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Abstract 

Identifying the links between specific cognitive functions and emergent academic skills 

can help determine pathways to support both early academic performance and later academic 

achievement. Here we investigated the longitudinal associations between a key aspect of 

cognitive control, conflict monitoring, and emergent academic skills from preschool through first 

grade, in a large sample of socioeconomically diverse children (N = 261). We recorded event-

related potentials (ERPs) during a Go/No-Go task. The neural index of conflict monitoring, �N2, 

was defined as larger N2 mean amplitudes for No-Go versus Go trials. �N2 was observed over 

the right hemisphere across time points and showed developmental stability. Cross-lagged 

panel models revealed prospective links from �N2 to later math performance, but not reading 

performance. Specifically, larger �N2 at preschool predicted higher kindergarten math 

performance, and larger �N2 at kindergarten predicted higher first grade math performance, 

above and beyond the behavioral performance in the Go/No-Go task. Early academic skills did 

not predict later �N2. These findings provided electrophysiological evidence for the contribution 

of conflict monitoring abilities to emergent math skills. In addition, our findings suggested that 

neural indices of cognitive control can provide additional information in predicting emergent 

math skills, above and beyond behavioral task performance.  

 

 

 

 

 

Keywords: conflict monitoring, event-related potentials, �N2, Go/No-Go, emergent math and 

reading skills. 

 

Introduction  

 It has been well established that emergent math and reading skills at preschool and during 

the first years of formal schooling set the stage for later academic competence (Duncan et al., 

2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Watts et al., 2015). Pinpointing how and 

when specific cognitive functions contribute to emergent academic skills can inform curriculum 

development and training designs, which in turn can have implications for supporting both early 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



RUNNING HEAD: CONFLICT MONITORING AND ACADEMIC SKILLS 

This article is protected by copyright. All rights reserved 

academic performance and later academic achievement. A growing number of studies have 

demonstrated the contributions of various aspects of cognitive control, such as the ability to hold 

multiple items in mind or to switch flexibly between task rules, to emergent academic skills (e.g. 

Bull, Espy, & Wiebe, 2008; Fuhs, Nesbitt, Farran, & Dong, 2014; Purpura, Schmitt, & Ganley, 

2017). However, there is still a paucity of information regarding the extent to which a core 

component of cognitive control, conflict monitoring, is linked to emergent academic skills.  

 According to the conflict monitoring theory, when incompatible response representations 

are activated, conflict arises (Botvinick, Braver, Barch, Carter, & Cohen, 2001). A common 

occurrence of such incompatibility is when a response that has become automatic—but is 

incongruent with the task goal—competes with a less rehearsed response that is relevant for 

the task (Nieuwenhuis, Yeung, van den Wildenberg, & Ridderinkhof, 2004; Randall & Smith, 

2011). Successful monitoring of this type of response conflict may contribute to the execution of 

new academic skills which frequently build on previously acquired skills. The overarching goal of 

this study was to delineate the longitudinal associations between conflict monitoring and 

emergent math and reading skills as children transitioned from preschool to the early years of 

elementary school. In the current study, we used a neural index of conflict monitoring to address 

four specific aims. First, we examined the longitudinal characteristics of an ERP index of conflict 

monitoring, �N2, across three time points spanning from preschool to kindergarten and first 

grade. Second, we investigated the prospective links from �N2 to later math and reading skills. 

Third, we evaluated whether �N2 could provide additional information in predicting emergent 

academic skills above and beyond the behavioral performance during the task in which �N2 

was measured. Fourth, we assessed whether the associations between �N2 and emergent 

academic skills were bidirectional such that there were also prospective links from emergent 

academic skills to later �N2.  

A neural index of conflict monitoring 

 It has been argued that cognitive control entails not only a regulatory component that 

exerts influence on information processing and behavior, but also an evaluative component that 

monitors the occurrence of conflicts (Botvinick et al., 2001; Botvinick, Cohen, & Carter, 2004; 

Carter & van Veen, 2007). This evaluative dimension, which is referred to as conflict monitoring, 

first assesses levels of conflict. Then, it passes this information on to the regulatory systems of 

control, triggering these systems to adjust the strength of their influence on information 

processing and behavior. As such, conflict monitoring is involved in determining to what extent 

cognitive control will be recruited, how the influence of relevant cognitive control processes will 

be modulated or optimized in guiding task performance, and how and when control can be 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



RUNNING HEAD: CONFLICT MONITORING AND ACADEMIC SKILLS 

This article is protected by copyright. All rights reserved 

withdrawn without deterring task performance (Botvinick et al., 2001; Kool, Shenhav, & 

Botvinick, 2017).  

 One common occurrence of conflict is the activation of incompatible response 

representations of automatic responses that are not relevant for the task and less rehearsed, 

but task-relevant, responses (Botvinick et al., 2001). Monitoring this type of response conflict 

may be particularly important when children are transitioning from using a well-rehearsed 

response rule to a new one as they acquire new academic skills. Although a preceding skill can 

provide the foundation for a new one, it can also create a conflict between responses matching 

the previously acquired skill versus responses relevant for the application of the new skill. It is 

plausible that children who have stronger conflict monitoring systems are less prone to using 

prepotent but irrelevant responses and would perform better in academic tasks as they acquire 

new skills. 

  One obstacle to examining the associations between conflict monitoring and emergent 

math and reading skills is the difficulty of isolating conflict monitoring in behavioral tasks. There 

are many well-established laboratory tasks that elicit response conflicts, such as the Go/No-Go 

task in which individuals are instructed to respond to a set of stimuli, while withholding their 

responses to a particular stimulus (e.g. “push a button each time you see a letter, except for 

when you see an X”). There, the conflict is elicited between the “respond” and “do not respond” 

representations (Randall & Smith, 2011). However, successful performance in this task relies 

not only on conflict monitoring, but also several other cognitive processes, such as sustained 

attention, maintenance of task relevant goals, activation of task-relevant motor behavior, and 

inhibition of motor behaviors that interfere with task goals. Therefore, it becomes challenging to 

separate the contribution of conflict monitoring from other cognitive processes via behavioral 

measures, such as task accuracy.  

 To address this challenge, several researchers have utilized event-related potentials 

(ERPs) to capture a neural index of conflict monitoring (Donkers & Van Boxtel, 2004; Enriquez-

Geppert, Konrad, Pantev, & Huster, 2010; Jonkman, 2006). Given its high temporal resolution, 

ERP technique is well suited for investigating cognitive processes that occur relatively rapidly, 

and enables the study of neural mechanisms involved in specific computational operations. An 

ERP component that has been considered to index conflict monitoring is the anterior N2 

(Randall & Smith, 2011). Generally, in a classic Go/No-Go task that includes frequent Go and 

rare No-Go stimuli, the N2 component is larger (more negative in amplitude) for the No-Go 

versus Go trials. Given that the task has a motor response inhibition component, several 

researchers have contended that the amplitude difference between the No-Go versus Go 
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conditions reflect a process specific to the inhibition of a planned response (Folstein & Van 

Petten, 2008). However, others have argued that the amplitude difference between the N2 

component for the No-Go versus Go conditions does not index the inhibition of a motor 

response per se, but rather the monitoring of conflict in response representations (Nieuwenhuis 

et al., 2004; Randall & Smith, 2011). Supporting evidence for this perspective has come from 

studies in which the trials that required a response (Go) were rare instead of the trials with no 

response (No-Go) (Donkers & Van Boxtel, 2004; Enriquez-Geppert et al., 2010; Lucci, 

Berchicci, Perri, Spinelli, & Di Russo, 2016). In these studies, the N2 component was larger for 

the infrequent trials compared to the frequent trials, regardless of whether the infrequent trials 

required a motor response or not. Such findings suggest that the difference in N2 amplitude 

between No-Go and Go trials depends on which trial type is infrequent, and reflects the 

monitoring of conflict between competing response representations.  

Characteristics of �N2 in early childhood 

 In the present study, we used this �N2 measure (i.e. the difference in ERP amplitudes 

between the No-Go and Go conditions) as a neural index of conflict monitoring to investigate the 

longitudinal associations between conflict monitoring and emergent math and reading skills from 

preschool through first grade. To do so, we first focused on delineating the characteristics of the 

N2 component in a classic Go/No-Go task (frequent Go trials versus infrequent No-Go trials) in 

our sample across this developmental period. A common limitation of previous research was the 

predominant use of cross-sectional designs in studying the development of N2 component (for 

reviews, see Hoyniak, 2017; Lo, 2018). Our study is among the first to examine the 

developmental characteristics of N2 with a longitudinal design. This step was necessary as 

previous research findings were inconsistent regarding the predominant scalp distribution and 

developmental change of the N2 component in Go/No-Go tasks in this age range. With regard 

to scalp distribution, several studies focused on medial-central electrode locations to capture the 

N2 component in Go/No-Go tasks in childhood (Cragg, Fox, Nation, Reid, & Anderson, 2009; 

Lamm, Zelazo, & Lewis, 2006; Ruberry et al., 2017). However, in several studies that analyzed 

the scalp distribution of the N2 component across hemispheres, the amplitude of the N2 

component was larger for the No-Go versus Go trials specifically over the right hemisphere 

(Benikos & Johnstone, 2009; Lahat, Todd, Mahy, Lau, & Zelazo, 2010; Smith, Johnstone, & 

Barry, 2004). In addition, contradictory findings were reported regarding developmental change 

in the N2 component amplitude in Go/No-Go tasks across childhood. Although there have been 

reports of either increase or no change in N2 amplitude with age (Cragg et al., 2009; Johnstone 

et al., 2007), two recent meta-analyses concluded that the amplitude of the N2 component 
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decreases linearly with age (Hoyniak, 2017; Lo, 2018). Such discrepancies in the literature 

precluded us from having a priori hypotheses about the longitudinal characteristics of the �N2. 

This necessitated an examination of where over the scalp �N2 could be observed as larger 

(more negative) N2 amplitude for the infrequent No-Go versus frequent Go trials, indexing 

conflict monitoring, and whether the scalp distribution or amplitude of the N2 component 

changed as children transitioned from preschool to kindergarten and first grade.  

Conflict monitoring and academic performance 

 After identifying the characteristics of �N2 in our sample, we investigated whether this 

neural index had prospective links to later academic skills and whether these links varied by 

academic content area (math versus reading). To do so, we first examined to what extent �N2 

predicted later math performance. Emergent math skills initially rely on rudimentary subskills 

such as learning to recognize small sets without counting, learning the verbal counting 

sequence, and mapping number-words and quantities to written symbols (Krajewski & 

Schneider, 2009; Purpura, Baroody, & Lonigan, 2013). As children transition from preschool to 

formal schooling, they acquire new and more sophisticated skills such as using written 

numerical notations (e.g. numerals and operation signs) and written algorithms. Although 

previously learned skills lay the groundwork for the acquisition of new skills, the successful 

execution of new skills also requires monitoring of conflict between prepotent response 

representations of previously acquired and more rehearsed rules, versus relevant yet nascent 

response representations of newer rules. For instance, a typical challenge in the acquisition of 

basic math skills might occur when a child proceeds to subtraction problems after several weeks 

of working on addition problems. During the transition from addition to subtraction, the response 

representations will be more potent for adding two numbers together, instead of subtracting one 

from the other. Success in this transition requires the detection of instances where conflict 

between response choices (i.e. addition versus subtraction) occurs so that regulatory cognitive 

control mechanisms can be recruited in favor of the relevant subtraction response. It is likely 

that children who have stronger conflict monitoring systems would detect the conflicts between 

automatic but irrelevant or less efficient responses versus less accustomed but relevant 

responses, and would perform better in math as they acquire new skills. Therefore, we 

hypothesized that our neural index of conflict monitoring, �N2, would have concurrent 

associations with emergent math skills, as well as predict these skills prospectively.  

  A large body of research linked various aspects of cognitive control, such as attention 

shifting and working memory, to both emergent math and reading skills (e.g. Bull et al., 2008; 

Fuhs et al., 2014). However, several studies suggested that the link between cognitive control 
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and emergent academic skills might be stronger for math compared to reading skills (Blair & 

Razza, 2007; Schmitt, Geldhof, Purpura, Duncan, & McClelland, 2017). These findings brought 

up the question of whether �N2 would have prospective links to later reading skills as well. 

Learning to read in English builds on early foundations such as phonemic awareness (i.e. 

abstracting the relevant phonemic units from the stream of speech) and letter knowledge, and 

requires the acquisition of the grapheme-morpheme relations, i.e. the visual symbols of the 

written language (graphemes) represent the sounds of the language (phonemes) (for a review, 

see Castles, Rastle, & Nation, 2018). While acquiring these alphabetic decoding skills, children 

also “read” by relying on visual cues, rote learning, or guessing (Ehri, 2017). As children 

become skilled readers, they gradually rely less on alphabetic decoding and transition to 

recognizing familiar written words rapidly and automatically, a process referred to as 

orthographic learning (Castles et al., 2018). It has been argued that although several aspects of 

cognitive control, such as attentional control and working memory, are critical for reading 

performance, early reading development may be more heavily reliant on rote memorization 

compared to math development (Blair, Ursache, Greenberg, & Vernon-Feagans, 2015). If 

reading skills are less reliant on the resolution of conflict between previously acquired versus 

new responses, conflict monitoring would not have concurrent or prospective associations with 

emergent reading skills. Alternatively, if conflict monitoring was associated with academic 

performance regardless of content area, then �N2 would have concurrent and prospective 

associations with reading performance, similar to what we expected for math performance.   

Another specific aim of the present study was to evaluate whether �N2 would provide 

any additional value in predicting emergent academic skills, above and beyond behavioral 

performance during the task in which �N2 was measured. One possibility is that the neural 

measures would be redundant with behavioral measures, providing only neurobiological 

correlates of behavior in a given task. In this case, �N2 would not provide any added predictive 

value above and beyond the behavioral performance during the Go/No-Go task. However, it is 

also possible that neural measures can provide information that may not be readily available by 

examining overall behavioral performance during a task. For instance, in tasks like Go/No-Go, 

several other cognitive control processes, such as attention and working memory, also 

contribute to behavioral performance, making it challenging to tease apart the unique 

characteristics of cognitive faculties like conflict monitoring. Furthermore, in tasks where 

variability in behavioral performance is low between individuals due to the relative ease of the 

task, neural measures may provide information about individual differences in underlying neural 

processes which may be masked by ceiling effects in behavioral performance. To date, a few 
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studies have provided support for the added value of neural measures in predicting academic 

achievement, above and beyond what could be captured with behavioral measures. For 

instance, neural activity during a working memory task predicted math performance 2 years 

later, after taking into account behavioral measures of working memory and reasoning 

(Dumontheil & Klingberg, 2011). Hoeft and colleagues (2007) found that neural measures, 

comprised of both functional and structural neuroimaging indices, explained additional variance 

in children’s reading performance after taking into account behavioral predictors of reading and 

language. Similarly, Peters and colleagues (2017) reported that neural activity during feedback 

learning predicted unique variance in reading and math ability over the behavioral testing of 

feedback learning performance alone. Together, these findings suggested that neural 

assessments could provide predictive value for academic performance above and beyond 

behavioral testing alone. Accordingly, it is possible that �N2 would provide additional 

information, above and beyond behavioral task performance, in predicting emerging academic 

skills.   

In addition, we tested whether emergent academic skills would also predict conflict 

monitoring prospectively. A few studies reported bidirectional concurrent and prospective 

relationships between cognitive control skills and academic performance (Clements, Sarama, & 

Germeroth, 2016; Fuhs et al., 2014). With regard to conflict monitoring, as children acquire new 

academic concepts, they may have greater opportunities to recruit their conflict monitoring 

system to detect competition between representations of different rules. As such, advancing in 

academic skills would provide opportunities to practice and get better at conflict monitoring. If 

this is the case, then math and reading performance would also predict the strength of the 

neural mechanisms supporting conflict monitoring. It is also possible that such a relationship 

would emerge especially as children transition to formal schooling and start learning more math 

and reading rules that potentially conflict with each other.  

Method 

Participants 

 Participants were part of a longitudinal study on school readiness and early academic 

performance. The initial sample consisted of 278 children from the Southeastern United 

States, between the ages of 45 and 70 months (Mean = 56, SD = 5) at the time of the preschool 

laboratory visit. Based on parent questionnaires, children were excluded from the current study 

if their parents reported atypical neuropsychological development at any time point 

(microcephaly: n = 1; absence seizures: n = 2). Given reports of the N2 component being 

altered in individuals with Attention Deficit and Hyperactivity Disorder (Fisher, Aharon-Peretz, & 
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Pratt, 2011; Shahaf, Fisher, Aharon-Peretz, & Pratt, 2015), we also excluded children for whom 

parents reported diagnosis for ADHD and related medication treatment (n = 14). The final 

analytic sample of the current study consisted of 261 children (55% female). 

 To match the diversity of the county from which the children were recruited, we targeted a 

sample that consisted of 50% male and 32% African American (U.S. Census, 2010). According 

to parent reports, in our final sample, 60% of children were White, 28% African American, 2% 

Asian, and 10% were multi-racial. This sample broadly represented the region from which the 

children were recruited. For analysis purposes, race and ethnicity information was coded to 

denote minority status as follows: 0 for non-Hispanic white (not minority; 55%), 1 for Hispanic 

White or Non-White (minority). The percentages of children who participated in the visits were 

as follows: 84% in all visits, 5% in the preschool and kindergarten visits only, 1% in the 

preschool and first-grade visits only, and 10% in the preschool visit only. Children who 

participated in all visits did not differ from children who dropped out of the study at kindergarten 

or first grade in terms of age at the beginning of study, gender, income-to-needs ratio, or 

minority status (all ps > .15). Twenty-six children included in the current study did not have ERP 

data at any time point, either for not participating in EEG data collection, or due to low 

data quality (i.e. excessive EEG artifacts). Children without ERP data did not differ from children 

who had ERP data at any time point in terms of age at the beginning of study, gender, income-

to-needs ratio, or minority status (all ps > .28). The covariance coverage is reported in 

Supplementary Materials Table 1. 

Procedure 

 Children were recruited from daycare centers, local community establishments (e.g. parks, 

libraries, children’s museum) and via participant referral. The study consisted of 3 waves of data 

collection, at preschool, kindergarten, and first grade. At the preschool data collection point, 

none of the children had started kindergarten. The kindergarten laboratory visit took place 

approximately one year after the preschool session, and was followed approximately one year 

later by the first-grade visit. At the beginning of each visit, informed consent was obtained from 

parents or legal guardians (referred to as parents) and verbal assent was obtained from the 

child. Each laboratory visit took approximately 2 hours and consisted of a battery of tasks 

assessing cognitive development and academic readiness, as well as other tasks of social-

cognitive and emotional development. At the completion of each visit, parents received 

monetary compensation and children selected a small toy.   

Measures 

 Demographics. Information about children’s age, gender, race and ethnicity, and monthly 
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family income was obtained via a questionnaire filled out by parents at the preschool time point. 

Income-to-needs ratio was used as a proxy for family socioeconomic status. Parents reported 

family monthly income on an item that consisted of 15 ranges from which to choose (e.g. $1000-

1499/month). To compute annual income, the midpoint of each range was used as the 

measurement of monthly income and was multiplied by 12. The appropriate poverty threshold 

was assessed based on the U.S. Census Reports for the year in which annual income was 

earned, the total number of members in the household, and the number of children living in the 

home full time. The income-to-needs ratio was computed by dividing the annual family income 

by the poverty threshold. Descriptive statistics for the demographic variables are presented in 

Table 1.  

 Emergent academic skills. To assess emergent math and reading skills, we used the 

Applied Problems and Letter-Word Identification subscales of the Woodcock Johnson III Tests 

of Achievement (Woodcock, McGrew, & Mather, 2001). In the Applied Problems subtest, 

children were shown pictorial math problems and instructed to point to or say the answer. This 

measure is commonly used to assess children’s performance in early math operations such as 

counting, addition, and subtraction. The Letter-Word Identification items involved symbolic 

learning, matching pictographic representations of words with the actual pictures of objects, and 

identifying isolated letters and words. In all analyses, standardized scores were used.  

 Conflict monitoring. A computerized Go/No-Go task (Lahat et al., 2010) was used to 

capture neural indices of conflict monitoring. The task was presented via E-Prime Version 2.0 

(PST, Pittsburgh, PA). Task stimuli included colored animal drawings (cow, horse, bear, pig, or 

dog). At the beginning of each trial, a fixation point appeared in the middle of the screen. The 

fixation point was accompanied by a “ding” sound, and stayed on the screen for 1500 ms. This 

was followed by an animal stimulus, which stayed on the screen either for 1500 ms or until a 

response was registered. Children were instructed to respond by pressing a button as soon as 

they saw an animal, except for when they saw a dog. A yellow smiley face followed each correct 

response. A red frowning face followed each incorrect response, or a response 

that occurred after the 1500 ms stimulus window. Before the task, children completed 6 Go and 

4 No-Go trials for practice. The practice block was repeated until children responded to at least 

9 out of 10 trials correctly. All children included in the current study passed the practice. The 

task consisted of 144 trials (75% Go, 25% No-Go), divided into four blocks. Children were 

offered a break between the blocks. A discriminability index (d’) was calculated as a measure of 

overall behavioral performance, and was calculated as follows: d′ = Z(Correct/Hit) – Z 

(Incorrect/False Alarm). Larger values of d’ indicate greater ability to distinguish signals from 
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noise, and as such, better task performance (Stanislaw & Todorov, 1999). 

 EEG recording and analyses: EEG was recorded using a 64-channel HydroCel 

Geodesic Sensor Net, a NetAmps 300 Amplifier, and the NetStation 4.5.4. software (Electrical 

Geodesics Inc., Eugene, OR). After a brief warm-up period, each child’s head circumference 

was measured and an appropriately sized net was fitted. During the Go/No-Go task, children 

were seated in front of a computer monitor. The distance and alignment of the monitor were 

kept consistent across children. To reduce motion artifacts, children were instructed to hold as 

still as possible during the task. EEG data were sampled at 250 Hz and referenced online to a 

single vertex electrode (Cz). Channel impedances were kept at or below 80 kΩ.  

 EEG preprocessing and ERP analyses were carried out using EEGLAB (Delorme & 

Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014). EEG data were band-pass filtered 

from 0.1 to 30 Hz with a linear finite impulse response (FIR) filter. Following an advisory notice 

released by EGI on anti-alias filter effects on timing, 8 ms were added to each original EEG 

event latency. The configuration of the electrode net is illustrated in Figure 1. Prior to data 

collection, the sensor nets were customized for the study via the removal of four face 

electrodes. Electrodes approximating the international 10-20 locations were renamed and 

electrode clusters were defined around these standard electrodes as shown in Figure 1 

(Vanderwert, Zeanah, Fox, & Nelson, 2016). 

[Insert Figure 1 here] 

 Upon initial inspection of the data, electrodes E23, E29, E47, and E55 were found to be 

artifact-laden in more than half of the participants and were excluded from further processing. 

Electrodes E1, FP1, FP2, and E17 were used only for the detection of eye blinks and saccades. 

For the remaining 52 electrodes, a multi-step procedure was followed to replace bad electrodes. 

First, bad electrodes were detected with the pop_rejchan function in EEGLAB, using a spectrum 

threshold of 3 SD. The bad electrode detection was conducted on single electrodes instead of 

clusters for greater precision. Then, via visual inspection, additional bad electrodes were noted. 

Bad electrodes were replaced with the average mean amplitude of the neighboring electrodes 

within clusters depicted in Figure 1. No more than 5 electrodes out of 52 (10%) were replaced 

per participant. After the bad electrodes were replaced, the EEG data were re-referenced to the 

average.   

 The EEG data were epoched offline between 200 ms prior to and 600 ms after stimulus 

onset, using the first 200 ms as the pre-stimulus-onset baseline. This epoch length was 

consistent with a study that used a Go/No-Go paradigm with a similar age group (Lamm et al., 

2014). Artifact rejection was executed using a 200 ms window, moving at 50 ms increments. To 
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detect eye blinks and saccades, a peak-to-peak rejection threshold of 100 or 125 µV was used 

for electrodes E1, FP1, FP2, and E17. The thresholds were individually adjusted for children 

upon visual inspection of the epochs marked by ERPLAB. For all other electrodes, the peak-to-

peak rejection threshold was 200 µV. Only correct trials were included in the analyses. Children 

who did not have at least 10 artifact-free correct Go and 10 artifact free correct No-Go trials 

were excluded from analyses.  

To reduce the number of factors used in the statistical analyses, electrode clusters were 

used instead of single electrodes (Luck & Gaspelin, 2017). Several studies reported larger N2 

mean amplitudes for the No-Go versus the Go trials specifically over the right hemisphere 

electrodes (Benikos & Johnstone, 2009; Lahat et al., 2010; Smith et al., 2004). To assess 

whether similar scalp distributions (i.e. larger N2 for No-Go versus Go over the right 

hemisphere) would be observed in our study, frontal-central electrode clusters were created 

separately for the left hemisphere (averaging the F3 and C3 clusters) and the right hemisphere 

(averaging the F4 and C4 clusters). For the electrodes included in each cluster, see Figure 1. A 

midline cluster was also computed by averaging the electrodes Fz, E4, and E8. These electrode 

clusters were used to extract the mean amplitude measures included in the analyses.  

The ERP analyses focused on the mean amplitude of the N2 component measured 

between 250 to 500 ms post-stimulus onset, consistent with the time window selected in a study 

that used the same paradigm with a similar age group (Lahat et al., 2010). The appropriateness 

of this time window for the N2 component was confirmed via visual inspection of the grand-

average plots for the preschool, kindergarten, and first grade ERPs. Grand average ERPs 

elicited by the No-Go versus Go conditions across the left hemisphere, right hemisphere, and 

midline anterior and central electrodes included in the analyses are shown in Supplementary 

Materials Figures 1-3.  

Using difference waves eliminates many concurrently active neural processes that do 

not differ between the trial types being compared (Luck, 2014). Further, this strategy reduces 

the number of components being analyzed compared to the parent waveforms (e.g. Go N2 and 

No-Go N2), and provides better estimates of the scalp distribution of the underlying 

components. Therefore, to isolate the neural processes involved in conflict monitoring, 

difference waves were used to analyze the associations between the neural index of conflict 

monitoring, behavioral performance during the Go/No-Go task, and emergent math and reading 

skills. Specifically, the ERP index of conflict monitoring was operationalized as the mean 

amplitude difference between the N2 components for the correct No-Go versus Go trials, and 

was denoted as �N2. 
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Results 

Preliminary analyses 

Preliminary analyses were conducted to detect outliers. Scores above or 3.29 SD were 

considered univariate outliers (Tabachnick & Fidell, 2007). In fairly large samples (i.e. 100 or 

more cases), 99.9% of the z-scores lie between -3.29 and +3.29. A case with an absolute z-

value of 3.29 or greater is probably an outlier because the likelihood of this case to be sampled 

from the population of interest is .1% or less. Accordingly, scores above or below 3.29 SD were 

replaced with the next highest or lowest value. The outlier replacements were made as follows: 

1 child for the kindergarten right hemisphere N2 and 1 child for the kindergarten left hemisphere 

N2; 1 child for the preschool and 1 child for the kindergarten WJ Applied Problems; 4 children 

for the preschool, 1 child for kindergarten, and 1 child for the first grade WJ Letter-Identification. 

All analyses were conducted with children’s original scores as well as these replaced scores to 

ensure the results did not depend on the way the outliers were handled. The direction and 

strength of the results were consistent across these analyses. The results reported here reflect 

the scores after outlier replacements.  

Descriptive statistics are reported in the Supplementary Materials Table 2 for the number 

of ERP trials included in the analyses and N2 mean amplitudes for the clusters (midline, left, 

and right). The initial analyses revealed that there were no differences between N2 mean 

amplitudes in the Go versus No-Go conditions in the midline cluster, across time points (all ps > 

.125). Therefore, the midline cluster was excluded from further analyses (see Supplementary 

Materials Figures 1-3).  �N2 as a neural index of conflict monitoring 

 The longitudinal analyses were conducted with MPlus Version 8 (Muthén & Muthén, 1998-

2017). Missing data were handled via full information maximum likelihood (FIML). To examine 

the N2 mean amplitude difference between conditions (Go versus No-Go), hemispheres (left 

versus right) and time points (preschool, kindergarten, first grade), a multilevel model was used. 

Individuals with ERP data for at least one time point were included in this analysis (N = 225). N2 

mean amplitude was predicted from condition, hemisphere, and time, and all two-way 

interactions at the within-person level; and age at Time 1, gender, income-to-needs ratio, and 

minority status at the between-person level. 

A model including the three-way interaction between condition, hemisphere, and time 

was also fit to the data. However, this interaction was not statistically significant, and 

complicated the interpretation of the other coefficients; thus, it was excluded from the model. 

The parameters for the random intercept model (log likelihood = -5261.026; intraclass 
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correlation = .242), labeled Model A, are shown in Supplementary Materials Table 4. No effects 

were significant at level 2, indicating that there was no meaningful difference in N2 mean 

amplitudes across age, gender, income-to-needs ratio, or minority status. At level 1, there was a 

significant main effect of hemisphere, and a significant interaction between condition and 

hemisphere. Because neither of the interaction effects containing time was significantly different 

from zero, a simpler model omitting these effects was then tested. 

The parameter estimates for this model, Model B, are shown in Supplementary Materials 

Table 4. In this final model, there were significant main effects of condition and hemisphere, as 

well as an interaction between them. Probing this interaction indicated that the N2 mean 

amplitude was larger (more negative) for the No-Go than the Go condition over the right 

hemisphere (Est. = -6.211, SE = 0.292, p < .001). Given that previous research operationalized 

the neural index of conflict monitoring as larger N2 mean amplitude for the infrequent No-Go 

responses than frequent Go responses (Randall & Smith, 2011), this interaction effect 

represented that the neural index of conflict monitoring, denoted �N2, was observable over the 

right hemisphere electrodes (see Supplementary Materials Figures 1-3). Since only the right 

hemisphere showed the expected pattern for conflict monitoring (larger N2 amplitude for No-Go 

versus Go) across time points, only this �N2 was used in the subsequent analyses. The ERPs 

averaged over the right hemisphere frontal and central electrodes for the No-Go versus Go trials 

are shown in Figure 2. 

[Insert Figure 2 here]  

Longitudinal associations between �N2 and emergent academic skills 

 Descriptive statistics and correlations for the control variables, the neural index of conflict 

monitoring (right hemisphere �N2), Go/No-Go behavioral performance (d’), and emergent 

academic skills (math and reading) are reported in Tables 1 and 2 respectively1

[Insert Table 1 here] 

.  

[Insert Table 2 here] 

 Cross-lagged panel models (Kenny, 1979; Selig & Little, 2012) were fit for math and 

reading subtests to assess the longitudinal associations between �N2, d’, and emergent 

academic skills. Separate cross-lagged panel models were fit for math and reading outcomes 

                                                 
1 The correlations between the Go N2, No-Go N2, and outcome variables are reported in 

Supplementary Materials Table 3.  
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(e.g. Fuhs et al., 2014). Each model consisted of autoregressive paths (i.e., �N2 at time t 

predicting �N2 at time t+1, d’ at time t predicting d’ at time t+1, and academic performance at 

time t predicting academic performance at time t+1) and cross-lagged paths (i.e., �N2 at time t 

predicting d’ and academic performance at time t+1, d’ at time t predicting �N2 and academic 

performance at time t+1, and academic performance at time t predicting �N2 and d’ at time t+1) 

between values of �N2, d’, and academic performance one time period apart. At each of the 

three time points, �N2, d’, and academic performance were regressed on age at the first time 

point, minority status, and income-to-needs ratio. These covariates were included at each time 

point to eliminate confounding in each path between time-specific values of �N2 and academic 

performance (e.g. Schmitt et al., 2017). In initial models, gender was also included as a 

covariate. Gender was only associated with d’ in both models, and therefore only d’ was 

regressed on gender in each model for parsimony. At each time point, the residual variance of �N2, d’, and academic performance were correlated (i.e., the residual variance of �N2 at time t 

was correlated with that of math performance at time t, etc.).  

The cross-lagged model testing the longitudinal associations between �N2, d’ and math 

performance fit the data reasonably well, χ2

 [Insert Table 3 here] 

(15) = 35.128, p = .0024, CFI = .968, RMSEA = 

.072. This model is presented in Figure 3. For simplification, the effects of the control variables 

(age at first time of testing, gender, income-to-needs-ratio, and minority status) were not 

presented in the figure, but reported in Supplementary Materials Table 5. The unstandardized 

coefficients, confidence intervals, and p values are presented in Table 3. All autoregressive 

paths were significantly different from zero, with both the neural indices of conflict monitoring, d’, 

and math performance predicting themselves at the next time point. d’ and math performance 

were correlated at preschool. This relationship faded by kindergarten and first grade. Of the 

cross-lagged paths, only those from the neural indices of conflict monitoring to subsequent 

values of math performance were significantly different from zero. Specifically, larger (more 

negative) �N2 amplitudes at preschool were linked to higher levels of math performance at 

kindergarten and larger �N2 amplitudes in kindergarten were linked to higher levels of math 

performance at first grade, after controlling for covariates as well as the previous year’s math 

performance. However, math performance did not predict subsequent values of �N2 at any time 

point. There were no cross-lagged effects from d’ to or from conflict monitoring or math 

performance.  

[Insert Figure 3 here] 

 A parallel cross-lagged panel model was fit with �N2, d’, and, in place of math, reading 
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performance. This model, which is illustrated in Figure 4, also fit the data reasonably well, χ2

[Insert Table 4 here] 

(15) 

= 34.445, p = .003, CFI = .970, RMSEA = .070. The unstandardized coefficients, confidence 

intervals, and p values for this model are presented in Table 4. The covariate effects are 

reported in Supplementary Materials Table 6. As in the model for math, all autoregressive paths 

between consecutive measures of �N2, d’, and reading performance were significantly different 

from zero, suggesting that each variable predicted itself at the next time point. Similar to the 

model with math performance, d’ and reading performance were correlated at preschool, which 

also faded by kindergarten and first grade. Unlike in the model for math, in the model for reading 

performance, no cross-lagged paths were significantly different from zero, suggesting that 

changes in relative standing on �N2, d’, and reading performance were unrelated across waves.    

[Insert Figure 4 here] 

Discussion 

 The current study investigated the longitudinal associations between an ERP index of 

conflict monitoring, �N2, and emergent academic skills from preschool through first grade. To 

do so, we first focused on delineating the longitudinal characteristics of �N2 in a classic Go/No-

Go task (i.e. frequent Go versus infrequent No-Go trials) in our sample. The �N2 index of 

conflict monitoring was observed over the right hemisphere electrodes and did not show change 

in amplitude or scalp distribution during this developmental period. These findings emphasized 

the importance of longitudinal designs in developmental ERP research. �N2 had prospective 

links to later math skills, but not reading skills, which implied that the relationship between �N2 

and academic skills may be domain specific during the early years of elementary school. �N2 

explained unique variance in later math skills above and beyond the behavioral performance in 

the Go/No-Go task, suggesting that the neural index of conflict monitoring provided additional 

value in predicting early math performance. We did not find any support for the hypothesis that 

early math and reading skills contributed to later conflict monitoring.  �N2 as an index of conflict monitoring 

 The difference between the N2 amplitudes for frequent and infrequent response 

representations has been considered a neural index of conflict monitoring, and has generally 

been observed as larger (more negative) N2 mean amplitude for the infrequent versus frequent 

responses (Donkers & Van Boxtel, 2004; Randall & Smith, 2011). In the present study, larger 

N2 mean amplitude for the infrequent (No-Go) versus frequent (Go) trials were observed as 

early as preschool years, suggesting that this neural index of conflict monitoring, denoted as �N2, is already emergent in early childhood.  
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 We observed this neural index of conflict monitoring (i.e. �N2 as larger amplitude for No-

Go versus Go trials) only over the right hemisphere across time points. This result is consistent 

with the findings of several studies that examined the scalp distribution of N2 across 

hemispheres (Benikos & Johnstone, 2009; Lahat et al., 2010; Smith et al., 2004). Several 

studies that assessed the N2 component using Go/No-Go tasks in developmental populations 

particularly focused on midline electrodes (Cragg et al., 2009; Lamm et al., 2006). Yet, if we had 

limited our ERP analyses of conflicting monitoring to the midline electrodes, we would not have 

found differences between the Go and No-Go N2 amplitudes and would have overlooked the 

presence of �N2 over the right hemisphere electrodes. Thus, our findings emphasize the utility 

of investigating the scalp distribution of ERP components in developmental research. 

 In adults, the conflict monitoring system relies on functional interactions between the 

posterior medial frontal cortex, serving as an evaluative system to detect conflict, and the lateral 

prefrontal cortex, implementing performance adjustments (Ridderinkhof, Ullsperger, Crone, & 

Nieuwenhuis, 2004). A meta-analysis of adult studies reported that the regions of the fronto-

parietal control network, especially the right middle frontal gyrus and the right inferior parietal 

cortex, were engaged in Go/No-Go tasks (Swick, Ashley, & Turken, 2011). Although the low 

spatial resolution of ERPs precludes us from any conclusions about which brain regions 

underlie �N2 in our study, the finding that the �N2 was observed only over the right hemisphere 

electrodes may suggest the presence of a right-lateralized fronto-parietal network involved in 

conflict monitoring even before children start kindergarten.   

 Previous developmental Go/No-Go studies, which have predominantly used cross-

sectional designs, have been inconsistent with regard to findings about N2 amplitude change 

with age, arguing for increase, decrease, or no change in amplitude (Cragg et al., 2009; 

Hoyniak, 2017; Johnstone et al., 2007). In our longitudinal study with relatively close time points, 

we did not find any evidence for developmental change in the amplitude or scalp distribution of 

the N2 component as children transitioned from preschool to early years of formal schooling. 

These findings emphasize the need for longitudinal designs in developmental ERP research. 

Contrary to our findings, in a recent study, increases in neural activation of right posterior 

parietal cortex were observed in a Go/No-Go task in children who were exposed to a year of 

formal schooling compared to kindergartners of similar age (Brod, Bunge, & Shing, 2017). To 

speculate, the change in neural activity reported in this study may be related to a cognitive 

process other than conflict monitoring. Alternatively, the differences between findings across 

studies may result from disparities in task difficulty. For instance, in the study by Brod, Bunge, 

and Shing (2017), average No-Go accuracy at kindergarten was much lower compared to what 
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we observed. It remains an intriguing question to be addressed whether change in ΔN2 might 

have been observed if we had used a different, more challenging Go/No-Go task during this 

developmental period.  

 It is also important to note that what we observed in this developmental period does not 

appear adult-like in comparison to previous research (e.g. Donkers & Van Boxtel, 2004; Groom 

& Cragg, 2015). In children, we observed N2 components that were more prolonged in latency, 

with more diffuse scalp distributions, compared to what was typically observed in adults (e.g. 

Falkenstein, Hoormann, & Hohnsbein, 1999; Folstein & Van Petten, 2008; Jonkman, 2006). 

Such morphology and distribution differences imply that as an index of conflict monitoring, �N2 

continues to change past the developmental period we examined in this study.  

Longitudinal associations between �N2 and emergent academic skills 

 Using �N2 as a neural index of conflict monitoring, we investigated the longitudinal 

associations between conflict monitoring, behavioral performance in the Go/No-Go task, and 

emergent math and reading skills from preschool through first grade. To do so, first, we 

evaluated the longitudinal stability of each construct. �N2 and Go/No-Go behavioral 

performance, as well as emergent math and reading skills, were predicted by themselves from 

the previous time point, demonstrating developmental continuity from preschool to kindergarten, 

and then to first grade. These findings suggest that emergent individual differences in �N2, 

Go/No-Go behavioral performance, and academic skills somewhat persist over time during this 

developmental period. �N2 had lower levels of stability over time compared to the other 

measures. Although this may reflect actually lower levels of developmental stability for neural 

indices compared to behavioral outcomes, it is also plausible that, as an ERP difference score, �N2 was noisier compared to the behavioral measures we used, and thus showed relatively 

lower developmental stability.   

 Accounting for the longitudinal stability of our variables, we examined the associations 

between �N2 and emergent math and reading skills in separate cross-lagged models. Our 

hypothesis that �N2 would be associated with math performance was partially supported, as the 

associations between �N2 and math performance were not concurrent, but prospective. 

Importantly, �N2 had prospective associations with math performance at kindergarten and first 

grade, after taking into account the previous year’s math performance. Specifically, larger �N2 

at preschool predicted higher kindergarten math performance, and larger �N2 at kindergarten 

predicted higher first-grade math performance. These results provided support for the 

contribution of the conflict monitoring system to emergent math skills, especially as children 

transition kindergarten and first grade. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



RUNNING HEAD: CONFLICT MONITORING AND ACADEMIC SKILLS 

This article is protected by copyright. All rights reserved 

 As children transition to school, their repertoire of math rules gradually expands. As prior 

rules become increasingly automatic due to more frequent rehearsal, the new rules compete 

with the previously acquired ones. The conflict monitoring system may be involved in the 

detection of such response conflicts between automatic responses driven by more practiced 

rules, and newer responses that are relevant for the task at hand but less rehearsed, and thus 

less potent. Children who have stronger neural mechanisms of conflict monitoring may be more 

adept at detecting such response conflicts, which may help them to solve math problems 

correctly and advance in math as they continue to learn new rules.  

 The finding that the neural index of conflict monitoring was not related to math skills at 

preschool, but prospectively predicted kindergarten and first-grade math implies that conflict 

monitoring is associated with more complex math skills. During preschool years, children 

typically develop more basic math skills such as distinguishing among quantities and acquiring 

numeral names (e.g. Krajewski & Schneider, 2009; Purpura et al., 2013). It is possible that the 

execution of these skills relies less on a conflict monitoring system that detects stimulus or 

response selection conflicts. As children transition to kindergarten and first grade, they add 

more complex math skills to their toolbox, such as counting by fives, addition, subtraction, and 

solving story problems (e.g. Howell & Kemp, 2010; Krajewski & Schneider, 2009; Lyons, Price, 

Vaessen, Blomert, & Ansari, 2014). Successful execution of these skills may rely more on 

conflict monitoring as children increasingly face the challenge of conflict between responses of 

previously acquired and more practiced rules versus the newer ones. The lack of associations 

between �N2 and math skills at preschool, and the emergence of prospective associations at 

kindergarten and first grade remain an unresolved issue to be further investigated.  

We did not find any concurrent or prospective associations between �N2 and emergent 

reading skills. This finding suggested that the associations between conflict monitoring and 

academic skills were specific to math development as children transitioned from preschool to 

early years of formal schooling. Several studies reported similar findings, linking various 

cognitive control skills to math development, but not reading development, or reporting weaker 

associations between cognitive control skills and reading compared to math performance (Blair 

et al., 2015; Schmitt et al., 2017). It has been argued that compared to math skills, early reading 

skills may rely more heavily on rote memorization, and thus have weaker associations with 

cognitive control measures (Blair et al., 2015). Accordingly, it is plausible that conflict monitoring 

may not play a critical role on early reading development. Alternatively, the associations 

between conflict monitoring and reading may appear in a time period beyond what we studied. 

Conflict monitoring may not be involved in early skills such as phonemic awareness 
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and orthographic learning, but may be involved in more complex reading skills. Becoming a 

skilled reader requires gaining background knowledge about what words can mean in specific 

contexts and the ability to make inferences, e.g. understanding that “jam” in the sentence 

"Denise was stuck in a jam” refers to traffic jam and not the fruit preservative (Castles et al., 

2018). Conflict monitoring may be more relevant as reading skills become more sophisticated, 

e.g. when children need to forego the more familiar and automatic reading response (e.g. jam 

as fruit preservative) in service of the less frequent but relevant reading response (e.g. jam as 

traffic jam).  

 Another aim of the present study was to assess whether �N2 provided any additional 

information above and beyond Go/No-Go behavioral performance in predicting emergent 

academic skills. Go/No-Go behavioral task performance was not associated with �N2 at any 

time point. Some researchers found links between N2 amplitudes and task accuracy in Go/No-

Go tasks (e.g. Cragg et al., 2009; Ruberry et al., 2017); however, others did not find any 

associations between N2 amplitudes and task accuracy (e.g. Lahat et al., 2010; Lamm et al., 

2014). It has been demonstrated that task characteristics can modify behavioral and neural 

indices acquired in a Go/No-Go task. For instance, both the behavioral performance and the N2 

amplitudes in Go/No-Go tasks are influenced by task difficulty (Benikos, Johnstone, & 

Roodenrys, 2013). Given the overall high performance in our Go/No-Go task, which implied 

potential ceiling effects, the lack of associations between �N2 and behavioral task performance 

were not surprising.  

 However, what we found surprising was that the behavioral performance in the Go/No-Go 

task was concurrently associated with math and reading performance at preschool. The Go/No-

Go task is commonly referred to as a sustained attention to response or inhibitory control task 

(Cragg & Nation, 2008; Manly, Robertson, Galloway, & Hawkins, 1999). Successful 

performance on this task relies on various cognitive control skills, such as attentional control 

and working memory. To speculate, Go/No-Go behavioral performance might have tapped 

heavily into some cognitive control abilities, such as attentional control, that had shared 

variance with emergent math and reading skills, but were not indexed by �N2. Beyond 

preschool, Go/No-Go behavioral performance was not associated with either �N2 or academic 

skills. This finding most likely resulted from the high accuracy we observed across the time 

points, suggesting potential ceiling effects in our Go/No-Go task. The use of a more challenging 

Go/No-Go task might have linked the overall behavioral performance in the Go/No-Go task to �N2 and academic skills. 

 �N2 was associated with the subsequent year’s math performance above and beyond the 
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behavioral performance during the Go/No-Go task. This finding suggested that the neural index 

of conflict monitoring provided added value in predicting emergent math skills. These results are 

consistent with previous research showing that neural activity accounted for unique variance in 

academic performance, above and beyond behavioral task performance alone (Dumontheil & 

Klingberg, 2011; Hoeft et al., 2007; Peters, Van der Meulen, Zanolie, & Crone, 2017). In line 

with these studies, our findings suggest that neural assessments can provide information that 

may not be captured by behavioral assessments alone. This may be particularly applicable for 

instances where behavioral task performance is fairly high among individuals. Especially in such 

cases, behavioral performance may not be as sensitive of an index to reflect individual 

differences, whereas neural indices may provide additional predictive information. Furthermore, 

neural indices, such as �N2, may be particularly useful for studying the unique contributions of 

cognitive faculties like conflict monitoring that may be hard to tease apart from overall 

behavioral performance.    

 In addition to assessing the prospective links from �N2 to later math and reading 

performance, we also examined the prospective links from early academic skills to later �N2. 

Neither math nor reading skills predicted later �N2. A few studies demonstrated bidirectional 

longitudinal associations between cognitive control and academic skills (Clements et al., 2016; 

Fuhs et al., 2014). However, we did not find any evidence for bidirectional relationships between 

conflict monitoring and math performance. One explanation can be that such reciprocity 

emerges as children proceed to learn newer and more complex rules in later years of 

elementary school. As children face response conflicts more frequently (e.g. proceeding to 

multiplication and division after addition and subtraction, or comprehending passages that 

include words with less frequently used meanings), they may have greater opportunities to 

practice their conflict monitoring skills. This may lead to the conflict monitoring system to be 

enhanced by increased math and reading practice, but potentially at a developmental period 

beyond what we examined in the current study, such as later in the elementary school.   

Limitations and Future Directions  

 One limitation of our study is that we measured the neural index of conflict monitoring in 

a task with a fixed interstimulus interval. In a Go/No-Go task, especially with a fixed 

interstimulus interval, a preceding Contingent Negative Variation (CNV) may distort the N2 

component (Oddy, Barry, Johnstone, & Clarke, 2005). CNV is observed during the interval 

between a warning stimulus and a subsequent stimulus that requires a response, and is 

considered an index of motor anticipation and preparation (Rohrbaugh, Syndulko, & Lindsley, 

1976; Walter, 1964). It has been argued that using difference waves can eliminate this problem 
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as the overlapping electrophysiological activity from the previous time period would be the same 

for both conditions and be subtracted away with the creation of a difference wave (Luck, 2014). 

However, it remains a future direction to be pursued to what extent CNV is associated with N2 

components in children and whether this neural index of anticipation and motor preparation 

would provide any additional predictive information for emergent academic skills.   

 Another limitation of our study is the missingness in the neural measures. Although our 

coverage rates were comparable to several longitudinal studies with only behavioral measures 

(e.g. Roberts & Bryant, 2011; Schaeffer, Petras, Ialongo, Poduska, & Kellam, 2003), 

missingness was still greater for �N2 across time points compared to the behavioral measures. 

Children for whom we had ERP data did not differ from children who had no usable ERP data in 

terms of demographics or academic performance; yet, the greater missingness for our neural 

measure remains a limitation. This issue needs to be addressed with improvements in neural 

data acquisition and processing techniques, before cognitive neuroscience measures can be 

widely used to complement behavioral assessments in developmental and educational 

research.  

 Although our results demonstrated that the neural indices of conflict monitoring predicted 

math performance prospectively, the effects were small in magnitude. One possible explanation 

for such small effects is that conflict monitoring relates to specific math skills, but not others. 

The standardized math scores we used in this study captures general aspects of math 

performance but does not give information about performance in specific subcomponents. 

Studies that used more fine-grained math assessments revealed that particular cognitive control 

skills were related to specific aspects of math performance (Purpura et al., 2017). It is possible 

that conflict monitoring also relates to specific math skills and using a more general assessment 

might have obscured such associations. In addition, not all items on the Woodcock Johnson 

Applied Problems would rely on conflict monitoring (e.g. counting fingers), and some aspects of 

math development that may rely on conflict monitoring (e.g. counting backwards) are not 

captured by this task. Future research is needed to address this limitation of our study and 

assess whether the associations between conflict monitoring and math performance are 

particularly pertinent for certain math skills.  

 Furthermore, the reading assessment we used has been considered to tap into rote 

memorization skills rather than rely heavily on cognitive control processes (Blair et al., 2015). 

However, when children learn more sophisticated rules of reading, conflict monitoring may 

become more important in the execution of newer rules compared to the better rehearsed but 

irrelevant rules. Thus, different reading assessments may yield associations we did not find in 
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our study. Another important future direction is the study of associations between conflict 

monitoring and reading skills in later years of elementary school.  

Conclusion 

 In summary, our study contributed to the characterization of a neural index of conflict 

monitoring, �N2, in early childhood, and provided initial evidence for prospective longitudinal 

associations between conflict monitoring and math performance as children transitioned from 

preschool to kindergarten and first grade. The lack of associations between conflict monitoring 

and reading implied that conflict monitoring is involved in academic skills in a domain specific 

manner in early childhood. �N2 predicted math performance above and beyond the behavioral 

performance in the Go/No-Go task, which suggested that a neural index can provide additional 

information in predicting math performance that is not captured by behavioral performance in a 

task.  

 The prospective associations between conflict monitoring and math performance, 

especially as children transition to formal schooling, lay the groundwork for investigating 

whether improving conflict monitoring skills can boost math performance during early school 

years. If such a directional association can be found experimentally, simple conflict monitoring 

activities could be incorporated into preschool and kindergarten math curriculum. In addition, the 

links between conflict monitoring and math performance suggest that some children may 

experience difficulty in monitoring response conflicts when they need to transition from using a 

more rehearsed but not relevant rule to a newer rule that is relevant for the task at hand. 

Identification of which children are at greater risk for such conflict monitoring difficulties can give 

educators greater precision to address children's obstacles as the math curriculum advances 

and as children need to select between multiple competing rules of math. Our findings highlight 

the need for future research on how conflict monitoring develops and contributes to academic 

skills in early childhood and beyond.  
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Table 1. Descriptive statistics  

Variables n Min Max M SD 

Demographics      

   Age in months (Time 1) 260 45 70 56.36 4.70 

   Percent female 261   56  

   Percent minority 261   45  

   Income-to-Needs Ratio  254 .10 6.40 2.16 1.43 �N2 (μV)      

   Preschool 168 -16.11 8.02 -4.22 4.07 
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    Kindergarten 171 -15.83 6.42 -4.42 3.63 

   First grade 173 -13.32 3.43 -4.31 3.36 

Go/No-Go d’       

   Preschool        248 -.08 5.69 2.26 1.01 

    Kindergarten 228 .79 5.39 3.00 .89 

   First grade 224 1.02 5.39 3.41 .91 

Math performance      

   Preschool 261 72.00 137.00 109.65 11.61 

   Kindergarten 232 72.00 140.00 108.74 11.71 

   First grade 225 82.00 139.00 107.38 11.44 

Reading performance      

   Preschool 261 70.00 140.00 105.59 11.97 

   Kindergarten 232 82.00 159.00 114.36 14.88 

   First grade 225 76.00 151.00 115.53 13.01 

Note. �N2 = Neural index of conflict monitoring (mean amplitude of the right hemisphere N2 

difference wave); Go/No-Go d’: Go/No-Go behavioral performance; Math performance = 

Woodcock-Johnson Applied Problems Standard Scores; Reading performance = Woodcock-

Johnson Letter Identification.
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Table 2. Zero-order correlations   

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Age (Time 1) -                               

2. Gender -.11 -                             

3. INR -.07 .11 -                           

4. Minority .07 .02 -.28 - 
**
                        

5. �N2 PK -.03 .03 -.07 .06 -                      

6. �N2 K -.06 .13 -.06 .08 .22* -                    

7. �N2 1st .09 .07 -.26 .12 
**
 .15 .36** -                  

8. d’ PK .23** .16* .18** .06 -.04 -.03 -.18*   -                 

9. d’ K .12 .23** .11 .08 -.04 -.09 -.15 .51** -                

10. d’ 1st .12 .22** .11 .12 -.18* -.05 -.09 .42** .59**  -             

11. Math PK -.11 .07 .30** -.32 -.09 
**
 -.12 -.17* .35** .19** .20**  -            

12. Math K .01 -.07 .34** -.30 -.18
**
 -.14 

*
 -.20 .31** 

**
 .20** .19** .68**  -          

13. Math 1st -.08 -.07 .36** -.37 -.16 
**
 -.24 -.23

**
 .17* 

**
 .10 .19** .60** .69**  -       

14. Reading PK -.16** .15* .29** -.06 -.08 -.08 -.25 .23** 
**
 .14* .12 .54** .50** .51** -   

15. Reading K -.05 .08 .30** -.09 -.14 -.05 -.23 .22** 
**
 .17* .12 .47** .52** .54** .62** -  

16. Reading 1st -.17* .05 .25** -.10 -.14 -.11 -.19 .16* 
*
 .07 .12 .42** .49** .57** .61** .80** - 
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Note. Gender: 0 = Male, 1 = Female; INR = Income-to-Needs Ratio; Minority: 0 = non-Hispanic White, 1 = minority; �N2 = ERP index 

of conflict monitoring (more negative values correspond to larger neural index); d’ = Go/No-Go behavioral performance; PK = 

preschool; K = kindergarten; 1st = 1st

 

 Grade; * p < .05, ** p < .01. 
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Table 3. Direct associations from the auto-regressive cross-lagged model for math 

performance 

 

      Confidence Interval  

 Path Est. SE Lower Upper p �N2 PK → �N2 K .188 .076 .040 .336 .013 �N2 K → �N2 1st .302 .070 .165 .439 < .001 �N2 PK → d’ K -.010 .016 -.041 .022 .550 �N2 K → d’ 1st -.003 .016 -.034 .028 .834 �N2 PK → math K -.362 .174 -.702 -.021 .037 �N2 K → math 1st -.354 .172 -.691 -.018 .039 

d’ PK → d’ K .456 .058 .342 .569 < .001 

d’ K → d’ 1st .530 .058 .417 .643 < .001 

d’ PK → �N2 K .092 .313 -.522 .706 .768 

d’ K → �N2 1st -.401 .279 -.948 .058 .151 

d’ PK → Math K .496 .646 -.770 1.559 .442 

d’ K → Math 1st -.610 .614 -1.813 .400 .320 

Math PK → Math K .595 .055 .488 .702 < .001 

Math K → Math 1st .585 .054 .479 .691 < .001 

Math PK → �N2 K -.038 .028 -.093 .017 .178 

Math K → �N2 1st -.006 .025 -.055 .042 .793 

Math PK → d’ K -.002 .005 -.012 .007 .652 

Math K → d’ 1st .006 .005 -.004 .015 .251 

Note: Est. = Unstandardized estimate; INR = Income-to-Needs Ratio; �N2 = ERP index 

of conflict monitoring (mean amplitude of the right hemisphere N2 difference wave), 

more negative values correspond to larger neural index; d’ = Go/No-Go behavioral 

performance; Math = Woodcock-Johnson Applied Problems Standard Scores. 
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Table 4. Direct associations from the auto-regressive cross-lagged model for reading 

performance 

      Confidence Interval  

 Path Est. SE Lower Upper p �N2 PK → �N2 K .190 .076 .042 .338 .012 �N2 K → �N2 1st .294 .069 .159 .429 < .001 �N2 PK → d’ K -.010 .016 -.042 .022 .537 �N2 K → d’ 1st -.004 .016 -.034 .027 .816 �N2 PK → Reading K -.264 .225 -.705 .177 .240 �N2 K → Reading 1st -.152 .177 -.499 .139 .389 

d’ PK → d’ K .446 .056 .335 .556 < .001 

d’ K → d’ 1st .542 .058 .429 .654 < .001 

d’ PK → �N2 K .031 .304 -.566 .627 .920 

d’ K → �N2 1st -.317 .279 -.864 .230 .256 

d’ PK → Reading K 1.047 .825 -.569 2.664 .204 

d’ K → Reading 1st -.584 .587 -1.735 .382 .320 

Reading PK → Reading K .709 .069 .573 .845 < .001 

Reading K → Reading 1st .693 .037 .620 .766 < .001 

Reading PK → �N2 K -.026 .024 -.074 .021 .281 

Reading K → �N2 1st -.024 .016 -.055 .007 .127 

Reading PK → d’ K .000 .005 -.009 .009 .948 

Reading K → d’ 1st .000 .004 -.006 .007 .907 

 

Note: Est. = Unstandardized estimate; INR = Income-to-Needs Ratio; �N2 = ERP index 

of conflict monitoring (mean amplitude of the right hemisphere N2 difference wave); d’ = 

Go/No-Go behavioral performance; Reading = Woodcock-Johnson Letter Identification 

Standard Scores 
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Figure captions 

Figure 1. 64-channel net with 10-20 channels and frontal and central clusters for each 

hemisphere were identified, following the configuration reported by Vanderwert and 

colleagues (2016). A midline cluster, including E8, Fz, and E4 electrodes, was also 

analyzed.  

 

Figure 2. Right hemisphere ERPs averaged across frontal and central electrodes at 

each time point. By convention, negative is plotted upward. The neural index of conflict 

monitoring was operationalized as the N2 mean amplitude (μV) difference between Go 

(black waveform) and No-Go (red waveform) conditions between 250-500 ms after 

stimulus onset. The No-Go N2 was larger (more negative in amplitude) than the Go N2 

across time points.  

 

Figure 3. The cross-lagged model showing the longitudinal associations between the 

neural index of conflict monitoring (�N2), Go/No-Go behavioral performance (d’) and 

math performance from preschool through first grade. Standardized coefficients are 

shown. Statistically significant paths are shown with solid lines, and non-significant paths 

are shown with dashed lines. * p < .05, ** p < .01 

 

Figure 4. The cross-lagged model showing the longitudinal associations between the 

neural index of conflict monitoring (�N2), Go/No-Go behavioral performance (d’) and 

reading performance from preschool through first grade. Standardized coefficients are 

shown. Statistically significant paths are shown with solid lines, and non-significant paths 

are shown with dashed lines. * p < .05, ** p < .01 A
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