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Abstract

Introduction: Prenatal exposure to some phenols and parabens has been associated with adverse birth outcomes.
Hormones may play an intermediate role between phenols and adverse outcomes. We examined the associations
of phenol and paraben exposures with maternal reproductive and thyroid hormones in 602 pregnant women in
Puerto Rico. Urinary triclocarban, phenol and paraben biomarkers, and serum hormones (estriol, progesterone,
testosterone, sex-hormone-binding globulin (SHBG), corticotropin-releasing hormone (CRH), total triiodothyronine
(T3), total thyroxine (T4), free thyroxine (FT4) and thyroid-stimulating hormone (TSH)) were measured at two visits
during pregnancy.

Methods: Linear mixed models with a random intercept were constructed to examine the associations between
hormones and urinary biomarkers. Results were additionally stratified by study visit. Results were transformed to
hormone percent changes for an inter-quartile-range difference in exposure biomarker concentrations (%Δ).
Results: Bisphenol-S was associated with a decrease in CRH [(%Δ -11.35; 95% CI: -18.71, − 3.33), and bisphenol-F
was associated with an increase in FT4 (%Δ: 2.76; 95% CI: 0.29, 5.22). Butyl-, methyl- and propylparaben were
associated with decreases in SHBG [(%Δ: -5.27; 95% CI: -9.4, − 1.14); (%Δ: -3.53; 95% CI: -7.37, 0.31); (%Δ: -3.74; 95% CI: -7.76,
0.27)]. Triclocarban was positively associated with T3 (%Δ: 4.08; 95% CI: 1.18, 6.98) and T3/T4 ratio (%Δ: 4.67; 95% CI: -1.37,
6.65), and suggestively negatively associated with TSH (%Δ: -10.12; 95% CI: -19.47, 0.32). There was evidence of
susceptible windows of vulnerability for some associations. At 24–28 weeks gestation, there was a positive
association between 2,4-dichlorophenol and CRH (%Δ: 9.66; 95% CI: 0.67, 19.45) and between triclosan and
estriol (%Δ: 13.17; 95% CI: 2.34, 25.2); and a negative association between triclocarban and SHBG (%Δ: -9.71;
95% CI:-19.1, − 0.27) and between bisphenol A and testosterone (%Δ: -17.37; 95% CI: -26.7, − 6.87).

Conclusion: Phenols and parabens are associated with hormone levels during pregnancy. Further studies are
required to substantiate these findings.
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Background
Exposure to phenols and parabens has been linked to
various adverse health effects, including ovarian toxicity,
cancer, and adverse neurodevelopmental outcomes [1–4].
Prenatal exposure to these chemicals, in particular, may
have a long lasting effect on fetal health into adulthood.
For example, prenatal exposure to phenols and parabens
has been linked to adverse birth outcomes [5, 6], respi-
ratory health effects in children [7], and cardiometabolic
risk [8]. The exact mechanisms at play are still not fully
understood; however, endocrine disruption is hypothe-
sized to be one of the main toxicity pathways [3, 9–11].
Reproductive and thyroid hormones play an essential

role in the maintenance of pregnancy and the develop-
ment of the fetus [12–16], therefore pregnancy is a
vulnerable window for endocrine disruption due to the
varying levels of hormones involved in the growing
organism [17]. Endocrine disrupting chemicals could act
through several pathways, including hormone synthesis,
regulation, transport and metabolism, and/or inter-
ference with receptors. Phenols and parabens have estro-
genic and androgenic properties [1, 18–20], but few
human studies have looked into the effect of these che-
micals on maternal hormones during pregnancy. Most
existing studies in this area use smaller study popula-
tions or only examined a single time point in pregnancy,
which do not capture the changing hormone levels and
high variability of phenols and paraben exposure during
pregnancy. Furthermore, no or few studies explored the
associations between these chemicals and maternal
testosterone, corticotropin-releasing hormone (CRH),
sex hormone-binding globulin (SHBG) and estriol, all of
which play essential roles in maintaining healthy pregnancies.
Given the growing evidence of the endocrine disrupt-

ing effects of phenols and parabens [18, 21–25], our aim
was to study the relationships between phenols and
parabens on reproductive and thyroid hormones in our
ongoing cohort of pregnant women in Puerto Rico. The
study follows the women over multiple time points
during pregnancy, providing more power than previous
studies, and allows for the identification of potential
windows of susceptibility. We previously reported early
preliminary results on associations between select phe-
nols and parabens with hormones in this Puerto Rican
cohort [26]. This manuscript is an update of our pre-
vious results that utilizes a much larger sample size,
includes additional hormones (estriol, testosterone, total
triiodothyronine, and total thyroxine), as well as ad-
ditional exposure biomarkers yet to be studied in detail
(ethylparaben, BPS, BPF and triclocarban). Due to the
lack of human health data, this study was exploratory in
nature, with the exception of BPA, triclosan, methyl-
paraben and propylparaben. We hypothesized a decrease
in serum thyroid hormone levels in association with

triclosan, methyl- and propyl-paraben, and an increase
in serum thyroid hormones with BPA concentrations.

Methods
Study participants
Participants for the present study were from an ongoing
prospective cohort of pregnant women in Puerto Rico,
named the Puerto Rico Testsite for Exploring Contami-
nation Threats (PROTECT) cohort. Details on the re-
cruitment and inclusion criteria have been described
previously [27, 28]. The study participants included in
the present analysis were recruited from 2012 to 2017 at
14 ± 2 weeks gestation from two hospitals and five affili-
ated prenatal clinics in Northern Puerto Rico. They were
aged between 18 and 40 years. The exclusion criteria
included women who lived outside the region, had
multiple gestations, used oral contraceptives within 3
months prior to getting pregnant, got pregnant using in
vitro fertilization, or had known medical health condi-
tions (diabetes, hypertension, etc.). Three visits were
conducted with the study participants to coincide with
periods of rapid fetal growth and routine clinical visits
(Visit 1: 16–20; Visit 2: 20–24; Visit 3: 24–28 gestation
weeks). Demographic information was collected via ques-
tionnaires at the initial study visit. Spot urine samples
were collected at the three study visits, whereas blood
samples were collected during the first and third visits.
The present analysis includes 602 women recruited

into the study (of the total 1311 women enrolled in the
cohort to date) for whom both total phenol and paraben
concentrations and hormone measurements from at
least one study visit were available. This study was
approved by the research and ethics committees of
the University Of Michigan School Of Public Health,
University of Puerto Rico, Northeastern University, and
the University of Georgia. All study participants provided
full informed consent prior to participation. The involve-
ment of the Centers for Disease Control and Prevention
(CDC) laboratory did not constitute engagement in hu-
man subjects research.

Quantification of urinary biomarkers
After collection, spot urine samples were divided into ali-
quots and frozen at -80 °C until they were shipped overnight
with dry ice to the CDC for analysis. Urine samples were
analyzed for seven phenols (2,4-dichlorophenol, 2,5-dichlo-
rophenol, BPA, BPS, BPF, benzophenone-3, triclosan), tri-
clocarban, and four parabens (ethylparaben, methylparaben,
butylparaben, propylparaben) using online solid phase
extraction-high-performance liquid chromatography-
isotope dilution tandem mass spectrometry [29–31].
Biomarker concentrations below the limit of detection
(LOD) were assigned a value of the LOD divided by √2 [32].
The LODs were as follows: 0.1 μg/L (2,4-dichlorphenol,
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2,5-dichlorophenol, BPS, triclocarban, butylparaben, propyl-
paraben); 0.2 μg/L (BPA, BPF); 0.4 μg/L (benzophenone-3);
1 μg/L (methylparaben, ethylparaben); and 1.7 μg/L
(triclosan). Urinary dilution was accounted for by using
urinary specific gravity (SG), and was measured using a
digital handheld refractometer (AtagoCo., Ltd., Tokyo,
Japan). For preliminary data analysis, urinary biomarker
concentrations were corrected for SG using the follo-
wing formula:

PC ¼ M SGm−1ð Þ= SGi−1ð Þ½ �

where Pc is the SG-corrected concentration (μg/L), M
is the measured concentration, SGm is the study popula-
tion median urinary specific gravity (1.0196), and SGi is
the individual’s urinary specific gravity. The sample size
for BPF, BPS, triclocarban and ethylparaben was smaller
than the rest of the biomarkers because they were only
quantified in a later sub-sample of the cohort.

Hormone measurement
Serum samples were collected during visits 1 and 3.
Volume limitations resulted in differences in the number
of samples analyzed by hormone. All hormone analyses
were conducted at the Central Ligand Assay Satellite
Services (CLASS) laboratory, Department of Epide-
miology, School of Public Health, University of Michigan.
Progesterone, SHBG, testosterone, total triiodothyronine
(T3), total thyroxine (T4), free thyroxine (FT4), and
thyroid-stimulating hormone (TSH) were measured in
serum using a chemiluminescence immunoassay (ADVIA
Centaur® CP Immunoassay System, Seimens Healthi-
neers). Estriol and CRH were measured in serum using an
enzyme immunoassay (Estriol ELISA Kit, ALPCO; CRH
ELISA Kit, LifeSpan BioSciences). In addition to measured
hormones, the ratio of progesterone to estriol (Prog/Es-
triol Ratio), and the ratio of T3 and T4 (T3/T4 ratio) were
calculated for the purposes of this analysis. Hormone
ratios may be a better indicator of adverse pregnancy
outcomes (such as preterm birth) than the individual
hormones alone [33–35]. Two samples had a TSH level
below the LOD. Because this result was not biologically
plausible, these two values were dropped from the analyses.

Statistical analyses
Distributions of key demographic characteristics were cal-
culated. All urinary exposure biomarkers, and the serum
hormones progesterone, estriol, CRH, TSH and progeste-
rone/estriol ratio were positively-skewed, and were natural
log-transformed. The distributions of SHBG, FT4, T3, T4
and T3/T4 ratio approximated normality and remained
untransformed in all analyses. Geometric means and
standard deviations were calculated for all SG-corrected

exposure biomarkers, hormones, and the ratios of proges-
terone/estriol and T3/T4. We examined urinary exposure
biomarkers concentrations and serum hormone levels by
study visit, and calculated Spearman correlations between
unlogged average SG-corrected exposure biomarkers. To
assess differences in exposure biomarkers and hormones
across study visits, we ran Linear Mixed Models (LMM)
with a subject-specific random intercept regressing the
biomarker or hormone against the study visit. Specific
gravity was used as a covariate in the model instead of
using the SG-corrected biomarker concentrations. The se-
lection of a random intercept and slope was determined
using BIC values. BPF and ethylparaben were detected in
less than 50% of the samples. Therefore, we transformed
BPF and ethylparaben into dichotomous variables, where
0 represented concentrations below the LOD, and 1 repre-
sented detectable concentrations. These categorical BPF
and ethylparaben variables were used in all of the follow-
ing regression analyses.
In our repeated measures analysis, we regressed one

hormone or hormone ratio on one urinary biomarker
using LMM, with a subject-specific random intercept for
each model to account for intra-individual correlation of
serial hormone measurements collected over the two
study visits. The urinary biomarker concentrations at the
two visits were treated as time-varying variables in the
LMM models. Crude models included specific gravity
and study visit as covariates. Potential confounders were
selected a priori from the existing literature, and
included as covariates if they were found to change the
main effect estimate by > 10%. Final models were
adjusted for specific gravity, study visit, body mass index
(BMI) at the first study visit, maternal age, the number
of hours of second-hand smoking exposure per day, and
a socio-economic variable. All covariates, except for
maternal age and specific gravity, were categorical. The
socio-economic variable used in the model differed by
the hormone regressed. Maternal education was a strong
confounder for models regressing progesterone, estriol,
and progesterone/estriol ratio against urinary biomarkers
concentrations, and was used as the socio-economic
index for those models. All other models used insurance
type as the socio-economic status index. The selection
of the socio-economic variable was based on the percent
change in the main effect estimate, and the p value of
the socio-economic variable in final models.
To assess windows of vulnerability, we ran two more

analyses. First, we ran the same LMMs regressing hor-
mones and urinary biomarkers concentrations with an
interaction term between the urinary biomarker and the
study visit. Second, we ran multiple linear regressions
(MLR) stratified by study visit of sample collection. The
MLR models were adjusted for the same covariates as
those in the LMMs.
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To increase interpretability of our results, we trans-
formed regression coefficients to percent changes (and
associated 95% confidence intervals, CIs) in hormone
concentration in relation to the interquartile range
(IQR) increase in urinary biomarker concentrations. Beta
coefficients from models with categorical biomarkers
(BPF and ethylparaben) were transformed to percent
changes (and associated 95% confidence intervals) in hor-
mone concentration at detectable vs non-detectable
biomarker concentrations. The alpha level was set at 0.05.
All statistical analyses were conducted in R Version 3.4.2.
As a sensitivity analysis, all models were re-run using

specific gravity as a covariate in combination with
exposure biomarkers corrected for specific gravity as
was described by O’Brien et al. [36]. We observed no
differences in our results, and therefore, retained our
original models using un-corrected exposure biomarkers
with specific gravity included as a covariate.

Results
The 602 study participants had a mean age of 26.4 and
approximately 60% had BMI levels below 30 kg/m2

(Table 1). Although the majority of women reported
never smoking (75%), 4% reported currently smoking,
and 7% reported exposure to second-hand smoking for
more than an hour per day. Six percent reported con-
suming alcohol in the last few months. A quarter of the
study participants reported a household income of less
than $10,000, and only 11% reported a household
income >$50,000. A quarter of the participants did
not report their incomes. As compared to the overall
PROTECT cohort, the study participants included in the
present analysis had higher rates of smoking, and had
overall lower household income and education levels.
The exposure biomarkers included in this analysis

were highly detected in the study population, with the
exception of ethylparaben and BPF (Table 2). BPF was
detected in between 50 and 60% of the study sample;
ethylparaben was detected in between 42 and 54% of the
sample, depending on study visit. Concentrations of
urinary biomarkers remained relatively consistent across
the two study visits, with the exception of a decrease in
BPA (p < 0.001) and butylparaben (p = 0.04). There was
an increase in most hormones across the two study
visits, particularly progesterone, estriol, SHBG and CRH.
T4 levels remained consistent from 16 to 20 and 24–28
weeks gestation.
Methylparaben and propylparaben were strongly corre-

lated [Spearman correlation of 0.8 (p < 0.001)] (Fig. 1).
Ethylparaben and butylparaben showed moderate cor-
relation with methylparaben and propylparaben with
Spearman correlations between 0.33–0.47 (p values < 0.001).
2,4-Dichlorophenol and 2,5-dichlorophenol showed a fairly
strong correlation (Spearman r = 0.6, p < 0.001). Triclosan

Table 1 Summary demographics and differences between the
PROTECT study participants included in present analysis versus
participants not included because of missing urine and/or
serum samples

Total N Included Not Included p

602 709

Age (mean [SD]) 26.51 (5.66) 26.94 (5.34) 0.25

BMI in kg/m2 (%)

< 25 245 (40.7) 192 (27.1) 0.99

25–30 114 (18.9) 87 (12.3)

> 30 73 (12.1) 56 (7.9)

Missing 170 (28.2) 374 (52.8)

Current Smoker (%)

Never 440 (73.1) 323 (45.6) 0.03

Ever 63 (10.5) 57 (8.0)

Current 23 (3.8) 6 (0.8)

Missing 76 (12.6) 323 (45.6)

Exposure to Second-Hand Smoking per Day (%)

Up to half an hour 443 (73.6) 338 (47.7) 0.16

Up to an hour 25 (4.2) 19 (2.7)

More than an hour 41 (6.8) 18 (2.5)

Missing 93 (15.4) 334 (47.1)

Alcohol Consumption (%)

No 273 (45.3) 190 (26.8) 0.61

Before pregnancy 215 (35.7) 170 (24.0)

Yes within the last few months 36 (6.0) 24 (3.4)

Missing 78 (13.0) 325 (45.8)

Household Income in U.S. $ (%)

< 10,000 152 (25.2) 82 (11.6) 0.03

10,000 - 30,000 132 (21.9) 114 (16.1)

30,000 - 50,000 101 (16.8) 83 (11.7)

> 50,000 64 (10.6) 59 (8.3)

Missing 153 (25.4) 371 (52.3)

Maternal Education (%)

< High School 123 (20.4) 64 (9.0) 0.02

Some college 194 (32.2) 137 (19.3)

College graduate 210 (34.9) 182 (25.7)

Missing 75 (12.5) 326 (46.0)

Insurance Type (%)

Public (Mi Salud) 318 (52.8) 340 (48.0) 0.001

Private 222 (36.9) 153 (21.6)

Missing 62 (10.3) 216 (30.5)
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was moderately correlated with 2,4-dichlorophenol
(Spearman r = 0.5, p < 0.001), but not with 2,5-dichloro-
phenol (Spearman r = − 0.03). BPA, BPS and BPF showed
low correlation (Spearman r = 0.11–0.21, p < 0.001).
Results from LMMs and MLRs are described in detail

below by biomarker (Tables 3, Additional file 1: Table S1
and S2, and Additional file 2). There were few differences
between most adjusted and unadjusted models, with the
exception of associations with CRH. MPB and PPB were
associated with CRH in our unadjusted models, but in the
adjusted models, these associations disappeared, and CRH
was associated with BPS and TCS. A further analysis of
CRH concentrations across the covariate levels did not re-
veal any large differences to report.

There were no associations between 2,4-dichloro-
phenol and 2,5-dichlorophenol with hormones in
LMMs. An IQR increase in 2,4-dichlorophenol was
associated with a 10% increase in CRH at 24–28 weeks
[9.66% change in hormone per IQR change in the
biomarker/ percent change in hormone at detectable bio-
marker concentrations (%Δ); 95% CI: 0.67, 19.45], and a
suggestive 2% decrease in T3 at 16–20 weeks (%Δ -2.22
95% CI -4.55, 0.10).
Associations across the bisphenols differed, and BPS

had the strongest associations in LMM models. BPS was
associated with an 11% decrease in CRH (%Δ -11.35;
95% CI: -18.71, − 3.33), and this association was stronger
at 16–20 weeks gestation. At this time point, BPS was

Table 2 Distribution of SG-corrected urinary biomarker concentrations and hormones and differences by study visit of sample
collection in pregnancy

Biomarkersa 16–20 weeks (N = 389) 24–28 weeks (N = 262) p-value

GM (GSD) % < LOD 25% 50% 75% 95% GM (GSD) % < LOD 25% 50% 75% 95%

2,4-DCP 1.17 (3.24) 0.5 0.52 0.93 2.0 10.7 1.13 (9.8) 2.3 0.46 0.86 2.19 12.9 0.65

2,5-DCP 14.03 (5.14) 0.3 4.57 10.4 30.2 432.6 13.63 (360.3) 0 4.63 9.61 26.53 429.6 0.70

BPA 2.31 (2.25) 0.3 1.33 2.14 3.36 9.56 1.88 (2.4) 0.8 1.14 1.83 3.0 6.18 < 0.001*

BPSi 0.54 (3.15) 3.4 0.23 0.50 1.07 4.01 0.54 (5.2) 8.6 0.23 0.47 1.06 4.23 0.95

BPFi 0.35 (3.18) 51.9 <LOD 0.25 0.56 2.88 0.31 (2.4) 59.9 <LOD 0.24 0.46 2.09 0.22

BP-3 38.34 (6.49) 0.5 10.6 22.4 110.8 1547 44.27 (2500.4) 0.8 11.9 25.3 160.7 1913.5 0.69

TCS 21.78 (8.72) 11.1 3.70 13.1 146.8 877.4 25.03 (327.4) 6.1 4.73 17.9 118.6 960.2 0.64

TCCi 4.34 (10.27) 5.8 0.70 3.36 33.6 157.7 4.86 (56.2) 5.6 0.78 4.78 32.76 168.6 0.46

EPBi 3.42 (7.73) 42.4 <LOD 1.66 15.4 177.5 2.55 (62.1) 54 <LOD <LOD 7.6 76.1 0.12

MPB 80.72 (5.06) 0.3 25.08 116.5 274.8 846.1 92.5 (359) 0.8 30.2 111 314.5 1054.9 0.18

BPB 0.55 (8.12) 23.8 0.10 0.25 2.17 39.1 0.42 (12.2) 33.5 0.10 0.2 0.91 32.6 0.04*

PPB 17.51 (7.19) 0 3.59 21.1 80.5 262.4 17.61 (111.4) 0.4 4.0 25.17 83.65 253.8 0.99

Hormones 16–20 weeks (N = 483) 24–28 weeks (N = 389) p-value

GM (GSD) % < LOD 25% 50% 75% 95% GM (GSD) % < LOD 25% 50% 75% 95%

Progesteroneb 49.63 (1.49) 0 37.2 48.5 61.6 98.2 95.94 (1.65) 0 70.9 90.9 129.2 222.7 < 0.001*

Estriolb 18.85 (1.76) 0 13.2 17.6 27.5 50.5 44.63 (1.59) 0 33.8 44.9 57.5 97.3 < 0.001*

SHBG c 575.22 (1.4) 0 482.4 588.6 703.8 907.9 670.19 (1.35) 0 536.3 672.9 832.6 1097.7 < 0.001*

Prog/Estriol 2.64 (1.69) – 1.97 2.66 3.70 5.83 2.15 (1.62) – 1.58 2.12 2.86 4.48 < 0.001*

CRHd 76.67 (1.70) 0 54.8 80.6 111.8 171.9 78.01 (1.76) 0 55.2 82.8 114.3 178.1 < 0.001*

Testosteronef 50.55 (1.81) 1.8 37.5 51.5 73.5 124.4 60.22 (1.75) 0.9 45.1 60.7 88.1 131.6 < 0.001*

TSHe 1.29 (2.14) 0 0.93 1.38 2.06 3.28 1.45 (1.79) 0 1.08 1.51 2.05 3.64 0.04*

FT4f 1.10 (1.13) 0 1.02 1.10 1.19 1.35 1.06 (1.13) 0 0.98 1.06 1.15 1.29 < 0.001*

T3b 1.94 (1.22) 0 1.71 1.97 2.22 2.59 1.95 (1.21) 0 1.72 1.99 2.24 2.67 0.03*

T4 g 11.90 (1.20) 0 10.7 11.95 13.3 15.7 11.71 (1.20) 0 10.5 11.7 13.2 15.5 0.27

T3/T4 0.16 (1.21) – 0.14 0.16 0.19 0.23 0.17 (1.22) – 0.15 0.17 0.19 0.23 < 0.001*

GM Geometric mean, GSD Geometric standard deviation
2,4-DCP: 2,4-dichlorophenol; 2,5-DCP: 2,5-dichlorophenol; BP-3 Benzophenone, TCS Triclosan, TCC Triclocarban, EPB ethylparaben, MPB Methylparaben, BPB
Butylparaben, PPB Propylparaben
Range of gestational weeks: 16–20 weeks: 16–20 weeks gestation, 24–28 weeks: 24–28 weeks gestation
*Significant difference (p < 0.05) in urinary biomarker or hormone compared to reference (16–20 weeks) using linear mixed models with a random intercept
aUnits: μg/L. b Units: ng/mL. c Units: nmol/L. d Units: pg/mL. e Units: uIU/mL. f Units: ng/dL. g Units: μg/dL. I BPS, BPF, TCC and EPB had the lowest sample sizes
because they were added to the biomarker assay at mid-study. At 16–20 weeks, these four urinary biomarkers had N = 295. At 24–28 weeks, these four urinary
biomarkers had N = 198

Aker et al. Environmental Health           (2019) 18:28 Page 5 of 13



additionally associated with a 12% decrease in TSH (%Δ
-11.93; 95% CI: -22.49, 0.07). BPF was associated with a
3% increase in FT4 (%Δ 2.76; 95% CI: 0.29, 5.22), and
this association was also stronger at 16–20 weeks. BPA,
on the other hand, had stronger associations at 24–28
weeks gestation. BPA was associated with a 17% de-
crease in testosterone, and 2–4% increases in FT4 and
T3 at 24–28 weeks [(%Δ -17.37; 95% CI: -26.7, − 6.87);
(%Δ 2.38; 95% CI: 0.04, 4.72); (%Δ4.33, 95% CI: 0.11,
8.55), respectively]. The increase in FT4 and T3 in re-
lation to BPA was in line with our a priori hypothesis
Benzophenone-3 was not significantly associated with
any hormones.
Triclocarban was associated with a number of thyroid

hormones and SHBG. An IQR increase in triclocarban is
associated with a 4% increase in T3 (%Δ 4.08; 95% CI:
1.18, 6.98), a 5% increase in the T3/T4 ratio (%Δ 4.67;
95% CI: 1.24, 10.10), a suggestive 10% decrease in TSH
(%Δ -10.12; 95% CI: -19.47, 0.32), and a 10% decrease in
SHBG at 24–28 weeks (%Δ -9.71; 95% CI: -19.1, − 0.27).
Triclosan was associated with an increase in a number

of reproductive hormones, however most were only sug-
gestive with p values between 0.05 and 0.10. This
includes a 9% increase in CRH (%Δ 9.20; 95% CI: -0.97,
20.42), a 7% increase in testosterone (%Δ 7.13; 95% CI:
-0.60, 15.5), and 10–13% increases in progesterone and
estriol at 24–28 weeks [(%Δ 9.72, 95% CI: -1.27, 21.9);
(%Δ 13.2; 95% CI: 2.34, 25.2), respectively]. In addition,

triclosan was associated with a 5.8% decrease in T3 at
24–28 weeks; this finding was in line with our a priori
hypothesis.
IQR increases in butylparaben, methylparaben and

propylparaben were associated with a decrease in
SHBG [(%Δ -5.27; 95% CI:-9.40, − 1.14); (%Δ -3.53;
95% CI: -7.37, 0.31); (%Δ -3.74; 95% CI: -7.76, 0.27),
respectively]. Methylparaben was also associated with
decreases in reproductive hormones, including an 8%
decrease in estriol, a suggestive 3% increase in the proges-
terone/estriol ratio, and a suggestive decrease in testoster-
one at 16–20 weeks [(%Δ -7.76; 95% CI: -15.4, 0.61); (%Δ
3.14; 95% CI: -2.95, 9.61); (%Δ -6.77; 95% CI: -13.13, 0.29),
respectively]. Conversely, an IQR increase in propylpara-
ben was associated with a 9–10% increase in progesterone
and estriol at 24–28 weeks [(%Δ 9.67; 95% CI: -1.30,
21.85); (%Δ 8.92; 95% CI: -1.56, 20.52)]. Interaction terms
between study visit*methylparaben and propylparaben
had p values < 0.05 in models regressed against estriol.
We expected to see a decrease in thyroid hormones in re-
lation to methyl- and propyl- paraben, but only observed a
decrease in TSH in association with methylparaben,
particularly at 16–20 weeks (%Δ -11.69; 95% CI:
-21.97, − 0.06). The decrease in TSH could indicate an
increase in circulating thyroid hormones, in contrast to
our hypothesis.

Discussion
Associations differed by exposure biomarker and hor-
mone, and there was little consistency within chemical
classes with the exception of some parabens. There was
evidence of a decrease up to 6% in T3 in association
with 2,4-dichlorophenol, BPA and triclosan, whereas
triclocarban was associated with a 4% increase in T3. In
the case of bisphenols, BPS was more strongly related to
decreases in hormones at 16–20 weeks, and BPA had
stronger negative relationships at 24–28 weeks. Triclosan
was associated with general increases in reproductive
hormones of approximately 10%, and triclocarban was
associated with 5–10% changes in thyroid hormones.
Parabens were associated with a decreased level of SHBG.
While there may be structural similarities between

BPA, BPS and BPF, the structural variations may be suf-
ficient to alter receptor-binding affinities across the
bisphenols [37]; therefore, the biological effects may vary
among the bisphenols. To this, we found that the earlier
time point (16–20 weeks gestation) may be a more
vulnerable time of exposure to BPS and BPF, in contrast
to the stronger relationships observed at the 24–28 weeks
with respect to BPA. Our results were somewhat consis-
tent with results from previous studies. BPA has been sus-
pected to interfere with thyroid hormones, as evidenced
by several epidemiological studies. We observed an
increase in FT4 and T3, which was consistent with two

Fig. 1 Heat map of Spearman correlations between unlogged
urinary triclocarban, phenols and parabens. Biomarkers concentrations
were adjusted for urinary dilution. 2,4-DCP: 2,4-dichlorophenol; 2,5-DCP:
2,5-dichlorophenol; BP-3: Benzophenone; TCS: Triclosan; TCC:
Triclocarban; EPB: ethylparaben; MPB: Methylparaben; BPB: Butylparaben;
PPB: Propylparaben
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Table 3 Results of the adjusted LMMs regressing hormones versus exposure biomarkers

CRH SHBG Testosterone Progesterone Estriol Progesterone/
Estriol Ratio

2,4-
DCP

% Δ/
IQR

5.30 (− 2.81, 14.08) 2.06 (− 1.49, 5.61) 3.26 (− 3.01, 9.94) 1.60 (− 3.42, 6.87) − 1.93 (− 7.54, 4.01) 3.58 (− 1.85, 10.16)

p 0.21 0.26 0.32 0.54 0.52 0.24

2,5-
DCP

% Δ/
IQR

3.89 (− 3.29, 11.61) 0.96 (− 2.25, 4.17) 1.75 (− 3.85, 7.69)a − 0.46 (− 4.79, 4.07) − 2.21 (− 7.12, 2.96) 1.35 (− 3.46, 6.82)

p 0.30 0.56 0.55 0.84 0.40 0.61

BPA % Δ/
IQR

3.68 (−4.21, 12.22) − 0.22 (− 3.60, 3.15) − 4.19 (− 9.64,
1.59)a

− 3.50 (− 8.16, 1.39) − 2.18 (− 7.78, 3.78) −1.55 (− 6.18, 5.01)

p 0.37 0.90 0.15 0.16 0.47 0.60

BPFb % Δ/
IQR

3.90 (−9.72, 19.57) − 2.97 (− 8.04, 2.11) 0.33 (−8.89, 10.49) −1.33 (− 23.9,
13.78)

3.84 (− 6.40, 15.21) − 4.65 (− 13.44,
5.05)

p 0.60 0.26 0.95 0.76 0.48 0.34

BPS % Δ/
IQR

−11.35 (− 18.71, −
3.33)

− 0.56 (− 4.37, 3.25) 2.54 (− 3.5, 8.97) − 4.38 (− 9.49, 1.02) − 2.05 (− 8.16, 4.47) − 2.96 (− 7.85, 3.85)

p 0.008** 0.77 0.42 0.11 0.53 0.34

BP-3 % Δ/
IQR

− 0.04 (− 7.96, 8.57) 1.10 (− 2.61, 4.82) − 0.51 (− 6.8, 6.21) 0.46 (− 4.62, 5.81) − 0.91 (− 6.66, 5.18) 1.81 (− 3.60, 8.42)

p 0.99 0.56 0.88 0.86 0.76 0.56

TCC % Δ/
IQR

−3.69 (− 14.5, 8.50) − 4.54 (− 10.03,
0.94)

5.18 (− 3.4, 14.51) −3.22 (− 10.13,
4.21)

0.36 (− 7.93, 9.39) −3.75 (− 8.64, 7.7)

p 0.54 0.11 0.25 0.39 0.94 0.39

TCS % Δ/
IQR

9.20 (− 0.97, 20.42) 2.81 (− 1.46, 7.08) 7.13 (− 0.60, 15.5) 2.84 (−3.2, 9.25)a 4.16 (− 3.07, 11.93)a 0.31 (− 5.8, 8.4)

p 0.08* 0.20 0.07* 0.37 0.27 0.93

EPBb % Δ/
IQR

1.52 (−11.55, 16.52) −1.93 (−8.14, 4.29) 5.11 (− 4.64, 15.86)
a

−2.41 (− 10.62,
6.56)

−1.92 (− 11.4, 8.58) − 0.77 (− 10.22,
9.67)

p 0.83 0.55 0.32 0.59 0.71 0.88

BPB % Δ/
IQR

−1.86 (− 10.64, 7.8) −5.27 (−9.4, − 1.14) − 6.77 (− 13.3, 0.29) −3.65 (− 9.11, 2.14) −5.18 (− 11.45, 1.52) 1.96 (− 4.9, 8.52)

p 0.70 0.01** 0.06* 0.21 0.13 0.58

MPB % Δ/
IQR

5.88 (− 3.0, 15.59) −3.53 (− 7.37, 0.31) −4.41 (− 10.68, 2.3) 0.03 (−5.29, 5.64) −2.50 (− 8.6, 4.01)a 2.64 (− 3.06, 9.74)

p 0.20 0.07* 0.19 0.99 0.44 0.43

PPB % Δ/
IQR

4.82 (−4.48, 15.02) −3.74 (−7.76, 0.27) − 3.54 (− 10.14,
3.54)

2.35 (− 3.55, 8.6) −0.63 (− 7.36, 6.58)a 3.65 (− 2.36, 11.66)

p 0.32 0.07* 0.32 0.44 0.86 0.31

TSH FT4 T3 T4 T3/T4 ratio

2,4-
DCP

% Δ/
IQR

4.80 (−2.58, 12.74) 0.21 (−1.19, 1.60) − 1.58 (−3.58, 0.42) −0.79 (− 2.71, 1.13) −1.16 (− 4.86, 1.33)

p 0.21 0.77 0.12 0.42 0.31

2,5-
DCP

% Δ/
IQR

4.63 (− 2.08, 11.79) 0.82 (−0.43, 2.07) −0.55 (− 2.36, 1.26) 0.51 (−1.22, 2.24) −1.38 (−4.64, 1.06)

p 0.18 0.2 0.56 0.57 0.18

BPA % Δ/
IQR

−0.28 (−6.99, 6.91) 0.00 (− 1.36, 1.36) 2.10 (0.22, 3.99) 0.69 (−1.13, 2.51) 1.46 (−2.23, 3.52)

p 0.94 1 0.03** 0.46 0.19

BPFb % Δ/
IQR

7.29 (−4.59, 20.64) 2.76 (0.29, 5.22) a −1.22 (− 4.34, 1.90) 1.84 (−1.37, 5.04) −2.50 (−6.47, 1.47)
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previous studies our group conducted in a preliminary
analysis in the PROTECT cohort, and a cohort of preg-
nant women in Boston, MA with four repeated measures
during pregnancy [38, 39]. Two cross-sectional studies in
the United States (N = 249 and 476 women) also looked at
the association between maternal BPA and thyroid hor-
mones during gestation [40, 41]. The only significant
association reported was between maternal urinary BPA
and a decrease in T4 [40], which we did not observe in
the present study. A decrease in T4 could be indicative of
an increase in FT4, in the case of thyroxine becoming less
bound to thyroxine-binding globulin, however, the
associations between BPA and T4 in the current study
had p values ranging from 0.51–0.93. Furthermore, we
did not observe a relationship between BPA and TSH
that was reported in the Boston cohort study [42], and
among adults from the Korean National Environmental
Health Survey [43].
One of the strongest associations we observed was

the 17% decrease in testosterone in relation to BPA.
This is the first study that explores this association in

pregnant women, and there is little correlation between
maternal and fetal testosterone levels [44]. However, a
decrease in testosterone was identified in an in vitro
study on TM3 murine Leydig with BPA exposure [45],
in the F2 generation after in-utero BPA exposure in
mice [46], and in-utero BPA concentrations in young
boys aged 8–14 [47]. These associations provide further
evidence in support of our finding. Although the role of
maternal testosterone in gestation is still unclear, evi-
dence points to androgens playing an essential role in
myometrial relaxation, cervical ripening and initiating
parturition [48]. Therefore, BPA, via reduced testoste-
rone, could increase gestational age, which we previously
observed in this cohort [49]. Additionally, maternal
testosterone has a role in gender role behaviors [50],
indicating that maternal testosterone may impact fetal
development.
No human studies have previously investigated the

associations between triclocarban, phenols and parabens
on CRH during pregnancy; however, CRH plays an im-
portant role in gestation. Maternal CRH levels during

Table 3 Results of the adjusted LMMs regressing hormones versus exposure biomarkers (Continued)

p 0.24 0.03** 0.45 0.26 0.22

BPS % Δ/
IQR

−1.01 (−8.12, 6.66) −0.07 (− 1.6, 1.46) 0.14 (− 1.89, 2.18) 0.04 (− 1.97, 2.05) 0.58 (− 2.47, 2.9)

p 0.79 0.93 0.89 0.97 0.64

BP-3 % Δ/
IQR

−5.89 (−12.87, 1.65) − 0.40 (− 1.85, 1.04) −1.47 (−3.56, 0.63) −1.37 (− 3.35, 0.62) −0.21 (− 5.33, 1.26)

p 0.13 0.59 0.17 0.18 0.86

TCC % Δ/
IQR

−10.12 (− 19.47, 0.32) −0.61 (−2.76, 1.55) 4.08 (1.18, 6.98) − 0.65 (− 3.53, 2.23) 4.67 (− 1.37, 6.65)

p 0.06* 0.58 0.007** 0.66 0.01**

TCS % Δ/
IQR

0.57 (−7.74, 9.63) −0.74 (−2.45, 0.96) − 1.97 (−4.36, 0.41) −1.60 (−3.9, 0.69) −0.15 (− 2.69, 4.55)

p 0.9 0.39 0.11 0.17 0.91

EPBb % Δ/
IQR

−6.78 (−17.6, 5.46) −0.45 (−2.9, 2.0) −0.76 (−4.10, 2.58) −0.03 (−3.29, 3.24) − 1.68 (−5.66, 2.30)

p 0.27 0.72 0.66 0.99 0.41

BPB % Δ/
IQR

−4.88 (− 12.62, 3.54) 1.10 (−0.54, 2.74) 0.70 (− 1.61, 3.02) 1.74 (−0.49, 3.96) − 1.56 (− 7.01, − 0.26)

p 0.25 0.19 0.55 0.13 0.24

MPB % Δ/
IQR

−6.92 (−13.91, 0.64)a 0.77 (−0.76, 2.29) −0.39 (− 2.53, 1.76) 1.02 (− 1.04, 3.09) −1.78 (−4.64, 1.53)

p 0.07* 0.33 0.73 0.33 0.15

PPB % Δ/
IQR

−6.29 (− 13.6, 1.64) 0.81 (−0.8, 2.42) 0.21 (−2.02, 2.45) 0.65 (− 1.52, 2.81) − 0.67 (− 3.89, 2.63)

p 0.12 0.32 0.85 0.56 0.6

2,4-DCP: 2,4-dichlorophenol; 2,5-DCP: 2,5-dichlorophenol; BP-3: Benzophenone; TCS: Triclosan; TCC: Triclocarban; EPB: ethylparaben; MPB: Methylparaben; BPB:
Butylparaben; PPB: Propylparaben
Results converted to % change in hormone per IQR change in biomarker concentration
* represents a p value below 0.10, and **represents a p value below 0.05; a Significant interaction (p < 0.05) between urinary biomarker*visit; b
Dichotomous variable
Models adjusted for specific gravity, study visit, body mass index (BMI) at the first study visit, maternal age, the number of hours of second-hand smoking
exposure per day, and a socio-economic variable
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pregnancy largely originate from gestational tissues [51].
Evidence suggests CRH inhibits immune rejection pro-
cesses by killing activated T cells [52], plays an important
role in determining time of parturition, and an increase
in CRH has been associated with the onset of miscar-
riage and preeclampsia [53–57]. CRH receptor expres-
sion is regulated by estrogen, and CRH gene expression
in the placenta is mediated by ER-α [58, 59]. Given the
endocrine disrupting potential of bisphenols via estrogen
receptors [60], associations between CRH and bisphe-
nols (and potentially other phenols and parabens) could
be important to consider in pregnancy studies. Animal
and in vitro studies showed an increase in CRH with
exposure to BPA and BPS, contrary to our results of an in-
verse relationship between CRH and BPS. BPA increased
plasma concentrations of CRH in pregnant mice [61] and
CRH levels in human placenta primary trophoblast cells
[62]. The differences in our results could be in part due to
the unique role CRH plays in human pregnancies, as
compared to animals [63].
Triclosan was suggestively associated with select hor-

mones, but none reached statistical significance, includ-
ing an increase in testosterone, an increase in CRH at
16–20 weeks gestation, and a decrease in T3 at 24–28
weeks gestation. There was a similar decrease in T3 with
increased urinary triclosan concentrations in the Boston
cohort, albeit the associations were stronger earlier in
pregnancy, in contrast to our stronger associations at
the later visit in the current study [39]. While larger
human studies with more statistical power may be needed,
the decrease in T3 in association with triclosan is consist-
ent with animal studies [64], including in pregnant rats
[65] and pregnant mice [66, 67], perhaps due to triclosan’s
structural similarities to thyroid hormones [64]. Animal
studies also report a decrease in T4 with triclosan expo-
sure, including rat and mice dams [65–75], but we did not
find evidence of this in humans. Other population studies
found no associations between triclosan and thyroid hor-
mones [76–78], although there was evidence of vulnerable
time points during gestation [76, 77]. Interestingly, a study
in pregnant rats showed that the greatest accumulation of
triclosan was in the placenta, indicating that pregnancy
may be a sensitive time period for triclosan exposure [79].
Alternatively, maternal serum TSH and FT4 levels at > 28
weeks gestation (obtained from medical records) were
negatively associated with urinary triclosan at 38 weeks
gestation [80]. The differences in our results could be
explained by the differences in the study population,
exposure biomarker concentrations, and differences in the
pregnancy time points examined.
No studies have looked at the effect of triclosan on ma-

ternal testosterone and CRH during pregnancy in humans.
However, in contrast to our results, triclosan was found to
reduce testosterone levels in male rats [81], and in

pregnant rats [79]. An excess of maternal testosterone has
been associated with restricted fetal growth [82], as well as
an increased chance of developing Alzheimer disease [83]
and anxiety like symptoms in the offspring.
Triclocarban was associated with thyroid hormone

changes. We observed an increase in T3 and a decrease
in TSH in association with triclocarban, which is in line
with the negative feedback loop in maintaining thyroid
hormone homeostasis. We also observed a decrease in
SHBG. SHBG levels tend to rise with thyroid hormones,
so this observed pattern was unexpected. This could be
due to factors influencing the relationship between
thyroid hormone and SHBG levels that have not been
accounted for in the present study. Our previous Boston
study also reported a negative association between
triclocarban and TSH, but a negative association with T3.
Triclocarban concentrations in this cohort were much
higher than the exposure levels found in the Boston
cohort. In fact, the triclocarban concentrations observed
in PROTECT are 37 times larger than the concentration
observed in NHANES women of reproductive age [84].
This difference in exposure levels may explain the diffe-
rences in the associations observed.
All parabens were generally negatively associated with

SHBG. In contrast to our current findings, our previous
preliminary analysis in the PROTECT cohort showed that
methylparaben was positively associated with SHBG [26].
However, the current study has a much larger sample size.
Associations between parabens and some hormones
appeared to be dependent on the timing of exposure.
Associations between methylparaben and propylparaben
and estriol changed direction from a negative association
at 16–20 weeks to a positive association at 24–28 weeks
gestation. We observed a similar change in direction in
our preliminary analyses between methylparaben and pro-
pylparaben with estradiol [26]. Although not statistically
significant, associations between methylparaben and pro-
pylparaben with progesterone followed a similar pattern
to that of estriol. Given that the population urinary levels
of methylparaben and propylparaben remained consistent
between the two time points, the similar change of direc-
tion observed in associations with methylparaben and pro-
pylparaben in both of our previous analyses, and the
significant interaction term between these parabens and
visit in association with estriol, this lends confidence that
these observations may not be occurring by chance and
may be detected in future larger studies. The strong cor-
relation between propyl- and methylparaben could indi-
cate that their associations with estriol are being driven by
only one of the parabens. However, given the differences
in the associations between these two parabens and all
hormones, there do seem to be unique relationships
between the exposure and hormone levels. No previous
studies have looked at the effect of parabens on estriol,
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SHBG or CRH; however, evidence suggests parabens have
ER-β agonistic activity [85], and stimulate progesterone
mRNA expression via ER-α signaling [86, 87]. This could
suggest a potential mechanism by which reproductive
hormone levels could be directly or indirectly altered in
response to paraben exposure.
The present study also showed a general decrease

in TSH in association with parabens, but only methyl-
paraben reached a significant association with TSH.
Additionally, methylparaben and propylparaben were
associated with a decrease in the T3/T4 ratio, particu-
larly at 24–28 weeks gestation. Results from our Bos-
ton cohort also showed a decrease in T3/T4 ratio, as
well as T3, at median 26 weeks gestation [88]. In other
research, human and animal studies reported a de-
crease in T4 and FT4 with paraben exposure in females
[78, 89], and two small studies in men found no associ-
ations between parabens and thyroid hormones [90,
91]. The difference in the results is likely due to the dif-
ferent study populations; none of those studies looked
specifically at prenatal exposure.
Our study had several limitations. We did not have

data on the iodine status of the women; deficiency in
this element could affect thyroid hormone function.
However, iodine may act as mechanistic intermediate
exposure between the exposure and thyroid hormone,
and controlling for iodine status could lead to bias
[92]. Furthermore, iodine had no effect on the associ-
ations between phenols and thyroid hormones in our
previous study of NHANES data [78]. We also did
not have data on thyroperoxidase antibodies nor hu-
man chorionic gonadotropin (hCG), which could po-
tentially affect thyroid function as well [93, 94].
While data at two time points is a great improvement
from the more common cross-sectional study design,
the two time points may not be sufficient to under-
stand the potential influence of these biomarkers on
maternal hormones. The relatively high variation in urin-
ary concentrations of the target biomarkers (particularly
BPA) over time may also introduce potential bias stem-
ming from random measurement error. Given the mul-
tiple comparisons conducted, there is a chance of Type I
error, and caution must be used when interpreting our
findings. Finally, although one of the strengths of the
present study is our ability to investigate the relationships
between these chemicals and hormone levels in a vulner-
able population, our study population was based in a
population in Puerto Rico of lower income who also had
higher urinary concentrations of some of the exposure
biomarkers; therefore, the results may not be fully
generalizable to other populations.
Our study also had many strengths. Our robust sample

size, and the collection of exposure biomarkers and hor-
mone data at two time points during pregnancy helps

account for the biomarkers’ short lifespan in the body,
and the varying levels of hormones throughout preg-
nancy. The repeated measures allow for the control of
intra-individual variability, and increases statistical
power. We were also able to explore potential windows
of susceptibility for these associations.
Additionally, we were able to compare our results

from this analysis to our own analyses that employed
similar statistical methods in two other data sets, namely
LMMs to capture biomarkers at various time points and
allow subject-specific intercepts. While there were many
similarities in the results across the three analyses, the
differences in results may point to the importance of
outside factors that may not be captured in our models
that alter the associations between these chemicals and
endocrine disruption through interaction with the che-
micals. These outside factors could include other
endocrine-altering variables, such as exposure to other
unaccounted for chemicals, maternal stress, genetic, epi-
genetic, or other differences. It is imperative that future
studies look beyond the association between a single
chemical and singe hormone, and explore potential in-
teractions with chemical exposure.

Conclusion
Our results provide suggestive human evidence for as-
sociations between select biomarkers with maternal
thyroid and reproductive hormones during gestation.
Of note, we report negative associations between para-
bens and SHBG, a negative association between BPS
and CRH, and associations between triclocarban and
triclosan with reproductive and thyroid hormones.
Our stratified analyses show that some associations
may be stronger at certain time points during preg-
nancy. Further studies in larger populations and with
more repeated measures across pregnancy to will be
useful to confirm our findings, and better understand
if and how these hormone changes may affect down-
stream maternal and infant health outcomes.
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