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SUMMARY: Declining response rates and increasing costs have lead to greater use of non-

probability samples in election polling. But non-probability samples may suffer from se-

lection bias due to differential access, degrees of interest, and other factors. Here we

estimate voting preference for 19 elections in the U.S. 2014 midterms using large non-

probability surveys obtained from SurveyMonkey users, calibrated to estimated control totals

using model-assisted calibration combined with adaptive LASSO regression, or estimated-

controlled LASSO (ECLASSO). Comparing the bias and root-mean square error of ECLASSO

with traditional calibration methods shows that ECLASSO can be a powerful method for

adjusting non-probability surveys even when only a small sample is available from a prob-

ability survey. The proposed methodology has potentially broad application across social

science and health research, as response rates for probability samples decline and access to

non-probability samples increases.

Keywords: Probability survey; Propensity weighting; General regression estimator; Model-

assisted calibration; Election polls
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1. Introduction

One of the most prominent applications of survey research is election polling. The time-

frame to collect critical voting intention is short, typically spanning just the last few weeks

prior to the election day. Due to declining land-line phone coverage and improved phone-

screening technology, it has become a significant challenge for election pollsters to capture

voting intentions in a timely way (Kohut et al. (2012), Sturgis et al. (2016)). This became

very clear in the recent US presidential election, where election polls underestimated Donald

Trump’s support versus Hillary Clinton due to non-response bias, measurement error (“shy”

Trump voters), and failure to predict likely voters, among other reasons (Mercer et al.,

2016). Further, declines in response rates (Dutwin and Lavrakas, 2016) and increasing costs

for probability surveys has impacted the collection of data for scientific research throughout

the social science and health fields as well. Hence there is an increasing push to use data from

administrative sources, social media, and other non-probability-based sources to substitute

for probability samples across the spectrum of survey research.

Recent research has shown the potential use of non-probability samples to predict elec-

tion outcomes. Wang et al. (2015) performed multi-level regression and post-stratification on

Xbox users to accurately predict the U.S. 2012 presidential election results. Tumasjan et al.

(2010) found success in analyzing the frequency of candidates appearing in Twitter texts to

estimate the support for political candidates in the 2009 German federal election. However,

because non-probability samples lack a well-defined sampling frame, they can have extremely

imbalanced sample composition relative to the general voting population. Wang et al. (2015)

found, for example, that the Xbox sample was over 90% male, with 75% aged 18-44, com-

pared to less than 50% male and 50% age 18-44 in the 2008 presidential election exit polls.

Yet by making post-survey adjustments to match Xbox sample characteristics to 2008 exit
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poll characteristics, they were able to correctly forecast the outcome of the 2012 presidential

election. In addition to basic voter demographics, the 2008 exit poll contained political ideol-

ogy, party identification, and information on the support for presidential candidate Obama,

making the exit poll a powerful source of benchmark data for the 2012 presidential election

where president Obama ran for re-election. For most elections, however, no such large-scale

benchmark exists prior to the election. Post-survey adjustments are limited to basic demo-

graphics such as age, gender, race, and education from large-scale government surveys. As

voter intentions are often associated with other factors such as religious beliefs, attitudes

toward current political agenda, and political party support (Krosnick, 1988; Abramowitz,

2008), post-survey adjustments only to basic demographics are unlikely to remove all bias

in imbalanced non-probability samples. Hence there is need to rely on adjustment to fac-

tors that might only be available in small, high-quality benchmark samples such as the Pew

Research Center (http://www.pewresearch.org) probability sample polls.

The resurgence of non-probability sampling has prompted survey researchers to explore

different adjustment methods for non-probability samples using probability samples. Elliott

and Valliant (2017) review work in this area, dividing methods into “quasi-likelihood” ap-

proaches (Schonlau et al., 2004) versus “superpopulation” modeling approaches (Valliant

et al., 2000). The quasi-likelihood approaches includes propensity-score weighting, which

combines probability and non-probability samples to generate pseudo-selection-weights for

non-probability sample respondents. Superpopulation modeling includes calibration adjust-

ments, which adjust the non-probability sample so that the weighted sample totals of the

calibration variables equal their benchmark totals. Here we undertake an approach that

combines both quasi-likelihood and modeling approaches by utilizing a probability-based

benchmark sample similar to the probability-based reference sample used for propensity-
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score weighting. We then use an assisting model to predict an outcome of interest, given a

set of calibration variables that exists in both probability and non-probability samples. The

outcome variable in the non-probability sample is then calibrated to the predicted outcome

total in the probability sample, given the probability-sampling weights in the benchmark

data. In addition, while a general theme in the literature is to include all variables that can

be used for calibration, in practice this can lead to instability and overfitting, especially if,

as is often the case, the probability sample is much smaller than the non-probability sample.

Thus we employ Least Angle Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)

to assist in the construction of weights for a specific outcome variable. LASSO performs

both variable selection and parameter estimation, which can serve as a powerful assisting

model by determining the most accurate and parsimonious model. We choose one variant of

LASSO, the adaptive LASSO (Zou, 2006) as the assisting model, because adaptive LASSO

has shown to have model-consistency properties under mild conditions (i.e., able to select

the correct model, and provide asymptotically unbiased parameter estimates). We extend

LASSO calibration to estimated-control LASSO calibration (ECLASSO) for incorporating

sampling uncertainties of the benchmark data into the variance component of model-assisted

calibration estimators. Although our focus is on adjusting non-probability samples using

benchmark probability sample surveys, we develop our framework in a setting that allows

for adjustment of probability samples to benchmark data as well.

The organization of this manuscript is as follows. Section 2 provides background and

notation for traditional post-survey weighting schemes used for non-probability samples.

Section 3 provides background and notation for model-assisted calibration and formulates

the ECLASSO estimator for a population total of continuous and binary outcome variables,

T̂ECLASSO
y . Section 4 applies ECLASSO to predict the voting spread (proportion of Demo-
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cratic votes minus the proportion of Republican votes) for 11 gubernatorial elections and 8

Senate elections in the U.S. 2014 midterm election. Section 5 describes the simulation used

to evaluate T̂ECLASSO
y and the asymptotic linearized variance estimates. We summarize our

findings in Section 6.

2. Post-survey Weighting Schemes for Non-probability Samples

2.1 Propensity-score weighting

Suppose a non-probability sample and a probability-based reference sample are available,

with a common set of measures, X. Pooling the data from these studies, let Zi = 1 if

respondent i is a non-probability sample respondent and 0 otherwise, with the propensity to

be in the non-probability sample given by pi = Pr
(

Zi = 1
∣

∣X
)

. The propensity-score weights

are simply the inverse of propensity-scores, wPSCORE
i = 1/pi. For an outcome of interest Y ,

the weighted estimates of Y based on wPSCORE
i is unbiased only when we have conditional

independence between Y and Z given X: P (Z = 1|X, Y ) = P (Z = 1|X). (This can be

tested by considering the distribution of Y given Z conditional on p, either by comparing

the distribution of Y given Z within categories of p, or by regressing Y on Z and comparing

it with the regression of Y on Z and p simultaneously.) In practice, pi has to be estimated,

typically via logistic regression. Estimators of totals based on propensity-score weights are

given by

T̂ PSCORE
y =

∑

i∈sA

wPSCORE
i yi (1)

where sA is the non-probability sample, and yi is a variable measured on unit i.

2.2 Traditional calibration

Define the analytic sample sA of size nA to be the dataset containing the targeted data

for analysis (Y ). We consider the general setting where this could be either a probability
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sample with known design weights dA

nA×1
, or a non-probability sample, where, in the absence

of true design information, dAi is typically set to N/n for all i, equivalent to assuming a simple

random sample design. Defining the diagonal matrix of design or pseudo-design weights as

DA, the calibrated weights w
nA×1

minimize an expected distance measure with respect to the

design of A, A (Deville and Sarndal, 1992):

EA

[

∑

i∈sA

g(wi, d
A
i )/qi

]

(2)

under the constraint
∑

i∈sA
wix

T
i = TX where TX is a row vector of known population totals

of X from a population of size N and g(wi, d
A
i ) is a differentiable function with respect to

wi, strictly convex on an interval containing dAi , and g(dAi , d
A
i ) = 0. The chi-square distance

measure g(wi, d
A
i ) = (wi−dAi )

2/dAi with qi = 1 yields the the generalized regression estimator

(GREG):

wGREG = dA +DAX
(

XTDAX
)−1 (

TX − (dA)TX
)T

. (3)

The estimate of population total of outcome y based on GREG-calibrated weights is:

T̂GREG
y = (wGREG)Ty

= (dA)Ty +
(

TX − (dA)TX
)

β̂ (4)

where β̂ = (XDAX)−1XDAy is the weighted least square estimate of the linear regression

y on X, given weights DA. (Again, in the non-probability setting, dA = N
n
1 and DA = N

n
I.)

The calibrated weights defined in equation (3) do not rely on any outcome variable. Thus

the same set of weights can be applied to all variables in the survey.

To incorporate uncertainties from benchmark totals, Dever and Valliant (2010) intro-

duced estimated-control calibration. The framework replaces known population totals TX

6

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



in equation (3) by estimated totals from the benchmark T̂X:

wECGREG = dA +DAX
(

XTDAX
)−1

(

T̂X − (dA)TX
)T

(5)

The resulting estimator of population total is:

T̂ECGREG
y = (wECGREG)Ty

= (dA)Ty +
(

T̂X − (dA)TX
)

β̂. (6)

The estimate-control calibration estimator (ECGREG) has the same general form as GREG;

thus we use the notation wECGREG and T̂ECGREG
y to denote weights and estimator based on

the estimated-control calibration.

2.3 Model-assisted calibration

Model-assisted calibration assumes a model between an outcome y and X through the

first two moments:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2 (7)

where β = (β1, . . . , βp)
T and σ are unknown superpopulation parameters, µ(xk,β) is a known

function of xk and β, and νk is a known function of xk or µ(xk,β). Eξ and Vξ are expectation

and variance with respect to the model ξ. Let B be the finite population parameter of β that

solves the population score equation
∑N

i (yi − µ(xi,B)) = 0, and B̂ be the quasilikelihood

estimator of B given by
∑

i∈sA
di(yi − µ(xi, B̂)) = 0. The model-assisted calibrated weights

w minimize a distance measure EA

[
∑

i∈sA
g(wi, d

A
i )/qi

]

under the constraints
∑

i∈sA
wi = N ,

∑

i∈sA
wiµ̂i =

∑N
i µ̂i, where µ̂i = µ(xi, B̂). Under chi-square distance measure with qi = 1,

the model-assisted calibrated weights are:

wMC = dA +DAM
(

MTDAM
)−1 (

TM − (dA)TM
)T

(8)
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where DA = diag(dA), TM =
[

N,
∑N

i µ̂i

]

and M =
[

1A, (µ̂i)i∈sA
]

. The estimate for popu-

lation total based on model-assisted calibrated weights is given by:

T̂MC
y =

(

wMC
)T

y

= (dA)Ty +
(

TM − (dA)TM
) (

MTDAM
)−1

MTDAy

= (dA)Ty +

(

N
∑

i

µ̂k −
∑

i∈sA

dAi µ̂i

)

B̂MC (9)

where B̂MC is the calibration slope that satisfies the calibration constraints:

B̂MC =

∑

i∈sA
dAi (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sA
dAi (µ̂i − ˆ̄µ)2

(10)

where ˆ̄µ and ȳ are the design-weighted means of the predicted values µ̂i and the observed

data yi. (Note that B̂MC is different from the model parameter estimates B̂.) Wu and

Sitter (2001) have shown that T̂MC
y is asymptotically design unbiased, even when the model

is misspecified. As long as the original design weights produce unbiased estimates, T̂MC
y is

approximately unbiased when the sample size is large. Similar to ECGREG, to account for

uncertainties in the benchmark sample, we replace TM = (N,
∑

i∈U µ̂i) by estimates from a

benchmark sample: T̂M = (
∑

i∈sB
dBi ,

∑

i∈sB
dBi µ̂i), where sB denotes the benchmark sample

and dBi is the probability-based design weights of the benchmark sample:

T̂ECMC
y = (dA)Ty +

(

∑

i∈sB

dBi µ̂i −
∑

i∈sA

dAi µ̂i

)

B̂MC . (11)

3. Estimated control LASSO calibration

Because we are relying so heavily in non-probability samples on models that can approxi-

mate the expected value of yi to compensate for the lack of design weights, a large number of

covariates, and, consequently, control totals may be required to obtain accurate models. This
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can greatly increase the probability that the information to estimate totals in the available

data may be sparse, resulting in unstable calibrated weights. The problem is made worse

in ECGREG, where the benchmark sample is small. Thus we consider the use of adaptive

LASSO for the development of the calibration models, which will allow the inclusion of large

numbers of potential predictors while simultaneously penalizing any potential overfitting.

3.1 Assisting model - Adaptive LASSO

The adaptive LASSO regression coefficients are obtained by solving a penalized regression

equation (Zou, 2006). For linear adaptive LASSO regression:

β̂ = argmin
β

(

∑

i∈sA

(

yi − xT
i β

)2
+ λn

p
∑

j=1

αγ
j |βj|

)

. (12)

Similarly for logistic adaptive LASSO:

β̂ = argmin
β

(

∑

i∈sA

[

−yi
(

xT
i β

)

+ log
(

1 + exp
(

xT
i β

))]

+ λn

p
∑

j=1

αγ
j |βj|

)

. (13)

The role of the weight parameter, αj , is to prevent LASSO from selecting covariates with

large effect sizes in favor of lowering prediction error when the sample size is small. Thus

the weights are inversely proportional to effect sizes of regression parameters: αj ∝ 1
/

|βj|.

A common choice of αj is 1
/

∣

∣

∣
β̂MLE
j

∣

∣

∣
, where β̂MLE

j is the maximum likelihood estimate of

βj . The power of the weight parameter, γ, is a constant greater than 0 that interacts with

αj to control LASSO from selecting or excluding parameters. It is important to consider a

reasonable range of γ and λn during model selection process through regularization. Given

that αj is inversely proportional to βj, small values of γ will favor covariates with large effect

sizes (useful when there are known dominant predictors), while a large value of γ allows

regularization to treat all covariates equally (useful when there is no prior knowledge of

predictors). As there is a threshold value of λn that sets all regression coefficients to zero,

there is no practical value to fitting LASSO with λn greater than the threshold. Thus only

9
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a range of positive values less than the λn threshold need to be explored. We recommend a

cross-validation approach to select λn and γ, given a sensible range of values; see the on-line

Appendix for details. Once λn and γ are selected, we can calculate β̂ through iterative

procedures; see (Friedman et al., 2010) for details. These algorithms are implemented in

glmnet. If design weights are available in the analytic dataset, weighted versions of (12) and

(13) can be fit (McConville et al., 2017); for this application we focus on the setting where

the analytic dataset is a non-probability sample, and the weights dAi are constant and can

be ignored.

Adaptive LASSO has a model-consistency property known as the oracle property, which

states that, under the condition that λn grows at least at the rate of
√
n
/

(
√
n)γ but not

faster than
√
n, the true model will be discovered: that is, for a regression model in which

the parameters have both non-zero β(1) and zero components β(2), Pr
(

β̂
(2)

= 0
)

→ 1 and

√
n
(

β̂
(1) − β(1)

)

→ N (0,C) where C = I−1(β(1)) is the inverse of the Fisher information

matrix of β.

3.2 Estimated control LASSO calibration (ECLASSO)

The asymptotic properties of T̂ECMC
y , and in particular its development using estimated

control totals under LASSO, have not been established in the literature. This section de-

velops the asymptotic expectation and the asymptotic linearized variance estimate of the

ECLASSO estimator of a population total. We make the following assumptions:

1. The analytical samples, sA with size nA, are drawn from a single-stage, unequal-

probability of selection sampling design A , with selection probability for unit i denoted

by πA
i , and the joint selection probability of units i and j denoted by πA

ij . We denote

the design weight for unit i by dAi = 1/πA
i , the vector of design weights by dA, and the

diagonal matrix of design weights by DA. A set of calibration variables is denoted by

10
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XA. For non-probability samples, πA
i = nA

N
and πA

ij =
nA(nA−1)
N(N−1)

.

2. The benchmark samples, sB with size nB, are drawn from a single-stage sampling

design B, allowing for unequal probabilities of selection. The selection probability for

unit i is denoted by πB
i , and the joint selection probability of units i and j is denoted

by πB
ij . We denote the design weight for unit i by dBi = 1/πB

i , the vector of design

weights by dB, and the diagonal matrix of design weights by DB. A set of calibration

variables is denoted by XB.

3. A superpopulation model is assumed, as is described in Section 3.1:

Eξ(yk|xk) = µ(xk,β)

Vξ(yk|xk) = ν2
kσ

2.

4. The true superpopulation parameters βv are a subset of the full regression model for

LASSO: βF =

⎛

⎜

⎜

⎝

β(p×1)

β
(2)
(q×1),

⎞

⎟

⎟

⎠

, where, without loss of generality, β ≡ β(1) consists of the p

non-zero components of the full model and β(2) ≡ 0q×1.

5. The full-range of X in the population has non-zero probability of being observed in

both analytical and benchmark samples. (Note that this is needed because predictions

are implicitly made for the nonsample part of the population. This assumption would

hold trivially if both the analytic and benchmark samples were probability samples

from the desired population. However, when the analytic sample is non-probability,

undercoverage is a real danger that should be guarded against by using allocation

methods like quota sampling that control the spread of the sample over covariate

values.)
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The ECLASSO calibration estimate of total can be obtained following the steps:

1. Obtain LASSO regression coefficients β̂ as described in Section 3.1. We use the R

package glmnet (Friedman et al., 2010) to obtain the LASSO coefficients β̂, given a

pair of (λn, γ) selected by cross-validation.

2. Use β̂ to calculate µ̂i = µ(xA
i , β̂) in the analytic sample, and µ̂i = µ(xB

i , β̂) in the

benchmark sample.

3. Define T̂M =
(
∑

i∈sB
dBi ,

∑

i∈sB
dBi µ̂i

)

and M =
[

1A, (µ̂i)i∈sA
]

, under chi-square dis-

tance measure with qi = 1. The model-assisted calibration weights are given by

wLASSO = dA +DAM
(

MTDAM
)−1

(

T̂M − (dA)TM
)T

(14)

4. The ECLASSO calibration estimator of total is then given by

T̂ECLASSO
y =

(

wECLASSO
)T

y

= (dA)Ty +

(

∑

i∈sB

dBi µ̂i −
∑

i∈sA

dAi µ̂i

)

B̂MC (15)

where B̂MC is the calibration slope computed as in Section 2.3 to satisfy the calibration

constraints.

Under conditions given in the on-line appendix – which do not require design consistent

estimates of the lasso parameters β, only that the benchmark probability sample have the

correct design weights – T̂ECLASSO
y is asymptotically design and model-unbiased, with the
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asymptotic design variance is given by

vA (T̂ECLASSO
y ) =

∑

i∈sA

(

yi − µ̂iB̂
MC

πA
i

)2

(1− πA
i )+

∑

i∈sA

∑

j �=i

πA
ij − πA

i π
A
j

πA
ij

(yi − µ̂iB̂
MC)

πA
i

(yj − µ̂jB̂
MC)

πA
j

+

∑

i∈sB

(

µ̂iB̂
MC

πB
i

)2

(1− πB
i )+

∑

i∈sB

∑

j �=i

πB
ij − πB

i π
B
j

πB
ij

µ̂iB̂
MC

πB
i

µ̂jB̂
MC

πB
j

. (16)

See the on-line appendix for proofs.

Since both linearized variance estimates are based on asymptotic LASSO calibration

estimate of a total, they might not perform well for small sample sizes. Thus we also obtain

naive bootstrap variance estimates, vECLASSO
boot , as follows: for each simulation sample, draw

one finite-population bootstrap of the benchmark sample, and one simple-random-sample

with replacement of the analytical sample. For each benchmark and analytical bootstrap

sample, calculate T̂ECLASSO
y .

4. Predicting the 2014 US Senate and Governors Races

4.1 Data description

The online polling data (analytic sample) is a random sample of people who have com-

pleted a SurveyMonkey survey during the four weeks prior to the election (http://www.

surveymonkey.com). On average, 3 million unique surveys were completed per day, with

a random 10% of respondents who completed the survey receiving an invitation to com-

plete the online poll. Approximately 2-3% of respondents receiving the invitation completed

the poll (roughly 6,000 per day). Although the sample was randomly selected among the

survey takers, the response rate was low and, more importantly, the pool of respondents

who completed an initial SurveyMonkey survey is non-probability-based and may not be
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representative of the voting population. The data were collected between October 3rd and

November 4th, 2014 (the election day). Because conditioning on likely voters improves elec-

tion prediction (Bolstein, 1991; Gutsche et al., 2014), we restricted our analysis to those who

indicated they: (1) already voted, (2) were absolutely certain to vote, or (3) were very likely

to vote. Since this manuscript focuses on binary outcomes, we further narrow the analyti-

cal sample to the likely voters who indicated a vote for either a Democratic or Republican

candidate, the two major US political parties. With the further restrictions in the states to

be analyzed described below, the final analytical sample sizes are 33,199 for the collection of

governor races and 28,686 for the collection of Senate races.

A probability sample (benchmark sample) of potential voters was obtained by the Pew

Research Center (http://www.pewresearch.org). Probability samples of telephone and

cellphone users were selected during September and October of 2014 to measure political

opinions, including job approval rating for the president, agreement on recent healthcare

reform policies, and likelihood to vote for the November 2014 elections. The survey also

includes religion and political party identification along with other demographic variables

that are also collected in the SurveyMonkey sample. “Likely voter” weights were constructed

using a 10-point scale voting interest variable.

Our analysis focuses on states with sufficient benchmark sizes (at least 55 likely voters

in a state), again restricted to support for either the Democratic and Republican parties.

This yields 11 states (AZ, CA, FL, GA, IL, MI, NY, OH, PA, TX, WI) for the gubernatorial

elections and 8 states (GA, IL, MI, MN, NJ, NC, TX, VA) for the Senatorial elections.

The final benchmark sample sizes are 1,094 for the collection of governor races and 656 for

collection of Senate races.

Tables 1 and 2 in the online Appendix display the final sample size, and distributions
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of the common set of variables between the benchmark and election polling samples. The

analytical sample distributions are unweighted, while the benchmark sample distributions

are weighted by the likely voter weights. The Senate races have one more variable than the

governors’ races - support for the House of Representatives candidate. Since both House of

Representatives and Senate are part of Congress, the variable is more relevant for Senate

elections. The internet-based analytical sample tends to be younger, more educated, white,

and less certain of religious beliefs. For many states, there are also much higher proportions

of people identified as Republicans in the analytical sample than in the benchmark sample.

4.2 Estimation

The outcome variable yi is an indicator for voting for a Democratic (versus a Republican)

candidate. The analytical sample sA is the internet-based polling data. Let sA(r) be the

sample of respondents in state r. Our target of inference is the voting spread in state r,

SD−R(r), estimated by:

ŜD−R(r) =
∑

i∈sA(r)

wiyi

/

∑

i∈sA(r)

wi −
∑

i∈sA(r)

wi (1− yi)
/

∑

i∈sA(r)

wi = 2
∑

i∈sA(r)

wiyi

/

∑

i∈sA(r)

wi − 1

where wi is the weight for respondent i. Thus positive values are the winning margin of

Democratic candidates, and absolute values of negative values are the winning margins of

Republican candidates. We compare the weighted estimates based on ECLASSO with un-

weighted estimates (UNWT), as well as estimates based on weights from traditional weight-

ing adjustment methods - calibration to Census-level state demographic totals (STATEWT),

propensity-score weighting (PSCORE), and Estimated-Control Regression Estimator (EC-

GREG). STATEWT uses standard poststratification approaches to adjust to known popu-

lation totals (not registered voter totals) for age (18-29, 30-39, 40-49, 50-59, 60-74, 75+),

gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), educa-
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tion (high school or less, some college, college degree, graduate degree). PSCORE develops

propensity score weights using the benchmark sample, which, in addition to age, gender,

race, and education, includes religion (Protestant, Catholic, other Christian, other, none),

“born-again” Evangelical, frequency of attending religious services (more than one a week,

once a week, a few times a month, less than a few times a month), approval of Obama,

political party favored, and five categories of state type based on their voting behavior in

the 1992-2012 Presidential elections: (1) voted Republican candidate all 4 times, (2) voted

Republican candidate three times and Democratic candidate once, (3) voted Republican

and Democratic candidate each twice, (4) voted Republican candidate once and Democratic

candidate three times, and (5) voted Democratic candidate all 4 times. In addition to these

main effects, interactions between gender and age, gender and race, race and age, party and

Obama approval, state type and party, and state type and Obama approval are included.

Models for the Senate races also include a measure of support for the (Republican-controlled)

House of Representatives. ECGREG calibrates to the estimated benchmark measures (in-

cluding interactions) using the standard GREG weights. ECLASSO uses the same estimated

benchmark predictors and their interactions for the working models.

4.3 Variance estimates

For estimators that do not rely on a small benchmark sample, method = UNWT and

STATEWT, we estimate the variance of estimated spread D-R in state r as follows:

var
(

Ŝmethod
D−R(r)

)

= var

⎛

⎝2
∑

i∈sA(r)

wmethod
i yi

/

∑

i∈sA(r)

wmethod
i − 1

⎞

⎠ = 4var
(

ˆ̄ywr
)

where var
(

ˆ̄ywr
)

is the linearized variance estimator of weighted sample mean in state r.

For estimators that use a small benchmark sample (PSCORE, ECGREG, and ECLASSO),

we use bootstrap variance estimates to incorporate the uncertainty of the benchmark data.
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For each bootstrap indexed by b, we draw a weighted bootstrap sample of the benchmark

sample, and a simple-random-sample with replacement of the analytical sample, then calcu-

late the statistic:

Ŝmethod
D−R(r)(b) = 2

∑

i∈sA(r)(b)

wmethod
i yi

/

∑

i∈sA(r)(b)

wmethod
i − 1

We generate 1,000 bootstrap samples, and use the distribution of Ŝmethod
D−R(r)(b) to estimate the

variance of Ŝmethod
D−R(r).

4.4 Results

4.4.1 Direction and error . Table 1 lists results for 11 governor election forecasts. UNWT,

STATEWT, PSCORE, and ECLASSO predicted the correct winning political party for all

states in the analysis. ECGREG predicted Arizona and Florida incorrectly.

We define relative bias as
Ŝmethod

D−R(r)
−SD−R(r)

SD−R(r)
; if this is positive, the relative bias is toward

the Democrats, and is denoted with a D; if negative, the relative bias is toward the Repub-

licans, denoted with a R. Without weighting adjustments, the sample has Republican over-

representation, with 10 out of 11 states biasing toward Republican candidates. STATEWT

reduced the bias for most states, while PSCORE and ECGREG appear to have over-adjusted

toward Democratic direction. ECLASSO reduced unadjusted absolute sample bias to a max-

imum of 6% of true values across the 11 states, versus 10%-25% for the other estimators.

On average, ECLASSO also has the smallest relative error across the states (0.5% D versus

1.9% R to 7.0% D for the other estimators).

Table 2 lists results for 8 Senate election forecasts. UNWT, STATEWT, and ECLASSO

predicted the correct winning political party for all states in the analysis. PSCORE pre-

dicted North Carolina incorrectly while ECGREG predicted Georgia and North Carolina

incorrectly. Similar to the governor sample, the Senate sample has more Republican votes
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than the true voting spread, with 6 out of 8 states biasing toward Republican candidates.

STATEWT reduced the bias for the majority of states, while PSCORE, and ECGREG over-

adjusted in the Democratic direction. ECLASSO reduced unadjusted absolute sample bias

to a maximum of 8% of true values across the 8 states, versus 9%-27% for the other estima-

tors. On average, ECLASSO also has the smallest relative error across the states (1.0% R

versus 2.4% R to 9.0% D for the other estimators).

4.4.2 Root-mean-square-error . Table 1 gives the standard error (SE) and root-mean-square

error (RMSE) (square root of the sum of the squared bias and squared SE) of each estimator

in predicting governor voting spreads. As expected, without any weighting adjustments,

UNWT estimates have the lowest standard error among the estimators. We anticipate the

variance of STATEWT estimates to be small, as the weights are derived from Census-level

counts rather than from a benchmark sample. However, on average, the bias-reduction of

STATEWT was not enough to offset the increased variance in the estimates due to weighting,

so the average RMSE of STATEWT is about the same as UNWT’s. Both PSCORE and EC-

GREG have over-adjusted the sample to produce large biases. The use of small benchmark

sample also increased the variance of PSCORE and ECGREG estimates, as both estima-

tors have larger average RMSE than UNWT’s. With the same benchmark sample, working

model, and variance estimator as PSCORE and ECGREG, ECLASSO is able to produce

standard errors that are comparable to STATEWT’s, and, with smaller average absolute

bias, produces the lowest average RMSE across the states, with reductions of 10% to 69%

over the other estimators.

Table 2 gives the standard error (SE) and root-mean-square error (RMSE) of each esti-

mator in predicting Senate voting spreads. Results were similar to the gubernatorial results,

with ECLASSO having average RMSE reductions of 15% to 58% over the other estimators.
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4.4.3 Coverage. Figure 1 displays the plots of 90% confidence intervals computed via normal

approximation based on each governors race estimator across 11 states, as well as the true

values in solid red horizontal lines, for the governors’ elections. The UNWT confidence

intervals are too narrow, covering true spreads in only 4 out of 11 states (36%). ECLASSO

and STATEWT confidence intervals both covered 9 out of 11 true spreads (82%), close to

the expected 90% coverage rate. PSCORE covered 8 (73%), and ECGREG covered only

6 (55%). Among weighted estimators, ECLASSO also has comparable interval width as

STATEWT’s, if not narrower.

Figure 2 displays the plots of 90% confidence intervals based on Senate rate estimator

across 8 states, as well as the true values in solid red horizontal lines for the Senate elections.

The UNWT confidence intervals performed even worse than governor forecasts, covering only

1 out of 8 true spreads (12%). ECLASSO confidence intervals have the highest coverage rate,

with 6 out of 8 true spreads within the intervals (75%), which is the closest to the expected

90% coverage rate among the estimators. The confidence intervals of STATEWT covered 3

(38%), ECGREG covered 4 (50%), while PSCORE covered 5 (62%). Aside from estimates for

Virginia, where no estimator performed well, ECLASSO confidence intervals are consistently

around the true values.

5. Simulation Study

Although our application is unusual in that the target parameters of interest are (eventu-

ally) known, we also conduct a simulation study, treating the 2013 National Health Interview

Survey as the population of interest. NHIS 2013 data is particularly suitable for simulating

internet-based non-probability samples, because the survey asks respondents about internet

use (internet use), as well as whether a respondent has looked up health-related information
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on the world-wide-web (internet health). We construct a model predicting internet use,

with internet health as a predictor. The predicted probabilities, estimated from NHIS data,

are related to both internet usage as well as interest in health-related information online, and

are used as selection probabilities to draw our simulation samples. Under such a design, if the

outcome of interest is associated with the general health of a respondent, our samples will be

subject to selection bias. The outcome of interest yi is health insurance status (=1 if insured,

0 if not). Restricting data records to adults and removing respondents with missing values

on demographics, income, and health indicators leave a the population size of N = 31, 914.

The goal is to predict the total number of individuals in the population without health in-

surance, Ty =
∑N

i=1 yi = 5, 432. We use age (agegrp), gender (sex), race/ethnicity (race),

education (educ), marital (marst), employment status (wrk private), having seen a health

professional in the last year (sathc), diagnosis of cancer (cancer), family income (faminc q),

internet use (internet), and obtaining health information over the internet (internet health)

as covariates in the simulation.

The main goal of the simulation is to evaluate T̂ECLASSO
y under different levels of sample

and benchmark sizes. For the analytical sample, we consider n = 250, 500, 1000; for the

benchmark sample, we consider n = 250, 1000, 4000, 16000. In addition to T̂ECLASSO
y , we

consider a Horvitz-Thompson estimator of total, assuming that an equal probability sam-

ple was selected, HT: T̂HT
y = (N/n)

∑

i∈sA
yi, as well as T̂GREG

y , T̂ECGREG
y , and T̂ PSCORE

y .

To generate non-probability samples, we draw samples from the population with unequal

probabilities as described in Section 5.2, but set the design weights to N/n.

5.1 Working models

Five sets of working models are defined for the estimators. All variables are categorical,

and k[i] denotes the category respondent i belongs to for a given variable.
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� Demographics1: xT
i β = β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i]

� Demographics2: xT
i β = β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i] + βeduc

k[i]

� Trimmed: xT
i β = β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc

k[i] + βfaminc q

k[i] + βemployed

k[i]

� Partial: xT
i β = β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc

k[i] + βfaminc q

k[i] + βemployed

k[i] +

βsex
k[i] × βage65

k[i] + βrace
k[i] × βage65

k[i]

� Full: xT
i β = β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc

k[i] + βfaminc q

k[i] + βemployed

k[i] +

βsex
k[i] × βage65

k[i] + βrace
k[i] × βage65

k[i] + βrace
k[i] × βfaminc q

k[i]

Depending on the estimator, the β̂ is obtained differently. For GREG and ECGREG, β̂ is

obtained from a linear regression of yi on xi. For PSCORE, β̂ is obtained from a logistic

regression of yi on xi. And for ECLASSO, β̂ is obtained through LASSO regression described

in Section 3.1. Table 3 lists the regression estimates from the 5 working models. Except for

sex, all variables are highly significant. The effect of sex is reduced once interaction terms

are introduced to the model, indicating that not all interaction terms are necessary. The

Trimmed and Partial working models may perform well. We expect all working models to

help reduce sample bias when the selection weights are ignored.

We denote GREG1 and GREG2 to be the estimators using Demographics1 and Demo-

graphics2 respectively, working models often used for traditional calibration estimators. We

anticipate GREG1 to perform worse than estimators using other models, because the De-

mographics1 has the worst model-fitness measure for the population. Demographics2 adds

the education variable to Demographics1, improving model-fitness substantially.

Models Trim, Partial, and Full represent three levels of complexity. ECLASSO uses the

Full model in all experimental groups. Because the larger models cannot be estimated in a
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stable manner from the small datasets, ECGREG and PSCORE1 use the Trimmed, Partial,

and Full models when the minimum of analytical and benchmark sample size is 250, 500,

and 1000, respectively.

The final estimator, PSCORE2, is the propensity-score estimator that uses the correct

model, i.e., the same working model as the one that generates the samples, described below.

5.2 Sample generation

The selection probabilities simulate a person’s propensity to be in a non-probability

internet-based sample:

logit(πA
i ) = β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i] + βeduc

k[i]

βfaminc q

k[i] + βmarst
k[i] + βsathc

k[i] + βwrk private

k[i] + βinternet health
k[i]

where πA
i is the probability of internet use. The model is fit to the NHIS data to obtain

the predicted probabilities π̂A
i for each observation. These predicted probabilities are then

used as selection probabilities in a Poisson sampling design. The probabilities are rescaled

to generate a sample size close to n in expectation: π̂A∗
i = nπ̂A

i /
∑N

i=1 π̂
A
i .

5.3 Simulation results

The simulation results are based on 1,000 simulation samples. We evaluate empirical

bias, variance, and RMSE for each estimator of total. In addition, we evaluate the linearized

variance estimates and bootstrap variance estimates by their 95% nominal coverage, using

a normal approximation to generate confidence intervals. We ignore the finite-population-

correction factor in variance estimation, as the sampling fraction is no more than about

0.03.

Table 4 lists the numerical summaries of each estimator under different sample and

benchmark sizes. HT, GREG1, and GREG2 estimators do not use benchmark samples.
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GREG1 and GREG2 control to population totals by basic demographics, with GREG1

omitting the education variable.

5.3.1 Bias . As expected, assuming SRS without weighting adjustment, HT underestimates

the true population total. Without education as a calibration variable, GREG1 actually

performed worse than HT. When education is included (GREG2), bias is small and compa-

rable to that of ECLASSO. This demonstrates that it may often be important to include

key control totals that might only be available in benchmark samples.

Among the estimators that utilized benchmark samples, ECLASSO is the only esti-

mator which produced unbiased estimates for all experimental groups. PSCORE1 and

PSCORE2 estimators’ bias depends on both sample and benchmark sizes. For PSCORE1

and PSCORE2, bias improves as benchmark size increases. However, when analytic sample

sizes increase for a fixed benchmark sample size, bias tends to get worse for PSCORE1 and

especially PSCORE2. One explanation is that the sample bias persists after propensity-score

weighting. Thus as sample size grows, the bias accumulates. For ECGREG, the bias remains

fairly constant given different benchmark sizes, and improves slightly as analytical sample

size increases.

5.3.2 RMSE . When population control variables are strongly related to both the outcome

of interest and selection probabilities, we expect the traditional calibration to perform well

over estimators that utilize benchmark samples. This is the case for GREG2. Comparing to

GREG2, ECLASSO still has gains in RMSE when benchmark size is at least as large as the

analytical sample size. For example, when analytical sample size is 500, ECLASSO starts to

have comparable and smaller RMSE relative to GREG1 for benchmark sample sizes 1000 or

larger. ECLASSO produced smaller RMSE than GREG1, even when the benchmark sample

is just 250. At sample size 1,000, and benchmark sample size ≥ 1,000, PSCORE1, ECGREG,
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and ECLASSO use the same working models. ECLASSO out-performed all other methods

given the same working model, suggesting that ECLASSO is most effective in leveraging

information from an external benchmark sample.

5.3.3 Variance estimates. Table 5 lists the average length and the 95% nominal coverage for

Ty obtained using the asymptotic linearized variance estimates and naive bootstrap estimates

of the ECLASSO estimator, along with the average length and the 95% nominal coverage

for Ty using the naive bootstrap estimates for the PSCORE and ECGREG estimators. The

linearized variance estimates tend to undercover, with substantial undercoverage when the

sample size is small. (Coverage is only slightly affected by the benchmark sample size.)

The bootstrap variance estimate, vECLASSO
boot , significantly over-covers when the benchmark

sample is small. As both analytical and benchmark sample size increase, vECLASSO
boot im-

proves. The bootstrap overcoverage is worse for PSCORE1 and PSCORE2, with very wide

interval lengths. As benchmark sample size increases, empirical coverage of PSCORE1 and

PSCORE2 bootstrap variance estimates get closer to 95%, and the average interval length

shrinks to be similar to other estimators. This suggests that propensity-score weighting ad-

justment method can be very sensitive to the benchmark sample sizes. ECGREG bootstrap

variance estimates seem to be sensitive to the working models. For sample size n = 500 and

benchmark sample size ≥ 500, ECGREG uses the Partial working model, which gives lower

than desired coverage, around 90-91%. Given that interval widths are not small, this can be

a combination of bias and model-complexity – ECGREG’s variances based on the Partial

working model are not large enough to compensate for the bias at sample size 500. With

the Full model that has more calibration cells (when sample size 1, 000 and benchmark sam-

ple ≥ 1, 000), ECGREG nominal coverages rates increase to 96-97%. Among the estimators

that use benchmark samples, ECLASSO is the least sensitive to both sample and benchmark
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sizes, with coverages in the 96% to 97% range, and narrower average interval lengths that

all other estimators with nominal or above coverage.

5.3.4 Adaptive lasso model results. To gain more insight into why the ECLASSO has im-

proved performance, Table 6 lists the percentage of times each variable is selected by LASSO

across the simulation samples. The higher the percentage, the more important a variable

is to predict whether a person has health insurance coverage. As sample size increases, the

proportion of times each variable selected by LASSO is fairly consistent for the majority

of the variables, except for race[3], age65[1], faminc q[2], and all categories of educ vari-

able where the percentage increases significantly as sample size increases. These variable

categories are likely strong predictors of health insurance coverage that are also related to

sample selection, which may explain why GREG1 performed poorly without controlling to

the education variable. Age groups 6 and 7 are seldom selected by LASSO in all sample

sizes, allowing ECLASSO to gain efficiency by setting these age categories to 0. Similarly,

some interaction terms such as race and sex and race and age are almost always dropped,

allowing ECLASSO further gains in efficiency over ECGREG under the Full model.

6. Discussion

This manuscript develops the framework for ECLASSO calibration, and applies it to the

estimation of 2014 US governor and Senate races using a non-probability poll of SurveyMon-

key users, and to a simulation using “internet user” samples generated from a “population”

of the 2013 National Health Interview Survey. In the application to the 2014 elections,

ECLASSO was the most successful in reducing the bias in predicting voting spreads. For

both governor and Senate elections, ECLASSO reduced the overall bias from roughly 4% to

under 1%. Although we anticipated larger variances for PSCORE, ECGREG, and ECLASSO
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relative to the variances of STATEWT due to the small benchmark sample size, this was

not the case for ECLASSO, whose standard errors were comparable to STATEWT’s in both

races. The election data analysis shows that benchmark sample size of 1,000 is sufficient for

ECLASSO to generate estimates with similar standard errors as estimates based on Census-

level benchmarks. In terms of root-mean-square-error and coverage, ECLASSO consistently

outperforms other estimators in both governor and Senate election forecasts. The working

models for PSCORE, ECGREG, and ECLASSO are the same, indicating that ECLASSO

leverages the most useful information from the benchmark.

In the simulations considered, the ECLASSO estimator uniformly outperforms traditional

weighting adjustment methods that utilize the same benchmark data. ECLASSO was able

to achieve the same performance as a calibration estimator controlled to a strong population-

level variable, even with small benchmark samples. Although the simulation models are, by

definition, not inclusive of all possible applications, we expect that the key findings will be

applicable across a broad range of settings: namely, that ECLASSO will allow more efficient

use of high dimensional predictors, including interaction terms, that are unstable or even

impossible to fit using standard GREG estimators; that even modest benchmark sample

sizes when using ECLASSO can yield substantial reductions in RMSE, especially relative to

propensity score estimators or misspecified calibration models; and that ECLASSO linearized

variance estimates tend to undercover when benchmark samples are small, while bootstrap

estimators are uniformly (if modestly) conservative.

There are many potential extensions for this work. Although ECLASSO can be ex-

tended to a multinomial setting, we stayed within a binary outcome framework and removed

non-major party supporters from the analytical sample. Another limitation is the use of

a national-level model to make state-level forecasts. Given a small benchmark sample,
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the national-level model allows for more stable estimates by calibrating to pooled bench-

mark information, but alternatives that consider more complex multilevel models to smooth

state-level benchmark measures might be of value. Similarly, while we illustrated that the

ECLASSO estimator made the most effective use of benchmark data at several different

benchmark sample sizes, a topic for additional research would be determining how large a

benchmark sample should be relative to the analytic sample in order for ECLASSO to most

effectively reduce bias without inflating mean square errors. Finally, we have focused on the

single-stage survey setting; extensions to clustered designs for model-based calibration can

be developed as well (Kennel, 2013).

While probability-based samples have always been less common outside of official statis-

tics compared to non-probability samples, their increasing expense and the proliferation of

data collection from administrative sources, social media, and other non-traditional sources

means that methods such as those developed here will play increasingly important roles in

health and social science research. Indeed, development of methods to leverage information

from probability surveys suggests a strategy of investment in a small number of very high

quality probability surveys targeted toward specific research areas (e.g, behavioral health,

voting behavior, etc.) to provide calibration measures for a large set of non-probability

surveys. We hope the application discussed here will encourage such strategies.
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Figure 1: Estimated voting spread for 2014 US governor’s races, together with 90% CIs
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Figure 2: Estimated voting spread for 2014 US Senate races, together with 90% CIs
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Table 1: U.S. 2014 midterm election governor direction and voting spread estimates (RMSE=
√

Bias2 + SE2)

D-R estimates

State analytical n benchmark n True D-R UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona 974 64 +12%R +13%R +10%R +3%R +12%D +8%R

California 2,354 166 +19%D +14%D +19%D +20%D +36%D +18%D

Florida 2,566 134 +1%R +6%R +2%R +2%R +7%D +1%R

Georgia 2,306 67 +8%R +14%R +9%R +10%R +2%R +8%R

Illinois 2,955 78 +5%R +14%R +8%R +14%R +17%R +10%R

Michigan 6,025 75 +4%R +14%R +12%R +12%R +18%R +10%R

New York 1,962 106 +13%D +13%D +18%D +18%D +38%D +17%D

Ohio 2,299 87 +31%R +35%R +35%R +31%R +35%R +31%R

Pennsylvania 2,318 107 +10%D +11%D +8%D +23%D +33%D +15%D

Texas 2,575 150 +20%R +26%R +19%R +20%R +20%R +21%R

Wisconsin 6,865 60 +6%R +6%R +17%R +2%R +1%R +1%R

Total 33,199 1,094

Relative Bias SE RMSE

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona 1.29%R 1.63%D 8.65%D 23.51%D 3.74%D 3.18% 5.07% 7.04% 8.51% 4.26% 3.43% 5.33% 11.15% 25.01% 5.67%

California 4.98%R 0.50%D 1.44%D 17.44%D 0.42%R 2.04% 3.07% 4.72% 9.90% 3.18% 5.38% 3.11% 4.94% 20.05% 3.20%

Florida 4.69%R 0.98%R 0.50%R 8.08%D 0.02%D 1.97% 3.14% 6.17% 5.55% 3.19% 5.09% 3.29% 6.19% 9.81% 3.19%

Georgia 5.84%R 0.69%R 1.77%R 5.51%D 0.38%R 2.06% 3.40% 5.69% 6.16% 3.67% 6.20% 3.47% 5.96% 8.27% 3.69%

Illinois 9.62%R 3.86%R 9.37%R 12.89%R 5.11%R 1.82% 2.81% 4.42% 8.93% 2.97% 9.79% 4.77% 10.36% 15.68% 5.91%

Michigan 10.00%R 7.87%R 7.69%R 14.31%R 5.71%R 1.28% 2.03% 3.32% 5.43% 2.68% 10.08% 8.12% 8.38% 15.31% 6.31%

New York 0.11%R 4.83%D 4.56%D 25.16%D 4.04%D 2.24% 3.30% 5.12% 8.61% 3.06% 2.24% 5.85% 6.85% 26.60% 5.06%

Ohio 4.49%R 3.66%R 0.39%R 4.47%R 0.45%R 1.95% 3.02% 5.41% 5.71% 2.96% 4.90% 4.75% 5.42% 7.25% 3.00%

Pennsylvania 1.53%D 1.97%R 12.93%D 23.78%D 5.78%D 2.06% 3.30% 4.39% 8.09% 3.04% 2.57% 3.84% 13.65% 25.12% 6.53%

Texas 5.32%R 1.72%D 0.05%R 0.36%D 0.29%R 1.91% 3.12% 5.47% 4.79% 3.43% 5.65% 3.56% 5.47% 4.81% 3.44%

Wisconsin 0.73%R 10.79%R 3.49%D 4.60%D 4.36%D 1.20% 1.84% 3.66% 5.79% 2.94% 1.41% 10.94% 5.06% 7.39% 5.26%

AVERAGE 4.14%R 1.92%R 1.03%D 6.98%D 0.51%D 1.97% 3.10% 5.04% 7.04% 3.22% 5.16% 5.19% 7.59% 15.03% 4.66%
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Table 2: U.S. 2014 midterm election Senate direction and voting spread estimates (RMSE=
√

Bias2 + SE2)

D-R estimates

State analytical n benchmark n True D-R UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia 2,307 67 +8%R +13%R +7%R +4%R +2%D +11%R

Illinois 2,989 78 +10%D +1%D +5%D +15%D +13%D +6%D

Michigan 5,851 75 +13%D +5%D +3%D +21%D +16%D +8%D

Minnesota 2,951 57 +10%D +6%D +1%D +12%D +6%D +10%D

New Jersey 841 58 +13%D +15%D +19%D +31%D +34%D +16%D

North Carolina 6,093 90 +2%R +5%R +7%R +1%D +15%D +3%R

Texas 2,487 150 +27%R +35%R +27%R +28%R +27%R +32%R

Virginia 5,167 81 +1%D +5%D +6%D +18%D +24%D +8%D

Total 28,686 656

Relative Bias SE RMSE

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia 5.63%R 0.31%D 4.12%D 9.75%D 2.83%R 2.06% 3.39% 5.26% 4.89% 3.61% 5.99% 3.41% 6.68% 10.91% 4.59%

Illinois 9.08%R 5.51%R 4.46%D 2.43%D 4.25%R 1.83% 2.75% 4.59% 7.19% 2.98% 9.26% 6.16% 6.40% 7.59% 5.20%

Michigan 8.15%R 10.05%R 7.61%D 2.60%D 5.19%R 1.31% 2.06% 4.40% 4.46% 2.81% 8.25% 10.26% 8.79% 5.16% 5.90%

Minnesota 4.04%R 9.23%R 1.98%D 3.98%R 0.42%R 1.84% 2.76% 4.35% 4.00% 3.20% 4.44% 9.63% 4.78% 5.64% 3.23%

New Jersey 2.03%D 5.99%D 17.55%D 20.70%D 3.11%D 3.41% 4.79% 6.72% 9.24% 3.79% 3.97% 7.67% 18.79% 22.66% 4.90%

North Carolina 3.00%R 5.28%R 2.46%D 17.11%D 1.10%R 1.28% 2.07% 5.10% 6.59% 3.23% 3.27% 5.67% 5.66% 18.33% 3.41%

Texas 7.76%R 0.03%D 0.52%R 0.54%D 4.51%R 1.88% 3.16% 4.50% 4.03% 3.25% 7.99% 3.16% 4.53% 4.06% 5.56%

Virginia 4.36%D 4.73%D 17.54%D 23.06%D 7.54%D 1.39% 2.13% 4.27% 5.06% 2.90% 4.57% 5.18% 18.05% 23.61% 8.08%

AVERAGE 3.91%R 2.38%R 6.90%D 9.03%D 0.96%R 1.87% 2.89% 4.90% 5.68% 3.22% 5.97% 6.39% 9.21% 12.25% 5.11%
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Table 3: Logistic regression coefficients for working models fit on the NHIS population for

PSCORE and ECGREG methods

Dependent variable:

Demographics1 Demographics2 Trimmed Partial Full

region[2] 0.199∗∗∗ 0.164∗∗∗

region[3] 0.519∗∗∗ 0.502∗∗∗

region[4] 0.403∗∗∗ 0.404∗∗∗

employed[1] 0.258∗∗∗ 0.256∗∗∗ 0.262∗∗∗

race[2] 0.510∗∗∗ 0.325∗∗∗ 0.216∗∗∗ 0.208∗∗∗ 0.147∗

race[3] 1.272∗∗∗ 0.911∗∗∗ 0.820∗∗∗ 0.797∗∗∗ 0.632∗∗∗

race[4] 0.090 0.171∗∗∗ 0.007 −0.053 −0.331∗∗∗

age65[1] −1.954∗∗∗ −2.326∗∗∗ −2.360∗∗∗

sex[2] −0.262∗∗∗ −0.223∗∗∗ 0.018 0.015 0.018

agegrp[2] −0.100∗∗ −0.049 0.157∗∗∗ 0.158∗∗∗ 0.163∗∗∗

agegrp[3] −0.279∗∗∗ −0.251∗∗∗ 0.087 0.085 0.091∗

agegrp[4] −0.442∗∗∗ −0.491∗∗∗ −0.129∗∗ −0.133∗∗ −0.125∗∗

agegrp[5] −1.352∗∗∗ −1.447∗∗∗ −0.261∗∗∗ −0.266∗∗∗ −0.256∗∗∗

agegrp[6] −2.938∗∗∗ −3.186∗∗∗ −0.774∗∗∗ −0.759∗∗∗ −0.752∗∗∗

agegrp[7] −2.763∗∗∗ −3.103∗∗∗ −0.683∗∗∗ −0.650∗∗ −0.640∗∗

faminc q[1] −0.213∗∗∗ −0.211∗∗∗ −0.253∗∗∗

faminc q[2] −0.972∗∗∗ −0.971∗∗∗ −1.178∗∗∗

faminc q[3] −2.109∗∗∗ −2.109∗∗∗ −2.253∗∗∗

educ[1] −0.414∗∗∗ −0.266∗∗∗ −0.262∗∗∗ −0.263∗∗∗

educ[2] −0.833∗∗∗ −0.588∗∗∗ −0.585∗∗∗ −0.592∗∗∗

educ[3] −1.187∗∗∗ −0.674∗∗∗ −0.672∗∗∗ −0.677∗∗∗

educ[4] −2.053∗∗∗ −1.191∗∗∗ −1.184∗∗∗ −1.186∗∗∗

sathc[1] 2.057∗∗∗ 2.058∗∗∗ 2.059∗∗∗

cancer[1] −0.189∗∗ −0.178∗ −0.180∗

sex[2]:age65[1] 0.086 0.080

race[2]:age65[1] 0.195 0.236

race[3]:age65[1] 0.581∗∗∗ 0.649∗∗∗

race[4]:age65[1] 1.375∗∗∗ 1.455∗∗∗

race[2]:faminc q[1] −0.151

race[3]:faminc q[1] 0.151

race[4]:faminc q[1] 0.259

race[2]:faminc q[2] 0.358∗∗∗

race[3]:faminc q[2] 0.353∗∗∗

race[4]:faminc q[2] 0.669∗∗∗

race[2]:faminc q[3] 0.303

race[3]:faminc q[3] 0.269

race[4]:faminc q[3] 0.440∗

Constant −1.719∗∗∗ −0.869∗∗∗ −1.100∗∗∗ −1.088∗∗∗ −1.012∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Simulation summary, target is number of uninsured in the NHIS sample “popula-

tion”: T = 5, 432

HT GREG1 GREG2

sample n bias SE rmse bias SE rmse bias SE rmse

250 -383 735 828 -622 722 953 18 837 837

500 -378 520 643 -622 498 797 6 562 562

1,000 -355 370 513 -602 348 695 25 399 400

PSCORE1 PSCORE2 ECGREG ECLASSO

sample n benchmark n bias SE rmse bias SE rmse bias SE rmse bias SE rmse

250 250 260 1052 1,084 442 1268 1,343 344 917 979 20 841 841

250 1,000 118 827 835 109 877 884 343 826 894 28 757 758

250 4,000 90 782 788 62 817 819 337 799 867 19 724 724

250 16,000 93 776 781 59 805 807 339 739 862 19 714 714

500 250 258 756 799 365 868 942 328 683 757 -5 654 661

500 1,000 104 576 586 116 602 614 276 582 644 -3 533 533

500 4,000 79 530 535 82 549 555 274 551 616 -10 499 499

500 16,000 74 520 525 74 535 541 272 546 610 -14 488 488

1,000 250 318 622 698 409 698 809 320 536 624 -17 531 532

1,000 1,000 215 440 490 202 442 486 296 441 531 -9 404 404

1,000 4,000 193 395 439 180 394 433 299 410 507 -6 369 369

1,000 16,000 186 377 420 171 378 415 295 396 494 -11 352 352
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Table 5: Simulation summary, coverage of the 95% nominal confidence intervals, and average

interval length for the number of uninsured in the NHIS sample “population”

sample n benchmark n vPSCORE1
boot vPSCORE2

boot vECGREG
boot vECLASSO vECLASSO

boot

Coverage Length Coverage Length Coverage Length Coverage Length Coverage Length

250 250 99.0% 3286 99.1% 6473 97.1% 1876 88.6% 1435 97.4% 1925

250 1,000 97.6% 1786 98.4% 1984 96.9% 1649 88.9% 1274 96.4% 1619

250 4,000 97.2% 1618 97.3% 1714 97.2% 1589 88.8% 1229 96.3% 1531

250 16,000 96.8% 1589 97.0% 1668 96.7% 1569 89.6% 1218 95.9% 1509

500 250 98.9% 2112 99.0% 3120 96.7% 1395 92.4% 1236 97.0% 1435

500 1,000 97.1% 1232 98.1% 1296 90.3% 1160 92.3% 973 96.0% 1127

500 4,000 97.1% 1090 97.9% 1126 91.0% 1095 91.5% 894 96.3% 1033

500 16,000 97.0% 1057 97.6% 1088 91.2% 1076 91.2% 873 96.2% 1008

1,000 250 98.7% 1590 98.9% 2105 95.9% 1110 93.0% 991 96.1% 1151

1,000 1,000 98.2% 959 98.2% 934 97.1% 879 92.8% 724 96.6% 834

1,000 4,000 96.6% 781 96.8% 785 96.9% 790 90.6% 641 95.8% 732

1,000 16,000 96.6% 745 97.3% 750 97.1% 766 92.1% 618 95.9% 704
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Table 6: Percentage of times variables are selected by LASSO across 1,000 simulation samples

Sample sizes

Variables 250 500 1,000

employed[1] 40% 47% 55%

sex[2] 45% 48% 53%

race[2] 36% 45% 58%

race[3] 74% 93% 99%

race[4] 25% 27% 33%

age65[1] 73% 94% 100%

agegrp[2] 42% 49% 59%

agegrp[3] 38% 39% 47%

agegrp[4] 33% 40% 47%

agegrp[5] 33% 40% 52%

agegrp[6] 3% 4% 6%

agegrp[7] 1% 1% 2%

faminc q[1] 43% 44% 47%

faminc q[2] 64% 87% 99%

faminc q[3] 98% 100% 100%

educ2[1] 41% 44% 54%

educ2[2] 33% 40% 54%

educ2[3] 52% 63% 77%

educ2[4] 42% 61% 81%

sathc[1] 99% 100% 100%

cancer[1] 19% 23% 28%

sex[2]:age65[1] 4% 7% 8%

race[2]:age65[1] 1% 1% 1%

race[3]:age65[1] 2% 2% 3%

race[4]:age65[1] 1% 1% 2%

race[2]:faminc q[1] 17% 17% 23%

race[3]:faminc q[1] 25% 29% 32%

race[4]:faminc q[1] 12% 14% 17%

race[2]:faminc q[2] 15% 16% 18%

race[3]:faminc q[2] 17% 16% 23%

race[4]:faminc q[2] 10% 11% 14%

race[2]:faminc q[3] 7% 8% 9%

race[3]:faminc q[3] 11% 11% 12%

race[4]:faminc q[3] 5% 7% 8%
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