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ABSTRACT 

The last two decades have witnessed an explosion in research focused on development and 

assessment of novel biomarkers for improved prognosis of disease.  As a result, best practice 

standards guiding biomarker research have undergone extensive development.  Currently there is 

great interest in the promise of biomarkers to enhance research efforts and clinical practice in the 

setting of chronic kidney disease, acute kidney injury, and glomerular diseases.  However, some 

have questioned whether biomarkers currently add value to the clinical practice of nephrology.  

The current state of the art pertaining to statistical analyses regarding use of such measures is 

critical. 

In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases 

convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the 

goals of summarizing current best practice recommendations and articulating new directions for 

methodological research.  This report summarizes its conclusions and describes areas that need 

attention.  Suggestions are made regarding metrics that should be commonly reported.  We 

outline the methodological issues related to traditional metrics and considerations in prognostic 

modeling, including discrimination and case mix, calibration, validation, and cost-benefit 

analysis.  We highlight the approach to improved risk communication and the value of graphical 

displays.  Finally, we address some “new frontiers” in prognostic biomarker research, including 

the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed 

research networks. 
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1  |  INTRODUCTION 

This report provides a summary of considerations and discussions that took place during the 

National Institute of Diabetes and Digestive and Kidney Diseases meeting, “Toward Building 

Better Biomarker Statistical Methodology” held December 2, 2014.  It was motivated by the 

recognition of need for improved prediction of outcomes and response to therapeutic 

interventions in patients with acute kidney injury, chronic kidney disease and glomerular disease, 

to name a few.  Here we review research topics that offer meaningful contributions to the field of 

statistical methodologies for prognostic biomarkers, with a particular focus on kidney diseases. 

We review phases of biomarker development, as outlined in a report from the American 

Heart Association, and expand this review by suggesting some metrics that could be commonly 

reported.1  Our scope is also limited to questions related to prognostic biomarkers, and not to 

biomarker research in general.2  We start with a summary of best practice recommendations. 

Subsequently, we outline some methodological issues related to traditional metrics and 

considerations regarding prognostic modeling, including discrimination and case mix, 

calibration, validation and cost-benefit analysis.  We then focus on the challenges facing 

improved risk communication and the importance of graphical displays.  Finally, we address 

some “new frontiers” in prognostic biomarker research, including the competing risk framework, 

the use of longitudinal biomarkers, and analyses in distributed research networks, and end with a 

brief summary and consideration of other important directions.  Our goal is to provide a 

statistical framework for models in which biomarker analyses permit meaningful clinical 

interactions between patients and physicians in the outpatient setting or at the bedside. 

2  |  BEST PRACTICE RECOMMENDATIONS  

It is essential to consider the clinical context of biomarker applications when working on their 

discovery and development.  Investigators should be guided in part by key clinical questions 

such as, “Of what use is this biomarker to me or my patient in the clinical setting?”  It is also 

essential that biomarkers studies are motivated by, and address, existing clinical needs that go 

beyond population level to individual clinical considerations, spanning matters of importance to 
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the patient and the physician in the consultation room or at the bedside, including risk 

communication and specific clinical actions.3 

Several statistical best practices exist.  First, it is essential to avoid the loss of information by 

unnecessary categorization of outcomes and predictors.  Instead, models need to incorporate 

continuous or ordinal outcomes, and flexible modeling techniques (such as fractional 

polynomials or splines) should be adopted to avoid forcing linearization or dichotomization of 

predictors.  Furthermore, different phases in the process of biomarker development require 

different statistical methods to summarize the findings.  For example, it is premature to assess 

improvement in model performance during the early proof of concept stage while it is 

insufficient to rely on tests of association in the later phases.  In addition, situations such as 

competing risk and multi-category outcomes require special consideration. 

Risk prediction models should be developed that will be broadly useful in clinical settings.  

When evaluating performance of biomarker-enriched models, it is essential to keep in mind the 

impact of case mix.  Unbiased internal validation using resampling (e.g., bootstrapping or cross-

validation) of biomarker results is necessary.  The importance of calibration in the prognostic 

context was also highlighted.  Furthermore, cost-effectiveness and cost-benefit analyses are 

important for determining the best treatment in certain situations.   

3  |   DIFFERENT PHASES OF EVALUATION OF RISK MARKERS REQUIRE 

DIFFERENT STATISTICAL METRICS 

A key consideration in evaluation of biomarkers is the stage of their development.  The AHA 

Scientific Statement on the Criteria for Evaluation of Novel Markers of Cardiovascular Risk 

gives an excellent summary of those stages2.  The terminology used for presentation of results as 

well as statistical metrics employed to convey them should differ. During the earliest phase, 

“Proof of Concept,” investigators establish whether novel marker levels differ between 

participants who will and will not develop the event of interest.  If the biomarker level is not 

time-varying or largely affected by the occurrence of the event, cross-sectional studies can be 

employed at this stage.  Replication in an independent cohort is desirable.  The statistical focus at 
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this stage should be on the distribution of the biomarker among events and non-events and the 

observed effect size.  Any statistical risk modeling would be premature, and measures of 

precision of the estimates are preferred over tests of hypotheses. 

The second phase, “Prospective Validation,” takes us one step further.  Here we attempt to 

establish whether the new marker predicts development of future events in a prospective cohort, 

or nested case-control, or case-cohort study. In this phase descriptive plots of the marker’s 

impact over time, as well as relative risks and hazard ratios with the corresponding confidence 

intervals, should be reported. 

The third phase focuses on the incremental value of the marker on the disease risk model.  

Does a marker add prognostic information to established, standard risk factors? Does the risk 

model improve with the inclusion of the marker?  A substantial portion of statistical research on 

prognostic biomarkers has been devoted to improving methodologies for this phase.  An 

emerging consensus supports the use of hierarchical assessment.  First, the likelihood ratio test is 

performed to determine if the new marker(s) remains associated with the outcome after 

controlling for a large number of already known and used predictors.4-6  This can be 

supplemented by the likelihood-based adequacy index described by Harrell.7  The index 

quantifies the proportion of the log-likelihood explained by all predictors that can be explained 

without the new marker(s).  Values close to 1 indicate that the new marker(s) offer little added 

information whereas values close to zero suggest the new marker(s) contain most of the 

explanatory power.  After the added value of the new marker(s) has been established, 

discrimination, calibration, and reclassification metrics can be presented with corresponding 

confidence intervals.  These three domains are considered in more detail in the next section.  

Here we stress that p-values should not be reported with measures of discrimination, calibration, 

or reclassification.  There are at least two reasons for this recommendation.  Pepe et al have 

shown that for absolutely continuous risk functions, the hypothesis of association with outcome 

after controlling for standard risk factors is equivalent to the hypothesis of incremental value as 

determined by the most commonly used measures of discrimination and reclassification.  Since  
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the likelihood ratio test is the most powerful, there is no need to perform any other tests5.  

Furthermore, the existing asymptotic tests for the hypotheses of incremental value are incorrect 

due to the lack of normality under the null hypothesis.4,5 

After an incremental value has been established, the question of clinical utility must be 

addressed.  What would be the impact of routine use of the new biomarker in clinical practice?  

Would it alter treatment or clinical care?  Plots of risk distributions (see Section 6.2) as well as 

decision analytic measures of net benefit, relative utility, or weighted net reclassification 

improvement offer simple yet informative summaries that address this question.  They can also 

be expressed as the number of false positives per each additional true positive or as the number 

needed to test.8,9  Separate assessment for subjects with and without events might also be 

instructive, especially as some classification threshold may have improvements in sensitivity 

with reductions in specificity.10 

A more extensive version of the above considerations leads to a full cost-effectiveness 

analysis.  This requires meaningful cost or utility estimates assigned to different combinations of 

clinical decisions and associated outcomes.  Some of the inputs might require parameters that are 

best estimated from randomized controlled trials (RCTs).  RCTs may also be necessary to 

establish whether routine use of the marker improves clinical outcomes.  Impact on clinical 

outcomes and cost-effectiveness form the last two phases in the evaluation of biomarkers. 

Table 1 provides a summary of these recommendations.  It follows the phases of 

biomarker evaluation proposed by the AHA scientific statement and expands the considerations 

by adding statistical metrics that might relevant for each phase. 

4  |  DISCRIMINATION 

Discrimination of a prognostic model refers to its ability to distinguish between those who will 

versus those who will not develop the event of interest.  It is most commonly quantified using the 

area under the receiver operating characteristic curve (AUC).11,12  Recently, the discrimination 

slope and other R-squared-type measures have gained popularity as discrimination metrics.13,14 

4.1  |  Importance of risk factor distributions 
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One frequently overlooked feature of discrimination is its dependence on the distributions of the 

biomarker of interest as well as of other predictors.15  This affects the discriminatory ability of 

the baseline model as well as the impact of added biomarkers.  This phenomenon can be 

illustrated using two biomarker studies published in the New England Journal of Medicine. 

Wang et al16 used Framingham data with baseline age of participants extending approximately 

from 30 to 70 years (based on the mean and standard deviation reported) to show that a panel of 

biomarkers added to a cardiovascular risk prediction model with standard risk factors increased 

the AUC from 0.80 to 0.82.   Zethelius et al17 used data from the Uppsala study of men aged 69 

to 74 years at baseline to show that a biomarker panel added to a cardiovascular risk prediction 

model based on standard risk factors increased the AUC from 0.69 to 0.75.  There were a few 

data characteristics that differed between the two studies, including some of the biomarkers used 

and men-only sample in the Uppsala study.  Here we focus only on the difference in baseline age 

ranges:  40 years in the Wang paper and 4 years in the Zethelius paper.  The difference in 

baseline AUCs may be explained by the difference in baseline age distributions.  A simple 

simulation confirms this hypothesis.  We choose the baseline age of the general population to be 

distributed uniformly between 35 and 75, roughly corresponding to what is used in the 

Framingham study.  We select the strength of association between age and the outcome to obtain 

age-only AUCs of 0.6, 0.7, 0.8, and 0.9.  Then we add another uncorrelated normal variable with 

an effect size (standardized mean difference between persons with and without events) of 0.5.  

We set the sample size at 1,000,000 to limit sampling variability.  We repeat the steps for 

samples generated from the same population, but this time the age range is reduced to 70-73, a 

selection close to the range in the Uppsala study.  The results are presented in Table 2. 

First, note the striking impact of baseline age range on the AUC.  For example, the AUC 

decreases from 0.80 in case of the wide age range of 35-75 years to 0.56 for the range of 70-73.  

The impact of age is substantially reduced in studies with sufficiently narrow age range, an easily 

predictable but all too often overlooked observation.  The change in AUC is a function of the 

strength of the baseline model – it is large for weak models and small for strong models.  This 
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implies that researchers evaluating the same marker in studies with different distributions of age 

(wide versus narrow) could reach opposite conclusions about the usefulness of a marker.  The 

results depicted are based on a simple model presented to illustrate the phenomenon.  The same 

results will hold when we replace age with different predictors and their combinations.  In 

studies of chronic kidney disease, for example, in addition to age, the distribution of urine 

protein excretion and level of renal function might be critical in comparing outcomes in different 

studies.  Thus, the distribution of risk factors in the sample under study has a powerful impact on 

the results and needs to be considered when drawing conclusions.18 

Several approaches can be considered.  Ideally, we should be able to quantify discrimination 

on the population for whom the new biomarker is considered.  Thus, the incremental impact of 

the biomarker might be population specific, with the features of the population under 

investigation clearly described in the scientific report.  In addition, investigators could consider 

having a standard population on which prediction models are assessed to permit comparisons 

across studies.  If this is not possible, micro-simulations could be undertaken to put the results in 

appropriate context.  In some settings, covariate-adjusted measures could be considered.19  In 

general, risk prediction models should be developed in broadly representative clinical settings.  

This concept ties to the issue of case mix, because general predictions cannot be made from a 

limited study.  Journal editors should be sensitive to this limitation. 

The issue of risk factor distribution also applies to combinations of biomarkers.  The question 

arises regarding to the extent to which combinations of biomarkers that improve prediction in a 

mixed-disease population (i.e., substantial case mix) also improve prediction in clinical settings.  

If the biomarker is evaluated in a heterogeneous population, does this mean that the transfer of 

the biomarker to another clinical setting is compromised?  This concept is related to the notion of 

biomarkers that reflect pathways that participate in disease progression in all people, compared 

with combining biomarkers that reflect the diversity of pathways that sometimes cause disease in 

some people.  This reflects the value of the panel of biomarkers at an individual level. 
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This discussion also relates to the phases of biomarker assessment described in the previous 

section.  Samples used during the proof of concept evaluation will most likely be more narrow 

and homogenous given their smaller size.  Prospective validation and the following phases will 

hopefully be conducted on broader and more heterogeneous samples.  This increases the 

probability of failure for biomarkers that looked promising during early stages.  A couple of 

safeguards could be considered to limit this risk.  First, it is essential to account for the matched 

case-control design of many early phase studies because by their very nature they might give an 

over-optimistic impression of the biomarker’s discriminatory potential.  Matching reduces 

variability that is due to the predictors on which we match, thus reducing their impact.  Matching 

has an effect similar to the narrowing of the age range in the earlier example.  Fortunately, 

reliable methods have been proposed to account for this problem.20  Second, before proceeding 

to assessment of incremental value, micro-simulations should be used to assess the potential 

value of the marker on a broader and more heterogeneous data set. 

4.2  |  R-squared-type measures of discrimination 

The AUC is by far the most commonly reported measure of discrimination and model 

performance.21  As a result, the AUC has the unquestionable advantage of familiarity but it also 

has several shortcomings.22-24  Consequently, several other metrics have been evaluated.  Some 

of them are being rediscovered as potential alternatives to the AUC.  Here we consider the R-

squared type measures.  

In linear regression, R-squared is the prime metric of model performance.  Extensions to 

binary and survival outcomes are possible, but they are not unique.  This might partially explain 

the lack of consistent applications of R-squared measures in prognostic modeling.  Furthermore, 

each extension of R-squared has its own limitations.14  The linear regression R-squared can be 

interpreted as a measure of explained variation, a measure of reduction in residual variation, and 

a measure of correlation of predictors with outcome.  Each extends to a slightly different metric 

in the case of binary outcomes even though they are all asymptotically equivalent, converging to 

the same quantity for correctly specified models.  However, the R-squared based on “model sum 
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of squares” measures only discrimination while the one based on “error sum of squares” 

measures both discrimination and calibration and is closely linked to the Brier score.  The 

average of these two, called by Tjur the coefficient of discrimination,14 is the same as the 

discrimination slope introduced by Yates25 and used as a building block for the integrated 

discrimination improvement (IDI) metric proposed by Pencina et al.26-28  A related class of R-

squared measures can be derived based on the log-likelihood.7 

While the R-squared measures have many appealing features,14,26 lack of familiarity and 

problems with interpretation have limited their application.  Further research is thus required, 

with particular focus on R-square interpretation and practical properties in applied settings.  

Reference values for different situations may be needed.  Given that the R-squared measures 

belong to the third phase of marker assessment, it would be particularly interesting to see and 

compare how informative they are in developing a sense of the marker performance in the fourth 

phase, focused on clinical utility.  Thus, further research between the links of AUC and R-

squared measures and their links to decision analytic concepts, including but not limited to net 

benefit, relative utility, and the weighted NRI, appears warranted.10  In addition, more work 

needs to be done to develop a better sense for understanding their magnitude as well as the 

impact of model calibration on the results. 

4.3  |  Effect of correlation structure on model performance 

Recent findings29,30 underscore the impact of the correlation structure that exists in the data on 

the ability of markers to improve discrimination.  Contrary to the popular belief that uncorrelated 

predictors might offer the largest gains in model performance, in many settings biomarkers 

negatively correlated with each other (within event and non-event individuals) and positively 

correlated with the outcome might lead to highest gains.  Even more surprisingly, strong positive 

correlation might also be beneficial in some settings.  For a simple illustration of this 

phenomenon see Figure 1 in Demler et al.30  We add a new biomarker of intermediate strength 

(effect size 0.5) to a model containing a single biomarker with effect size 0.74, yielding a 

baseline AUC of 0.70.  If the correlation between the two biomarkers (conditional on the event 
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status) is zero, addition of the second biomarker increases the AUC from 0.70 to 0.74.  But if the 

conditional correlation is negative, close to -0.5, AUC increases to 0.80.  Finally, large positive 

conditional correlation (close to 0.75) leads to a negligible increase in the AUC, while very large 

positive correlation (close to 1) leads to an appreciable increase.  In all of the above scenarios, 

the effect size of the added biomarker is constant and equal to 0.50.  Consequently, the approach 

of pre-selecting biomarkers based on their univariate effect should be discouraged.29 

5  |  CALIBRATION, VALIDATION AND COST-BENEFIT 

5.1  Calibration 

Prognostic models evolved from the diagnostic setting where the main focus was on their 

discriminative ability.  The awareness of the importance of calibration when evaluating models 

predicting future events has been increasing recently.31,32  Several publications assessing model 

comparisons have demonstrated that the models can be affected by lack of calibration.  However, 

there remains confusion about the meaning and interpretation of calibration and appropriate ways 

to quantify it. 

First, it is important to note that there are several levels of calibration that can be achieved. 

Calibration in-the-large requires that the mean of model-based risks equals the event rate, and is 

automatically satisfied when the model was developed using a regression technique applied to 

the same data on which it is being evaluated.  The simplest reason for miscalibration is when the 

model is applied in an external setting. 

Calibration in-the-large can also be measured by the intercept of the regression model with 

the event as the dependent variable and the linear predictor as a single independent variable.  

Over- and under-dispersion refer to model-based probabilities being more or less spread out than 

the actual risks in the population.  Over-and under-dispersion can be measured and corrected 

using the calibration slope, which is the slope of the regression of event on the linear predictor. 

There are “weak” and “strong” calibration metrics that require that the observed risk is equal 

to the mean estimated risk for those with that model-based risk (“weak”), and for those with any 

and each covariate pattern (“strong”).  No single summary metric does an adequate job 
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quantifying the last two levels of calibration.  Graphic displays are the most appealing.  For 

example, the recent TRIPOD statement on reporting standards for predictive models presents a 

user-friendly example of an easy to understand calibration plot.33  Still, more research is needed 

to help guide investigators in reading these plots, with a particular focus on how we can 

distinguish between the different levels of calibration.  Furthermore, we also need to better 

understand how these levels relate to each other and which features of the model drive or 

contribute to different forms of miscalibration. 

These considerations help frame questions about the impact on calibration exerted by 

addition of new biomarkers.  To what extent should we expect new biomarkers to improve the 

different calibration levels described above?  It is clear that they will have no impact on 

calibration in-the-large, but more work is needed to see how they can affect other types of 

calibration.  Also, some consensus needs to be built around the degrees of acceptable 

miscalibration (if any).  In some settings, optimal calibration may not be possible, especially in 

specific geographic populations or subgroups. It is important to consider how to address 

concerns that a model might not be calibrated appropriately for a patient belonging to a particular 

subgroup. 

5.2  |  Validation 

The purpose of predictive models is to apply them outside the sample that was used for their 

development.  It is well known that the apparent performance of prognostic models on the data 

on which they were developed will be better than their performance in different samples.34  

However, the majority of biomarker studies develop and assess models on the same data.  

Several methods have been proposed to quantify the potential over-optimism due to same sample 

assessment.  These include repeated random split sample techniques, x-fold cross-validation and 

different bootstrap techniques.35  It is less clear, however, to what extent the impact of new 

biomarkers would be over-estimated when assessed on the same sample on which the model was 

developed.  Empirical evidence shows that results following various corrections for over-

optimism remain very close to those without the correction when the number of events is 
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sufficiently large and the number of biomarkers is sufficiently small.36  It would be helpful to 

know to what extent this is to be expected and when meaningful reductions in apparent 

performance should occur.  On the other hand, exploratory analyses studying many genes or 

proteins at an early research phase require more careful internal validation than studies involving 

large data sets with known risk factors.  Model selection may require 10 to 100 repetitions, 

assessing linearity, looking at splines, and choosing the most appropriate functional forms.  

Cross-validation and bootstrapping can help with complex models.  Methodological exploration 

is needed to address these questions. 

The importance of external validation is of particular relevance in the context of larger 

amounts of data and when more computationally-intensive algorithms are used.  Regression still 

remains the most popular strategy, partially due to its easier implementation and interpretation. 

Algorithms based on regression methods are also known to validate well in external samples.36  

However, adoption of more advanced techniques, including statistical and machine learning 

methods, might lead to appreciable gains in prognostic ability of individual biomarkers, and 

especially for combinations of biomarkers.37  Still, their ability to be well validated must be 

established.  Model validation is critical for measures of discrimination as well as calibration 

with particular focus on individual-level estimates of absolute risk. 

5.3  |  Cost-benefit considerations 

Cost-benefit analyses need to be undertaken before applying a new marker in practice.  A 

particular biomarker might be better for a specific use, but the cost might outweigh the benefits.  

An important question in the area of cost-effectiveness and cost-benefit analysis is how best to 

ascertain costs – not just monetary costs, but also clinical utility, psychological costs, treatment 

risks, and patient preferences.  For example, how willing is a patient to endure a biopsy to 

improve the assessment of her risk?  Furthermore, the frame of reference needs to be defined:  

should the cost be guideline-based (e.g., uniform costs for everyone), established by individual 

preferences, or be a combination of both approaches?  The frame of reference selected might 

alter the importance or value of a given marker.  Thus, it is essential to understand how the frame 
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of reference, patient preferences, and societal demands might change the metrics used to quantify 

cost-benefit.  It is also important to learn how best to communicate the costs and benefits to 

patients and to better elucidate and quantify patient preferences.  The lack of agreed-upon inputs 

for cost-benefit analyses is one of the main impediments to their more frequent and meaningful 

application.  On the other hand, cost-benefit analyses might be more theoretical in areas where 

no alternative treatments are available.  An example is nephrology, where there are few well-

defined and accepted preventive treatments for chronic kidney disease (CKD).  Angiotensin-

converting-enzyme inhibitors and angiotensin receptor blockers halt progression of CKD but the 

cost-benefit analysis across the spectrum of risk of kidney failure in the future is unknown.  

More research is needed to develop reliable cost-benefit frameworks specific to each given 

practical area of application.  Ideally, this could be done through a consensus among multi-

disciplinary experts. 

Even if reliable and generally accepted frameworks are created for cost-benefit analyses 

corresponding to prognostic models in relevant disciplines, it is unreasonable to expect all 

biomarker papers in the discipline to perform full cost-benefit or cost-effectiveness assessments.  

Such analyses do not need to be performed until later stages in biomarker evaluation.  

Furthermore, even when reliable frameworks are created, differences in interpretation and frames 

of reference will have persisting problems with heterogeneity and some controversy.  Against 

this backdrop, simplified decision-analytic approaches offer an appealing bridge between a full 

cost-benefit analysis and purely statistical metrics.  Net benefit, relative utility and weighted net 

reclassification index (NRI) belong to this group.10,35  In the many instances where classification 

thresholds are not well established, it is helpful to present these decision analytic measures 

across a range of plausible thresholds.  Graphical representation is particularly attractive, 

resulting in net benefit, relative utility, or weighted NRI curves.10,38  A good example of a net 

benefit curve and its interpretation is given in the TRIPOD statement.39  There is little 

disadvantage to routine presentation of these metrics, especially using graphic displays across the 

entire range of thresholds, as long as their interpretation remains within the confines of what 
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these metrics can and cannot do.  They are not a replacement for a full cost-effectiveness 

analysis.  They also rely on the assumption of rational choice, and link the classification 

threshold to a ratio of costs or dis-utilities of wrong decisions.  Many popularly used 

classification thresholds are not created in this way.  The choices of costs and utilities might 

depend on the frame of reference, and are not likely to be constant.  Finally, they are sensitive to 

miscalibration.40  Their relationship to statistical measures of model performance applicable in 

the third phase of biomarker assessment needs further exploration. 

6  |  RISK COMMUNICATION AND GRAPHICAL DISPLAYS 

6.1  |  Better risk communication 

Development and application of appropriate statistical methodology is imperative for fruitful 

biomarker research.  However, effective communication of the methods and results among the 

researchers and the clinical community is also important.  Development of such communication 

is best facilitated by multilevel interaction and collaboration between statisticians, clinicians, and 

study designers. For example, in cardiology, the Framingham Heart Study serves as an example 

of such interaction between statisticians and physicians.  There is a delicate balance between the 

ability to explain more difficult concepts in simpler language and diluting these concepts. 

Four aspects of these important considerations are highlighted.  First, the consistent use of 

uniform terminology and statistical metrics will enhance their understanding and interpretability.  

These might need to be specific to each phase of biomarker development as outlined in Section 

2.  Second, it is important to distinguish between the merits of focus and reporting based on 

absolute versus relative risk.  It is also important to recognize that some of the metrics in current 

use are more aligned with absolute than relative risk.  For example, the change in AUC depends 

more heavily on relative risks, while the discrimination slope and IDI are also linked to absolute 

risk as are assessments of calibration.  Third, it is important to quantify the variability around 

predicted risk, and to develop methods that help quantify the heterogeneity of individual 

predictions based on multiple models created for the same outcome.  If several models yield 

similar (high or low) risk assignments, a conclusion is more credible than when the results are 

This article is protected by copyright. All rights reserved.



18 
 

heterogeneous, even if their central tendencies stay the same.  Whether this can be quantified and 

used for improved risk assessment requires further research. 

It is important to distinguish between the incremental value of new biomarkers in predictive 

models and the amount of risk that is attributed to causal factors.  The terms predictor, marker, 

and risk factor are often used interchangeably, but some differentiation might be desired.  

Different standards and justifications for use might be applied for markers of risk, compared to 

causal factors.  Generally, a marker will be useful if it can offer added value in predictive model 

application.  A causal factor might add little to an existing model, due to its correlation structure 

with other predictors, or if the baseline model is already very good, but might still be important 

because its reduction or elimination can have positive clinical consequences.41  More research is 

needed to find ways to best quantify the impact of biomarkers that could be causal factors in 

mechanistic pathways.42,43 

6.2  |  Graphic displays of biomarker effect 

Our usual approach of summarization of results as a single number can detract from the 

interpretation of the complexity of findings in a well-designed study.  However, much more 

information can be conveyed in pictorial displays of a biomarker effect.  A calibration plot is a 

useful graphical display which conveys more information than any single-number calibration 

metric.39  Graphical displays can be tailored for different audiences.  For example, telling a 

patient that their risk of disease is X may not give them much information without appropriate 

context.  However, if we tell them that their risk is X and show them where they fall on the risk 

spectrum that includes their peers, the information becomes much more meaningful. 

Consider an example based on Framingham Heart Study data.  A sample consisting of 3969 

men, aged 30 to 75 years, free of cardiovascular disease, was used to develop predictive models 

based on age alone, and then adding systolic blood pressure, the presence of antihypertensive 

treatment, levels of total and HDL cholesterol, and smoking and diabetes mellitus.  Figure 1 

presents histograms of risk for the age-only (dark gray) and all-risk factors (light gray) models.  

The wider distribution of risk according to the all-risk factors model demonstrates the improved 
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discriminatory ability of the second model compared to the one only using age.  Still, large 

portions of the histogram overlap, illustrating that age encompasses a substantial portion of the 

overall prognostic value.  Such presentations also enable individual risks to be considered in the 

context of risks observed in the larger sample. 

A different way to illustrate discriminatory ability is achieved when the distribution of risk is 

presented separately for those with and without events in a plot called a “discrimination 

histogram.”14  Figure 2 presents parallel histograms for the two models depicted in Figure 1.  

Separation between model-based risks for events versus nonevents (histogram with a mass on the 

right versus on the left, respectively) indicates the model’s ability to discriminate between events 

and nonevents.  Comparing the amount of separation between the histograms for the reduced and 

full model allows one to determine how much value the new predictors offer.  The histogram for 

events is more right-shifted for the full model.  We note that more extreme risk estimates are 

attained if we include risk factors beyond age.  Still, even with all the risk factors included in the 

full model, the event histogram is not sufficiently right-shifted, implying more room for 

improvement of the model.  Of note, other metrics of performance can be read quickly from the 

discrimination histogram.  For example, the area to the right of any pre-selected vertical line on 

the event plot equals sensitivity at the threshold where the line is drawn.  Conversely, the area to 

the left of a vertical line on the nonevent display on the histogram plot equals specificity. 

Other useful graphic displays include plots of net benefit or relative utility as a function of 

classification threshold, as well as change of predicted risks as a function of risk estimated using 

the baseline model.  A more detailed review of different graphs is provided by Steyerberg et al.44 
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7  |  NEW FRONTIERS OF PROGNOSTIC BIOMARKER RESEARCH 

An active interest in the role of biomarkers from epidemiologists, policy-makers, funders of 

research and pharmaceutical companies, and the availability of data from diverse sources poses 

new challenges as well as opportunities for the development of novel statistical methodologies.  

Some of these are addressed below. 

7.1  |  Methodology for biomarker assessment in the competing risk framework 

Most commonly, biomarkers are assessed in the context of single binary or time-to-event 

outcomes.  Some people in the sample experience the outcome and others do not.  However, 

settings where more than one outcome is possible are increasingly common.  For example, in 

nephrology, when modeling end stage renal disease (ESRD), it is recognized that the vast 

majority of patients with CKD do not develop ESRD and, instead, succumb to a competing risk 

(e.g., cardiovascular mortality).  In the kidney transplant setting, graft failure competes with the 

death of a patient with a functioning graft.  The presence of a competing risk will generally affect 

the estimated absolute risk, and may affect the relative contribution of predictors on each of the 

end-points. 

The competing outcomes are generally approached in two ways.  They can either be viewed 

as a nuisance, an effect we need to account for, but without direct interest in inference about 

them, or they can be considered multi-category outcomes where each outcome is of interest.  The 

former approach can be illustrated with the kidney transplant example – the primary interest lies 

in graft failure, but we have to account for those who die with functioning grafts, which are 

censored events in the analysis.  On the other hand, we might be interested in estimating the 

differential impact of biomarkers measured in patients with CKD or ESRD versus cardiovascular 

outcomes.  Many statistical models can be applied to both settings.  These range from more 

familiar nominal logistic regression based on generalized logits45 and the Fine and Gray model 

for survival data46 to modern machine learning approaches adapted for time-to-event analysis.47  

All models relate the predictor to each of the outcomes.  In some extreme cases, such models can 

produce results that at first might appear counterintuitive.  For example, heavy smokers might 
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die of cancer before developing cardiovascular outcomes, making smoking appear to be 

unrelated to cardiovascular outcomes or even a protective factor, in effect weakening or 

nullifying associations between risk factors and outcomes.  An alternative approach of 

Andersen48 adjusts only the absolute risk for the competing cause, but derives the relative risks 

from models with a single outcome.  In all cases, accounting for competing risks alters the 

estimated predicted risk.  How these different approaches and the unverifiable assumptions 

inherent to competing risk models affect prediction needs further evaluation.49 

The vast majority of metrics of prognostic value have been proposed in the context of single 

binary or time-to-event outcomes.  Only more recently, some extension to multi-category or 

competing risk settings has been proposed.50-52   However, several important questions remain to 

be answered.  First, we have very little or no intuition or empirical experience with which to 

interpret the metrics that have been proposed beyond relating them to the most extreme and 

unrealistic cases.  Second, it is not clear how the multi-category outcome metrics compare with 

and affect each other, and what features of competing risk models drive the performance of these 

metrics.  It is likely that some metrics will favor a strong ability to distinguish between outcomes 

1 and 2, even if the model does a poor job distinguishing between outcomes 1 and 3 and 2 and 3, 

while others will favor models that do a moderate job distinguishing between all pairs of 

outcomes.  Finally, it is not clear what framework is required in settings where the competing 

risk is a nuisance. 

7.2  |  Longitudinal biomarkers 

Technological advances and reduced costs of measurement with multiplex technologies enable 

the measurement of several biomarkers over time.  In longitudinal studies adjusting for 

confounding may involve using baseline data, including baseline biomarker measurements.  

These advances may create promising opportunities for improved inference.  The magnitude and 

rate of change in a biomarker may be informative in enhancing the understanding of the future 

clinical trajectory of the disease.  However, whether rates of change inform prediction more than 
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static biomarker measurements remains an unresolved issue.  Results will likely be context and 

biomarker-dependent, and might also be related to the adopted modeling approach.53-553 

Meaningful advances in statistical methodology have been developed over the last decade, 

preparing the field for consideration of longitudinal measurements.56  Joint modeling of survival 

and longitudinal data have been investigated by many researchers.  Data quality is essential to 

use such complex models with both time-to-event and longitudinal parameters in practice.  

Meaningful clinical interpretation57 and real applications showing the added value of the more 

advanced methodologies, such as discovering subgroups exhibiting distinct disease courses, must 

be demonstrated.58-60 

An additional epidemiological challenge includes the problem of time-dependent 

confounding.  Appropriate clinical interpretation is closely linked to the timeline of the effect of 

exposure.  The proportional hazards model, with time-dependent covariates where the last 

observation affects the outcome61 may be compared with models with “historical” exposures and 

their trajectories.  Exposure accumulation stops at a given time point, often called “baseline,” 

and then follow-up starts at this point.62  The former approach might be the most informative for 

acute exposures that affect the outcome immediately (e.g., increase in blood pressure preceding a 

cerebrovascular accident).  The latter might be best suited for modeling a chronic exposure that 

leads to damage accumulating over time (e.g., cholesterol depositing in the arterial wall and 

cardiovascular disease or hypertension and CKD).  Joint models can be used in both scenarios, 

but also allow capturing scenarios that fall in between.  Modern longitudinal analysis methods 

that accommodate both time-dependent confounding and informative censoring can also be used, 

and have been applied in kidney disease.63,64  Further work aimed at creating guidance for 

investigators on which models should be used and when would be of great value.  

Joint modeling can be accomplished in either frequentist or Bayesian frameworks.  The latter 

might be appealing in situations where new data is constantly acquired as happens when 

electronic medical record-based data, including longitudinal measurement of biomarkers, is 

acquired from health systems.  Statistical methodologies which allow updating of models with 
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new information as it becomes available are necessary to meet rising expectations and data 

availability. 

7.3  |  Assessment of biomarkers in multiple cohorts and distributed data settings 

The emergence of health systems as sources of data, as well as the proliferation of various 

consortia and data sharing initiatives undertaken by various industry and public sponsors, 

increase the need for reliable analytic methods in distributed data settings. Classical meta-

analyses and patient-pooled analyses are increasingly common and can be effectively applied in 

biomarker research.  The advantages of this process are obvious:  more data from more diverse 

sources can only help in creating more generalizable knowledge.  But many challenges remain, 

and it would be naïve to assume that increasing sample size will be a panacea.  Currently, meta-

analysis requires that data be analyzed at the “lowest common denominator” under a critical 

assumption that parameters of interest are homogeneous across the different underlying 

subpopulations from which different datasets are collected.  Such assumption of homogeneity 

may be easily violated in practice65 and therefore potentially important information which is not 

consistently available might not be used.  Statistical methods that allow us to evaluate and 

accommodate study heterogeneities are needed to provide sensible data harmonization leading to 

a true gain of statistical power.66 

Enhancing open collaborative mechanisms should be a priority.  Too often, funded consortia 

become closed groups.  In thinking about openness, considering the collaborative platform is 

important because subject-level data is needed for full assessment and understanding of study 

heterogeneities, which is essential to come up with good strategies in the analysis of integrated 

data.  The recent push for data sharing and transparency from multiple industry and public 

sources67-70 with a definitive set of recommendations contained in the recent report from the 

Institute of Medicine should help alleviate some of these concerns.71 

Our list is by no means comprehensive.  Several other important topics in biomarker research 

need dedicated attention which goes beyond this overview.  These include the applications of 

machine learning methods for biomarker discovery, appropriate ways of building biomarker 
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models for sequential screening as well as methods to appropriately handle missing data in 

biomarker studies. 

8  |  SUMMARY 

A plethora of methodological questions and challenges face prognostic biomarker researchers.  

Our considerations are far from exhaustive, and do not extend beyond prognostic biomarker 

research.  Other areas of biomarker research are outside the scope of this presentation, but are 

extremely important and require separate consideration.  First, design is of critical importance to 

the success of a proposed study, but effective tools for designing cohort studies in which 

biomarkers do not have strong signals are lacking.  Second, predictive biomarkers might hold 

even more promise than prognostic biomarkers in affecting patient care.  For example, in 

oncology, predictive biomarkers and genetic information play key roles in identifying individuals 

most likely to benefit from new therapies.  Furthermore, predictive biomarkers are closely 

related to the problem of heterogeneity of treatment and risk-benefit considerations associated 

with many therapies which have side effects that cannot be ignored.  The use of biomarkers 

should help identify those most likely to benefit from a specific therapeutic approach, as well as 

those with different risks of harm.  Several of the topics raised here are relevant to approaches 

using predictive biomarkers. 

Third, biomarkers as mediators of effect play an essential role in enhancing our 

understanding of pathways of disease.  There are many sub-phenotypes of disease that might be 

related to specific biomarkers (e.g., biomarkers of cardiac injury or kidney injury).  Assessing the 

contribution of biomarkers in mediating disease can help the field progress toward causality and 

temporal expectations.  For example, knowing that 30% of acute kidney injury is mediated 

through cardiac injury implies that the maximum contribution of non-cardiac kidney injury is 

70%.  Using such disease models, path analyses and causal mediation methods72-74 and 

integrated biomarker outcomes might help us to better understand the underlying disease. 
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Finally, the use of biomarkers as surrogates requires further research and consideration.  This 

is particularly important as we move away from large outcome trials and towards smaller, more 

targeted and more cost-effective studies which can be enhanced by the use of biomarkers. 

We hope that our formulation of questions and challenges will help direct biostatisticians and 

other methodological investigators towards problems of most pressing interests and needs.  

These considerations might also help applied and clinical researchers set their expectations and 

better articulate their needs and problems. 
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TABLES AND FIGURES 

TABLE 1    Statistical metrics for different phases of biomarker evaluation 

Phase of 
Evaluation 

Focus of Assessment Potential Metrics 

Proof of Concept Do novel marker levels differ 
between events and nonevents 

Distribution of biomarker in 
events and nonevents 
Effect Size 

Prospective 
Validation 

Does the new marker predict 
development of future events? 

Plots of marker’s impact over time 
Relative Risks / Hazard Ratios 

Incremental Value Is the new marker associated with 
outcome after controlling for 
standard risk factors? 

Likelihood Ratio χ2 Test 
Adequacy Index 
 

 If association is established, report 
impact on: 

 

 Discrimination 
 
 

Change in AUC, Discrimination 
Slope (IDI), other R-squared 
measures 

 Calibration Calibration Plot 
 Reclassification Reclassification tables, event and 

nonevent NRI 
Clinical Utility Does incorporation of the 

biomarker lead to better clinical 
decisions? 
 

Change in Net Benefit (number of 
false positives per one true 
positive), Relative Utility (number 
needed to test), weighted NRI 

Clinical Outcomes Does use of the biomarker 
improve clinical outcomes? 

Reduction in event rates among 
patients whose management is 
guided using new biomarker  

Cost-effectiveness Does routine measurement of the 
new marker affect duration and 
quality of life, as well as monetary 
costs? 

Quality-adjusted life years 
(QALY) gained, cost per QALY 
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TABLE 2    AUC of four different models based on age range and addition of a new 

uncorrelated marker with effect size of 0.5 

Age Range Model 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

AUC 

35-75 Age only 0.600 0.700 0.800 0.900 

35-75 Age + marker 0.667 0.734 0.815 0.905 

70-73 Age only 0.512 0.538 0.561 0.590 

70-73 Age + marker 0.639 0.644 0.652 0.663 
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FIGURE 1    Distribution of predicted risk according to model with limited (age-only) and 

expanded set of predictors (age plus risk factors) 

 

Caption:  Dark grey – Age-only model.  Light grey – Age plus risk factors. 

 

 

FIGURE 2     Distribution of predicted risk among individuals who do and do not experience 

events according to model with limited (age-only) and expanded set of predictors (age plus risk 

factors) 

 

Caption: Top panel – Predicted risk among individuals who did not experience events. 

  Bottom panel – Predicted risk among individuals who experienced events. 
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