + (F {k})⊤RF {k}

)

yki .

4.2 Infinite-horizon LQ control via reinforcement learning

As discussed in Section 1, approaches based on reinforcement learning (RL) have also been proposed for the infinite-horizon

LQ control problem of unknown dynamic systems. In particular, an RL algorithm that exploits -learning can be used, which

is now reviewed. We will then compare the performance of our iterative algorithm to that of RL.

The -learning algorithm presented here is based on references11,18.

The Bellman value function13 of the infinite-horizon LQ control problem (75) and (76) is known to be (y) = y⊤T y, where

T is the unique stabilizing solution to the discrete-time algebraic Riccati equation,

T = Q + A⊤TA − A⊤TB
(

R + B⊤TB
)−1B⊤TA. (96)

The -value of the state-control pair (y, u) is defined as

(y, u) = y⊤Qy + u⊤Ru + (Ay + Bu) =
⎡

⎢

⎢

⎢

⎣

y

u

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

Hyy Hyu

H⊤
yu Huu

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

y

u

⎤

⎥

⎥

⎥

⎦

, (97)

where

Hyy = Q + A⊤TA, Hyu = A⊤TB, Huu = R + B⊤TB. (98)

Based on the Bellman optimality condition13, the optimal control at state y is

u∗(y) = argmin
u

(y, u). (99)

Since (y, u) is convex and differentiable in u, u∗(y) can be solved using the first order necessary condition

∇u(y, u) = 2y⊤Hyu + 2u∗(y)⊤Huu = 0, u∗(y) = −(Huu)−1H⊤
yu y. (100)

That is, the optimal feedback matrix, i.e., the optimal solution to (78) and (79) is

F = − (Huu)−1H⊤
yu. (101)
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Equation (97) can be written as

(y, u) = �⊤H, (102)

where

� =

⎡

⎢

⎢

⎢

⎣

y

u

⎤

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎣

y

u

⎤

⎥

⎥

⎥

⎦

, H = vec
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

Hyy Hyu

H⊤
yu Huu

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (103)

Suppose k samples of
(

yi, ui,(yi, ui)
)

, i = 1,⋯ , k, are collected, the least squares estimate ofH is

H
k
=
(

(Υk)⊤Υk
)−1(Υk)⊤Qk, (104)

where

Υk =
[

�1, ⋯ , �k
]⊤

, Qk =
[

(y1, u1), ⋯ , (yk, uk)
]⊤

. (105)

The true -values are unknown, but can be estimated, where the estimate is updated after each update of the H estimation,

based on

k+1(yk, uk) = (1 − �k+1)k(yk, uk) + �k+1
(

(yk)⊤Qyk + (uk)⊤Ruk+ (106)

⎡

⎢

⎢

⎢

⎣

yk+1

−(Hk
uu)

−1(Hk
yu)

⊤ yk+1

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

Hk
yy Hk

yu

(Hk
yu)

⊤ Hk
uu

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

yk+1

−(Hk
uu)

−1(Hk
yu)

⊤ yk+1

⎤

⎥

⎥

⎥

⎦

)

,

where yk+1 = Ayk + B uk is the next state, obtained via a simulation/experiment on the true system (76) with (yk, uk) as the

current state-control pair when (A,B) are unknown; the �k+1 ∈ [0, 1] is a learning rate; andHk
yy,H

k
yu andH

k
uu are reconstructed

usingH
k
.

The convergence ofk+1 to and the convergence ofH
k
toH are discussed in Lewis andVrabie11. The-learning algorithm

used in this paper is formally presented as Algorithm 6.

Algorithm 6 corresponds to updating the estimate ofH every imax samples using a mini-batch RLS algorithm. The e{k}i ∈ ℝnu ,

with e{k}i → 0 as k→∞, are probing signals that have to be added to let the -function estimate converge.

4.3 Infinite-horizon LQ control via extremum seeking

Multiparameter extremum seeking26 can also be used for the infinite-horizon LQ control of unknown discrete-time linear

systems, specifically, to solve the optimization problem (78) and (79).

The feedback gain parameters x = vec(F ) are updated according to Algorithm 7.

In the algorithm, the parameters �, ℎ, � and the matrices K,Mk, Sk are defined similarly to the extremum seeking algorithm

for finite-horizon LQ control in Section 3.2.
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Algorithm 6 -learning algorithm for infinite-horizon LQ control

Initialize the -function parameterH
0
∈ ℝ(ny+nu)2 ;

Initialize the RLS parameter Θ0 ∈ ℝ(ny+nu)2×(ny+nu)2 ;
for k = 0 ∶ kmax − 1 do

[

Hk
yy Hk

yu
(Hk

yu)
⊤ Hk

uu

]

=
(

vec−1(H
k
) + vec−1(H

k
)⊤
)

∕2;

yk+10 = y0;
ûk+10 = −(Hk

uu)
−1(Hk

yu)
⊤ yk+10 ;

Υk+1 = null, Qk+1 = null;
for i = 0 ∶ imax − 1 do

uk+1i = ûk+1i + e{k+1}i ;
yk+1i+1 =  (yk+1i , uk+1i , v∗);
ûk+1i+1 = −(H

k
uu)

−1(Hk
yu)

⊤ yk+1i+1 ;

�k+1i =
[

yk+1i
uk+1i

]

⊗
[

yk+1i
uk+1i

]

, �̂k+1i+1 =
[

yk+1i+1
ûk+1i+1

]

⊗
[

yk+1i+1
ûk+1i+1

]

;

k+1(yk+1i , uk+1i ) = (yk+1i )⊤Qyk+1i + (uk+1i )⊤Ruk+1i + (�̂k+1i+1 )
⊤H

k
;

(Υk+1)⊤ =
[

(Υk+1)⊤ �k+1i
]

, (Qk+1)⊤ =
[

(Qk+1)⊤ k+1(yk+1i , uk+1i )
]

;
end for
Θk+1 = Θk − Θk(Υk+1)⊤

(

Iimax + Υ
k+1Θk(Υk+1)⊤

)−1Υk+1Θk;
H

k+1
= H

k
+ �k+1Θk+1(Υk+1)⊤

(

Qk+1 − Υk+1H
k)
;

end for

Algorithm 7 Extremum seeking algorithm for infinite-horizon LQ control

Initialize the nominal feedback gain parameters x̂0 = vec(F̂ {0}) ∈ ℝnuny ;
Initialize the parameter �0 ∈ ℝ;
for k = 0 ∶ kmax − 1 do

xk = x̂k + �Sk;
f (xk, v∗) = Cost(xk);
x̂k+1 = x̂k − �KMk+1(f (xk, v∗) − �k

)

;
�k+1 = (1 − �ℎ) �k + �ℎf (xk, v∗);

end for

5 PITCH ATTITUDE FLIGHT CONTROL

In this section, we use a dynamic model representing the short-period pitch attitude dynamics of an AFTI/F-16 aircraft to

illustrate our approach discussed in Sections 3 and 4.

Conventional approaches to developing flight control algorithms rely on first identifying aircraft linear time-invariant (LTI)

models corresponding to different aircraft internal states and external operating conditions 2 (offline), designing feedback control

laws at these states (offline), and then implementing a control corresponding to the current state based on gain scheduling/gain

interpolation (online), see references39,40,41. Our iterative approach, in contrast, optimizes the control corresponding to the

current state without relying on pre-identified LTI models. This could be an advantage when aircraft parameters change, e.g.,

2including aircraft weight, trim condition, etc., and uniformly referred to as the aircraft “state.”
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due to aging, when storing large gain tables is impractical, which could be the case of unmanned aerial vehicle (UAV) type

aircraft, or when the aircraft operates at unanticipated conditions, e.g., aircraft icing or in loss of control situations, where we

may not have enough time to identify a new LTI model first, but need to control the aircraft immediately.

In the implementation, the cost f (xk+1, v∗) at each iteration k + 1 can be evaluated via a simulation using an onboard-

stored high-fidelity flight dynamics model, such as the F-16 model42, the NASA generic models43,44,45, and the flexible aircraft

model46, subject to the current state as the initial condition. In this paper, we do not use a high-fidelity model for cost evaluation,

but assume an underlying LTI model that represents the true aircraft pitch attitude dynamics of the current operating condition,

which is unknown to the algorithms. The continuous-time model is taken from Sobel and Shapiro39 corresponding to an altitude

3000 [feet] and Mach number 0.6. We discretize the continuous-time model with sampling time Δt = 0.1 [s] and use Matlab

c2d function47 to obtain the discrete-time model:

yi+1 = Ayi + B ui, (107)

where

y =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

q

�

�e

�f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

– pitch attitude (deg),

– pitch rate (deg/s),

– angle of attack (deg),

– elevator deflection (deg),

– flaperon deflection (deg),

u =

⎡

⎢

⎢

⎢

⎣

�ec

�fc

⎤

⎥

⎥

⎥

⎦

– elevator deflection command (deg),

– flaperon deflection command (deg).
(108)

and

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.1025 0.2080 −0.0502 −0.0057

0 1.1175 4.1534 −0.8000 −0.1010

0 0.0955 1.0722 −0.0541 −0.0153

0 0 0 0.1353 0

0 0 0 0 0.1353

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0377 −0.0040

−1.0042 −0.1131

−0.0453 −0.0175

0.8647 0

0 0.8647

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (109)
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FIGURE 3 Longitudinal kinematics of an aircraft.

5.1 Finite-horizon LQ

Assume that the true model (109) is unknown. Instead, we have initial estimates of the matrices (A,B) that have some errors.

At first, we consider the initial estimate to be (Case 1)

A0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.0992 0.1918 −0.0512 −0.0055

0 1.1090 3.9431 −0.8356 −0.1025

0 0.0978 1.0704 −0.0575 −0.0168

0 0 0 0.1319 0

0 0 0 0 0.1523

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0357 −0.0038

−0.9759 −0.1112

−0.0441 −0.0188

0.7927 0

0 0.8852

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (110)

We create this initial estimate by first adding [−10%, 10%] randomly generated multiplicative error to each entry of the true

continuous-time model and then using c2d to obtain the corresponding discrete-time model.

Secondly, we consider the initial estimate to be (Case 2)

A0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.0901 0.2195 −0.0559 −0.0055

0 1.1271 5.0308 −1.0556 −0.1172

0 0.0836 1.1022 −0.0588 −0.0168

0 0 0 0.1954 0

0 0 0 0 0.1721

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0395 −0.0035

−1.2248 −0.1142

−0.0454 −0.0172

0.9464 0

0 0.8565

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (111)

We create this estimate by first adding [−20%, 20%] randomly generated multiplicative error to each entry of the true continuous-

timemodel and then using c2d to obtain the corresponding discrete-timemodel.We test the robustness of our proposed approach

to this inaccurate initial estimation.

We consider the initial condition y0 =
[

2, 0, 1, 0, 0
]⊤ and the objective function (59) with

Q = diag(1, 1, 1, 1, 1), R = diag(1, 1), N = 10. (112)
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We implement our Algorithm 1 for both Case 1 and Case 2, i.e., initializing v0 = vec
(

[A0, B0]
)

using, respectively, (110)

and (111). We initialize Π0 = 102 In2y+nynu and set �k+1 = 1, k ∈ ℤ≥0, in both cases. We also implement the extremum-seeking

algorithm, Algorithm 3, for both cases to compare the performance. To have a relatively fair comparison, in Algorithm 3, we

initialize x̂0 = vec
(

[û00,⋯ , û0N−1]
)

as the solution to (71) and (72) where (A0, B0) are using (110) in Case 1 and (111) in Case 2,

and initialize �0 = 0 in both cases. Also, we set � = 10−5, ℎ = 10−1, � = 10−3, K = InuN , and bi = i∕(nuN +1), i = 1,⋯ , nuN .

These parameters have been tuned to generate the best results that we can get.

In Fig. 4 (a) and Fig. 5 (a), we plot the (�, q) trajectories. The black dashed curve represents the trajectory if one applies the

LQ control sequence obtained based on the model (110) or (111) to the true system (109); the red dash-dotted curve represents

the trajectory when using the true system (109) to compute the LQ control (referred to as “LQ-true”). We can observe that there

is a significant mismatch between the black curve and the red curve – the initial control sequence computed using (110) or (111)

fails to satisfactorily control the system. The blue solid curve represents the trajectory obtained using our proposed approach

after convergence. It matches the red curve well. The cyan curves show the trajectory evolution over the iterations. Fig. 4 (b)

and Fig. 5 (b) show the cost evolution over the iterations. We can observe that 1) the initial control sequence obtained based

on the model (110) or (111) leads to a large cost; 2) the final control sequence obtained using our proposed approach has a cost

very close to the optimal value; 3) the cost decreases and converges very fast – it gets close to the optimal value after only 2

iterations in Case 1, and after only 5 iterations in Case 2.

On the other hand, in Fig. 6 (a) and (b) we plot the cost evolution over the iterations using the extremum-seeking algorithm. It

can be observed that although the costs converge to the optimal value in both Case 1 and Case 2, it takes thousands of iterations

to achieve this, which, in real implementation, corresponds to thousands of high-fidelity simulations or experiments. We note

that our implementation of extremum seeking is comparable to the implementation in references27,28, which also takes thousands

of iterations to converge in a lower-dimensional system.

Note that our Algorithm 1 is robust to step size selection, as shown in Fig. 7 (a), and, importantly, does not need to use

probing signals, which are necessary in the extremum-seeking algorithm. To show the advantage of not using probing signals,

we analyze the sensitivity of Algorithm 3 to probing signals. In particular, we plot the cost evolution over the iterations with

different � selection, which reflects the probing signal magnitude, while keeping the other parameter values unchanged, in

Fig. 7 (b). It can be observed that when the magnitude of probing signals is too small, � = 0.2 × 10−5, the convergence of

the cost significantly slows down because of insufficient excitation; while, when the magnitude of probing signals is too large,

� = 5 × 10−5, although the cost decreases faster at the beginning, it increases instead of decreasing over the later iterations,

which implies a failure in convergence. Furthermore, when the magnitude of probing signals is larger, the overshoot of the cost

becomes larger (from 3, 000 for � = 1 × 10−5 to 10, 000 for � = 5 × 10−5 at the beginning of the iterations). This significant

overshoot may imply a danger of destabilization or a damage to the system, when the iterations are performed through hardware
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FIGURE 4 Finite-horizon pitch attitude controlCase 1. (a) The initial (black dashed), final (blue solid), and intermediate (cyan)
trajectories on the (�, q)-plane of Algorithm 1 iterations versus the LQ-true trajectory (red dash-dotted). (b) The cost evolution
over Algorithm 1 iterations,

(

k, f (xk+1, v∗)
)

(blue), versus the LQ-true cost (red).
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FIGURE 5 Finite-horizon pitch attitude controlCase 2. (a) The initial (black dashed), final (blue solid), and intermediate (cyan)
trajectories on the (�, q)-plane of Algorithm 1 iterations versus the LQ-true trajectory (red dash-dotted). (b) The cost evolution
over Algorithm 1 iterations,

(

k, f (xk+1, v∗)
)

(blue), versus the LQ-true cost (red).

experiments. As a result, a careful design of the probing signals may be needed, which may not be straightforward due to the lack

of physical interpretations of probing signal parameters. On the other hand, our Algorithm 1 does not have this problem since

probing signals are not necessary in our approach. Without using any probing signals, the cost can converge to a satisfactory

value, as shown in both Case 1 and Case 2.

Based on the above results, our iterative approach is superior to the extremum-seeking approach, in terms of speed of con-

vergence and implementation complexity, to the reported finite-horizon LQ control problem of the F-16 aircraft pitch attitude
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FIGURE 6 Finite-horizon pitch attitude control Case 1 and Case 2 using Algorithm 3. (a) The cost evolution over Algorithm 3
iterations,

(

k, f (xk+1, v∗)
)

, of Case 1 (blue), versus the LQ-true cost (red). (b) The cost evolution over Algorithm 3 iterations,
(

k, f (xk+1, v∗)
)

, of Case 2 (blue), versus the LQ-true cost (red).
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FIGURE 7 Sensitivity to parameters. (a) The cost evolutions over Algorithm 1 iterations,
(

k, f (xk+1, v∗)
)

, of Case 2 corre-
sponding to different step size selections, versus the LQ-true cost (red). (b) The cost evolutions over Algorithm 3 iterations,
(

k, f (xk+1, v∗)
)

, of Case 2 corresponding to different � selections, versus the LQ-true cost (red).

dynamics. We note that one of the major advantages of the extremum-seeking approach is that it is a non-model-based method

and does not even need to know the order of the system, which our iterative approach needs to know.

5.2 Infinite-horizon LQ

We consider the same model (109) and the same weights (112), but now the cost function is defined over an infinite prediction

horizon. Instead of searching for an optimal input sequence
{

u0, u1,⋯ , uN−1
}

, we search for an optimal feedback matrix F , and

feedback control ui = F yi.
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Because feedback control usually has better robustness against model uncertainties compared to open-loop control, we may

be able to handle even more inaccurate initial estimates: we consider the initial estimate of (A,B) to be (Case 3)

A0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.1131 0.2447 −0.0670 −0.0067

0 1.1987 4.6131 −1.0086 −0.1112

0 0.1217 1.1459 −0.0804 −0.0160

0 0 0 0.1251 0

0 0 0 0 0.1214

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0626 −0.0060

−1.5574 −0.1549

−0.0817 −0.0214

1.0496 0

0 1.0294

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (113)

We create this estimate by first adding [−25%, 25%] randomly generated multiplicative error to each entry of the true continuous-

time model and then using c2d to obtain the corresponding discrete-time model. We check that the gain matrix F 1 computed

based on the pair (A0, B0) can stabilize the true open-loop system (109) (although it is not optimal), which is a necessary

condition for operating our proposed approach.

We implement our Algorithm 4 for Case 3, by initializing v0 = vec
(

[A0, B0]
)

using (113) and Π0 = 102 In2y+nynu , and setting

�k+1 = 1, k ∈ ℤ≥0, and imax = 100 in the cost evaluation function, Algorithm 5. We also implement the reinforcement-learning

algorithm, Algorithm 6, and the extremum-seeking algorithm, Algorithm 7, to compare the performance. To have a relatively

fair comparison, in Algorithm 6, we initialize H
0
= vec

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

H0
yy H0

yu

(H0
yu)

⊤ H0
uu

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

based on (96) and (98) where (A0, B0) are using

(113), initialize Θ0 = 102 I(ny+nu)2 , set �
k+1 = 1, k ∈ ℤ≥0, and set imax = 100 in the inner for-loop; in Algorithm 7, we initialize

x̂0 = vec(F̂ {0}) as the solution to (95) where (A0, B0) are using (113), and initialize �0 = 0. Also, in Algorithm 4, we set e{k} =

0.99k ê{k}, where êk ∼  [−10−2, 10−2]nuny 3; in Algorithm 6, we set e{k}i = 0.99k ẽ{k}i , where ẽ{k}i ∼  [−5 × 10−2, 5 × 10−2]nu ;

and in Algorithm 7, we set � = 10−4, ℎ = 10−1, � = 10−4, K = Inuny , and bi = i∕(nuny + 1), i = 1,⋯ , nuny. These parameters

have been tuned to generate the best results that we can get.

In Fig. 8 (a), we plot the (�, q) trajectories. The black dashed curve represents the trajectory if one uses the model (113) to

compute the feedback gain and applies it to the true system (109); the red dash-dotted curve represents the trajectory if one

uses the true system (109) to compute the feedback gain (referred to as “LQ-true”). We can observe that there is a significant

mismatch between the black curve and the red curve – the performance of the feedback gain computed using (113) may not

be satisfactory as the LQ-true trajectory represents the user-desired response. The blue solid curve represents the trajectory

obtained using our proposed approach with perturbations added after convergence. It matches the red curve well. The cyan

curves show the trajectory evolution over the iterations. In Fig. 8 (b), we plot the cost evolution over the iterations corresponding

to different implementations – the black dash-dotted curve corresponds to the implementation of Algorithm 4 without adding

perturbations; the blue solid curve corresponds to the implementation of Algorithm 4with perturbations added; the green dashed

3e ∼  [�1, �2]n represents that e is randomly created according to an uniform distribution over the box [�1, �2]n.
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curve corresponds to the implementation of the reinforcement-learning algorithm, Algorithm 6. It can be observed that: 1)

Although the feedback gain obtained based on (113) also stabilizes the system, its performance is not satisfactory in terms of the

cost, which represents a measure of the control performance defined by the user. This is verified by the value of the initial point

of the cost evolution curves. 2) The implementation of our algorithm with perturbations added exhibits a similar speed of cost

decrease and convergence to that of our implementation of the reinforcement-learning algorithm. 3) Our algorithm converges

and achieves a significant amount of cost decrease within the first ten iterations, even without adding perturbations. On the

other hand, probing signals are necessary to the reinforcement-learning algorithm – without adding probing signals, i.e., setting

e{k}i = 0 in Algorithm 6, the iterations diverge. Its plot is omitted as it provides no additional information. 4) Without adding

perturbations, our algorithm converges to a local minimum; the addition of perturbations in the algorithm can effectively help the

algorithm escape local minima and ultimately converge to a solution very close to the optimal, at the cost of slower convergence.

In Fig. 9 , we plot the cost evolution over the iterations using the extremum-seeking algorithm, Algorithm 7. We can observe

that it takes thousands of iterations for the cost to converge to a local minimum. We remark that 1) probing signals are also

necessary to the extremum-seeking algorithm, and 2) the extremum-seeking algorithm is non-model-based and does not need

to know the order of the system, which our iterative algorithm and the reinforcement-learning algorithm both need to know.
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FIGURE 8 Infinite-horizon pitch attitude control Case 3. (a) The initial (black dashed), final (blue solid), and intermediate
(cyan) trajectories on the (�, q)-plane of Algorithm 4 iterationswith perturbations versus the LQ-true trajectory (red dash-dotted).
(b) The cost evolutions over Algorithm 4 iterations without perturbations (black dash-dotted), over Algorithm 4 iterations with
perturbations (blue solid), over Algorithm 6 iterations (green dashed), versus the LQ-true cost (red).

Based on the above results, our iterative approach, with perturbations added, is competitive to the reinforcement-learning

approach, and is superior to the extremum-seeking approach, in terms of speed of convergence, to the reported infinite-horizon

LQ control problem of the F-16 aircraft pitch attitude dynamics. Furthermore, our approach can achieve convergence and
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FIGURE 9 Infinite-horizon pitch attitude control Case 3. The cost evolution over Algorithm 7 iterations,
(

k, f (xk+1, v∗)
)

(blue), versus the LQ-true cost (red).

cost decrease even without using perturbations, which neither the reinforcement-learning approach nor the extremum-seeking

approach can.

Furthermore, we remark that our iterations are cheap in terms of computational time: the average CPU time for one iteration

is 2.4 [ms], performed on the MATLAB R2016a platform using an Intel Core i7-4790 3.60 GHz PC with Windows 10 and

16.0 GB of RAM, calculated by using the MATLAB tic-toc command, which is also competitive to the reinforcement-learning

approach (8.2 [ms] per iteration).

6 CONCLUSION

In this paper, we proposed a novel iterative approach to the finite-horizon and the infinite-horizon LQ optimal control of unknown

discrete-time linear systems. The iterative approach was applicable to situations where the cost could be evaluated through

simulations, or to batch processes, as it required multiple evaluations of the cost as a function of the control subject to the same

initial condition.

We compared the performance of the proposed approach to the application of extremum seeking in the case of finite-horizon

LQ control, and to the applications of reinforcement learning and of extremum seeking in the case of infinite-horizon LQ control,

by considering an example of the pitch attitude control of an AFTI/F-16 aircraft. It was shown that 1) our approach was superior

to the extremum-seeking approach in terms of speed of convergence and implementation complexity in the finite-horizon case;

2) our approach was competitive to the reinforcement-learning approach in terms of speed of convergence and computational

complexity, and was superior to the extremum-seeking approach in terms of speed of convergence, in the infinite-horizon case.
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The cornerstone of our approach to treat optimal control problems is to parameterize the dynamics to obtain a static parameter-

dependent function to minimize. In this paper, we achieved such a parametrization for a discrete-time linear system by taking

advantage of the superposition property. In future work, the approach may be extended to nonlinear systems exploiting other

parametrization techniques. Furthermore, extensions to incorporate state and/or control constraints, and to the receding-horizon

optimal control for “black-box” type systems will be explored.
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