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Summary 

To follow up on our previous report that acarbose (ACA), a drug that blocks post-

prandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 

400, 1000 (the original dose), and 2500 ppm, using genetically heterogeneous mice at 

three sites. Each dose led to a significant change (by log-rank test) in both sexes, with 

larger effects in males, consistent with the original report. There were no significant 

differences among the three doses. The two higher doses produced 16% or 17% 

increases in median longevity of males, but only 4% or 5% increases in females. Age at 

the 90th percentile was increased significantly (8% - 11%) in males at each dose, but 

was significantly increased (3%) in females only at 1000 ppm. The sex effect on 
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longevity is not explained simply by weight or fat mass, which were reduced by ACA 

more in females than in males. ACA at 1000 ppm reduced lung tumors in males, 

diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced 

blood glucose responses to refeeding in males, and improved rotarod performance in 

aging females, but not males.. Three other interventions were also tested: ursolic acid, 

2-(2-hydroxyphenyl) benzothiazole (HBX), and INT-767; none of these affected lifespan 

at the doses tested.  The acarbose results confirm and extend our original report, 

prompt further attention to the effects of transient periods of high blood glucose on 

aging and the diseases of aging, including cancer, and should motivate studies of 

acarbose and other glucose-control drugs in humans.   

 

Introduction 
The ITP finds interventions that improve mammalian lifespan, and the current study 

determines optimal doses of ACA.  These studies suggest new insights into the factors 

that modulate aging rates and may lead to treatments useful in the clinic. Such 

interventions also suggest hypotheses for basic research, as different biological 

systems are compared, and different models of delayed aging contrasted to distinguish 

changes essential in delaying aging. 

The ITP design,  presented at this URL: 

(http://www.nia.nih.gov/research/dab/interventions-testing-program-itp), uses genetically 

heterogeneous (UM-HET3) mice, the offspring of the CByB6F1 x C3D2F1 cross.  Such 

crosses of two diverse F1 hybrids, representing 4 different inbred strains, produce 

genetically heterogeneous populations in which each animal is unique, but a full sibling 

of all other mice in the population, so that the cross is reproducible (Roderick, 1963). 

Use of genetically diverse individuals minimizes the possibility that characteristics of a 

single inbred or F1 hybrid genotype might be confused with those of the species. The 

ITP includes replication at three sites, with sufficient mice to give more than 80% power 

to detect a change of 10% in mean lifespan, even if only two of the three sites contribute 

data. This design was detailed previously (Miller et al, 2011; 2014; Harrison et al., 2009; 

2014; Strong et al., 2008; 2016). 
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The interventions for this study were chosen for the following reasons: 

(a) Acarbose (ACA) is a candidate to replicate some aspects of diet or caloric 

restriction. Archer (2003) suggests that the post-meal spike in glucose may contribute to 

aging. This spike is reduced by ACA (Balfour & McTavish, 1993). Acarbose has been 

widely used clinically to prevent post-prandial hyperglycemia, and several reports 

(Frantz et al., 2005; Miyamura et al., 2010; Kim et al., 2011) demonstrate its ability to 

reduce or prevent post-prandial hyperglycemia in mice. The glucose spike during a 

meal is blunted because acarbose inhibits α-glucosidase, thus reducing the rate at 

which polysaccharides are digested, as well as reducing sugar uptake. It does not 

sequester glucose, nor block its uptake — it blocks its release from complex 

polysaccharides. 

Like chronic diet restriction (DR), chronic ACA treatment reduces body weight and 

body fat, and also improves glucose dysregulation associated with aging (Yamamoto & 

Otsuki, 2006). However, unlike DR, food intake is often increased, not reduced, during 

long-term ACA treatment (Yamamoto & Otsuki, 2006). Importantly ACA increases HET3 

mouse lifespans more effectively in males than in females (Harrison et al., 2014; Strong 

et al., 2016), while DR increases lifespan to a similar degree in both (Flurkey et al., 

2010). 

Once a longevity study has shown a benefit at the drug dose tested initially, it is very 

useful to evaluate the same drug over a wider range of doses to try to determine the 

optimal dose for beneficial effect. Lower doses could, in principle, be more effective 

than the original dose, if the lower dose mitigates harmful side effects. Doses above the 

one originally tested could, in principle, be more effective, if benefits are proportional to 

drug concentrations over the tested range. A drug that led to sex-specific benefits at the 

original dose may, in principle, show strong effects in both sexes, if, for example, its 

blood or tissue concentration is affected by sex-specific metabolic pathways. Better 

definition of optimal drug dose is also very helpful in providing a foundation for further 

studies. For these reasons, three different doses of ACA are tested here. 

(b) Ursolic Acid (UA) decreased d-galactose (D-gal)-induced neurotoxicity in mice 

(Lu et al., 2007) and also inhibited cognitive impairment induced by a high-fat diet (Lu et 

al., 2011). Kunkel et al. (2012) found that UA increased skeletal muscle mass and 
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function while improving glucose tolerance and reducing obesity. These results suggest 

that UA might benefit deleterious effects of age. 

(c) 2-(2-hydroxyphenyl) benzothiazole (HBX) is a compound with similar structural 

features to the flavonoid Thioflavin T (4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-

dimethylaniline chloride), a molecule used in histopathology to stain amyloid in tissues. 

These molecules are able to maintain protein homeostasis during aging, and to 

increase median and maximal lifespans in C. elegans (Alavez et al., 2011). 

 (d) INT-767d (6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium salt) is a 

dual FXR/TGR5 activating agonist. Activating the bile acid-activated nuclear hormone 

receptor FXR, and the G protein coupled receptor TGR5, reduces several diseases of 

aging, including chronic liver and kidney disease as well as diabetes (Rizzo et al., 

2010). Chronic treatment of aging mice with INT-767d could, in principle, retard these 

diseases as well as other deleterious aspects of aging (Fiorucci et al, 2009; Hylemon et 

al., 2009; Wang et al, 2017). Dwarf mouse models with increased lifespan also have 

increased serum and liver bile acid levels and FXR activation, which supports this idea 

(Gems, 2007). 

 

Results 

Mice were fed ACA at three different doses: low – 400, medium – 1000, and high – 

2500 mg per kg diet (ppm) from 8 months of age. Using data pooled across the three 

sites, ACA had significant effects by the log-rank test on female median lifespans at all 

three doses.  At medium and high doses, median lifespan increased 5% (p=0.003) and 

4% (p=0,006) respectively. The lowest dose of ACA did not change median survival (0% 

increase), but significantly (p=0.03) improved survival at ages greater than the median 

(Table 1A, Figure 1A). ACA had much more benefit in males, whose median lifespans 

were increased by the three doses by 11%, 17% and 16%, respectively, all highly (p < 

0.0001) significant (Table 1A, Figure 1B). None of the effects on lifespan of the three 

ACA doses were significantly different from the other two doses in either males or 

females. We used the 90

Lifespan and body weight 

th percentile as a surrogate for maximum lifespan, and the 

Wang/Allison test (Wang et al, 2004) in pooled data also showed much larger benefits 
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in males. The low, medium and high doses of ACA caused increases of 2%, 3%, and 

3% (P = 0.37, 0.007, 0.10) respectively in females, and 11%, 11%, and 8% (P = 0.0004, 

0.0004, 0.0001,) respectively in males (Table 1A). Neither UA, I767 nor HBX changed 

lifespan significantly in either males or females at the doses used.  

Site differences showed the importance of replication (Table 1B) and the value of 

pooling data to increase sample size and statistical power. Effects of ACA were not 

significant in females at either TJL or UM, although they were at UT ranging from P = 

0.02 to 0.03). In males, all three doses of ACA increased lifespan significantly at TJL 

and UT (P = 0.002 to <0.0001); only the 1000 ppm dose gave a significant increase in 

male lifespan at UM (P = 0.006). Percentage increases in lifespan — given for diets 

containing 400, 1000, and 2500 ppm ACA respectively in Table 1B — also were larger 

at TJL (10, 20, 20) and UT (14, 13, 19) than at UM (1, 13, 7), perhaps reflecting the 

14% longer lifespan of control males at the UM site. As in past ITP cohorts, lifespan for 

control females was similar at all three sites (median values at TJL – 890 days, UM – 

870 days, and UT – 897 days), but longer for males at UM (TJL – 803 days, UM – 912 

days, and UT – 807 days).  

Using pooled data from the same mice, when fed 1000 or 2500 ppm ACA, body 

weights averaged 4–6 g lower in females at 12, 18 and 24 months of age (Figure 1C) 

and 2–4 g lower in males at 12 and 18 months of age (Figure 1D). Statistically, female 

controls were the heaviest at 12 and 18 months, with females fed 400 ppm ACA next 

most heavy. Those fed 1000 or 2500 ppm ACA were the lightest, with similar body 

weights (Figure 1C). At 12 and 18 months, male controls and those fed 400 ppm ACA 

were the most heavy, while those fed 1000 or 2500 ppm ACA were lighter, and not 

significantly different from each other (Figure 1D).   

 

ACA at 1000 ppm was fed to separate groups of mice starting at 4 months of age, and 

weights and body composition then evaluated at two sites. At TJL and UT, fat and lean 

weights were measured by NMR body composition analysis, using the echo MRI

Body composition 

TM 3-in-

1 (Table 2), in which grams of fat are the mass of the body’s fat molecules expressed as 

g of canola oil, while grams of lean are muscle tissue mass equivalent of all body parts 
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containing water, excluding fat, bone, and substances that do not contribute to the NMR 

signal, such as hair, teeth, claws, etc. Testing the same groups of ACA fed and age and 

sex matched control mice at 16–17, 22–23 and 29–30 months of age, ACA reduced 

body and fat weights significantly in females, but had no significant effects on these 

measures in males. Lean mass was not affected by ACA in either sex (Table 2). At UT, 

ACA diets also had greater effects in females, reducing body weights by 8–12 g in 

females at 12–22 months of age (Figure 2A), and by 6–8 g in males over the same age 

range (Figure 2D). The decrease in % female body fat (Figure 2B) was about twice as 

great as in males (Figure 2E), while the increase in % lean mass in females fed ACA 

(Figure 3C) was two to three times greater than in males (Figure 2F).   

A separate set of data from UM defined the effects of ACA feeding on four fat depots 

using HET3 mice at 12 months of age (Figure 3). In subscapular fat, there were no ACA 

effects in females, but highly significant effects in males (P < 0.001). In mesenteric fat, 

ACA caused highly significant reductions in both sexes (both P < 0.001). In gonadal fat, 

ACA effects were also similar in both sexes, but did not reach statistical significance, 

and in inguinal fat, ACA had no effect (Figure 3).   

 

As illustrated in Figure 4, males fed ACA had about half as many lung tumors as 

controls, but ACA feeding did not reduce the already low frequency of lung tumors in 

females. The frequency of adrenal medullary vasodilation was reduced to an equivalent 

extent in both sexes, reaching statistical significance in females, and in the pooled data, 

though not in males (Figure 4). Replicating results reported by Strong et al. (2016), ACA 

reduced the incidence of liver degeneration in both male and female UM-HET3 mice, 

but only results in males and the pooled population were significant. Finally, females fed 

ACA had less glomerulosclerosis, but not males in which glomerulosclerosis was rare 

even in controls (Figure 4). Lesions that were not affected by ACA feeding, to a 

significant degree, included endometrial hyperplasia, lymphoma, pancreatic atrophy, 

renal mineralization, adrenal hyperplasia, adrenal cortical degeneration, hepatic 

microgranuloma, uterine cysts, uterine cystic endometrial hyperplasia, ovarian atrophy, 

Pathology 
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and ovarian pigment/lipofuscin; inferences about these negative findings would require 

confirmation using a larger number of test cases. 

 

Figure 5 shows young (4 mo old) males and females that were fed either control diets (0 

ppm ACA) or diets containing 400, 1000, or 2500 ppm ACA for 6 weeks. Food was 

removed at 6 pm, and returned at 9 am the next day. Blood glucose levels were 

measured just before food was returned, and 30, 60, 180 and 360 minutes after it was 

returned. There were no significant differences in females, but highly significant (P < 

0.002) differences in males, in which higher levels of ACA in diets reduced blood 

glucose after refeeding.   

Blood glucose after refeeding 

 

Rotarod testing was conducted, and average performance by sex, group, and day is 

shown in Figure 6. On test day 6, after 5 days of training, ACA females performed better 

than age-matched old controls (p = 0.0001), while male mice did not show significant 

benefits.  Young female controls performed better than old controls (P=0.02), while 

untreated males showed the same trend but it was not statistically significant (P = 0.06).  

In a second measure of performance — mean latency to fall averaged over the six-days 

— female mice fed ACA again performed better than age matched controls (P = 0.02), 

and young female controls performed better than old controls (P = 0.006).  Again, ACA 

did not lead to significant improvement in male mice, although young male controls 

performed better than old (P = 0.007).  In a measure of learning rate, the rate of change 

across the six-day training period, ACA-fed females again performed better than age-

matched controls (P = 0.009), and again, old female controls performed less well than 

young (P = 0.01).  Male learning rates did not differ among younger controls, ACA-

treated, or old controls (all P > 0.05).   

Rotarod performance with training 
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Key findings are that ACA improves male lifespan over a broad range, with 

significant effects from diets containing 400, 1000 or 2500 ppm ACA. At all three doses, 

ACA extended lifespan much more strongly in males than in females (Table 1), offering 

an interesting model for sex differences. In  Figure 5, ACA affects daily post-prandial 

increases in glucose much more in males than in females, so males may be more 

amenable to metabolic benefits from ACA. Most UM-HET3 mice die with some form of 

cancer, so ACA effects on overall lifespan probably reflect protection against neoplastic 

disease.  

Effects of ACA on lifespan, weight and body composition 

As in previous ITP cohorts (Strong et al., 2008, 2016; Harrison et al., 2009, 2014; 

Miller et al., 2011, 2014), unknown site-specific differences led to male control mice 

living longer at UM than at UT and TJL. Female controls in the same cohorts had very 

similar lifespans at all three sites. This offers opportunities to explore sex-specific 

aspects of aging.  

If the longevity benefit of ACA were due strictly to its effects on weight and fat, one 

might expect that its lifespan benefit would be stronger in females than in males, 

contrary to our findings. Weights were reduced more in females than in males (Figure 

1C, D), as were amounts of fat (Table 2, Figure 2). Thus, the lengthened survival for 

ACA-treated males vs. ACA-treated females cannot be explained solely by changes in 

body weight or fat, suggesting that the ACA benefit on lifespan is not directly due to the 

effects of diet restriction (DR), which increases male and female lifespans to a similar 

degree in HET3 mice (Flurkey et al., 2010). Furthermore, ACA and DR have opposite 

effects on blood levels of FGF21 and on voluntary activity (Harrison et al., 2014), 

showing that these treatments differ. Effects of ACA and DR may differ in HET3 mice 

due to carbohydrate vs total diet restriction. Differences could reflect differences in the 

microbiome (Smith et al., 2018) caused by the different treatments, or factors still to be 

elucidated.  

Besides ACA, significant increases in male lifespans are caused by 17-α-estradiol 

(17aE2), aspirin, Protandim and nordihydroguaiaretic acid (NDGA) (Strong et al., 2008, 

2016; Harrison et al 2014) and by rapamycin in both male and female mice (Harrison et 

al., 2009; Miller et al., 2011; Wilkinson et al., 2012; Miller et al., 2014; Harrison et al., 
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2014). Rapamycin also improves type II diabetic models (Reifsnyder et al., 2015, 2016, 

2017) and brain histone modifications (Gong et al., 2015). Effects with 17aE2 may be 

explained by metabolomic responses modulated by gonadal hormones (Garratt et al., 

2018). 

 

Further key findings are from detailed studies of ACA-treated and control mice at 

each site. At UM, effects of ACA on amount of fat relative to body weight in 12-month-

old HET3 mice differ greatly depending on which fat type is examined (Figure 3). In only 

one fat type, subscapular, are ACA effects sex-specific, with no effects in females and a 

highly significant reduction of fat relative to body weight in males. Perhaps subscapular 

fat might be important in predicting effects of drugs on lifespan, although tests at a wider 

variety of ages and with a wider variety of interventions are essential before concluding 

this is the case. 

Specific physiological effects of ACA 

Figure 4 presents pathology of mice, 22–25 months of age, which had been fed 

1000 ppm ACA (57 F and 54 M) and three pooled groups of age-matched controls (43 F 

and 41 M). HET3 mice show a wide range of lesions, making them a good model for 

normal populations, but the sparse distribution of many specific lesions among 22- to 

25-month-old HET3 mice limits statistical power for specific pathologies. Nevertheless, 

37% of male controls had lung tumors, and ACA reduced this by half, which might 

explain some of the increase in male lifespans. 

In fasting and refeeding assessed at UT (Figure 5), glucose levels were not affected 

by ACA in females, but were effects in males were highly significant, and higher 

amounts of ACA led to lower levels of blood glucose. This test was done using mice at 

5.5 months of age, which had been fed ACA for only 6 weeks.  While it suggests a 

reason for larger effects on male lifespans, effects of ACA should be tested over longer 

periods of time.  Lamming et al. (2013) showed no significant decrease of insulin 

sensitivity or increase in glucose with age in either male or female HET3 mice, but these 

were average numbers taken during the day when mice were not eating; it is possible 

that post-prandial surges in blood glucose may have effects on health and lifespan 

independent of mean levels of glucose. Hormones of the gonadal-pituitary axis may be 
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important in sex differences.  Yuan et al. (2012) showed that female sexual maturation 

co-regulated with lifespan via IGF1, while Garratt et al. (2017) showed that gonadal 

hormones were important in differences between males and females on several effects 

of ACA, including glucose homeostasis, although endocrine effects on lifespan were not 

evaluated. Benefits of ACA on rotarod performance (Jones and Roberts, 1968) are 

highly significant in females but not in males (Figure 6). These data suggest that 

lifespan measures do not detect the advantage given by ACA to females in the agility 

tested by the rotarod. 

The National Institute on Aging Interventions Testing Program (ITP) has previously 

reported significant increases in lifespan caused by aspirin, Protandim and 

nordihydroguaiaretic acid (NDGA) in male mice (Strong et al., 2008, 2016) and by 

rapamycin in both male and female mice (Harrison et al., 2009; Miller et al., 2011; 

Wilkinson et al., 2012; Miller et al., 2014; Harrison et al., 2014). Rapamycin also 

improves type II diabetic models (Reifsnyder et al., 2015, 2016, 2017) and brain histone 

modifications (Gong et al., 2015). Acarbose and 17-α-estradiol (17aE2) also extend 

mouse lifespans, with stronger (ACA) or exclusive (17aE2) effects in males (Harrison et 

al., 2014; Strong et al., 2016).  Effects with 17aE2 may be explained by metabolomic 

responses modulated by gonadal hormones (Garratt et al., 2018). 

The lifespan studies of the ITP program show that adhering to rigorous standards 

provides strong evidence that mouse lifespan can be reproducibly extended by drugs in 

the diet (Strong et al., 2008, 2016; Harrison et al., 2009, 2014; Miller et al., 2011, 2014; 

Wilkinson et al., 2012). The growing arsenal of drugs that extend lifespan, perhaps by 

modulation of aging, cancer, or both, provides raw material for mechanistic studies.  It 

also will complement work done using mutant stocks and dietary interventions to 

delineate the factors that control aging rate in mammals and link aging to multiple forms 

of illness. 

 

Experimental Procedures 

UM-HET3 mice were produced at each of the three test sites as previously described 

Mouse production, maintenance, and estimation of lifespan 
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(Strong et al., 2008; Harrison et al., 2009; Miller et al., 2011), where environmental 

conditions are presented in detail. The dams of the test mice were CByB6F1/J, JAX 

stock #100009 (dams, BALB/cByJ; sires, C57BL/6J). The sires of the test mice were 

C3D2F1/J, JAX stock #100004 (dams, C3H/HeJ; sires, DBA/2J). In each site, breeding 

mice were fed LabDiet® 5008 mouse chow (PMI Nutritional International, Bentwood, 

MO). As soon as mice were weaned, they were fed LabDiet®

Details of the methods used for health monitoring were provided previously (Strong 

et al., 2008; Harrison et al., 2009; Miller et al., 2011). In brief, each of the three colonies 

was evaluated four to twelve times each year for infectious agents. All such surveillance 

tests were negative for pathogens at all three sites throughout the entire study period. 

 5LG6 from the same 

source.  Males were initially housed 3 per cage, while females were housed 4 per cage;  

numbers declined as mice died. 

 

Mice were removed from the study because of fighting or accidental death (for 

example, during chip implantation) or chip failure, or because they were used for 

another experimental purpose. For survival analyses, all such mice were treated as 

alive at the date of their removal from the protocol and lost to follow-up thereafter. 

These mice were not included in calculations of median longevity. Overall, less than 3% 

of the mice were removed from the longevity populations reported here, with no 

significant site differences.  For details, see 

Removal of mice from the longevity population 

Methods to censor mice for lifespan 

statistics,

 

 Supporting Information. 

At UM and UT, mice were examined daily for signs of ill health from the time they were 

set up in the experiment. At TJL, once mice were marked as ill, they were examined 

daily for signs of ill health. Mice were euthanized for humane reasons if so severely 

moribund that they were considered, by an experienced technician, unlikely to survive 

for more than an additional 48 hours. The TJL definitive endpoint criterion is the non-

responsiveness of a mouse to being touched, and which is usually accompanied by one 

or more of the following: slow respiration, feeling cold to the touch, a hunched-up 

Estimation of age at death (lifespan)  
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appearance with matted fur, and signs of sudden weight loss, failure to eat and drink, 

prominent appearing ribs and spine, and sunken hips.  

The age at which a moribund mouse was euthanized was taken as the best 

available estimate of its natural lifespan. Mice found dead were also noted at each daily 

inspection. 

 

Studies with diets done at similar times are reported here, as even the diets with no 

effects act as useful controls. TestDiet

Control and experimental diets 

®, Inc., a division of Purina Mills (Richmond, IN), 

prepared batches of LabDiet® 

(a) ACA or Acarbose was purchased from Spectrum Chemical Mfg. Corp., Gardena, 

CA, product # A3965, CAS # 56180-94-0. It was fed continuously at a concentration of 

400, 1000 or 2500 mg of ACA per kilogram of diet (ppm) to a test group of mice from 

cohort 2013 starting at 8 months of age. In independent groups of mice, it was fed at 

1000 mg/kg starting at 4 or 8 months of age, as indicated.  Probably amounts of ACA 

were about a third of expected in the diet, as average concentration of acarbose in 5 

batches of food pellets was 231 ± 109 (SD) ppm (intended dose 1000 ppm). A primary 

effect of acarbose is to reduce postprandial glucose plasma levels in humans (Ruppin, 

1988). We observed the same result as an outcome measure in this study (Figure 5). 

The combination of these results indicate that the same pharmacokinetic and 

pharmacodynamic effects of acarbose were achieved with our study design. For details, 

see: 

5LG6 food containing each test substance, as well as 

control diets, at intervals of approximately 4 months, and shipped each batch of food to 

the three test sites.  

Experimental diets – Acarbose, 

(b) UA or Ursolic Acid was obtained from Wilshire Technologies, Princeton NJ, CAS 

# 77-52-1. It was fed continuously at a concentration of 2000 ppm to a test group of 

mice from cohort 2013 starting at 10 months of age. 

Supporting Information. 

(c) HBX or 2-(2-hydroxyphenyl) benzothiazole was obtained from Sigma Aldrich, 

Inc., St Louis, MO, product # H50802, CAS # 835-64-3. It was fed continuously at a 

concentration of 1 ppm to a test group of mice from cohort 2012, starting at 15 months 

of age.  In pilot studies, diets designed to contain 1 and 10 ppm HBX, had 85 and 83% 
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of expected amounts, respectively.  Serum of mice fed 1 ppm HBX for 8 weeks had 

serum levels of 89 - 252 ng/ml HBX, pilot mice fed 10 ppm HBX for 8 weeks had <50 to 

316 ppm, with no significant differences in serum levels between the two groups, so 1 

ppm HBX was used in the full lifespan study. 

(d) I767d, INT-767 or 6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium 

salt was obtained from WIL Research, Inc., Ashland OH (in 2016 it was renamed 

Charles River Laboratories, Ashland), and the material was a proprietary product. It was 

fed continuously at a concentration of 180 ppm to a test group of mice from cohort 2012 

starting at 10 months of age. In pilot studies, the amount of INT-767 in the diet was 73% 

of the 180 ppm expected.  After 8 weeks of diet containing INT-767, amounts in serum 

ranged from 254 to 869 ng/ml while control serum contained less than 1.5 ng/ml. 

 

Assays for Acarbose, HBX and I767 were done at UT.  The initial drug material, food 

pellets and mouse serum were sampled, prepared and assayed as detailed in the 

material published here on line. Samples were quantified using HPLC with ultra violet 

detection.  For details, see: 

Measuring amounts of interventions 

Measuring amounts of Interventions

 

, Supporting 

Information. 

At TJL, a Nuclear Magnetic Resonance (NMR) Imaging Instrument (EchoMRI™ 3-in-1, 

EchoMRI LLC, Houston, Texas USA) was used to measure body composition of fat, 

lean, free water, and total water masses. Subjects were placed in a restrainer tube 

(non-anesthetized) and three consecutive scans, 2 minutes in duration were taken 

sequentially and data were averaged for each subject. The fat calculation is measured 

as total body fat inclusive of organ and tissue fat and fatty acids. Lean mass is muscle 

plus all organs. At UT, mice were placed in a plastic cylinder (4.7cm ID, 0.15cm thick) in 

a qMRI machine (EchoMRI, Echo Medical Systems, Houston, TX) and scanned once 

for 2 minutes. Data at both sites are expressed as % of body mass.  

Measures of body composition 

 

Pathology 
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Using standard microhistopathological methods, J. Erby Wilkinson, a board-certified 

veterinary pathologist, examined 22- to 24-month-old UM-HET3 mice: 57 females and 

54 males had been fed a 1000 ppm ACA diet since they were 4 months old. There were 

14 female and 11 male controls set up at the same time, plus two previous groups of 

age matched UM-HET3 controls, for a total of 43 females and 41 males not fed ACA. 

Evaluation of the ACA mice and the new set of age-matched controls was conducted in 

a blinded fashion, and the data from the old control mice combined with prior records 

compiled by Dr. Wilkinson on earlier cohorts of untreated UM-HET3 mice for statistical 

purposes. 

 

Ten HET3 mice in each group were given one of 4 diets for 6 weeks starting at 4 

months of age; the diets contained 2500 ppm, 1000 ppm, 400 ppm or 0 ppm of ACA. 

Mice were then fasted from 1800 to 0900 the next morning. Tail vein blood was 

sampled (around 50 microliters) at “0” minutes before returning food, and again 30, 60, 

180 and 360 minutes after the food was returned. Amounts of glucose were measured 

in each blood sample using a blood glucose meter One Touch Ultra Blue (Life-Scan, 

Milpitas, CA, USA).    

Refeeding effects on blood glucose 

 

Rotarod performance was tested using the Rotamex-5 (Columbus Instruments, 

Columbus, Ohio) for 6 consecutive days by a technician who was blinded to the 

treatment groups. Testing on each day consisted of 8 trials with a 10-min rest between 

trials 4 and 5. Each trial began with the rotarod set at an initial rate of 4 rpm, 

accelerating to a maximum 40 rpm within 300 s. The latency to fall was recorded by the 

Rotamex-5 software, and the average latency to fall was calculated for each day. 

Rotarod 

 

Significance tests about survival effects are based upon the two-tailed log-rank test 

at p < 0.05, stratified by test site, with censored mice included up until their date of 

removal from the longevity population. Data from male and female mice are considered 
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separately. In statistical tests described in the text, p values are two-tailed and reported 

without adjustment for multiple comparisons, except in Fig 6. Statistical claims related to 

maximum lifespan are based on Wang et al., (2004), using the Fisher Exact test to 

compare the proportions of surviving mice, in control and test groups, at the age 

corresponding to the 90th percentile for survival in the joint distribution of the control 

and test groups. For the pooled data sets, surviving mice were enumerated at the 90th 

percentile age for each site separately, and these counts were combined for the overall 

Fisher Exact test. 

For statistical analysis of the rotarod performance, the average of time-to-fall 

sessions for each animal on each day (1–6) was considered as a repeated measure in 

a mixed-effect linear model with a random intercept for males and females separately 

and estimated the main effects of day, group (Old Control, Old ACA, and Young 

control), and the group-by-day interaction. We compared the pairwise differences 

between the three groups and adjusted for multiple testing using Tukey’s Honest 

Significant difference method (HSD).  

Figure 6 statistics 

For details, see Statistical methods - Figure 6 statistics 

 

 Supporting Information. 
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Supporting Information Listing 

Details of Experimental Procedures.   See online supplement 

 

Tables 

Table 1A. Effects of three different doses of ACA on lifespan  

 

  Median lifespan Lifespan at 90th percentile 

Group N Days % change p-value  Days % change 

Wang-

Allison 

p-value 

Females        

Cont_13 287 889    1097   

ACA_lo 139 887 0% 0.03  1123 2% 0.37 

ACA_mid 142 933 5% 0.003  1125 3% 0.007 

ACA_hi 152 922 4% 0.006  1125 3% 0.10 

UA 147 885 0% 0.49  1084  –1% 0.46 

Cont_12 279 877    1100   

HBX 136 856 –2% 0.4  1091 –1% NS 

I767d 136 868 –1% 0.8  1102 0% NS 

        

Males        

Cont_13 273 830    1089   

ACA_lo 147 918 11% <0.0001  1211 11% 0.0004 

ACA_mid 161 975 17% <0.0001  1210 11% 0.0004 

ACA_hi 163 964 16% <0.0001  1181 8% 0.0001 

UA 151 883 6% 0.38  1092 0% 0.91 

Cont_12 284 816    1055   

HBX 155 822 1% 0.4  1069 1% NS 
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I767d 147 791 –3% 0.11  1012 –4% NS 

 

Lifespans of ITP mice from cohorts 2013 and 2012. Cont_13 = controls for cohort 

started in 2013; Cont_12 = controls for cohort started in 2012.  

N = number of mice tested; data were pooled, with about 1/3 from each testing site.  

NS = not significant. 

Probabilities that lifespans are the same as the controls in column 4 (p-value) used two-

tailed log-rank test on pooled data stratified by sites; "removed" mice were included in 

these calculations. 

Probabilities that the proportion of live mice is the same in treated as in the control 

group at the 90th

Amounts of ACA in diet: hi = 2500 ppm; mid = 1000 ppm; lo = 400 ppm 

 percentile age are evaluated by the procedure of Wang et al., (2004).  

UA, HBX, and 1767d had no significant effect on lifespan in the doses used. 

 

 

 

Table 1B. Effects of ACA on median lifespan at each ITP site 

 

 TJL UM UT  

Group Days 

% 

change p-value Days 

% 

change p-value Days 

% 

change p-value 

Mean % 

change 

Females           

Cont_13 890    870   897    

ACA_lo 887 0% 0.43  871 0% 0.49 923 3% 0.03 1% 

ACA_mid 934 4% 0.33  890 1% 0.06 950 4% 0.02 3% 

ACA_hi 938 6% 0.13  931 6% 0.32 917 2% 0.03 5% 

           

Males           

Cont_13 803    912   807    

ACA_lo 880 10% 0.001 924 1% 0.21 919 14% 0.0006 8% 

ACA_mid 967 20% 0.000 1033 13% 0.006 914 13% 0.002 16% 

ACA_hi 960 20% 0.000  975 7% 0.21 957 19% 0.000 15% 
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For each site, this table lists median lifespans, % change, and the log-rank p-value from 

the control (Cont_13) for mice fed the three different doses of ACA starting at 8 months 

of age.  

A p-value of 0.000 means p < 0.001.  

The rightmost column shows averages ("Mean % change") of median changes across 

the three sites.  

 

 

 

Table 2. Effects of ACA on weight and body composition at TJL  

 

Group 

Body 

weight 

(g) 

Fat 

weight 

(g) 

Lean 

weight 

(g) 

Body 

weight 

(g) 

Fat 

weight 

(g) 

Lean 

weight 

(g) 

Body 

weight 

(g) 

Fat 

weight 

(g) 

Lean 

weight 

(g) 

Females 17 months 23 months 29–30 months 

Control 44 ± 2 17 ± 2 21 ± 1 43 ± 3 15 ± 3 21 ± 1 37 ± 3 8 ± 3 23 ± 1 

ACA 33 ± 2** 7 ± 1** 21 ± 1 36 ± 3 8 ± 2* 21 ± 2 29 ± 2* 2 ± 1* 20 ± 2* 

 

      

 

  

 

Males 16 months 22–23 months 29–30 months 

Control 42 ± 2 8 ± 2 26 ± 3 42 ± 4 9 ± 3 21 ± 1 34 ± 3 3 ± 2 24 ± 2 

ACA 42 ± 1 7 ± 1 25 ± 2 41 ± 2 7 ± 2 21 ± 2 35 ± 1 2 ± 1 27 ± 1 

 

          

Mice were tested using the EchoMRI™ 3-in-1.   

The ages of the mice are given for each sex.  

ACA-treated mice were fed ACA at 1000 ppm starting at 4 months of age.  The mice 

tested were not the same mice used for lifespan studies. 

Statistical tests were a two way repeated measures ANOVA 

**Control differs from ACA fed p < 0.0001. 

*Control differs from ACA fed p = 0.04 to 0.01. 

Numbers of HET3 mice tested at 16–17, 22–23 and 28–29 months — Females: ACA-

treated (12, 9, 4); Controls (14, 13, 5). Males: ACA-treated (20, 18, 14); Controls (9, 4, 
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4).  

 

 

 

 

 

Figure Legends 

 

Figure 1.  Effects of ACA on lifespan and body weight.   

 

Effects of dietary ACA dose on:  1-A,B  lifespans; 1-C,D  body weights over lives of the 

same mice.   

 

Lifespan curves (Fig 1A and B for females and males) show the entire lifespan from 

the data used to produce Table 1A, which includes sample sizes and statistical 

analyses of differences in median and 90th

Body weights (Fig 1C and D for females and males) represent 115 to 165 mice 

tested at 6, 12, 18, and 24 months of age in the ACA fed groups. Numbers of controls 

were about twice as high.  Using one-way ANOVA with Sidak post-hoc test, there was 

no effect of ACA at 6 months. At 12 and 18 months, weights were significantly different 

as shown by >: Males - Control, ACA_lo > ACA_hi, ACA_mid; Females - Control > 

ACA_lo > ACA_mid, ACA_hi. At 24 months of age, there were no significant differences 

between Control and treated males, while in Females - Control, ACA_Lo > ACA_hi, 

ACA_mid. Weights at 24 months are hard to interpret, due to unbalanced death rates at 

the three sites, and possible weight loss due to ill health.   

 percentile values from the control as a result 

of each ACA dose. 

 

 

Figure 2.  Changes with age in body composition due to dietary ACA. 
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Effects of 1000 ppm ACA diet starting at 8 months of age on weights and body 

composition from 8 to 22 months of age at UT.  

Giving numbers of mice at 8 - 22 months of age : females (32-28 controls, 32-28 ACA-

treated); males (32 - 14 controls, 33 - 30 ACA-treated). 

The same groups of mice were tested at 8, 12, 16, 20, and 22 months. ACA treated 

have blue dots;  controls black dots.  Data are shown as mean ± SE, and weights and 

body fat were significantly lower, while lean mass was significantly higher in both males 

and females fed the ACA diet as measured by  

 

2-way anova using GraphPad version 

7.03, which accounted for the missing mice. 

 

 

Figure 3. Effects of ACA on fat depends on specific fat type 

 

Effects of ACA on amount of fat relative to body weight in 12-month-old HET3 mice at 

UM. Numbers of male ACA and controls are 9 each, while 8 females received  ACA and 

6 were controls. 

   

In subscapular fat, ACA effects are sex-specific: females, p = 0.71; males, p < 0.001. 

In mesenteric fat, ACA results in a strong reduction in both sexes: p < 0.001. 

In gonadal fat, ACA effects are similar in both sexes, but weak: p = 0.074. 

In Inguinal fat, ACA has no effect. 

P values, from analysis of covariance, reflect differences in the intercept term, which 

measures whether ACA alters fat pad weight after adjustment for body weight. 

HET3 mice were fed diet with 1000 ppm ACA starting at 4 months; controls were fed the 

base diet. 

Mice were fasted for 18 h prior to dissection.  

This was part of a larger study in which mice had a sham-operation procedure at age 3 

months. They were anesthetized, gonads were exteriorized through an incision and 

then returned to the abdominal cavity, and the wound closed.  
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FIGURE 4. Microhistopathology effects of ACA.   

 

Lesions are compared in controls and mice fed the 1000 ppm ACA diet starting at 4 

months of age. 

 

Numbers of mice: ACA old – 57 F and 54 M. The Control group consisted of 41 male 

and 43 female animals, of which 11 males and 14 females were contemporaneous with 

the current ACA population, and the remainder consisted (as a pre-planned strategy) of 

controls from earlier cohorts also evaluated at 22 months of age. About a third of the 

mice came from each site. The values shown are percentage of cases with the 

indicated lesions, and p-values reflect differences between two proportions using an 

asymptotically, normally distributed z statistic, as documented in the STATA program. 

 

 

 

FIGURE 5. ACA effects on blood glucose after refeeding. 

 

Post-prandial blood glucose is reduced in males but not in females by 6 weeks on ACA 

diets 

 

Male and female UM-HET3 mice were given one of 4 diets for 6 weeks starting at 4 

months of age. Each point represents the mean ± SEM of 10 mice, tested at the 

indicated times. Green symbols indicate diets formulated with ACA at 2500 ppm; blue 

1000 ppm; red 400 ppm; and white 0 ppm (control). 

Mice were fasted from 18:00 until 9:00 the next day. Blood glucose was measured at “0” 

minutes (before food was returned), and at 30, 60, 180, and 360 minutes after the food 

was returned to their cages. 

All measures were made in each sex in a single session, but in different sessions for 

each sex 
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Data were analyzed using RM one-way analysis of variance (ANOVA) for male and 

female mice separately. In both sexes, we compared the differences between the four 

groups using GraphPad Prism 7.03.  

In females, the different diets did not affect blood glucose levels significantly (P = 

0.092). 

In males, the different diets had significant effects on blood glucose (P = 0.002).     

 

 

 

FIGURE 6. Effects of ACA on rotarod performance.  

 

Training on a rotarod was more effective in females fed ACA, but there was no benefit 

in males. 

 

Groups of male and female UM‐ HET3 mice were fed control or acarbose‐ containing 

diets (1000 ppm) beginning at eight months of age until they were 22 months of age. A 

group of 4‐ month‐ old mice fed the control diet served as the young control group. 

Mice were trained on a rotarod for 5 days, with a final test done on day 6, and the 

latency to fall was tested. 

Average performance is shown by treatment, day, and sex. Error bars represent 

standard errors of the means. Sample sizes for female mice were: young control = 19, 

ACA fed = 27, and old control  = 27; and for male mice: young control = 19, ACA fed = 

29, and old control  

Since mice with lower weights tended to have higher rotarod times, weight was 

regressed onto group, and the residuals from this model used to adjust for weight in an 

ANCOVA comparing averages between groups (young vs. acarbose vs. untreated).  

= 14. 
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Fig 1C        Fig 1D 

 

FIGURE 1.  Effects of ACA on lifespan and body weight.   
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Fig 2D      Fig 2E     Fig 2F 

 

FIGURE 2.  Effects of ACA on body composition 

 

FIGURE 3. Effects of ACA on specific fat pads 
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FIGURE 4. Effects of ACA on lesions 
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FIGURE 5. ACA effects on blood glucose after refeeding. 
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FIGURE 6. Effects of ACA on rotarod performance.  
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