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Summary. Declining response rates and increasing costs have led to greater use of non-
probability samples in election polling. But non-probability samples may suffer from selection
bias due to differential access, degrees of interest and other factors. Here we estimate voting
preference for 19 elections in the US 2014 midterm elections by using large non-probability
surveys obtained from SurveyMonkey users, calibrated to estimated control totals using model-
assisted calibration combined with adaptive LASSO regression, or the estimated controlled
LASSO, ECLASSO. Comparing the bias and root-mean-square error of ECLASSO with tra-
ditional calibration methods shows that ECLASSO can be a powerful method for adjusting
non-probability surveys even when only a small sample is available from a probability survey.
The methodology proposed has potentially broad application across social science and health
research, as response rates for probability samples decline and access to non-probability sam-
ples increases.
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1. Introduction

One of the most prominent applications of survey research is election polling. The timeframe
to collect critical voting intention is short, typically spanning just the last few weeks before the
election day. Due to declining land-line phone coverage and improved phone screening tech-
nology, it has become a significant challenge for election pollsters to capture voting intentions
in a timely way (Kohut ez al., 2012; Sturgis et al., 2016). This became very clear in the recent
US presidential election, where election polls underestimated Donald Trump’s support versus
Hillary Clinton because of non-response bias, measurement error (‘shy’ Trump voters) and
failure to predict likely voters, among other reasons (Mercer et al., 2016). Further, declines in
response rates (Dutwin and Lavrakas, 2016) and increasing costs for probability surveys have
impacted the collection of data for scientific research throughout the social science and health
fields as well. Hence there is an increasing push to use data from administrative sources, social
media and other non-probability-based sources to substitute for probability samples across the
spectrum of survey research.
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Recent research has shown the potential use of non-probability samples to predict election
outcomes. Wang et al. (2015) performed multilevel regression and post-stratification on Xbox
users to predict the US 2012 presidential election results accurately. Tumasjan et al. (2010)
found success in analysing the frequency of candidates appearing in Twitter texts to estimate
the support for political candidates in the 2009 German federal election. However, because non-
probability samples lack a well-defined sampling frame, they can have extremely imbalanced
sample composition relative to the general voting population. Wang et al. (2015) found, for
example, that the Xbox sample was over 90% male, with 75% aged 18-44 years, compared with
less than 50% male and 50% age 18—44 years in the 2008 presidential election exit polls. Yet by
making post-survey adjustments to match Xbox sample characteristics to 2008 exit poll charac-
teristics, they could correctly forecast the outcome of the 2012 presidential election. In addition
to basic voter demographics, the 2008 exit poll contained political ideology, party identifica-
tion and information on the support for presidential candidate Obama, making the exit poll a
powerful source of benchmark data for the 2012 presidential election where President Obama
ran for re-election. For most elections, however, no such large-scale benchmark exists before the
election. Post-survey adjustments are limited to basic demographics such as age, gender, race
and education from large-scale government surveys. As voter intentions are often associated
with other factors such as religious beliefs, attitudes towards current political agenda and polit-
ical party support (Krosnick, 1988; Abramowitz, 2008), post-survey adjustments only to basic
demographics are unlikely to remove all bias in imbalanced non-probability samples. Hence
there is need to rely on adjustment to factors that might only be available in small, high quality
benchmark samples such as the Pew Research Center (http://www.pewresearch.org)
probability sample polls.

The resurgence of non-probability sampling has prompted survey researchers to explore dif-
ferent adjustment methods for non-probability samples by using probability samples. Elliott and
Valliant (2017) review work in this area, dividing methods into ‘quasi-likelihood’ approaches
(Schonlau et al., 2004) versus ‘superpopulation’ modelling approaches (Valliant et al., 2000).
The quasi-likelihood approaches include propensity score weighting, which combines prob-
ability and non-probability samples to generate pseudo-selection-weights for non-probability
sample respondents. Superpopulation modelling includes calibration adjustments, which adjust
the non-probability sample so that the weighted sample totals of the calibration variables equal
their benchmark totals. Here we undertake an approach that combines both quasi-likelihood
and modelling approaches by utilizing a probability-based benchmark sample that is similar to
the probability-based reference sample that is used for propensity score weighting. We then use
an assisting model to predict an outcome of interest, given a set of calibration variables that exists
in both probability and non-probability samples. The outcome variable in the non-probability
sample is then calibrated to the predicted outcome total in the probability sample, given the
probability sampling weights in the benchmark data. In addition, although a general theme in
the literature is to include all variables that can be used for calibration, in practice this can lead
to instability and overfitting, especially if, as is often the case, the probability sample is much
smaller than the non-probability sample. Thus we employ the least angle shrinkage and selec-
tion operator LASSO (Tibshirani, 1996) to assist in the construction of weights for a specific
outcome variable. LASSO performs both variable selection and parameter estimation, which
can serve as a powerful assisting model by determining the most accurate and parsimonious
model. We choose one variant of LASSO, the adaptive LASSO (Zou, 2006), as the assisting
model, because the adaptive LASSO has shown to have model consistency properties under mild
conditions (i.e. it can select the correct model, and provide asymptotically unbiased parameter
estimates). We extend LASSO calibration to estimated control LASSO calibration, ECLASSO,
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for incorporating sampling uncertainties of the benchmark data into the variance component
of model-assisted calibration estimators. Although our focus is on adjusting non-probability
samples by using benchmark probability sample surveys, we develop our framework in a setting
that allows for adjustment of probability samples to benchmark data as well.

The organization of this paper is as follows. Section 2 provides background and notation for
traditional post-survey weighting schemes that are used for non-probability samples. Section 3
provides background and notation for model-assisted calibration and formulates the ECLASSO
estimator for a population total of continuous and binary outcome variables, fECLASSO. Sec-
tion 4 applies ECLASSO to predict the voting spread (the proportion of Democratic votes
minus the proportion of Republican votes, D — R) for 11 gubernatorial elections and eight
Senate elections in the US 2014 midterm election. Section 5 describes the simulation that was
used to evaluate T]ECLASSO and the asymptotic linearized variance estimates. We summarize our
findings in Section 6.

The data that are used for the simulation study and the programs that were used to analyse
them can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. Post-survey weighting schemes for non-probability samples

2.1. Propensity score weighting

Suppose that a non-probability sample and a probability-based reference sample are available,
with a common set of measures, X. Pooling the data from these studies, let Z; =1 if respondent
i is a non-probability sample respondent and Z; =0 otherwise, with the propensity to be in the
non-probability sample given by p; = Pr(Z; = 1|1X). The propensity score weights are simply
the inverse of propensity scores, WIPSCORE =1/p;. For an outcome of interest Y, the weighted
estimate of ¥ based on wPSCORE is unbiased only when we have conditional independence
between Y and Z given X: P(Z=1|X,Y) = P(Z=1|X). (This can be tested by considering the
distribution of Y given Z conditional on p, either by comparing the distribution of Y given
Z within categories of p, or by regressing Y on Z and comparing it with the regression of Y
on Z and p simultaneously.) In practice, p; must be estimated, typically via logistic regression.
Estimators of totals based on propensity score weights are given by

~PSCORE PSCORE
T, => w vi €))

iesa

where sa is the non-probability sample, and y; is a variable measured on unit i.

2.2. Traditional calibration

Define the analytic sample sa of size np to be the data set containing the targeted data for
analysis, Y. We consider the general setting where this could be either a probability sample
with known design weights d,f‘Axl, or a non-probability sample, where, in the absence of true
design information, dlA is typically set to N/n for all i, which is equivalent to assuming a simple
random-sample design. Defining the diagonal matrix of design or pseudodesign weights as DA,
the calibrated weights w,,, 1 minimize an expected distance measure with respect to the design

of A, o/ (Deville and Sarndal, 1992):
E| % 90ni.d)/ai] @

i€sA
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under the constraint e, wi x =TX where TX is a row vector of known population totals
of X from a population of size N and g(w;,d?) is a differentiable function with respect to
w;, strictly convex on an interval containing dlA and g(d?,d?)=0. The y’-distance measure
g(w;, dlA) =(w; — diA)2 /diA with ¢; =1 yields the generalized regression estimator, GREG:

wOREG — gA 1 pAXXTDAX) 1 (TX — @™ TX)T. 3)
The estimate of population total of outcome y based on GREG-calibrated weights is

~GREG GREG\T
TOREG — (wOREG)Ty

=@HTy+ (T -w@"H™x)3 4)

where B = (XDAX)~!XD"y is the weighted least square estimate of the linear regression y on X,
given weights DA. (Again, in the non-probability setting, d* = (N/n)1 and D = (N/n)L.) The
calibrated weights that are defined in equation (3) do not rely on any outcome variable. Thus
the same set of weights can be applied to all variables in the survey.

To incorporate uncertainties from benchmark totals, Dever and Valliant (2010) introduced
estimated control calibration. The framework replaces known population totals TX in equation
(3) by estimated totals from the benchmark TX:

WECGREG _ gA 4 pAXXTDAX) ! (TX — @M TX)T. (5)
The resulting estimator of population total is
fECGREG — (wECGREG)Ty
=@HTy+ @ -@H"™8. (6)

The estimate control calibration estimator ECGREG has the same general form as GREG;
thus we use the notation wECOREG apd TECGREG to denote weights and estimator based on the
estimated control calibration.

2.3. Model-assisted calibration
Model-assisted calibration assumes a model between an outcome y and X through the first two
moments:

Ee[yixe] = p(xk, B),

(7
Ve(yrIxp) = vio?

where B3=(01, ..., ﬂp)T and o are unknown superpopulation parameters, j(Xg, 3) is a known
function of x; and 3, and vy is a known function of x; or p(x¢, 3). E¢ and V¢ are the expectation
and variance with respect to the model £. Let B be the finite population parameter of 3 that solves
the population score equation ZN {yi —(x;,B)} =0, and B be the quasilikelihood estimator of B
given by ¥jcs, di{yi — u(xl, B)} 0. The model-assisted calibrated weights w minimize a distance
measure E[Yie, g(wi, dl )/qi] under the constraints 3;cs, w; = N and g, wifl; = Z f1;, where
;= = u(x;, B). Under y2-distance measure with g; = 1, the model-assisted calibrated welghts are

wMC=gA + DAMMTDAM) ' (TM — @) TM)T (8)

where DA = diag(d®), TM = (N, ZIN/li) and M= (14, (f1;))iesy)- The estimate for the population
total based on model-assisted calibrated weights is given by
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TMC — (wMO)Ty
— (dA)Ty + (TM _ (dA)TM) (MTDAM)—IMTDAy
=@"HTy+ (Z A= 2 d%) BMC ©)
iesp

where BMC is the calibration slope that satisfies the calibration constraints:

3 A — (i — )
BMC == . 10
> A — )2 1o

i€sa

where /i and j are the design-weighted means of the predicted values f; and the observed data
y;. (Note that BMC is different from the model parameter estimates B.) Wu and Sitter (2001)
have shown that TMC is asymptotically design unbiased, even when the model is misspecified.
As long as the orlglnal design weights produce unbiased estimates, 7' 'MC is approximately un-
biased when the sample size is large. Similarly to ECGREG, to account for uncertainties in
the benchmark sample, we replace TM = (N, ¥;cy /3;) with estimates from a benchmark sample:

= (Z,esBd Z,ESBdiB (1;), where sp denotes the benchmark sample and diB is the probability-
based design weights of the benchmark sample:

iesp iESA

3. Estimated control LASSO calibration

Because we are relying so heavily in non-probability samples on models that can approximate the
expected value of y; to compensate for the lack of design weights, a large number of covariates
and, consequently, control totals may be required to obtain accurate models. This can greatly
increase the probability that the information to estimate totals in the available data may be sparse,
resulting in unstable calibrated weights. The problem is made worse in ECGREG, where the
benchmark sample is small. Thus we consider the use of the adaptive LASSO for the development
of the calibration models, which will allow the inclusion of large numbers of potential predictors
while simultaneously penalizing any potential overfitting.

3.1. Assisting model—adaptive LASSO
The adaptive LASSO regression coefficients are obtained by solving a penalized regression
equation (Zou, 2006). For linear adaptive LASSO regression,

B= argmm{ Z(y,—xT,B)2+)\ Zoz 15l } (12)
B iESA
Similarly, for the logistic adaptive LASSO,
5 . p
ﬁ=arggmn< 3 [=yi(x! B) +log{1+exp(x{ B)}+ X\ X ] |ﬁ,~|>. (13)
iesa j=1

The role of the weight parameter «; is to prevent LASSO from selecting covariates with
large effect sizes in favour of lowering prediction error when the sample size is small. Thus
the weights are inversely proportional to effect sizes of regression parameters: aj o< 1/|3;]. A
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common choice of «; is 1/] B]MLEL where ﬁAi\’ILE is the maximum likelihood estimate of 3;. The
power of the weight parameter  is a constant greater than 0 that interacts with «; to control
LASSO from selecting or excluding parameters. It is important to consider a reasonable range
of vand A, during the model selection process through regularization. Given that o is inversely
proportional to 3;, small values of v will favour covariates with large effect sizes (which is useful
when there are known dominant predictors), whereas a large value of  allows regularization to
treat all covariates equally (which is useful when there is no prior knowledge of predictors). As
there is a threshold value of )\, that sets all regression coefficients to 0, there is no practical value
to fitting LASSO with )\, greater than the threshold. Thus only a range of positive values less
than the A, -threshold need to be explored. We recommend a cross-validation approach to select
A and ~, given a sensible range of values; see the on-line appendix for details. Once ), and v
have been selected, we can calculate 3 through iterative procedures; see Friedman ez al. (2010)
for details. These algorithms are implemented in glmnet. If design weights are available in the
analytic data set, weighted versions of equations (12) and (13) can be fitted (McConville et al.,
2017); for this application we focus on the setting where the analytic data set is a non-probability
sample, and the weights diA are constant and can be ignored.

The adaptive LASSO has a model consistency property known as the oracle property, which
states that, under the condition that A, grows at least at the rate of /n / (4/n)? but not faster than
/1, the true model will be discovered, i.e., for a regression model in which the parameters have
both non-zero B and zero components 32, Pr(3® =0) — 1 and /n(3" —3D) - N(0,C)
where C=I1-1(381") is the inverse of the Fisher information matrix of 3.

3.2. Estimated control LASSO calibration

The asymptotic properties of fECMC, and in particular its development using estimated control
totals under LASSO, have not been established in the literature. This section develops the asymp-
totic expectation and the asymptotic linearized variance estimate of the ECLASSO estimator
of a population total. We make the following assumptions.

Assumption I. The analytical samples, sp with size na, are drawn from a single-stage, unequal
probability of selection sampling design 7, with selection probability for unit i denoted by 7riA,
and the joint selection probability of units i and j denoted by 7T$. We denote the design weight
for unit i by dl-A =1 /77{*, the vector of design weights by d* and the diagonal matrix of design
weights by DA, A set of calibration variables is denoted by X*. For non-probability samples,
mft=na/N and 7} =na(na — 1)/{N(N - 1)}.

Assumption 2. The benchmark samples, sg with size ng, are drawn from a single-stage
sampling design 4, allowing for unequal probabilities of selection. The selection probability
for unit 7 is denoted by 7TIB, and the joint selection probability of units i and j is denoted by
wg. We denote the design weight for unit i by diB =1 /7rl-B, the vector of design weights by d®
ar]13d the diagonal matrix of design weights by DB. A set of calibration variables is denoted by
XP.

Assumption 3. A superpopulation model is assumed, as is described in Section 3.1:

Ee[yk|xk]= p(Xk, 8),

Vf(yk|xk)=1/]%0'2-

Assumption 4. The true superpopulation parameters 3, are a subset of the full regression
model for LASSO:
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F_ [ Bpxn
B = ( 5(2) >,
(gx1)
where, without loss of generality, 3= 8 consists of the p non-zero components of the full
model and ﬁ(z) =0,1.

Assumption 5. The full range of X in the population has non-zero probability of being
observed in both analytical and benchmark samples. (This is needed because predictions are
implicitly made for the non-sample part of the population. This assumption would hold trivially
if both the analytic and the benchmark samples were probability samples from the desired
population. However, when the analytic sample is non-probability, undercoverage is a real
danger that should be guarded against by using allocation methods like quota sampling that
control the spread of the sample over covariate values.)

The ECLASSO calibration estimate of the total can be obtained from the following steps.

Step 1. Obtain LASSO regression coefficients 3 as described in Section 3.1. We use the R
package glmnet (Friedman e7 al., 2010) to obtain the LASSO coefficients 3, given a pair of
(An,7y) selected by cross-validation.

Step 2. Use ,6' to calculate fi; = M(X, ,ﬁ) in the analytic sample, and f; = ,u(xlB,B) in the
benchmark sample.

Step 3. Define ™= (EiesBd,B, EiesBd,Bﬂ,') and M= (14, (fij)iess ), under x2-distance measure
with g; = 1. The model-assisted calibration weights are given by

whASSO—gA L pAMMTDAM) ! (TM — @) TV T (14)
Step 4. The ECLASSO calibration estimator of total is then given by

~ECLASSO ECLASSO\T
Ty =(w )y

MC
=@y + (_Z P — 3 dii ) (15)
LESB iesa
where BMC is the calibration slope computed as in Section 2.3 to satisfy the calibration con-
straints.

Under conditions given in the on-line appendix—which do not require design consistent
estimates of the lasso parameters 3, only that the benchmark probability sample has the correct
design weights—T]yECLASSO is asymptotically design and model unbiased, with the asymptotic
design variance given by

AMC _A_A . AMC A pMC
o yi— ,uB Tty — ;B yj— ;B
U_W'(T)I?CLASSO) — Z ( i i ) (1 _ A) + Z Z Al J i IA J Ii
i€sa 7Tz i€sA i Tij U T
~ ~MC
BMC —7'('.B7TB ",BMC ﬂB
+z< )(1—B>+ZE e (16)
iesp 71—; iesp j#i Tij T T

See the on-line appendix for proofs.
Since both linearized variance estimates are based on the asymptotic LASSO calibration
estimate of a total, they might not perform well for small sample sizes. Thus we also obtain
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naive bootstrap variance estimates, UEEO];ASSO, as follows: for each simulation sample, draw one

finite population bootstrap of the benchmark sample, and one simple random sample with
replacement of the analytical sample. For each benchmark and analytical bootstrap sample,
calculate TECLASSO.

4. Predicting the 2014 US Senate and Governors races

4.1. Data description

The on-line polling data (analytic sample) is a random sample of people who have completed a
SurveyMonkey survey during the 4 weeks before the election (http: / /www. surveymonkey .

com). On average, 3 million unique surveys were completed per day, with a random 10% of
respondents who completed the survey receiving an invitation to complete the on-line poll. Ap-
proximately 2-3% of respondents who received the invitation completed the poll (roughly 6000
per day). Although the sample was randomly selected among the survey takers, the response rate
was low and, more importantly, the pool of respondents who completed an initial SurveyMon-
key survey is non-probability based and may not be representative of the voting population. The
data were collected between October 3rd and November 4th, 2014 (the election day). Because
conditioning on likely voters improves election prediction (Bolstein, 1991; Gutsche et al., 2014),
we restricted our analysis to those who indicated that they

(a) had already voted,
(b) were absolutely certain to vote or
(c) were very likely to vote.

Since this paper focuses on binary outcomes, we further narrow the analytical sample to the
likely voters who indicated a vote for either a Democratic or Republican candidate, which are
the two major US political parties. With the further restrictions in the states to be analysed that
are described below, the final analytical sample sizes are 33199 for the collection of Governor
races and 28686 for the collection of Senate races.

A probability sample (benchmark sample) of potential voters was obtained by the Pew Re-
search Center (http: //www.pewresearch. org). Probability samples of telephone and cell-
phone users were selected during September and October 2014 to measure political opinions,
including job approval rating for the President, agreement on recent healthcare reform policies
and likelihood to vote for the November 2014 elections. The survey also includes religion and
political party identification along with other demographic variables that are also collected in
the SurveyMonkey sample. ‘Likely voter’ weights were constructed by using a 10-point-scale
voting interest variable.

Our analysis focuses on states with sufficient benchmark sizes (at least 55 likely voters in a
state), again restricted to support for either the Democratic and Republican parties. This yields
11 states (Arizona, California, Florida, Georgia, Illinois, Michigan, New York, Ohio, Pennsyl-
vania, Texas and Wisconsin) for the gubernatorial elections and eight states (Georgia, Illinois,
Michigan, Minnesota, New Jersey, North Carolina, Texas and Virginia) for the senatorial elec-
tions. The final benchmark sample sizes are 1094 for the collection of Governor races and 656
for collection of Senate races.

Tables 1 and 2 in the on-line appendix display the final sample size, and distributions of the
common set of variables between the benchmark and election polling samples. The analytical
sample distributions are unweighted, whereas the benchmark sample distributions are weighted
by the likely voter weights. The Senate races have one more variable than the Governors’ races—
support for the House of Representatives candidate. Since both the House of Representatives
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and the Senate are part of Congress, this variable is more relevant for Senate elections. The
Internet-based analytical sample tends to contain individuals who are younger, more educated,
white and less certain of religious beliefs. For many states, there are also much higher proportions
of people identified as Republicans in the analytical sample than in the benchmark sample.

4.2. Estimation

The outcome variable y; is an indicator for voting for a Democratic (versus a Republican)
candidate. The analytical sample sp is the Internet-based polling data. Let sa (r) be the sample of
respondentsin state r. Our target of inference is the voting spread in state r, Sp—_ g, estimated by

Sp—rn= > Wiyi/ >owi— > Wi(l_yi)/ >oowi

iesp(r) iesp(r) iesa(r) iesa(r)

=2 > w,-yi/ > owi—1
iesa(r) iesa(r)

where w; is the weight for respondent i. Thus positive values are the winning margins of Demo-
cratic candidates, and absolute values of negative values are the winning margins of Republican
candidates. We compare the weighted estimates based on ECLASSO with unweighted estimates
UNWT, as well as estimates based on weights from traditional weighting adjustment methods—
calibration to census level state demographic totals, STATEWT, propensity score weighting,
PSCORE, and the estimated control regression estimator ECGREG. STATEWT uses standard
post-stratification approaches to adjust to known population totals (not registered voter to-
tals) for ages (18-29, 30-39, 4049, 50-59, 60-74, 75 and older years), gender, race or ethnicity
(non-Hispanic white, non-Hispanic black, Hispanic, other) and education (high school or less,
some college, college degree, graduate degree). PSCORE develops propensity score weights by
using the benchmark sample, which, in addition to age, gender, race and education, includes
religion (Protestant, Catholic, other Christian, other, none), ‘born again’ Evangelical, frequency
of attending religious services (more than one a week, once a week, a few times a month, less
than a few times a month), approval of Obama, political party favoured and five categories
of state type based on their voting behaviour in the 1992-2012 presidential elections: 1, voted
Republican candidate all four times, 2, voted Republican candidate three times and Democratic
candidate once, 3, voted Republican and Democratic candidate each twice, 4, voted Republi-
can candidate once and Democratic candidate three times, and 5, voted Democratic candidate
all four times. In addition to these main effects, interactions between gender and age, gender
and race, race and age, party and Obama approval, state type and party, and state type and
Obama approval are included. Models for the Senate races also include a measure of support
for the (Republican-controlled) House of Representatives. ECGREG calibrates to the estimated
benchmark measures (including interactions) by using the standard GREG weights. ECLASSO
uses the same estimated benchmark predictors and their interactions for the working models.

4.3. \Variance estimates
For estimators that do not rely on a small benchmark sample, method UNWT and STATEWT,
we estimate the variance of estimated spread D — R in state r as follows:

Var(g%‘e_ﬂ}{zf)) =var (2 3 W;nethodyi / > W}nethod . 1) —4 var(fz;v)
i€sa(r) iesp(r)

where Var(f);v) is the linearized variance estimator of the weighted sample mean in state r.
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For estimators that use a small benchmark sample (PSCORE, ECGREG and ECLASSO),
we use bootstrap variance estimates to incorporate the uncertainty of the benchmark data. For
each bootstrap indexed by b, we draw a weighted bootstrap sample of the benchmark sample,
and a simple random sample with replacement of the analytical sample; then we calculate the
statistic

Spethodpy=2 Y wpnethedy, / S wmethod
iesp(r)(b) iesp(a)(b)

We generate 1000 bootstrap samples and use the distribution of S"B‘f}l}‘zg (b) to estimate the

: dmethod
variance of S5 R0

4.4. Results

4.4.1. Direction and error

Tables 1 and 2 list results for 11 Governor election forecasts. UNWT, STATEWT, PSCORE and
ECLASSO predicted the correct winning political party for all states in the analysis. ECGREG
predicted Arizona and Florida incorrectly.

We define the relative bias as (S’rgitl}{ff) — Sp—R(r)) / Sp—R; if this is positive, the relative bias
is towards the Democrats and is denoted with a D; if negative, the relative bias is towards the
Republicans, denoted with an R. Without weighting adjustments, the sample has Republican
overrepresentation, with 10 out of 11 states biasing towards Republican candidates. STATEWT
reduced the bias for most states, whereas PSCORE and ECGREG appear to have overadjusted
towards the Democratic direction. ECLASSO reduced the unadjusted absolute sample bias to
a maximum of 6% of true values across the 11 states, versus 10-25% for the other estimators.
On average, ECLASSO also has the smallest relative error across the states (0.5% D versus 1.9%
R to 7.0% D for the other estimators).

Tables 3 and 4 list results for eight Senate election forecasts. UNWT, STATEWT and
ECLASSO predicted the correct winning political party for all states in the analysis. PSCORE
predicted North Carolina incorrectly whereas ECGREG predicted Georgia and North Carolina

Table 1. US 2014 midterm election Governor direction

State Analytical n Benchmark n True D — R D — R estimates

UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona 974 64 +12% R +13% R +10%R +3% R +12%D +8% R
California 2354 166 +19%D +14%D +19%D +420%D +36%D +18%D
Florida 2566 134 +1% R +6%R +2% R +2% R  +7%D +1%R
Georgia 2306 67 +8%R  +14%R +9% R  +10% R +2%R +8%R
Illinois 2955 78 +5% R +14%R +8% R  +14%R  +17%R  +10%R
Michigan 6025 75 +4%R  +14% R  +12% R +12%R  +18% R  +10%R
New York 1962 106 +13% D +13%D +18% D +18% D +38% D +17%D
Ohio 2299 87 +31% R +35% R +35% R +31%R +35% R +31%R
Pennsylvania 2318 107 +10%D +11%D +8%D +423%D +433%D +15%D
Texas 2575 150 +20% R +26% R +19%R  +20%R +20%R  +21%R
Wisconsin 6865 60 +6% R +6% R +17%R +2% R +1%R +1%R

Total 33199 1094
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Table 3. US 2014 midterm election Senate direction

State Analytical n Benchmark n True D — R D — R estimates

UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia 2307 67 +8%R +13% R +7%R +4% R +2%D +11%R
Ilinois 2989 78 +10%D +1%D +5%D +15%D +13%D  +6%D
Michigan 5851 75 +13%D  +5%D +3%D +21%D +16%D  4+8%D
Minnesota 2951 57 +10%D +6%D +1%D +12%D +6%D +10%D
New Jersey 841 58 +13% D +15%D +19%D +31%D +34%D +16%D
North Carolina 6093 90 +2%R  +5%R  +7%R +1%D +15%D  +3%R
Texas 2487 150 +27% R +35% R +27% R +28%R +27% R +32%R
Virginia 5167 81 +1%D +5%D +6%D +18%D +24%D  +8%D
Total 28686 656

incorrectly. Similarly to the Governor sample, the Senate sample has more Republican votes
than the true voting spread, with six out of eight states biasing towards Republican candidates.
STATEWT reduced the bias for the majority of states, whereas PSCORE and ECGREG over-
adjusted in the Democratic direction. ECLASSO reduced the unadjusted absolute sample bias
to a maximum of 8% of true values across the eight states, versus 9-27% for the other estimators.
On average, ECLASSO also has the smallest relative error across the states (1.0% R versus 2.4%
R t0 9.0% D for the other estimators).

4.4.2. Root-mean-square error
Table 2 gives the standard error SE and root-mean-square error RMSE (the square root of
the sum of the squared bias and squared SE) of each estimator in predicting Governor voting
spreads. As expected, without any weighting adjustments, UNWT-estimates have the lowest
standard error among the estimators. We expect the variance of STATEWT-estimates to be
small, as the weights are derived from census level counts rather than from a benchmark sam-
ple. However, on average, the bias reduction of STATEWT was not enough to offset the increased
variance in the estimates due to weighting, so the average RMSE of STATEWT is about the
same as UNWT’. Both PSCORE and ECGREG have overadjusted the sample to produce
large biases. The use of a small benchmark sample also increased the variance of the PSCORE-
and ECGREGe-estimates, as both estimators have larger average RMSE than UNWT’s. With
the same benchmark sample, working model and variance estimator as for PSCORE and
ECGREG, ECLASSO can produce standard errors that are comparable with STATEWTs,
and, with smaller average absolute bias, produces the lowest average RMSE across the states,
with reductions of 10-69% over the other estimators.

Table 4 gives the standard error SE and root-mean-square error RMSE of each estimator
in predicting Senate voting spreads. The results were similar to the gubernatorial results, with
ECLASSO having average RMSE-reductions of 15-58% over the other estimators.

4.4.3. Coverage
Fig. 1 displays the plots of 90% confidence intervals computed via a normal distribution approx-
imation based on each Governor’s race estimator across 11 states, as well as the true values in the
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full red horizontal lines, for the Governors’ elections. The UNWT confidence intervals are too
narrow, covering true spreads in only four out of 11 states (36%). ECLASSO and STATEWT
confidence intervals both covered nine out of 11 true spreads (82%), which is close to the ex-
pected 90% coverage rate. PSCORE covered eight (73%), and ECGREG covered only six (55%).
Among the weighted estimators, ECLASSO also has an interval width that is comparable with
that of STATEWT, if not narrower.

Fig. 2 displays the plots of 90% confidence intervals based on the Senate race estimator across
eight states, as well as the true values in the full red horizontal lines for the Senate elections. The
UNWT confidence intervals performed even worse than for the Governor forecasts, covering
only one out of eight true spreads (12%). ECLASSO confidence intervals have the highest
coverage rate, with six out of eight true spreads within the intervals (75%), which is the closest
to the expected 90% coverage rate among the estimators. The confidence intervals of STATEWT
covered three (38%), ECGREG covered four (50%) and PSCORE covered five (62%). Aside from
estimates for Virginia, where no estimator performed well, the ECLASSO confidence intervals
are consistently around the true values.

5. Simulation study

Although our application is unusual in that the target parameters of interest are (eventually)
known, we also conduct a simulation study, treating the 2013 National Health Interview Survey
(NHIS) as the population of interest. The NHIS 2013 data are particularly suitable for simulating
Internet-based non-probability samples, because the survey asks respondents about Internet
use (internet_use), as well as whether a respondent has looked up health-related information
on the World Wide Web (internet_health). We construct a model predicting internet_use, with
internet_health as a predictor. The predicted probabilities, estimated from NHIS data, are related
to both Internet usage as well as interest in health-related information on line and are used as
selection probabilities to draw our simulation samples. Under such a design, if the outcome
of interest is associated with the general health of a respondent, our samples will be subject
to selection bias. The outcome of interest y; is health insurance status (equal to 1 if insured;
0 if not). Restricting data records to adults and removing respondents with missing values on
demographics, income and health indicators leave a population size of N =31914. The goal is to
predict the total number of individuals in the population without health insurance, Ty = Zf‘i i=
5432. We use age (agegrp), gender (sex), race or ethnicity (race), education (educ), marital status
(marst), employment status (wrk_private), having seen a health professional in the last year
(sathc), diagnosis of cancer (cancer), family income (faminc_q), Internet use (internet_use) and
obtaining health information over the internet (internet_health) as covariates in the simulation.

The main goal of the simulation is to evaluate 7ECTASSO ynder various levels of sample and
benchmark sizes. For the analytical sample, we consider n =250, 500, 1000; for the benchmark
sample, we consider n =250, 1000,4000, 16000. In addition to 7E-ASSO, we consider a Horvitz—
Thompson estimator of total, assuming that an equal probability sample was selected, HT:
T?T = (N/n)Sjcs, yi, as well as T}C,*REG, TECGREG and TI;SCORE. To generate non-probability
samples, we draw samples from the population with unequal probabilities as described in Section
5.2, but we set the design weights to N/n.

5.1. Working models
Five sets of working models are defined for the estimators. All variables are categorical, and &[]
denotes the category that respondent i belongs to for a given variable:
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(a) Demographicsl, XiT ﬁ: 50 + ﬂlzeﬁlon + 6sex + ﬂkgegrp + ﬁrace

(b) Demographics2, x! 3= 3+ ﬁlielg]lon + B + ﬂkgegrp + B + ﬂeduc,

(c) Trimmed, x; IB=03,+ BS‘”‘ + ﬁk[glegrp + Bmce + 6Zdu° + ﬁk[mmc oy ﬁeflnp loyed

(d) Partial, xTﬂ Bo+ GBS+ Big + BESE+ ﬁ,fduc + ﬁ,{‘[‘f]“‘m 4By oved + 55@‘ Bt +

B < Biga
(e) Full, X;r,@— ﬁO +/81§‘[3;i +/8k[glegrp + 5race + ﬁzﬁ + 5fdm1nc _q +ﬂzﬁployed + 65@( dge65 +
O < 4 <
Depending on the estimator, the 3 is obtained differently. For GREG and ECGREG, B is
obtained from a linear regression of y; on x;. For PSCORE, 3 is obtained from a logistic
regression of y; on x;. And, for ECLASSO, B is obtained through LASSO regression described
in Section 3.1. Table 5 lists the regression estimates from the five working models. Except for
sex, all variables are highly significant. The effect of sex is reduced once interaction terms are
introduced to the model, indicating that not all interaction terms are necessary. The trimmed
and partial working models may perform well. We expect all working models to help to reduce
sample bias when the selection weights are ignored.

We denote GREGI and GREG2 to be the estimators by using Demographicsl and
Demographics2 respectively, which are working models that are often used for traditional cal-
ibration estimators. We expect GREGI to perform worse than estimators using other models,
because the Demographics] model has the worst model fitness measure for the population.
Demographics2 adds the education variable to Demographics1, improving model fitness sub-
stantially.

Models Trimmed, Partial and Full represent three levels of complexity. ECLASSO uses the
Full model in all experimental groups. Because the larger models cannot be estimated in a stable
manner from the small data sets, ECGREG and PSCOREI] use the Trimmed, Partial and Full
models when the minimum of the analytical and benchmark sample size is 250, 500 and 1000
respectively.

The final estimator, PSCORE?2, is the propensity score estimator that uses the correct model,
i.e. the same working model as the model that generates the samples, described below.

5.2. Sample generation
The selection probabilities simulate a person’s propensity to be in a non-probability Internet-
based sample:

. f
loglt(wlA) =08+ ﬂgflg]lont ﬁsex + ﬂkgegrp ﬁrdce 5educ + ﬂkc[lzr]nmc A4 /BIIC‘IE;]ll'St ﬂzalt]hc
wrk _private t t h Ith
+/8 [l] +ﬁll’ll €rne ca

where 7r is the probability of Internet use. The model is fitted to the NHIS data to obtain the
predlcted probabilities 7TA for each observation. These predicted probabilities are then used as
selection probabilities in a Poisson sampling design. The probabilities are rescaled to generate
a sample size that is close to n in expectation: 7rA* —n7rA / ZN AA

5.3. Simulation results

The simulation results are based on 1000 simulation samples. We evaluate the empirical bias,
variance and RMSE for each estimator of the total. In addition, we evaluate the linearized vari-
ance estimates and bootstrap variance estimates by their 95% nominal coverage, using a normal
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Table 5. Logistic regression coefficients for working models fitted on the NHIS population
for the PSCORE and ECGREG methods

Variable Results for the following dependent variables:
Demographics] ~ Demographics2 ~ Trimmed  Partial Full

region|[2] 0.199% 0.164%
region|3] 0.519% 0.502+
region[4] 0.403+ 0.404+
employed][1] 0.258% 0.256F 0.262F
race[2] 0.510% 0.325% 0.216% 0.208+ 0.147§
race[3] 1.272% 0.911% 0.820F 0.797% 0.632t
race[4] 0.090 0.171% 0.007 —0.053 —0.3317
age65[1] —1.954+  —-2.326% —2.36071
sex[2] —0.2621 —0.2237 0.018 0.015 0.018
agegrp(2] —0.100% —0.049 0.157% 0.158+ 0.163F
agegrp[3] —0.279 —0.2517 0.087 0.085 0.091§
agegrp[4] —0.4427 —0.4917 —0.129f  —0.133f  —0.125%
agegrp[5] —1.352% —1.447% —0.261f  —0.2661 —0.2567F
agegrp[6] —2.9387 —3.1867 —0.774%  —0.759% —0.752}
agegrp[7] —2.7637 —3.1037 —0.683+  —0.650f —0.640%
faminc_q[1] —0.213f  —-0.211f  —0.253F
faminc_q[2] 0972+ —-0971f —1.178%
faminc_q[3] —2.109+  —2.109f —2.253%
educ[l] —0.4147 —0.266f  —0.262f —0.2637
educ[2] —0.8337 —0.588+  —0.585f  —0.5927
educ[3] —1.187% —0.674t  —0.672% —0.677t
educ[4] —2.0537 —1.191%  —1.184%f —1.1867
sathc([1] 2.057% 2.058+ 2.059%
cancer(1] —0.189%  —0.178§  —0.180§
sex[2]:age65[1] 0.086 0.080
race[2]:age65[1] 0.195 0.236
race[3]:age65[1] 0.581F 0.649t
race[4]:age65[1] 1.375% 1.455+
race[2]:faminc_q[1] —0.151
race[3]:faminc_q[1] 0.151
race[4]:faminc_q[1] 0.259
race[2]:faminc_q[2] 0.3587
race[3]:faminc_q[2] 0.353+
race[4]:faminc_q[2] 0.669+
race[2]:faminc_q[3] 0.303
race[3]:faminc_q[3] 0.269
race[4]:faminc_q[3] 0.440§
Constant —1.719% —0.869 —1.100f  —1.088% —1.012}

+p<0.01.

1p<0.05.

§p<0.1.

distribution approximation to generate confidence intervals. We ignore the finite population
correction factor in variance estimation, as the sampling fraction is no more than about 0.03.

Tables 6 and 7 list the numerical summaries of each estimator under various sample and
benchmark sizes. The HT, GREG1 and GREG?2 estimators do not use benchmark samples.
GREGI1 and GREG?2 control population totals by basic demographics, with GREG1 omitting
the education variable.
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Table 6. Simulation summary+t

Sample n  Results for estimator HT ~ Results for estimator GREGI  Results for estimator GREG2

Bias SE  RMSE  Bias SE RMSE Bias SE RMSE
250 —383 735 828 —622 722 953 18 837 837
500 —378 520 643 —622 498 797 6 562 562
1000 —355 370 513 —602 348 695 25 399 400

+The target is the number of uninsured in the NHIS sample population: 7 = 5432.

5.3.1. Bias

As expected, assuming simple random sampling without weighting adjustment, HT underesti-
mates the true population total. Without education as a calibration variable, GREG1 actually
performed worse than HT. When education is included (GREG?2), the bias is small and compa-
rable with that of ECLASSO. This demonstrates that it may often be important to include key
control totals that might only be available in benchmark samples.

Among the estimators that utilized benchmark samples, ECLASSO is the only estimator
which produced unbiased estimates for all experimental groups. The PSCORE1 and PSCORE2
estimators’ bias depends on both sample and benchmark sizes. For PSCORE1 and PSCORE?2,
the bias improves as the benchmark size increases. However, when analytic sample sizes increase
for a fixed benchmark sample size, the bias tends to grow worse for PSCORE]1 and especially
PSCORE2. One explanation is that the sample bias persists after propensity score weighting.
Thus as the sample size grows, the bias accumulates. For ECGREG, the bias remains fairly
constant given different benchmark sizes and improves slightly as the analytical sample size
increases.

5.3.2. RMSE

When population control variables are strongly related to both the outcome of interest and
selection probabilities, we expect the traditional calibration to perform well over estimators
that utilize benchmark samples. This is so for GREG2. Comparing with GREG2, ECLASSO
still has gains in RMSE when the benchmark size is at least as large as the analytical sample
size. For example, when the analytical sample size is 500, ECLASSO starts to have comparable
and smaller RMSE relative to GREGI for benchmark sample sizes 1000 or larger. ECLASSO
produced a smaller RMSE than GREGI, even when the benchmark sampleis just 250. At sample
size 1000, and benchmark sample size 1000 or greater, PSCORE1, ECGREG and ECLASSO
use the same working models. ECLASSO outperformed all the other methods given the same
working model, suggesting that ECLASSO is most effective in leveraging information from an
external benchmark sample.

5.3.3.  Variance estimates

Table 8 lists the average length and the 95% nominal coverage for T, that is obtained by using
the asymptotic linearized variance estimates and naive bootstrap estimates of the ECLASSO
estimator, along with the average length and the 95% nominal coverage for T, by using
the naive bootstrap estimates for the PSCORE and ECGREG estimators. The linearized vari-
ance estimates tend to undercover, with substantial undercoverage when the sample size is small.
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Table 9. Percentage of times that variables are selected by
LASSO across 1000 simulation samples

Variable Result (%) for the following sample sizes:
250 500 1000
employed[1] 40 47 55
sex[2] 45 48 53
race[2] 36 45 58
race[3] 74 93 99
race[4] 25 27 33
age65[1] 73 94 100
agegrp[2] 42 49 59
agegrp[3] 38 39 47
agegrp[4] 33 40 47
agegrp[d] 33 40 52
agegrp[6] 3 4 6
agegrp[7] 1 1 2
faminc_q[1] 43 44 47
faminc_q[2] 64 87 99
faminc_q[3] 98 100 100
educ2[1] 41 44 54
educ2[2] 33 40 54
educ2[3] 52 63 77
educ2[4] 42 61 81
sathc[1] 99 100 100
cancer([1] 19 23 28
sex[2]:age65[1] 4 7 8
race[2]:age65[1] 1 1 1
race[3]:age65[1] 2 2 3
race[4]:age65[1] 1 1 2
race[2]:faminc_q[1] 17 17 23
race[3]:faminc_q[1] 25 29 32
race[4]:faminc_q[1] 12 14 17
race[2]:faminc_q[2] 15 16 18
race[3]:faminc_q[2] 17 16 23
race[4]:faminc_q[2] 10 11 14
race[2]:faminc_q[3] 7 8 9
race[3]:faminc_q[3] 11 11 12
race[4]:faminc_q[3] 5 7 8

(Coverage is only slightly affected by the benchmark sample size.) The bootstrap variance es-
timate vE&LtASSO significantly overcovers when the benchmark sample is small. As both the
analytical and the benchmark sample sizes increase, vEEOLtASSO improves. The bootstrap over-
coverage is worse for PSCOREI and PSCORE2, with very wide interval lengths. As the bench-
mark sample size increases, the empirical coverage of the PSCOREI and PSCORE2 bootstrap
variance estimates grow closer to 95%, and the average interval length shrinks to be similar to
other estimators. This suggests that the propensity score weighting adjustment method can be
very sensitive to the benchmark sample sizes. ECGREG bootstrap variance estimates seem to
be sensitive to the working models. For sample size n = 500 and benchmark sample size 500
or greater, ECGREG uses the Partial working model, which gives lower than desired cover-
age: around 90-91%. Given that interval widths are not small, this can be a combination of
bias and model complexity—ECGREG’s variances based on the Partial working model are
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not sufficiently large to compensate for the bias at sample size 500. With the Full model that
has more calibration cells (when the sample size is 1000 and the benchmark sample is 1000
or more), the ECGREG nominal coverages rates increase to 96-97%. Among the estimators
that use benchmark samples, ECLASSO is the least sensitive to both sample and benchmark
sizes, with coverages in the 96-97% range, and narrower average interval lengths than all other
estimators with nominal or above coverage.

5.3.4.  Adaptive LASSO model results

To gain more insight into why ECLASSO has improved performance, Table 9 lists the percentage
of times that each variable is selected by LASSO across the simulation samples. The higher the
percentage, the more important a variable is to predict whether a person has health insurance
coverage. As the sample size increases, the proportion of times that each variable is selected
by LASSO is fairly consistent for the majority of the variables, except for race[3], age65[1] and
faminc_q[2], and all categories of the educ variable where the percentage increases significantly
as the sample size increases. These variable categories are likely to be strong predictors of health
insurance coverage that are also related to sample selection, which may explain why GREG1
performed poorly without controlling for the education variable. Age groups 6 and 7 are seldom
selected by LASSO in all sample sizes, allowing ECLASSO to gain efficiency by setting these
age categories to 0. Similarly, some interaction terms such as race and sex and race and age are
almost always dropped, allowing ECLASSO further gains in efficiency over ECGREG under
the Full model.

6. Discussion

This paper develops the framework for ECLASSO calibration and applies it to the estimation
of 2014 US Governor and Senate races by using a non-probability poll of SurveyMonkey users,
and to a simulation using ‘Internet user’ samples generated from a ‘population’ of the 2013
NHIS. In the application to the 2014 elections, ECLASSO was the most successful in reducing
the bias in predicting voting spreads. For both Governor and Senate elections, ECLASSO
reduced the overall bias from roughly 4% to under 1%. Although we expected larger variances
for PSCORE, ECGREG and ECLASSO relative to the variances of STATEWT due to the small
benchmark sample size, this was not so for ECLASSO, whose standard errors were comparable
with STATEWT’s in both races. The election data analysis shows that a benchmark sample size
of 1000 is sufficient for ECLASSO to generate estimates with similar standard errors to those of
estimates based on census level benchmarks. In terms of root-mean-square error and coverage,
ECLASSO consistently outperforms the other estimators in both Governor and Senate election
forecasts. The working models for PSCORE, ECGREG and ECLASSO are the same, indicating
that ECLASSO leverages the most useful information from the benchmark.

In the simulations that were considered, the ECLASSO estimator uniformly outperforms
traditional weighting adjustment methods that utilize the same benchmark data. ECLASSO
could achieve the same performance as a calibration estimator controlled to a strong population
level variable, even with small benchmark samples. Although the simulation models are, by
definition, not inclusive of all possible applications, we expect that the key findings will be
applicable across a broad range of settings: namely, that ECLASSO will allow more efficient use
of high dimensional predictors, including interaction terms, that are unstable or even impossible
to fit by using standard GREG estimators, that even modest benchmark sample sizes when
using ECLASSO can yield substantial reductions in RMSE, especially relative to propensity
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score estimators or misspecified calibration models, and that ECLASSO linearized variance
estimates tend to undercover when benchmark samples are small, whereas bootstrap estimators
are uniformly (if modestly) conservative.

There are many potential extensions for this work. Although ECLASSO can be extended
to a multinomial setting, we stayed within a binary outcome framework and removed with
non-major party supporters from the analytical sample. Another limitation is the use of a
national level model to make state level forecasts. Given a small benchmark sample, the national
level model enables more stable estimates by calibrating to pooled benchmark information, but
alternatives that consider more complex multilevel models to smooth state level benchmark
measures might be of value. Similarly, although we illustrated that the ECLASSO estimator
made the most effective use of benchmark data at several different benchmark sample sizes, a
topic for additional research would be to determine how large a benchmark sample should be
relative to the analytic sample for ECLASSO to reduce bias most effectively without inflating
mean-square errors. Finally, we have focused on the single-stage survey setting; extensions to
clustered designs for model-based calibration can be developed as well (Kennel, 2013).

Although probability-based samples have always been less common outside official statistics
compared with non-probability samples, their increasing expense and the proliferation of data
collection from administrative sources, social media and other non-traditional sources means
that methods such as those developed here will play increasingly important roles in health
and social science research. Indeed, the development of methods to leverage information from
probability surveys suggests a strategy of investment in a small number of very high quality
probability surveys targeted towards specific research areas (e.g. behavioural health and voting
behaviour) to provide calibration measures for a large set of non-probability surveys. We hope
that the application discussed here will encourage such strategies.
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