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Summary. Quantile estimation has attracted significant research interests in recent years. How-

ever, there has been only a limited literature on quantile estimation in the presence of incomplete

data. In this paper, we propose a general framework to address this problem. Our framework

combines the two widely adopted approaches for missing data analysis, the imputation approach

and the inverse probability weighting approach, via the empirical likelihood method. The pro-

posed method is capable of dealing with many different missingness settings. We mainly study

three of them: (i) estimating the marginal quantile of a response that is subject to missingness

while there are fully observed covariates; (ii) estimating the conditional quantile of a fully ob-

served response while the covariates are partially available; and (iii) estimating the conditional

quantile of a response that is subject to missingness with fully observed covariates and extra

auxiliary variables. The proposed method allows multiple models for both the missingness prob-

ability and the data distribution. The resulting estimators are multiply robust in the sense that

they are consistent if any one of these models is correctly specified. The asymptotic distributions

are established using the empirical process theory.

Keywords: Empirical likelihood, Imputation, Inverse probability weighting, Missing data, Multiple

robustness, Quantile regression.

1. Introduction

The population mean of a response variable provides an important central measure of the

response, while the population median is an important alternative that is robust to potential

outliers. The quantiles, a generalized concept of median, are capable of providing not only
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2 P. Han, L. Kong, J. Zhao and X. Zhou

central features but also the tail properties of the response distribution (Koenker 2005).

Under mild conditions, quantile function uniquely determines the underlying distribution

(Shorack 2000). Quantiles provide a more complete picture of the response and are especially

useful in the presence of outliers or when the distribution of the response is heavy-tailed.

A commonly encountered challenge in quantile-related analysis is the presence of missing

values in the collected data. The most straightforward solution, the complete-case analysis

ignoring subjects with missing data, usually leads to substantial bias and/or undermines study

efficiency, especially when the missingness rate is high. There is a large literature dealing with

missing data; see, for example, Little and Rubin (2002), Tsiatis (2006), Kim and Shao (2013),

and references therein. However, most of the existing methods focus on mean estimation.

Imputation (e.g. Rubin 1987, 1996) is a widely adopted approach for dealing with missing

data. In a quantile regression setting, Yoon (2010) proposed an imputation method where the

missing responses are substituted by values drawn from the conditional quantile function of the

response at given values of regressors. Chen and Yu (2016) considered an imputation method

to deal with missing responses based on semiparametric quantile regression. To deal with

missing covariates, Wei et al. (2012) developed an iterative imputation procedure assuming

the missingness depends only on the observed covariates. Estimating equations were used

by Wei and Yang (2014) to produce consistent linear quantile estimation in the presence of

missing covariates through an EM-type algorithm. Yang et al. (2013) proposed a fractional

hot–deck imputation based on nonparametric kernel regression.

Inverse probability weighting (IPW) (e.g. Horvitz and Thompson 1952; Robins et al.

1994) is another popular approach for handling missing data. In quantile regression for longi-

tudinal data with non-ignorable dropouts, Lipsitz et al. (1997) considered a set of estimating

equations weighted by the inverse of the estimated probability of dropout. Yi and He (2009)

investigated a similar method under different model assumptions focusing on median regres-

sion. For quantile regression with missing covariates, Sherwood et al. (2013) took the IPW

approach to study health care cost data. Under non-ignorable missingness mechanism, Zhao

et al. (2013) proposed an augmented IPW method to estimate the distribution function and

quantiles of a response variable. Sun et al. (2012) developed an IPW-based method for quan-

tile regression for competing risks data when the failure type is prone to missing values. To

handle missing response and/or partially missing covariates, Chen et al. (2015) proposed to

estimate the missingness probability nonparametrically.

The imputation and the IPW approaches require to model the data distribution and the

missingness probability, respectively. Properties of the corresponding estimators hold true

only if the corresponding model is correctly specified. Thus, most existing methods are

vulnerable to model misspecification. Nonparametric modeling may help reducing the risk of

model misspecification. However, it is often impractical due to the curse of dimensionality.

Therefore, methods that are robust against model misspecification are highly desired. In

the literature of mean regression with missing data, augmented IPW (AIPW) is a popular

method (Robins et al. 1994; Tsiatis 2006), where both the missingness probability and the
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Quantile Estimation with Incomplete Data 3

data distribution are modeled. The resulting estimator is consistent if either model is correct

and is called doubly robust. Recently, an even more robust method has been proposed, the

so-called multiply robust method (Han and Wang 2013; Chan and Yam 2014; Han 2014a,

2014b, 2016a, 2016b; Chen and Haziza 2017), where multiple models for the missingness

probability and/or the data distribution can be accounted for, and estimation consistency of

the point estimator is guaranteed if any one model is correct. However, the current multiply

robust methods were developed in the context of mean regression only and do not directly

apply to quantile estimation. The major contribution of this paper is to propose a general

framework for quantile estimation with missing data. Our general framework combines both

the imputation and the IPW approaches to estimate the marginal or conditional quantiles of

the response under a variety of practically important missing data settings. All the resulting

estimators are multiply robust. Compared to mean regression, dealing with quantiles is

much more difficult since the parameters of interest are no longer estimated using smooth

functions of the data, and thus existing methods and results cannot be simply translated.

This complexity is in both implementation and theoretical investigations. Similar to Wei et

al. (2012) and Chen et al. (2015), our framework is capable of dealing with independent but

non-identically distributed error terms.

A multiply robust method is appealing in many studies where multiple working models may

exist. An example is in high-dimensional data analysis where there are a large number of fully

observed auxiliary variables. In such a case model building for the missingness probability

and the data distribution relies on variable selection techniques that require some tuning

parameters. Different levels of tuning may result in different working models. Although the

tuning parameters may be selected based on some criteria, e.g., the generalized information

criterion (Fan and Tang 2013), such a selection brings in additional uncertainty in working

model specification and usually does not lead to one model that rules out the possibility of all

others. A more natural approach, discussed in Robins et al. (2007), is to postulate multiple

models, each with different subsets of auxiliary variables and possibly different link functions.

Another example is whether to model the distribution of a variable in the original scale or

after a transformation, if the former is highly skewed and the latter is approximately normal.

In this case two working models, one for the original scale and one for the transformed scale,

may be postulated. For both of the aforementioned examples, our proposed method provides

an innovative way of combining multiple working models into estimation.

Our development relies on the empirical likelihood method (Owen 1988, 2001; Qin and

Lawless 1994), which has been successfully applied to address missing data problems and has

attracted considerable research interests (e.g. Wang and Rao 2002; Qin and Zhang 2007;

Chen et al. 2008; Qin et al. 2008; Qin et al. 2009; Wang and Chen 2009; Tan 2010; Han and

Wang 2013; Chan and Yam 2014; Han 2014a, 2014b, 2016a). However, the existing literature

mainly focuses on mean estimation with missing data. Another contribution of this paper

is to demonstrate the effectiveness of the empirical likelihood method in quantile estimation

with missing data. To derive the asymptotic distributions of our proposed estimators, the
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4 P. Han, L. Kong, J. Zhao and X. Zhou

non-smooth estimating functions are dealt with via empirical process theory (e.g. van der

Vaart and Wellner 1996; Kosorok 2008).

The rest of the paper is organized as follows. In Section 2, after a brief review of the

imputation and the IPW approaches, we present our proposed method. Section 3 estab-

lishes the asymptotic properties. Section 4 contains simulation studies to evaluate the finite-

sample performance of the proposed method. A real data analysis is provided in Section

5. Section 6 gives some discussions. Technical details are provided in the Appendix. The

simulation results are given in the online supplementary material. R code used for our

simulation studies can be found at http://www-personal.umich.edu/~peisong/R-code/

quantile-estimation-with-missing-data/missing_covariates.R. The ACTG 175 data

used for our data application can be found in the R package “speff2trial”.

2. The Proposed Method

The proposed method is developed under three commonly encountered scenarios: (i) estimat-

ing the marginal quantile of a response that is subject to missingness while there are fully

observed covariates; (ii) estimating the conditional quantile of a fully observed response while

the covariates are partially available; (iii) estimating the conditional quantile of a response

that is subject to missingness with fully observed covariates and extra auxiliary variables. To

facilitate the presentation, we first review the imputation and the IPW approaches in scenario

(i). Note that, although in existing literature on quantile estimation these two approaches are

most often described for quantile regression with missing data, which corresponds to scenarios

(ii) and (iii), the ideas are more straightforwardly demonstrated in scenario (i) for estimating

the marginal quantile. This is also one reason why our development starts with scenario (i).

The proposed method can be easily generalized to other scenarios different from the three

discussed in this paper, such as estimating the conditional quantile of a partially observed re-

sponse while some covariates are fully observed and others are not, with or without additional

auxiliary variables.

2.1. A Review on Imputation and IPW Approaches

Let Y denote the response of interest that is subject to missingness, X a vector of covari-

ates, and R the indicator of observing Y (R = 1 if Y is observed and R = 0 otherwise).

The observed data are n independent and identically distributed copies of (R,RY,XT). We

assume that Y is missing at random (MAR) (Rubin 1976), a commonly adopted missingness

mechanism in the literature:

P (R = 1 | Y,X) = P (R = 1 | X). (1)

For now we focus on estimating q0(τ) = Qτ (Y ) = inf{y : P (Y ≤ y) ≥ τ}, the τ -th marginal

quantile of Y where 0 < τ < 1. For ease of notation, we write q0(τ) to be q0 hereafter.
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Quantile Estimation with Incomplete Data 5

The imputation approach models f(Y | X), the conditional density of Y given X. Under

the MAR mechanism, this model can be fitted based on subjects with Y observed (complete-

case analysis). With the estimated f(Y | X), one can then take a set of random draws

at the given X for a subject with missing Y as the imputed responses for this subject:

{Ŷ lX : l = 1, . . . , L}. The imputation estimator of q0 is the solution to

1

n

n∑

i=1

[
Riψτ (Yi − q) + (1−Ri)

1

L

L∑

l=1

ψτ (Ŷ
l
Xi

− q)

]
≈ 0,

where ψτ (r) = τ − I(r < 0) and we use “≈” as in Chen et al. (2015) to indicate that the

exact solution may not exist due to the non-smoothness of the function ψτ . The imputation

estimator is consistent only if f(Y | X) is correctly modeled.

The IPW approach models the probability in (1), denoted by π(X) hereafter. With π(X)

estimated by π̂(X), the IPW estimator solves

1

n

n∑

i=1

Ri
π̂(Xi)

ψτ (Yi − q) ≈ 0,

and is consistent only if π(X) is correctly modeled. To improve estimation efficiency of the

IPW estimator, one may also consider the augmented IPW (AIPW) estimator solving

1

n

n∑

i=1

[
Ri

π̂(Xi)
ψτ (Yi − q)−

(
Ri

π̂(Xi)
− 1

)
1

L

L∑

l=1

ψτ (Ŷ
l
Xi

− q)

]
≈ 0,

where an augmentation term is added to extract more information from the observed covari-

ates. The AIPW estimator was originally proposed in the context of mean estimation (Robins

et al. 1994). In addition to potential efficiency gains, the AIPW estimator is consistent if

either π(X) or f(Y | X) is correctly modeled, a property known as double robustness (e.g.

Bang and Robins 2005).

2.2. Estimation of Marginal Quantiles

Our goal is to combine the imputation and the IPW approaches to further improve the ro-

bustness of estimation consistency against possible model misspecifications. In practice, since

the true data generating process is usually unknown, multiple models for both π(X) and

f(Y | X) may be postulated and none rules out the possibility of others. Specifically, let

P = {πj(X;αj) : j = 1, · · · , J} and F = {fk(Y | X;γk) : k = 1, · · · ,K} denote collections

of models for π(X) and f(Y | X), respectively, where αj and γk are the corresponding pa-

rameters. Our proposed method provides a novel way to combine these models simultaneously

so that the resulting estimator is consistent if any one model is correctly specified.

Let m =
∑n
i=1Ri be the number of subjects with data completely observed. Without loss

of generality, these subjects are indexed by i = 1, . . . ,m. Our method is composed of the

following steps.
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6 P. Han, L. Kong, J. Zhao and X. Zhou

Step 1: Calculate α̂
j , j = 1, . . . , J , by maximizing the binomial likelihood

n∏

i=1

{πj(Xi;α
j)}Ri{1− πj(Xi;α

j)}1−Ri .

Step 2: Calculate γ̂
k, k = 1, . . . ,K, by maximizing

∏n
i=1{fk(Yi | Xi;γ

k)}Ri .

Step 3: Calculate q̂kL, k = 1, . . . ,K, as an imputation estimator of q0 by solving

1

n

n∑

i=1

[Riψτ (Yi − q) + (1−Ri)
1

L

L∑

l=1

ψτ{Y li (γ̂k)− q}] ≈ 0,

where {Y l(γk) : l = 1, . . . , L} denotes a set of random draws of size L from fk(Y | X;γk).

Step 4: For the complete cases i = 1, . . . ,m, calculate weights

ŵi =
1

m

1

1 + ρ̂
T
ĝ
L
1i(α̂, q̂L, γ̂)

, (2)

where ρ̂ minimizes

Fn(ρ) = − 1

n

n∑

i=1

Ri log{1 + ρTĝ
L
1i(α̂, q̂L, γ̂)}. (3)

Here α̂
T = {(α̂1)T, . . . , (α̂J)T}, γ̂T = {(γ̂1)T, . . . , (γ̂K)T}, q̂T

L = (q̂1L, . . . , q̂
K
L ),

ĝ
L
1i(α̂, q̂L, γ̂)

T =
(
π1
i (α̂

1)− θ̂1(α̂1), . . . , πJi (α̂
J)− θ̂J(α̂J),

1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L} − η̂1L(q̂
1
L, γ̂

1), . . . ,
1

L

L∑

l=1

ψτ{Y li (γ̂K)− q̂KL } − η̂KL (q̂KL , γ̂
K)
)
,

θ̂j(αj) =
1

n

n∑

i=1

πji (α
j) and η̂kL(q,γ

k) =
1

n

n∑

i=1

[
1

L

L∑

l=1

ψτ{Y li (γk)− q}
]
.

Searching for ρ̂ in this step is a convex minimization problem and can be easily implemented

using the algorithm given in Han (2014b).

Step 5: Calculate the estimator q̂LMR by solving

m∑

i=1

ŵiψτ (Yi − q) ≈ 0.

In Step 1, let α̂
j p−→ α

j
∗ as n → ∞. Then, πj(X;αj∗) = π(X) only if πj(X;αj) is a

correctly specified model for π(X). In Step 2, the calculation is based on the complete cases,

which is justified by the MAR mechanism. Let γ̂k
p−→ γk∗ as n → ∞. Then, fk(Y | X;γk∗) =

f(Y | X) only if fk(Y | X;γk) is a correctly specified model for f(Y | X). In Step 3, let

q̂kL
p−→ qk∗ as n→ ∞. Note that qk∗ does not depend on L. Then, qk∗ = q0 only if fk(Y | X;γk)

is a correctly specified model for f(Y | X).
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Quantile Estimation with Incomplete Data 7

Step 4 calculates a set of weights {wi : i = 1, . . . ,m} on the complete cases. These

weights account for all the postulated models simultaneously, as seen from the expression of

ĝ
L
1i(α̂, q̂L, γ̂). The derivation of these weights is based on the following rationale. For any

function b(X) where the relevant expectations exist, it is easy to verify that

E (w(X)[b(X)− E{b(X)}] | R = 1) = 0, (4)

where w(X) = {π(X)}−1. We take b(X) to be πj(X;αj) and ak(X;γk) = Ek{ψτ (Y − q0) |
X;γk} = τ − P k(Y < q0 | X;γk), j = 1, . . . , J and k = 1, . . . ,K, where Ek(· | X;γk)

and P k(· | X;γk) are the conditional expectation and the conditional probability under the

density fk(Y | X;γk). Using these particular functions as b(X) and the α̂
j , γ̂k and q̂kL from

Steps 1, 2 and 3, respectively, a sample version of (4) may be constructed as

wi ≥ 0 (i = 1, . . . ,m),
m∑

i=1

wi = 1,
m∑

i=1

wiĝ
L
1i(α̂, q̂L, γ̂) = 0. (5)

Here the conditional expectation E[w(X)(·) | R = 1] is estimated by putting a discrete

probability measure {wi : wi ≥ 0 for i = 1, . . . ,m and
∑m
i=1 wi = 1} on the complete cases,

the unconditional expectation E(·) is estimated by the unweighted sample average over the

whole sample, and Ek(· | X;γk) is estimated by averaging over the L random draws taken

from fk(Y | X;γk). Since {wi : i = 1, . . . ,m} is a discrete probability measure, it is natural

to consider the ŵi that maximize
∏m
i=1 wi under the constraints in (5). This is the typical

formulation of an empirical likelihood problem, and the solution is given by (2) (Qin and

Lawless 1994; Owen 2001) with ρ̂ solving

1

m

m∑

i=1

ĝ
L
1i(α̂, q̂L, γ̂)

1 + ρTĝ
L
1i(α̂, q̂L, γ̂)

= 0.

Since ρ̂ must also satisfy 1 + ρ̂
T
ĝ
L
1i(α̂, q̂L, γ̂) > 0 for i = 1, . . . ,m to make ŵi positive, it is

easy to see that ρ̂ is actually the minimizer of the convex function Fn(ρ) in (3). Following

Han (2014b), it can be shown that the minimizer of Fn(ρ) exists and is unique if 0 is inside the

convex hull of {ĝL1i(α̂, q̂L, γ̂) : i = 1, . . . ,m}, which is true at least when n is large because of

the moment equality (4). Thus, Step 4 usually has very good numerical performance. Refer

to Chen et al. (2002) for more discussion on the implementation and the convergence of the

algorithm.

Our proposed estimator in Step 5 has the same structure as the IPW estimator with

weight ŵi in replacement of 1/π̂(Xi). The calculation of ŵi does not distinguish models for

π(X) and f(Y | X), but rather treats them equally as functions of X. When one model

is correctly specified, ŵi does account for this information and leads to consistency of q̂LMR.

For the IPW estimator, due to inverse probability weighting, the numerical performance can

be quite unstable when the estimated values of π(X) for some complete cases are close to

zero. Our proposed estimator considerably mitigates this issue. The maximization of
∏m
i=1 wi
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8 P. Han, L. Kong, J. Zhao and X. Zhou

greatly prevents the occurrence of extreme weights, and thus leads to more stable numerical

performances. A formal numerical investigation of this property for mean regression can be

found in Han (2014b).

Computation-wise, Step 3 has the same computational complexity as the imputation

method and Step 5 has the same complexity as the IPW method. Compared to the im-

putation and the IPW approaches, the only additional computation needed in our procedure

is Step 4, which is a convex minimization and thus is not computationally complex. Step 4

can be easily implemented using a Newton-Raphson-type algorithm (Han 2014b).

2.3. Quantile Regression with Missing Covariates

We now consider quantile regression with missing covariates. In this case, our parameter of

interest β0(τ) is defined by Qτ (Y | X) = XTβ0(τ), where Qτ (Y | X) = inf{y : P (Y ≤
y | X) ≥ τ} is the τ -th conditional quantile of Y given X. For ease of notation, we write

β0(τ) to be β0. Now, Y is fully observed but certain components of X are subject to

missingness. Write X = (XT
1 ,X

T
2 )

T, where X1 is always observed and X2 may be missing.

Let R be the indicator of observing X2. Then the observed data are n independent and

identically distributed copies of (R, Y,XT
1 , RX

T
2 ). The MAR mechanism becomes P (R = 1 |

Y,X) = P (R = 1 | Y,X1). Let π(Y,X1) denote this probability and f(X2 | Y,X1) the

conditional density of X2 given Y and X1. Again, assume that there are two sets of models

P = {πj(Y,X1;α
j) : j = 1, · · · , J} and F = {fk(X2 | Y,X1;γ

k) : k = 1, · · · ,K} for

π(Y,X1) and f(X2 | Y,X1), respectively.

For this problem, our method is composed of steps similar to those discussed in Section

2.2. Step 1 and Step 2 still calculate α̂j and γ̂
k, respectively, but now based on πj(Y,X1;α

j)

and fk(X2 | Y,X1;γ
k) instead. Step 3 now calculates β̂

k

L as an imputation estimator of β0

by solving

1

n

n∑

i=1

[
RiXiψτ (Yi −XT

i β) + (1−Ri)
1

L

L∑

l=1

X l
i(γ̂

k)ψτ{Yi −X l
i(γ̂

k)Tβ}
]
≈ 0,

where X l(γk) = {XT
1 ,X

l
2(γ

k)T}T and X l
2(γ

k) denotes the l-th random draw from fk(X2 |
Y,X1;γ

k), l = 1, . . . , L. Step 4 still calculates weights ŵi on complete cases i = 1, . . . ,m,

but with ĝ
L
1i(α̂, q̂L, γ̂) replaced by

ĝ
L
2i(α̂, β̂L, γ̂)

T =
(
π1
i (α̂

1)− θ̂1(α̂1), . . . , πJi (α̂
J)− θ̂J(α̂J),

1

L

L∑

l=1

X l
i(γ̂

1)ψτ{Yi −X l
i(γ̂

1)Tβ̂
1

L} − η̂
1
L(β̂

1

L, γ̂
1), . . . ,

1

L

L∑

l=1

X l
i(γ̂

K)ψτ{Yi −X l
i(γ̂

K)Tβ̂
K

L } − η̂
K
L (β̂

K

L , γ̂
K)
)
,
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Quantile Estimation with Incomplete Data 9

where β̂
T

L = {(β̂1

L)
T, . . . , (β̂

K

L )T}, πji (αj) = πj(Yi,X1i;α
j),

θ̂j(αj) =
1

n

n∑

i=1

πji (α
j), η̂

k
L(β,γ

k) =
1

n

n∑

i=1

[
1

L

L∑

l=1

X l
i(γ

k)ψτ{Yi −X l
i(γ

k)Tβ}
]
.

Step 5 calculates our proposed estimator β̂
L

MR by solving

m∑

i=1

ŵiXiψτ (Yi −XT
i β) ≈ 0.

For the current problem, ĝ
L
2i(α̂, β̂L, γ̂) in Step 4 is constructed by taking b(Y,X1) in

the equality E(π(Y,X1)
−1[b(Y,X1) − E{b(Y,X1)}] | R = 1) = 0 to be πj(Y,X1;α

j) and

ak(Y,X1;γ
k) = Ek{Xψτ (Y −XTβ0) | Y,X1;γ

k}, with α̂
j , γ̂k and β̂

k

L from Steps 1, 2 and

3 plugged in.

2.4. Quantile Regression with Missing Responses

Finally we consider quantile regression of Y on X where Y is subject to missingness and X

is fully observed. The parameter of interest β0(τ) is still defined by Qτ (Y | X) = XTβ0(τ).

When the full-data vector is (Y,XT) and Y is missing at random, a simple complete-case

analysis leads to a consistent estimator of β0. Therefore, we consider a more complex yet

practically more important setting where, in addition to Y and X, some auxiliary variables

S are also available. These auxiliary variables are usually not of main study interest and

thus do not enter the quantile regression model Qτ (Y | X;β). However, they can help

explain the missingness mechanism and build a more plausible model for the conditional

distribution of Y . The observed data are now n independent and identically distributed copies

of (R,RY,XT,ST). The MAR mechanism becomes P (R = 1 | Y,X,S) = P (R = 1 | X,S).

Let π(X,S) denote this probability and f(Y | X,S) the conditional density of Y given X

and S. Again, assume that there are two sets of models P = {πj(X,S;αj) : j = 1, · · · , J}
and F = {fk(Y | X,S;γk) : k = 1, · · · ,K} for π(X,S) and f(Y | X,S), respectively.

Similarly, we can follow the previous steps to derive our proposed estimator. Step 1 and

Step 2 still calculate α̂
j and γ̂

k, respectively, but now based on πj(X,S;αj) and fk(Y |
X,S;γk) instead. Step 3 now calculates β̂

k

L as an imputation estimator of β0 by solving

1

n

n∑

i=1

[RiXiψτ (Yi −XT
i β) + (1−Ri)

1

L

L∑

l=1

Xiψτ{Y li (γ̂k)−XT
i β}] ≈ 0, (6)

where {Y l(γk) : l = 1, . . . , L} is a set of random draws of size L from fk(Y | X,S;γk). Step
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10 P. Han, L. Kong, J. Zhao and X. Zhou

4 calculates weights ŵi on complete cases i = 1, . . . ,m with

ĝ
L
3i(α̂, β̂L, γ̂)

T =
(
π1
i (α̂

1)− θ̂1(α̂1), . . . , πJi (α̂
J)− θ̂J(α̂J),

1

L

L∑

l=1

Xiψτ{Y li (γ̂1)−XT
i β̂

1

L} − η̂
1
L(β̂

1

L, γ̂
1), . . . ,

1

L

L∑

l=1

Xiψτ{Y li (γ̂K)−XT
i β̂

K

L } − η̂
K
L (β̂

K

L , γ̂
K)
)
,

where πji (α
j) = πj(Xi,Si;α

j),

θ̂j(αj) =
1

n

n∑

i=1

πji (α
j), η̂

k
L(β,γ

k) =
1

n

n∑

i=1

[
1

L

L∑

l=1

Xiψτ{Y li (γk)−XT
i β}

]
.

Step 5 calculates our proposed estimator β̂
L

MR by solving

m∑

i=1

ŵiXiψτ (Yi −XT
i β) ≈ 0.

In Step 4, ĝL3i(α̂, β̂L, γ̂) is constructed by taking b(X,S) in the equalityE(π(X,S)−1[b(X,S)−
E{b(X,S)}] | R = 1) = 0 to be πj(X,S;αj) and ak(X,S;γk) = Ek{Xψτ (Y − XTβ0) |
X,S;γk} = X{τ − P k(Y < XTβ0 | X,S;γk)}, with α̂

j , γ̂k and β̂
k

L from Steps 1, 2 and 3

plugged in.

2.5. Some Remarks

The covariates X in scenario (i) for estimating marginal quantiles play the same role as the

auxiliary variables S in scenario (iii). Although they are not the variables of main interest,

they help explain the missingness mechanism and build models for the distribution of the

response Y . In scenario (ii), for simplicity, we did not consider any auxiliary variables when

describing the proposed method. The presence of auxiliary variables in this scenario pertains

to a direct application of the current method by adding those variables into all models.

Although we have considered three scenarios only, the proposed framework covers other

practically important situations. For example, the application of our method to the case

where both the response of interest and part of the covariates are subject to missingness

with/without the presence of auxiliary variables is straightforward. A detailed coverage of

this scenario is omitted to avoid redundancy.

The proposed method is closely connected to the calibration idea in survey sampling

literature (e.g. Deville and Särndal 1992; Wu and Sitter 2001). Constraints in (5) imply that

m∑

i=1

wiπ
j(Xi; α̂

j) = θ̂j(α̂j) (j = 1, . . . , J),

m∑

i=1

wi

[
1

L

L∑

l=1

ψτ{Y li (γ̂k)− q̂kL}
]
= η̂kL(q̂

k
L, γ̂

k) (k = 1, . . . ,K).
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Quantile Estimation with Incomplete Data 11

Therefore, the weights wi introduce a calibration on the complete cases so that the weighted

average based on the complete cases matches the unweighted average based on the whole

sample. Functions πj(X;αj) and Ek{ψτ (Y − q0) | X;γk} serve as the calibration vari-

ables here. In survey sampling, calibration is used mainly to improve estimation efficiency

by incorporating known population information. In our case, the calibration mainly helps

achieve estimation consistency if one model is correctly specified, with the unknown popu-

lation information consistently estimated by the unweighted sample average over the whole

sample.

In scenarios (ii) and (iii) a possible issue is the compatibility between the model of interest

Qτ (Y | X) = XTβ0(τ) and the working models for f(X2 | Y,X1) or for f(Y | X,S). The

models are incompatible if they do not correspond to a genuine distribution. Since f(Y | X)

is fully determined by the quantitle process (Wei et al. 2012), the compatibility is actually

between f(Y | X) and the working models. This issue is well known in the missing data

literature (e.g. Robins et al. 1995; Davidian et al. 2005; Tsiatis 2006). Tsiatis (2006)

discusses some methods to ensure model compatibility, but none of them seems to work very

effectively here for quantile estimation, unless the joint distribution of (Y,X1,X2) in scenario

(ii) or (Y,X,S) in scenario (iii) is simple, such as a normal distribution. In practice, the

compatibility issue usually does not lead to a very serious consequence, because the models

for f(X2 | Y,X1) or for f(Y | X,S) are working models and do not have to be correctly

specified. Our simulation studies in Section 4 show that the proposed method still has a good

numerical performance when no working model is correct, consistent with existing findings

for multiply robust estimators for mean regression (e.g., Han 2014b; Chen and Haziza 2017).

3. Asymptotic Results

In this section, we establish the asymptotic properties of the proposed estimators, including

consistency and asymptotic normality. We focus on scenario (i). Derivation for scenarios (ii)

and (iii) involves only straightforward modifications.

3.1. Scenario (i)

We impose the following regularity conditions.

Condition A1: The parameter space Q for q is compact and q0 is in the interior of Q.

Condition A2: P (Y ≤ y) =
∫ y
−∞

g(s)ds where 0 < g(·) <∞ in a neighborhood of q0.

Condition A3: q0 is the unique τ -th quantile.

Condition A4: E‖X‖4 <∞.

Condition A5: πj(X;αj) has bounded derivatives in X up to the second order and is

continuously differentiable in αj ; infX infαj πj(X;αj) > 0.

Conditions A1 and A2 are often assumed for quantile estimation; A3 guarantees the identi-

fiability; A4 and A5 are needed when formulating Donsker classes for certain sets of functions
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12 P. Han, L. Kong, J. Zhao and X. Zhou

using the empirical process theory. For commonly seen models for π(X), such as logistic re-

gression, probit regression or other members of generalized linear models (GLM), a sufficient

condition for A5 is that the support for X is bounded and the parameter space for αj is

compact. Such a condition does not depend on the correctness of model specification and,

similar to the positivity assumption for propensity score in causal inference literature (e.g.

Rosenbaum and Rubin 1983), does not impose a stringent restriction for implementation of

the proposed method in practice.

The following theorem states the multiple robustness of the proposed estimator q̂LMR: q̂
L
MR

is consistent if any one of the working parametric models is correctly specified. The proof is

given in the Appendix.

Theorem 3.1. Under conditions A1-A5, when P contains a correctly specified model for

π(X) or F contains a correctly specified model for f(Y | X), q̂L
MR

p−→ q0 as n→ ∞.

We now derive the asymptotic distribution of q̂LMR when P contains a correctly specified

model for π(X), the typical setting for developing semiparametric theory for missing data

analysis (e.g. Tsiatis 2006). We need to further impose the following regularity conditions.

Condition A6: Without loss of generality, we assume π1(X;α1) is the correct model for

π(X) and

√
n(α̂1 −α1

∗) = n−1/2
n∑

i=1

{E(Φ⊗2
1 )}−1Φ1i + op(1),

where Φ1 is the corresponding score function.

Condition A7: The matrix

GL
1 = E

{
gL1 (α∗, q∗,γ∗)

⊗2

π1(X;α1
∗)

}

is invertible, where gL1 (α∗, q∗,γ∗) is given by (9) in the Appendix.

Theorem 3.2. Under conditions A1-A7,
√
n(q̂L

MR
−q0) has an asymptotic normal distribution

with mean 0 and variance Var(Z1), where

Z1 = g(q0)
−1[QL1 (α

1
0)− {E(QL1ΦT

1 )}{E(Φ⊗2
1 )}−1Φ1],

QL1 (α
1) =

R

π1(α1)

[
ψτ (Y − q0)−AL

1 {GL
1 }−1gL1 (α∗, q∗,γ∗)

]
,

AL
1 = E

{
ψτ (Y − q0)

π1(α1
0)

gL1 (α∗, g∗,γ∗)
T

}
.

3.2. Scenarios (ii) and (iii)

Due to the similarity between the regularity conditions needed for these two scenarios and

those for scenario (i), we only list the conditions for scenario (ii) and then the results for
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Quantile Estimation with Incomplete Data 13

scenarios (ii) and (iii). The sketched proofs for the results for scenario (ii) are given in the

Appendix and the proofs for scenario (iii) are omitted.

Condition B1: The parameter space B for β is compact and β0 is in the interior of B.
Condition B2: P (Y ≤ y) =

∫ y
−∞

g(s)ds where 0 < g(XTβ) < ∞ for β in a neighborhood

of β0.

Condition B3: β0 is the unique τ -th quantile regression coefficient.

Condition B4: E‖X‖4 <∞ and E
(
g(XTβ0)XXT

)
is invertible.

Condition B5: πj(Y,X1;α
j) has bounded derivatives in (Y,X1) up to the second order

and is continuously differentiable in αj ; inf(Y,X1) infαj πj(Y,X1;α
j) > 0.

Condition B6: Assume that π1(Y,X1;α
1) is the correct model for π(Y,X1) and

√
n(α̂1 −α1

∗) = n−1/2
n∑

i=1

{E(Φ⊗2
2 )}−1Φ2i + op(1),

where Φ2 is the corresponding score function.

Condition B7: The matrix

GL
2 = E

{
gL2 (α∗,β∗,γ∗)

⊗2

π1(Y,X1;α1
∗)

}

is invertible, where gL2 (α∗,β∗,γ∗) is given by (29) in the Appendix.

For scenario (ii) we have the following theoretical results.

Theorem 3.3. Under conditions B1-B5, when P contains a correctly specified model for

π(Y,X1) or F contains a correctly specified model for f(X2 | Y,X1), β̂
L

MR

p−→ β0 as n→ ∞.

Theorem 3.4. Under conditions B1-B7,
√
n(β̂

L

MR
−β0) has an asymptotic normal distribu-

tion with mean 0 and variance Var(Z2), where

Z2 =
{
E
[
g(XTβ0)XXT

]}−1
[QL

2 (α
1
0)− {E(QL

2Φ
T
2 )}{E(Φ⊗2

2 )}−1Φ2],

QL
2 (α

1) =
R

π1(α1)

[
Xψτ (Y −XTβ0)−AL

2 {GL
2 }−1gL2 (α∗,β∗,γ∗)

]
,

AL
2 = E

{
Xψτ (Y −XTβ0)

π1(α1
0)

gL2 (α∗,β∗,γ∗)
T

}
.

For scenario (iii) we have the following results.

Theorem 3.5. Under conditions similar to B1-B5, when P contains a correctly specified

model for π(X,S) or F contains a correctly specified model for f(Y | X,S), β̂
L

MR

p−→ β0 as

n→ ∞.

Theorem 3.6. Under conditions similar to B1-B7,
√
n(β̂

L

MR
−β0) has an asymptotic normal
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14 P. Han, L. Kong, J. Zhao and X. Zhou

distribution with mean 0 and variance Var(Z3), where

Z3 =
{
E
[
g(XTβ0)XXT

]}−1
[QL

3 (α
1
0)− {E(QL

3Φ
T
3 )}{E(Φ⊗2

3 )}−1Φ3],

QL
3 (α

1) =
R

π1(α1)

[
Xψτ (Y −XTβ0)−AL

3 {GL
3 }−1gL3 (α∗,β∗,γ∗)

]

AL
3 = E

{
Xψτ (Y −XTβ0)

π1(α1
0)

gL3 (α∗,β∗,γ∗)
T

}

gL3 (α∗,β∗,γ∗)
T =

(
π1(α1

∗)− θ1∗, . . . , π
J(αJ∗ )− θJ∗ ,

1

L

L∑

l=1

Xψτ{Y l(γ1
∗)−XTβ1

∗} − η1∗,

. . . ,
1

L

L∑

l=1

Xψτ{Y l(γK∗ )−XTβK∗ } − ηK∗

)
.

and Φ3 is the score function corresponding to the estimation of α1.

In all of the asymptotic distributions we have kept L finite, where L is the number of

random draws from the data distribution models. The asymptotic distributions when L→ ∞
can be easily derived based on the results presented in this section.

Compared to existing methods for quantile estimation with missing data, all of which allow

only one model for the missingness probability and/or one model for the data distribution,

the consistency results in this section show that our proposed method by accommodating

multiple working models has more protection on estimation consistency and thus provides a

highly desirable alternative. No existing method can achieve the same level of robustness as

ours. Results on asymptotic distribution show how the asymptotic variance depends on the

multiple working models. Similar to the mean regression case (e.g. Han 2014b), the depen-

dence is rather complex, which makes a general comparison of efficiency between estimators

using different working models very difficult. But the derivations provide some guidance on

how the empirical process theory is applied, and the results give formulations of the asymp-

totic variance, both of which are important for efficiency investigations under some specific

situations such as those considered in Han (2018) for mean regression.

For mean regression with missing data, the multiply robust estimators are locally efficient

(Han and Wang 2013; Han 2014b, 2016a). That is, these estimators achieve the semipara-

metric efficiency bound when both the missingness probability and the data distribution are

correctly modeled. For quantile regression with non-identically distributed error terms con-

sidered in this paper, as pointed out in Chen et al. (2015), the semiparametric efficiency

bound has not been derived in the literature, and thus it is unclear if our proposed estimators

are locally efficient. Deriving the efficiency bound is an interesting yet challenging topic that

deserves future investigation.
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Quantile Estimation with Incomplete Data 15

4. Simulation Studies

4.1. Quantile Regression with Missing Responses

We first consider quantile regression with missing responses when the covariates and some

auxiliary variables are fully observed, the scenario in Section 2.4. The simulation model has

three covariates, X1 ∼ Exponential(1), X2 ∼ N(0, 1) and X3 ∼ Bernoulli(0.5). Given the

covariates, the response Y is generated as Y = −1 +X1 +X2 +X3 + (1 +X1)ǫY , and given

the covariates and response, the auxiliary variable S is generated as S = −1 + X1 + X2 +

X3 − Y + (1 + X1)ǫS , where ǫY ∼ N(0, 1), ǫS ∼ N(0, 1), and X1, X2, X3, ǫY and ǫS are

mutually independent. Here, the error distribution of Y is heteroscedastic. The missingness

mechanism for Y is given by logit{P (R = 1 | Y,X, S)} = 0.5+0.25X1+0.5X2+0.25X3+0.25S,

which leads to a missingness rate of approximately 33%. For this simulation model, we have

Qτ (Y | X) = (1,XT)β0(τ) with β0(τ) = (−1 + Qτ (ǫY ), 1 + Qτ (ǫY ), 1, 1)
T. Also, it is easy

to verify that Y | X, S has a normal distribution with mean −1 +X1 +X2 +X3 − 0.5S and

variance (1 +X1)
2/2.

The correct models for π(X, S) and f(Y | X, S) are given by logit{π1(α1)} = α1
1+α

1
2X1+

α1
3X2 + α1

4X3 + α1
5S and

f1(γ1) =
1√

2π(γ16 + γ17X1)
exp

[
−{Y − (γ11 + γ12X1 + γ13X2 + γ14X3 + γ15S)}2

2(γ16 + γ17X1)2

]
,

respectively. The following two incorrect models are also considered in our simulation studies:

logit{π2(α2)} = α2
1 + α2

2X1 + α2
3X3,

f2(γ2) =
1√
2πγ23

exp

[
−{Y − (γ21 + γ22S)}2

2(γ23)
2

]
.

Note that f2(γ2) corresponds to the normal density function with mean γ21+γ
2
2S and constant

variance (γ23)
2. We consider two sample sizes n = 200 and n = 500 and the results are

summarized based on 1000 replications. We have done simulations based on both L = 10 and

L = 50 but only report results based on L = 10 as L = 50 led to very similar results. Tables

1, 2 and 3 in the online supplementary material contain results for τ = 0.25, 0.5 and 0.75,

respectively. The IPW estimator β̂IPW solving n−1
∑n
i=1Riπ̂(Xi, Si)

−1Xiψτ (Yi−XT
i β) ≈ 0

and the imputation estimator β̂
L

IM solving (6) are also calculated to serve as the benchmark

for comparison.

When only one model for π(X, S) is used, β̂
L

MR (i.e. MR-1000 and MR-0100 in the tables)

has performance very similar to the corresponding β̂IPW (IPW-1000 and IPW-0100): both

have negligible bias and similar root mean square error (RMSE) and median absolute error

(MAE) when the correct model π1(α1) is used, and similar bias, RMSE and MAE when the

incorrect model π2(α2) is used. When only the correct model f1(γ1) is used, β̂
L

MR (MR-0010)

and β̂
L

IM (IM-0010) both have negligible bias, but the former has slightly larger RMSE and
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16 P. Han, L. Kong, J. Zhao and X. Zhou

MAE. When only the incorrect model f2(γ2) is used, β̂
L

IM (IM-0001) has large bias due to

its inconsistency, but β̂
L

MR (MR-0001) has surprisingly small bias as if it was consistent. An

explanation of this small bias will be given below.

When two or more models are used to construct β̂
L

MR, the results suggest that β̂
L

MR

has negligible bias whenever there is one model correctly specified, either for π(X, S) or for

f(Y | X, S). This is in full agreement with our theory that β̂
L

MR is multiply robust. In

addition, when β̂
L

MR is consistent, the particular models used seem to have little effect on

the RMSE and MAE. When only the incorrect models π2(α2) and f2(γ2) are used, β̂
L

MR

(MR-0101) has surprisingly small bias as if it was consistent.

The surprising small bias of β̂
L

MR in the cases of MR-0001 and MR-0101 may be explained

as follows. Equation E(π(X, S)−1[b(X, S) − E{b(X, S)}] | R = 1) = 0 holds for an ar-

bitrary function b(X, S), assuming relevant expectations exist. When b(X, S) is taken to

be E2{Xψτ (Y − XTβ) | X, S;γ2}, the conditional expectation of the estimating function

Xψτ (Y −XTβ) under the incorrect working model f2(γ2), the ŵi used for calculating β̂
L

MR

are still derived based on a legitimate empirical version of the above equation. Although in

this case consistency of β̂
L

MR can no longer be theoretically established, the numerical per-

formance may still be reasonably good because, even being incorrect, the working model for

f(Y | X, S) still captures a large degree of dependence of Y on (X, S), and the resulting

ŵi make a good use of this modeled dependence through calibration. It is the calibration

of the estimating functions of β that helps reduce the bias of β̂
L

MR. Calibrating moments

of covariates alone may not help much. The small bias of multiply robust estimators using

incorrectly specified data distrubtion models has also been observed for mean regression (Han

2014b, 2016a; Chen and Haziza 2017).

4.2. Quantile Regression with Missing Covariates

We now consider quantile regression with missing covariates, the scenario in Section 2.3.

There are two covariates, X1 ∼ Exponential(0.2) and X2 ∼ N(0, 1). Given the covariates, the

response Y is generated as Y = 1 +X1 +X2 + (1 +X1)ǫY , where ǫY ∼ N(0, 1) and X1, X2

and ǫY are mutually independent. Here the error distribution of Y is again heteroscedastic.

The missingness mechanism for X2 is given by logit{P (R = 1 | Y,X)} = −2+0.5X1+0.25Y ,

under which the missingness rate is approximately 38%. For this simulation model, we have

Qτ (Y | X) = (1,XT)β0(τ) with β0(τ) = (1 + Qτ (ǫY ), 1 + Qτ (ǫY ), 1)
T. It is easy to verify

that X2 | Y,X1 has a normal distribution with mean (−1 − X1 + Y )/{1 + (1 + X1)
2} and

variance (1 +X1)
2/{1 + (1 +X1)

2}.
For π(X1, Y ) we consider two working models logit{π1(α1)} = α1

1 + α1
2X1 + α1

3Y and

logit{π2(α2)} = α2
1 + α2

2Y , where π2(α2) is incorrectly specified. For f(X2 | Y,X1), a

correctly specified model would replace all numbers in the mean and variance by unknown

parameters, but such a complex model would rarely, if ever, be considered in practice. Besides,

estimation of those parameters would be difficult because of the complex dependence on Y
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Quantile Estimation with Incomplete Data 17

and X1 and that the variance needs to be positive. Instead, in practice one would more likely

specify a model where the mean depends on Y and X1 linearly and the variance is constant.

Therefore, in the simulation we consider an incorrect model

f2(γ2) =
1√
2πγ24

exp

[
−{X2 − (γ21 + γ22X1 + γ23Y )}2

2(γ24)
2

]
,

an ordinary least square regression of X2 on Y and X1. To illustrate the multiple robustness

property of the proposed estimator, we also consider a correct model f1(γ1) = f(X2 | Y,X1)

with γ1 completely known. This correct model is also used for the imputation estimator so

it is still a fair comparison between our proposed estimator and the imputation estimator.

Table 4 in the online supplementary material contains simulation results for τ = 0.25 and

0.75 summarized based on 1000 replications with n = 500 and L = 10. It is seen that, using

the same incorrect model π2(α2) or f2(γ2), the IPW estimator IPW-0100 or the imputation

estimator IM-0001 has a considerably worse performance than the MR estimator MR-0100 or

MR-0001, respectively. In other cases the MR estimators have small bias, even for MR-0101

where only the two incorrect models π2(α2) and f2(γ2) are used, consistent with findings

from the missing response setting and from existing literature on mean regression with missing

data.

5. Data Application

As an application of the proposed method, we analyze the data collected on 2139 HIV-

infected subjects enrolled in AIDS Clinical Trials Group Protocol 175 (ACTG 175) (Hammer

et al. 1996). The ACTG 175 study evaluates treatment with either a single nucleoside or

two nucleosides in HIV-infected subjects whose CD4 cell counts, a measure of immunologic

status, are from 200 to 500 per cubic millimeter. Following the analysis of Davidian et

al. (2005) and Zhang et al. (2008), we consider two arms for the treatment: the arm

with standard zidovudine (ZDV) monotherapy (ZDV only) and the arm with three newer

treatments (ZDV+didanosine (ddI), ZDV+zalcitabine (ddC), and ddI only). The two arms

have 532 and 1607 subjects, respectively. We study the treatment arm effect (trt, 0 =

ZDV only) on the τ -th quantile of the CD4 cell count measured at 96± 5 weeks postbaseline

(CD496), adjusting for the baseline CD4 count (CD40) and certain baseline characteristics,

including continuous covariates age (age, years) and weight (weight, kg) and binary covariates

race (race, 0 = white), gender (gender, 0 = female), antiretroviral history (history, 0 = naive,

1 = experienced) and whether the subject is off-treatment prior to 96 weeks (offtrt, 0 = no).

Therefore, we want to fit the linear quantile regression model

Qτ (CD496 | X) = β1(τ) + β2(τ)trt+ β3(τ)CD40 + β4(τ)age

+β5(τ)weight+ β6(τ)race+ β7(τ)gender + β8(τ)history + β9(τ)offtrt.

The data can be found in the R package “speff2trial”. The average age of the subjects is 35

years old with a standard deviation 8.7 years old. There are 1522 white subjects and 617
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non-whites, and 1171 males and 368 females. Among the patients, 1253 have antiretroviral

history, and 776 are off-treatment before 96 weeks.

The variable CD496 is missing for approximately 37% of the subjects due to dropout during

the study. However, at baseline and during the follow-up, full measurements on additional

variables correlated with CD496 are obtained. These include the CD4 count at 20± 5 weeks

(CD420) and the CD8 count, another measure of immunologic status, at both the baseline

(CD80) and 20 ± 5 weeks (CD820). We use these as the auxiliary variables. As argued by

Davidian et al. (2005), it is reasonable to assume that CD496 is missing at random.

Figure 1 contains histograms for both CD496 and its logarithm. While the distribution

of CD496 is apparently right skewed, the log transformation does not result in any better

symmetry, and thus both make the normality assumption inappropriate. For analysis, one

could assume either a left truncated normal distribution for CD496 or a right truncated normal

distribution for log(CD496), and there is no apparent reason of favoring one of them. With

these two candidate models, the imputation method requires to choose one from them, but our

propose method can simultaneously accommodate both. In our analysis, we assume CD496

has a normal distribution left truncated at 0 and log(CD496) has a normal distribution right

truncated at the logarithm of the maximum of observed CD496, where both means depend

on the main effects of the 8 covariates X and the 3 auxiliary variables S. The truncated

regression models are fitted using the R package “truncreg”. The π(X,S) is modeled by a

logistic regression containing all main effects of X and S.

Final data analysis results for τ = 0.25, 0.50 and 0.75 are summarized in Table 5. To make

comparisons, results for the IPW estimator, the imputation estimators with truncated normal

distributions for CD496 (Imputation estimator 1) and log(CD496) (Imputation estimator 2),

and the complete-case analysis are also included. For the two imputation estimators and our

proposed estimator, the number of random draws is taken to be L = 20. The standard errors

of all estimators are calculated using the bootstrap method with 200 re-samplings.

From Table 5, for all three values of τ and all methods under comparison, patients receiving

the three newer treatments have a significantly higher CD4 count at 96 ± 5 weeks adjusting

for the baseline CD4 count and other covariates. In other words, the three newer treatments

significantly slow the progression of HIV disease compared to the treatment of ZDV alone.

Our proposed method and the IPW method produce very similar estimates for the treatment

arm effect, and the estimated effect is smaller for patients whose CD4 count at 96± 5 weeks

is at the third quartile. Imputation Estimator 1 fails to catch the difference in treatment

arm effect for different quantiles, and Imputation Estimator 2 gives an increasing estimated

effect as τ varies from 0.25 to 0.75, a trend that is opposite to what the MR and the IPW

methods reveal. In addition, the two imputation estimates for some regression coefficients are

quite different occasionally, showing the sensitivity of imputation method to the selection of

working models. The complete-case analysis seems to overestimate the treatment arm effect.

Given the disparity between the two imputation estimates and between them and the MR

and the IPW estimates, and also given the good performance of the MR estimator under

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Quantile Estimation with Incomplete Data 19

complete model misspecification as shown in our simulation studies, results based on our MR

method should be more trustworthy. The closeness between the MR and the IPW estimates

indicates the suitability of the logistic regression we used to model π(X,S). However, when

τ = 0.5, the MR method detects a significance in the effect of gender that the IPW method

fails to detect.

6. Discussion

We have proposed a general framework for quantile estimation with missing data and have

investigated the estimation method in three scenarios covering both marginal quantile esti-

mation and quantile regression with missing response/covariates. The proposed estimators

are robust against possible model misspecifications. The proposed method can be easily gen-

eralized to many other missing data scenarios not discussed here. As shown and explained in

Section 4, the proposed estimators still have relatively good performance when no model is

correctly specified due to the nature of calibration. This is very appealing in practice, as the

true data generating process is usually unknown, which makes the conclusions drawn based

on our method more trustworthy compared to those based on methods that are sensitive to

model misspecifications.

It is well known that the IPW approach is sensitive to near-zero values of the estimated

missingness probability (e.g. Kang and Schafer 2007; Robins et al. 2007; Cao et al. 2009).

Our proposed estimators mitigate this issue. First, unlike the IPW approach where the inverse

of the estimated missingness probability is used as the weight, our proposed method uses the

missingness probability as the calibration variable. Second, through maximizing
∏m
i=1 wi

where the wi are positive and sum to one, the occurrence of extreme weights is prevented.

This is because
∏m
i=1 wi increases if the values of wi become more evenly distributed rather

than concentrating on a few subjects. Therefore, it is unlikely that some subjects receive

extremely large weights that dominate others. Han (2014b) provides a detailed numerical

investigation of this property for mean regression with missing responses.

Our method is more general than the recent methods in Wei et al. (2012) and Chen

et al. (2015). Wei et al.’s (2012) method deals with missing covariate problems where the

missingness depends only on the other fully observed covariates but not on the response,

whereas our method allows the dependence on both. Chen et al.’s (2015) method requires the

fully observed components of the data vector to have the same distribution across all subjects.

This requirement is not needed by our method. Due to these limitations, neither Wei et al.’s

(2012) nor Chen et al.’s (2015) method applies to the simulation settings considered in Section

4.

For the proposed method, the dimension of ρ̂ minimizing (3) is the same as the number of

working models used. The calculation of ρ̂ is affected when this number increases, especially

if some models are highly correlated. As a result, the numerical performance of β̂
L

MR may

be affected. Therefore, although theoretically the proposed method can accommodate an
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arbitrary number of models as long as this number does not increase with the sample size, for

the purpose of numerical performance, the models should still be carefully chosen so that only

the most reasonable ones are used. Detailed investigation on how the numerical performance

changes as the number of models increases will be a topic of future research.

In this paper, the working models were all parametric. As one referee pointed out, the

robustness could be further improved by using working models that are nonparametric or

built based on machine learning techniques. In this case, the final estimator should still be

consistent when one working model is correctly specified, but the rate of convergence for the

working models will affect the asymptotic distribution (e.g., Robins et al. 1995). We will

make a future investigation on this topic.
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Appendix

Proof of Theorem 3.1. Under condition A3, Eψτ (Y − q) = 0 has q0 as the unique solution,

which guarantees the identifiability of q0. Based on Theorem 5.9 in van der Vaart (1998), we

only need to check the uniform convergence

sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵiψτ (Yi − q)− Eψτ (Y − q)

∣∣∣∣∣ = op(1). (7)

We first look at the case where P contains a correctly specified model for π(X). Without

loss of generality, let π1(X;α1) be the correctly specified model, and let α1
0 denote the true

value of α1 so that π1(X;α1
0) = π(X). It is easy to check that

1

m

m∑

i=1

ĝ
L
1i(α̂, q̂L, γ̂)

1 + ρTĝ
L
1i(α̂, q̂L, γ̂)

=
θ̂1(α̂1)

m

m∑

i=1

ĝL1i(α̂, q̂L, γ̂)/π
1
i (α̂

1)

1 +
{
θ̂1(α̂1)ρ1 − 1, θ̂1(α̂1)ρ2, · · · , θ̂1(α̂1)ρJ+K

}T

ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)

.
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Therefore, if we define λ̂1 = θ̂1(α̂1)ρ̂1 − 1 and λ̂t = θ̂1(α̂1)ρ̂t, t = 2, · · · , J + K, then

λ̂
T
= (λ̂1, · · · , λ̂J+K) solves

1

m

m∑

i=1

ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)

1 + λTĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)
= 0, (8)

and

ŵi =
1

m

θ̂1(α̂1)/π1
i (α̂

1)

1 + λ̂
T
ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)
.

Now let α
j
∗, γ

k
∗, q

k
∗ , θ

j
∗ and ηk∗ denote the probability limits of α̂j , γ̂k, q̂kL, θ̂

j(α̂j) and

η̂kL(q̂
k
L, γ̂

k), respectively, as n goes to infinity. Note that qk∗ and ηk∗ do not depend on L.

It is clear that α1
∗ = α1

0, θ
j
∗ = E{πj(αj∗)} and ηk∗ = E[ψτ{Y l(γk∗) − qk∗}]. Write αT

∗ =

{(α1
∗)

T, · · · , (αJ∗ )T}, γT
∗ = {(γ1

∗)
T, · · · , (γK∗ )T}, qT

∗ = (q1∗, · · · , qK∗ ) and

gL1 (α∗, q∗,γ∗)
T =

(
π1(α1

∗)− θ1∗, . . . , π
J(αJ∗ )− θJ∗ ,

1

L

L∑

l=1

ψτ{Y l(γ1
∗)− q1∗} − η1∗, . . . ,

1

L

L∑

l=1

ψτ{Y l(γK∗ )− qK∗ } − ηK∗

)
. (9)

Since E
{

R
π(X)g

L
1 (α∗, q∗,γ∗)

}
= 0 andα1

∗ = α1
0, 0 is the solution to E

{
RgL

1
(α∗,q∗

,γ
∗
)/π1(α1

∗
)

1+λTgL
1
(α∗,q∗

,γ
∗
)/π1(α1

∗
)

}
=

0 as an equation of λ. Thus, from the theory of empirical likelihood (e.g., Owen 2001),

λ̂ = op(1).

Note that

sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵiψτ (Yi − q)− Eψτ (Y − q)

∣∣∣∣∣

≤ sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵiψτ (Yi − q)− 1

n

n∑

i=1

Ri

π1
i (α̂

1)
ψτ (Yi − q)

∣∣∣∣∣ (10)

+ sup
|q−q0|<ǫ

∣∣∣∣∣
1

n

n∑

i=1

Ri

π1
i (α̂

1)
ψτ (Yi − q)− 1

n

n∑

i=1

Ri
π1
i (α

1
0)
ψτ (Yi − q)

∣∣∣∣∣ (11)

+ sup
|q−q0|<ǫ

∣∣∣∣∣
1

n

n∑

i=1

Ri
π1
i (α

1
0)
ψτ (Yi − q)− Eψτ (Y − q)

∣∣∣∣∣ . (12)

Since θ̂1(α̂1)− m
n = op(1), we have ŵi =

1
n

1
π1

i
(α̂1)

+ op(1), therefore (10) = op(1), and

(11) ≤ sup
|q−q0|<ǫ

∣∣∣∣∣
1

n

n∑

i=1

Riψτ (Yi − q)

π1
i (α

1
0)

2

∂π1
i (α)

∂αT

∣∣∣α=α1

0

∣∣∣∣∣ |α̂
1 −α1

0| = op(1).

For (12), we have

sup
|q−q0|<ǫ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Riψτ (Yi − q)

π1

i (α
1

0
)

− Eψτ (Y − q)−
1

n

n
∑

i=1

Riψτ (Yi − q0)

π1

i (α
1

0
)

+ Eψτ (Y − q0)

∣

∣

∣

∣

∣

= op(n
−1/2),
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which is straightforward if we can prove two results: first, { Ri

π1

i
(α1

0
)
ψτ (Yi − q) : |q − q0| < ǫ}

forms a Donsker class, and second, Ri

π1

i
(α1

0
)
ψτ (Yi − q0) is L2 continuous at q0.

For the first result, we define E1 = {I(Y < q), |q− q0| < ǫ} and E2 = {πj(αj0), ∀j,X ∈ X},
where X = {X : E‖X‖4 ≤ C} and C is a large positive number. Note that E1 is a VC class

of functions (by Theorem 2.6.4 of van der Vaart and Wellner (1996)) with bounded uniform

entropy integral. So E1 belongs to the Donsker class. For E2, note that the set {X : X ∈ X}
can be covered by N1 balls with L2-radius ǫ1 such that N1 . 1/ǫ1, where “.” means that the

left-hand side of . is bounded by a positive constant multiplying the right-hand side of ..

Since πj(X;αj) has bounded derivatives up to order 2, for any X, there exists a X̃, which

belongs to the same L2-ball as X and ‖πj(X;αj)− πj(X̃;αj)‖L2
. ‖X − X̃‖L2

. Therefore,

N[](ǫ, E2, L2) . 1/ǫ, and E2 has bounded uniform entropy integral and forms a Donsker class.

Since Ri is bounded, from the preservation of Donsker classes (Corollary 9.32 of Kosorok

(2008)), { Ri

π1

i
(α1

0
)
ψτ (Yi − q) : |q − q0| < ǫ} forms a Donsker class.

For the second result, note that

sup
|q−q0|<ǫ

E

{
Riψτ (Yi − q)

π1
i (α

1
0)

− Riψτ (Yi − q0)

π1
i (α

1
0)

}2

≤ 2 sup
|q−q0|<ǫ

E{π1
i (α

1
0)}−2g(q0)

2|q − q0|2 −→ 0.

Therefore, we have shown that Ri

π1

i
(α1

0
)
ψτ (Yi − q0) is L2 continuous at q0. Combining with

the fact that 1
n

∑n
i=1

Ri

π1

i
(α1

0
)
ψτ (Yi − q0) = Op(n

−1/2) and Eψτ (Y − q0) = 0, we have (12) =

Op(n
−1/2) and obtain the uniform convergence.

Now we consider the case where F contains a correctly specified model for f(Y | X).

Without loss of generality, let f1(Y | X;γ1) be the correctly specified model, and let γ1
0

denote the true value of γ1 so that f1(Y | X;γ1
0) = f(Y | X). We then have γ1

∗ = γ1
0.

In addition, we have γ̂
1 p−→ γ1

0 and q̂1L
p−→ q0. Similar to the situation where P contains a

correctly specified model for π(X), we have ĝL1 (α̂, q̂L, γ̂)
p−→ gL1 (α∗, q∗,γ∗) and we denote ρ∗

as the probability limit of ρ̂.

Note that one of the constraints in (5) is actually

m∑

i=1

ŵi

[
1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L}
]
=

1

n

n∑

i=1

[
1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L}
]
,
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which leads the left-hand side in (7) to

sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵiψτ (Yi − q)− Eψτ (Y − q)

∣∣∣∣∣

≤ sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵi

[
ψτ (Yi − q)− 1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L}
]∣∣∣∣∣+ sup

|q−q0|<ǫ

∣∣η̂1L − Eψτ (Y − q)
∣∣

≤ sup
|q−q0|<ǫ

∣∣∣∣∣

m∑

i=1

ŵi

[
ψτ (Yi − q)− 1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L}
]

− 1

m

1

1 + ρT
∗ g

L
1 (α∗, q∗,γ∗)

n∑

i=1

Ri

[
ψτ (Yi − q)− 1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L}
]∣∣∣∣∣ (13)

+

∣∣∣∣∣
1

m

1

1 + ρT
∗ g

L
1 (α∗, q∗,γ∗)

n∑

i=1

Ri
1

L

L∑

l=1

[
ψτ{Y li (γ̂1)− q̂1L} − ψτ{Y li (γ1

0)− q0}
]
∣∣∣∣∣ (14)

+ sup
|q−q0|<ǫ

∣∣∣∣∣
1

m

1

1 + ρT
∗ g

L
1 (α∗, q∗,γ∗)

n∑

i=1

Ri

[
ψτ (Yi − q)− 1

L

L∑

l=1

ψτ{Y li (γ1
0)− q0}

]

− n

m

1

1 + ρT
∗ g

L
1 (α∗, q∗,γ∗)

E[R{ψτ (Y − q)− ψτ (Y − q0)}]
∣∣∣∣ (15)

+ sup
|q−q0|<ǫ

∣∣∣∣
n

m

1

1 + ρT
∗ g

L
1 (α∗, q∗,γ∗)

E[R{ψτ (Y − q)− ψτ (Y − q0)}]
∣∣∣∣ (16)

+

∣∣∣∣∣
1

n

n∑

i=1

1

L

L∑

l=1

ψτ{Y li (γ̂1)− q̂1L} −
1

n

n∑

i=1

1

L

L∑

l=1

ψτ{Y li (γ1
0)− q0}

∣∣∣∣∣ (17)

+

∣∣∣∣∣
1

n

n∑

i=1

1

L

L∑

l=1

ψτ{Y li (γ1
0)− q0} − Eψτ (Y − q0)

∣∣∣∣∣ (18)

+ sup
|q−q0|<ǫ

|Eψτ (Y − q0)− Eψτ (Y − q)| . (19)

We can show: (13) = op(1) using the idea of proving (11) and the derivatives and subderiva-

tives (He and Shao, 1996); (14) = op(1) and (17) = op(1) using the idea of proving (11) and

subderivatives; (16) = op(1) and (19) = op(1) by Condition A3; (18) = op(1) by weak law

of large numbers. For (15), similar to the techniques used for proving (12), it follows that

(15) = Op(n
−1/2) by noticing that

{
Ri

[
ψτ (Yi − q)− 1

L

∑L
l=1 ψτ{Y li (γ1

0)− q0}
]
; |q − q0| < ǫ

}

forms a Donsker class and that Ri

[
ψτ (Yi − q0)− 1

L

∑L
l=1 ψτ{Y li (γ1

0)− q0}
]
is L2 continuous

at q0. This completes the proof.
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Proof of Theorem 3.2. First, from (8) we have

0 =
1

n

n∑

i=1

Ri
ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)

1 + λTĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)
− 1

n

n∑

i=1

Ri
ĝ
L
1i(α̂, q̂L, γ̂)

π1
i (α̂

1)
(20)

+
1

n

n∑

i=1

Ri
ĝ
L
1i(α̂, q̂L, γ̂)

π1
i (α̂

1)
− 1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q̂L, γ̂)

π1
i (α

1
∗)

(21)

+
1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q̂L, γ̂)

π1
i (α

1
∗)

− 1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q∗, γ̂)

π1
i (α

1
∗)

(22)

+
1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q∗, γ̂)

π1
i (α

1
∗)

− 1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q∗,γ∗)

π1
i (α

1
∗)

(23)

+
1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q∗,γ∗)

π1
i (α

1
∗)

.

Note that a regular Taylor expansion can be applied to (20) and (21). For (20), we have

(20) = − 1

n

n∑

i=1

Ri
ĝ
L
1i(α̂, q̂L, γ̂)

⊗2

{π1
i (α̂

1)}2
λ̂+ op(n

−1/2).

For (21), denote Ti(α, q,γ) =
ĝL
1i(α,q,γ)

π1

i
(α1)

. Notice that

∂Ti(α∗, q̂L, γ̂)

∂α1
=
π1
i (α

1
∗)
∂ĝL

1i(α∗,q̂L,γ̂)
∂α1 − ĝ

L
1i(α∗, q̂L, γ̂)

(
∂π1

i (α
1

∗
)

∂α1

)T

{π1
i (α

1
∗)}2

,

where
∂ĝL

1i(0,α∗,q̂L,γ̂)
∂α1 has non-zero values only in the first row, and ∂Ti(α∗,q̂L,γ̂)

∂αj =
1

π1

i
(α1

∗
)

∂ĝL
1i(α∗,q̂L,γ̂)
∂αj , where

∂ĝL
1i(α∗,q̂L,γ̂)
∂αj has non-zero values only in the j-th row, j = 2, . . . , J ,

we have

(21) = − 1

n

n∑

i=1

Ri
ĝ
L
1i(α∗, q̂L, γ̂)

(
∂π1

i (α
1

∗
)

∂α1

)T

{π1
i (α

1
∗)}2

(α̂1 −α1
∗) + op(n

−1/2).

For (22), similar to (12), we can show that {RiTi(α∗, q, γ̂) : ‖q − q∗‖ < ǫ} forms a Donsker

class and RiTi(α∗, q∗, γ̂) is L2 continuous at q∗. Therefore, we have

(22) =
1

n

n∑

i=1

∂E[RiTi(α∗, q∗, γ̂)]

∂q
(q̂ − q∗) + op(n

−1/2).

For (23), we can show that {RiTi(α∗, q∗,γ) : ‖γ − γ∗‖ < ǫ} forms a Donsker class and

RiTi(α∗, q∗,γ∗) is L2 continuous at γ∗. Therefore, we have

(23) =
1

n

n∑

i=1

∂E[RiTi(α∗, q∗,γ∗)]

∂γ
(γ̂ − γ∗) + op(n

−1/2).
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It is straightforward to see that both E[RiTi(α∗, q∗, γ̂)] and E[RiTi(α∗, q∗,γ∗)]

are zero. Therefore, both (22) and (23) are zeros. Hence, by defining ML
1 =

E

{
gL1 (α∗, q∗,γ∗)

(
∂π1(α1

∗
)

∂α1

)T
/π1(α1

∗)

}
and from Condition A7 we have

√
nλ̂ = (GL

1 )
−1

(
n−1/2

n∑

i=1

Ri − π1
i (α

1
∗)

π1
i (α

1
∗)

gL1i(α∗, q∗,γ∗)− n−1/2
n∑

i=1

ML
1 {E(Φ⊗2

1 )}−1Φ1i

)
+ op(1).

Next, notice that

0 =
1

n

n∑

i=1

Ri/π
1
i (α̂

1)

1 + λ̂
T
ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)
ψτ (Yi − q̂LMR)

=
1

n

n∑

i=1

Ri/π
1
i (α̂

1)

1 + λ̂
T
ĝ
L
1i(α̂, q̂L, γ̂)/π

1
i (α̂

1)
ψτ (Yi − q̂LMR)−

1

n

n∑

i=1

Ri

π1
i (α̂

1)
ψτ (Yi − q̂LMR)(24)

+
1

n

n∑

i=1

Ri

π1
i (α̂

1)
ψτ (Yi − q̂LMR)−

1

n

n∑

i=1

Ri
π1
i (α

1
∗)
ψτ (Yi − q̂LMR) (25)

+
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
ψτ (Yi − q̂LMR)−

1

n

n∑

i=1

Ri
π1
i (α

1
∗)
ψτ (Yi − q0) (26)

+
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
ψτ (Yi − q0).

It can be shown that

(24) = −
{
1

n

n∑

i=1

Ri
ψτ (Yi − q̂LMR)

{π1
i (α̂

1)}2
ĝ
L
1i(α̂, q̂L, γ̂)

T

}
λ̂+ op(n

−1/2),

(25) = −
(
1

n

n∑

i=1

Riψτ (Yi − q̂LMR)

{π1
i (α

1
∗)}2

(
∂π1

i (α
1
∗)

∂α1

)T)
(α̂1 −α1

∗) + op(n
−1/2),

and

(26) = −g(q0)(q̂LMR − q0) + op(n
−1/2).

Write BL
1 = E

{
ψτ (Y−q0)
π1(α1

0
)

(
∂π1(α1

0
)

∂α1

)T}
, we then have

g(q0)
√
n(q̂LMR − q0) = −AL

1

√
nλ̂−BL

1

√
n(α̂1 −α1

∗) + n−1/2
n∑

i=1

Riψτ (Yi − q0)

π1
i (α

1
0)

+ op(1)

= n−1/2
n∑

i=1

[
QL

1i(α
1
0)− {BL

1 −AL
1 (G

L
1 )

−1ML
1 }{E(Φ⊗2

1 )}−1Φ1i

]
+ op(1).

From the generalized information equality (Newey 1990), we can show that

BL
1 −AL

1 (G
L
1 )

−1ML
1 = −E

{
∂QL

1 (α
1
0)

∂α1

}
= E(Q1Φ

T
1 ),
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and finally that

g(q0)
√
n(q̂LMR − q0) = n−1/2

n∑

i=1

[
QL

1i(α
1
0)− E(QL

1Φ
T
1 ){E(Φ⊗2

1 )}−1Φ1i

]
+ op(1).

This completes the proof.

Sketched proof of Theorem 3.3. Based on Theorem 5.9 of van de Vaart (1998), it is enough

to check the uniform convergence

sup
‖β−β

0
‖<ǫ

∣∣∣∣∣

m∑

i=1

ŵiXiψτ (Yi −XT
i β)− EXψτ (Y −XTβ)

∣∣∣∣∣ = op(1). (27)

For the case where P contains a correctly specified model for π(Y,X1), let π
1(Y,X1;α

1) be

the correctly specified model, and let α1
0 denote the true value of α1 so that π1(Y,X1;α

1
0) =

π(Y,X1). Let α
j
∗, γ

k
∗, β

k
∗, θ

j
∗ and ηk∗ denote the probability limits of α̂j , γ̂k, β̂

k

L, θ̂
j(α̂j) and

η̂kL(β̂
k

L, γ̂
k), respectively, as n goes to infinity. Note that βk∗ and ηk∗ do not depend on L. It

is clear that α1
∗ = α1

0, θ
j
∗ = E{πj(αj∗)} and ηk∗ = E[X l(γk∗ )ψτ{Y − X l(γk∗)

Tβk∗}]. Define

λ̂1 = θ̂1(α̂1)ρ̂1 − 1 and λ̂t = θ̂1(α̂1)ρ̂t, t = 2, · · · , J +K. Then λ̂
T
= (λ̂1, · · · , λ̂J+K) solves

1

m

m∑

i=1

ĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)

1 + λTĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)
= 0, (28)

and

ŵi =
1

m

θ̂1(α̂1)/π1
i (α̂

1)

1 + λ̂
T
ĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)
.

Write αT
∗ = {(α1

∗)
T, · · · , (αJ∗ )T}, γT

∗ = {(γ1
∗)

T, · · · , (γK∗ )T}, βT
∗ = ((β1

∗)
T, · · · , (βK∗ )T) and

gL2 (α∗,β∗,γ∗)
T =

(
π1(α1

∗)− θ1∗, . . . , π
J(αJ∗ )− θJ∗ ,

1

L

L∑

l=1

X l(γ1
∗)ψτ{Y −X l(γ1

∗)
Tβ1

∗} − η1∗,

. . . ,
1

L

L∑

l=1

X l(γK∗ )ψτ{Y −X l(γK∗ )TβK∗ } − ηK∗

)
. (29)

From the theory of empirical likelihood (e.g., Owen 2001) we have λ̂ = op(1). Observe

that

sup
‖β−β

0
‖<ǫ

∣∣∣∣∣

m∑

i=1

ŵiXiψτ (Yi −XT
i β)− EXψτ (Y −XTβ)

∣∣∣∣∣

≤ sup
‖β−β

0
‖<ǫ

∣∣∣∣∣

m∑

i=1

ŵiXiψτ (Yi −XT
i β)−

1

n

n∑

i=1

Ri

π1
i (α̂

1)
Xiψτ (Yi −XT

i β)

∣∣∣∣∣ (30)

+ sup
‖β−β

0
‖<ǫ

∣∣∣∣∣
1

n

n∑

i=1

Ri

π1
i (α̂

1)
Xiψτ (Yi −XT

i β)−
1

n

n∑

i=1

Ri
π1
i (α

1
0)
Xiψτ (Yi −XT

i β)

∣∣∣∣∣(31)

+ sup
‖β−β

0
‖<ǫ

∣∣∣∣∣
1

n

n∑

i=1

Ri
π1
i (α

1
0)
Xiψτ (Yi −XT

i β)− EXψτ (Y −XT
i β)

∣∣∣∣∣ . (32)
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Similar to the arguments for (10) and (11), we have (30) = op(1) and (31) = op(1). Similar

to the techniques used for proving (12), it follows that (32) = Op(n
−1/2) by the facts that

{ Ri

π1

i
(α1

0
)
Xiψτ (Yi −XT

i β) : ‖β − β0‖ < ǫ} forms a Donsker class and that Ri

π1

i
(α1

0
)
Xiψτ (Yi −

XT
i β) is L2 continuous at β0. Therefore, (27) holds.

For the case where F contains a correctly specified model for f(X2 | Y,X1), let f
1(X2 |

Y,X1;γ
1) be the correctly specified model, and let γ1

0 denote true value of γ1 so that f1(X2 |
Y,X1;γ

1
0) = f(X2 | Y,X1). One gets γ̂

1 p−→ γ1
0, γ

1
∗ = γ1

0, β̂
1

L
p−→ β0 and ĝ

L
2 (α̂, β̂L, γ̂)

p−→
gL2 (α∗,β∗,γ∗). Denote ρ∗ as the probability limit of ρ̂ and ̟∗ = ρT

∗ g
L
2 (α∗,β∗,γ∗). We have

sup
‖β−β

0
‖<ǫ

∣∣∣∣∣

m∑

i=1

ŵiXiψτ (Yi −XT
i β)− EXψτ (Y −XTβ)

∣∣∣∣∣

≤ sup
‖β−β

0
‖<ǫ

∣∣∣∣∣

m∑

i=1

ŵi

[
Xiψτ (Yi −XT

i β)−
1

L

L∑

l=1

X l
i(γ̂

1)ψτ{Yi −X l
i(γ̂

1)Tβ̂
1

L}
]

− 1

m

1

1 +̟∗

n∑

i=1

Ri

[
Xiψτ (Yi −XT

i β)−
1

L

L∑

l=1

X l
i(γ̂

1)ψτ{Yi −X l
i(γ̂

1)Tβ̂
1

L}
]∣∣∣∣∣ (33)

+

∣∣∣∣∣
1

m

1

1 +̟∗

n∑

i=1

Ri
L

L∑

l=1

[
X l
i(γ̂

1)ψτ{Yi −X l
i(γ̂

1)Tβ̂
1

L} −X l
i(γ

1
0)ψτ{Yi −X l

i(γ
1
0)

Tβ0}
]∣∣∣∣∣(34)

+ sup
‖β−β

0
‖<ǫ

∣∣∣∣∣
1

m

1

1 +̟∗

n∑

i=1

Ri

[
Xiψτ (Yi −XT

i β)−
1

L

L∑

l=1

X l
i(γ

1
0)ψτ{Yi −X l

i(γ
1
0)

Tβ0}
]

− n

m

1

1 +̟∗
E[RX{ψτ (Y −XTβ)− ψτ (Y −XTβ0)}]

∣∣∣∣ (35)

+ sup
‖β−β

0
‖<ǫ

∣∣∣∣
n

m

1

1 +̟∗
E[RX{ψτ (Y −XTβ)− ψτ (Y −XTβ0)}]

∣∣∣∣ (36)

+

∣∣∣∣∣
1

n

n∑

i=1

1

L

L∑

l=1

[
X l
i(γ̂

1)ψτ{Yi −X l
i(γ̂

1)Tβ̂
1

L} −X l
i(γ0)ψτ{Yi −X l

i(γ
1
0)

Tβ0}
]∣∣∣∣∣ (37)

+

∣∣∣∣∣
1

n

n∑

i=1

1

L

L∑

l=1

X l
i(γ0)ψτ{Yi −X l

i(γ
1
0)

Tβ0} − EXψτ{Y −XTβ0}
∣∣∣∣∣ (38)

+ sup
‖β−β

0
‖<ǫ

∣∣∣EXψτ{Y −XTβ0} − EXψτ{Y −XTβ}
∣∣∣ . (39)

Using similar arguments to those for (13), (14) and (17), we can show that (33) = op(1), (34) =

op(1) and (37) = op(1). In addition, we have (36) = op(1) and (39) = op(1) by Condition

B3, (38) = op(1) by the weak law of large numbers, and (35) = Op(n
−1/2) by observing

that
{
Ri

[
Xiψτ (Yi −XT

i β)− 1
L

∑L
l=1 X

l
i(γ

1
0)ψτ{Yi −X l

i(γ
1
0)

Tβ0}
]
: sup‖β−β

0
‖<ǫ

}
forms a

Donsker class and that Ri

[
Xiψτ (Yi −XT

i β)− 1
L

∑L
l=1 X

l
i(γ

1
0)ψτ{Yi −X l

i(γ
1
0)

Tβ0}
]
is L2

continuous at β0. Thus, (27) holds. This completes the proof.
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Sketched proof of Theorem 3.4. By (28), we have

0 =
1

n

n∑

i=1

Ri
ĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)

1 + λTĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)
− 1

n

n∑

i=1

Ri
ĝ
L
2i(α̂, β̂L, γ̂)

π1
i (α̂

1)
(40)

+
1

n

n∑

i=1

Ri
ĝ
L
2i(α̂, β̂L, γ̂)

π1
i (α̂

1)
− 1

n

n∑

i=1

Ri
ĝ
L
2i(α∗, β̂L, γ̂)

π1
i (α

1
∗)

(41)

+
1

n

n∑

i=1

Ri
ĝ
L
2i(α∗, β̂L, γ̂)

π1
i (α

1
∗)

− 1

n

n∑

i=1

Ri
ĝ
L
2i(α∗,β∗, γ̂)

π1
i (α

1
∗)

(42)

+
1

n

n∑

i=1

Ri
ĝ
L
2i(α∗,β∗, γ̂)

π1
i (α

1
∗)

− 1

n

n∑

i=1

Ri
ĝ
L
2i(α∗,β∗,γ∗)

π1
i (α

1
∗)

(43)

+
1

n

n∑

i=1

Ri
ĝ
L
2i(α∗,β∗,γ∗)

π1
i (α

1
∗)

.

We can show that

(40) = − 1

n

n∑

i=1

Ri
ĝ
L
2i(α̂, β̂L, γ̂)

⊗2

{π1
i (α̂

1)}2
λ̂+ op(n

−1/2);

(41) = − 1

n

n∑

i=1

Ri
ĝ
L
2i(α∗, β̂L, γ̂)

(
∂π1

i (α
1

∗
)

∂α1

)T

{π1
i (α

1
∗)}2

(α̂1 −α1
∗) + op(n

−1/2);

(42) = op(n
−1/2) and (43) = op(n

−1/2). WriteML
2 = E

{
gL2 (α∗,β∗,γ∗)

(
∂π1(α1

∗
)

∂α1

)T
/π1(α1

∗)

}
.

Together with Condition B6, we have

√
nλ̂ =

(GL
2 )

−1

√
n

(
n∑

i=1

Ri
π1
i (α

1
∗)
gL2i(α∗,β∗,γ∗)−

n∑

i=1

ML
2 {E(Φ⊗2

2 )}−1Φ2i

)
+ op(1).

Meanwhile, note that

0 =
1

n

n∑

i=1

Ri/π
1
i (α̂

1)

1 + λ̂
T
ĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)
Xiψτ (Yi −XT

i β̂
L

MR)

=
1

n

n∑

i=1

[Ri/π
1
i (α̂

1)]Xiψτ (Yi −XT
i β̂

L

MR)

1 + λ̂
T
ĝ
L
2i(α̂, β̂L, γ̂)/π

1
i (α̂

1)
− 1

n

n∑

i=1

RiXiψτ (Yi −XT
i β̂

L

MR)

π1
i (α̂

1)
(44)

+
1

n

n∑

i=1

Ri

π1
i (α̂

1)
Xiψτ (Yi −XT

i β̂
L

MR)−
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
Xiψτ (Yi −XT

i β̂
L

MR) (45)

+
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
Xiψτ (Yi −XT

i β̂
L

MR)−
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
Xiψτ (Yi −XT

i β0) (46)

+
1

n

n∑

i=1

Ri
π1
i (α

1
∗)
Xiψτ (Yi −XT

i β0).
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We can show that

(44) = −
(
1

n

n∑

i=1

Ri
Xiψτ (Yi −XT

i β̂
L

MR)

{π1
i (α̂

1)}2
ĝ
L
2i(α̂, β̂L, γ̂)

T

)
λ̂+ op(n

−1/2),

(45) = −
(
1

n

n∑

i=1

Ri
Xiψτ (Yi −XT

i β̂
L

MR)

{π1
i (α

1
∗)}2

(
∂π1

i (α
1
∗)

∂α1

)T)
(α̂1 −α1

∗) + op(n
−1/2),

(46) = −
(
1

n

n∑

i=1

Ri
π1(α1

∗)
g(XT

i β0)XiX
T
i

)
(β̂

L

MR − β0) + op(n
−1/2).

Write BL
2 = E

{
Xψτ (Y−XTβ0)

π1(α1

0
)

(
∂π1(α1

0
)

∂α1

)T}
and QL2i(α

1
0) =

Ri

π1

i
(α1

0
)

[
Xiψi(Yi −XT

i β0)−

AL
2 (G

L
2 )

−1gL2i(α∗,β∗,γ∗)
]
. From the generalized information equality we have BL

2 −

AL
2 (G

L
2 )

−1ML
2 = −E

{
∂QL

2
(α1

0
)

∂α1

}
= E(QL

2Φ
T
2 ), and then

E
(
g(XTβ0)XXT

)√
n(β̂

L

MR − β0) = n−1/2
n∑

i=1

[
QL

2i(α
1
0)− E(QL

2Φ
T
2 ){E(Φ⊗2

2 )}−1Φ2i

]
+ op(1).

This leads to the result.
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Table 1: Analysis results for the ACTG 175 data (n=2139). Standard errors are calculated based on bootstrap method

with 200 re-samplings. L = 20 for our proposed MR estimator and for the imputation estimators.

MR estimator IPW estimator Imputation estimator 1 Imputation estimator 2 Complete-case analysis

Est S.E. p Est S.E. p Est S.E. p Est S.E. p Est S.E. p

τ = 0.25

intercept -6.80 44.79 0.88 -9.21 46.70 0.84 -16.53 29.95 0.58 0.73 29.99 0.98 -41.28 40.11 0.30

trt 60.99 10.96 < 0.01 60.50 11.63 < 0.01 57.80 7.92 < 0.01 50.96 7.76 < 0.01 65.85 9.98 < 0.01

CD40 0.70 0.04 < 0.01 0.70 0.04 < 0.01 0.69 0.03 < 0.01 0.63 0.03 < 0.01 0.73 0.03 < 0.01

age -0.27 0.63 0.66 -0.27 0.70 0.70 -0.01 0.48 0.98 -0.14 0.41 0.73 -0.12 0.64 0.86

weight 0.29 0.43 0.49 0.31 0.49 0.54 0.23 0.29 0.42 0.23 0.31 0.46 0.41 0.41 0.32

race -15.61 10.85 0.15 -14.82 11.48 0.20 -12.25 7.83 0.12 -8.04 8.10 0.32 -16.06 10.01 0.11

gender -14.96 12.23 0.22 -14.58 12.71 0.25 -10.03 8.54 0.24 -7.26 8.92 0.42 -9.99 11.04 0.37

history -42.90 11.77 < 0.01 -42.83 12.06 < 0.01 -37.99 7.41 < 0.01 -29.09 7.82 < 0.01 -39.41 9.83 < 0.01

offtrt -96.26 13.06 < 0.01 -96.11 13.73 < 0.01 -90.77 8.83 < 0.01 -110.11 9.22 < 0.01 -96.56 14.27 < 0.01

τ = 0.50

intercept 112.44 32.02 < 0.01 105.56 31.35 < 0.01 74.21 31.99 0.02 53.43 34.72 0.12 80.23 38.66 0.04

trt 60.56 12.06 < 0.01 59.70 12.26 < 0.01 60.77 8.57 < 0.01 59.35 9.23 < 0.01 67.24 11.37 < 0.01

CD40 0.73 0.04 < 0.01 0.73 0.04 < 0.01 0.75 0.03 < 0.01 0.77 0.04 < 0.01 0.76 0.04 < 0.01

age -1.18 0.57 0.04 -1.20 0.59 0.04 -0.66 0.54 0.22 -0.64 0.55 0.24 -1.02 0.61 0.10

weight 0.28 0.32 0.37 0.23 0.34 0.50 0.21 0.32 0.51 0.47 0.36 0.20 0.21 0.40 0.59

race -25.76 10.76 0.02 -22.95 10.52 0.03 -16.65 8.10 0.04 -16.90 9.06 0.06 -23.34 10.20 0.02

gender -28.43 14.10 0.04 -16.33 14.26 0.25 -12.90 11.81 0.27 -17.15 12.20 0.16 -11.57 13.57 0.39

history -52.53 10.03 < 0.01 -53.55 11.12 < 0.01 -45.15 7.89 < 0.01 -47.67 8.72 < 0.01 -50.12 10.07 < 0.01

offtrt -89.63 10.37 < 0.01 -89.04 11.43 < 0.01 -89.81 9.24 < 0.01 -113.69 9.91 < 0.01 -87.40 12.44 < 0.01

τ = 0.75

Intercept 128.02 42.87 < 0.01 123.26 42.39 < 0.01 103.53 29.74 < 0.01 47.67 35.11 0.17 84.30 39.59 0.03

trt 51.16 14.41 < 0.01 50.72 14.67 < 0.01 60.06 9.48 < 0.01 68.57 9.92 < 0.01 55.58 11.40 < 0.01

CD40 0.76 0.06 < 0.01 0.77 0.06 < 0.01 0.81 0.04 < 0.01 0.94 0.05 < 0.01 0.82 0.05 < 0.01

age 0.35 0.56 0.53 0.17 0.58 0.77 0.05 0.44 0.91 -0.31 0.51 0.54 0.16 0.56 0.78

weight 0.29 0.35 0.41 0.35 0.38 0.36 0.47 0.29 0.11 0.90 0.30 < 0.01 0.60 0.38 0.12

race -35.29 12.73 0.01 -34.47 12.55 0.01 -27.02 9.54 < 0.01 -28.76 10.88 0.01 -32.87 10.50 < 0.01

gender -8.64 13.39 0.52 -4.43 13.90 0.75 -11.72 11.79 0.32 -19.99 13.56 0.14 -6.48 13.69 0.64

history -40.41 10.24 < 0.01 -40.75 10.89 < 0.01 -43.15 7.75 < 0.01 -44.63 8.76 < 0.01 -44.61 9.43 < 0.01

offtrt -88.40 14.74 < 0.01 -85.73 15.50 < 0.01 -89.00 11.30 < 0.01 -105.71 13.87 < 0.01 -79.79 14.59 < 0.01

Est: estimated value. S.E.: standard error. p: p-value.
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Fig. 1: Histograms of CD496 and log(CD496) based on complete cases for the ACTG

175 data.
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