
Am J Reprod Immunol. 2019;81:e13102.	 wileyonlinelibrary.com/journal/aji	 	 | 	1 of 22
https://doi.org/10.1111/aji.13102

© 2019 John Wiley & Sons A/S. 
Published by John Wiley & Sons Ltd

 

Received:	21	December	2018  |  Revised:	26	January	2019  |  Accepted:	6	February	2019
DOI: 10.1111/aji.13102  

O R I G I N A L  A R T I C L E
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Problem: The immunophenotype of B cells at the maternal‐fetal interface (decidua) 
in labor at term and preterm labor is poorly understood.
Method of study: Decidual tissues were obtained from women with preterm or term 
labor and from non‐labor gestational age‐matched controls. Immunophenotyping of 
decidual B cells was performed using multicolor flow cytometry.
Results: (a) In the absence of acute or chronic chorioamnionitis, total B cells were 
more abundant in the decidua parietalis of women who delivered preterm than in 
those who delivered at term, regardless of the presence of labor; (b) decidual transi‐
tional and naïve B cells were the most abundant B‐cell subsets; (c) decidual B1 B cells 
were increased in women with either labor at term or preterm labor and chronic 
chorioamnionitis compared to those without this placental lesion; (d) decidual transi‐
tional B cells were reduced in women with preterm labor compared to those without 
labor; (e) naïve, class‐switched, and non–class‐switched B cells in the decidual tissues 
underwent mild alterations with the process of preterm labor; (f) decidual plasmab‐
lasts seemed to increase in women with either labor at term or preterm labor with 
chronic chorioamnionitis; and (g) decidual B cells expressed high levels of interleukin 
(IL)-12,	IL-6,	and/or	IL-35.
Conclusion: Total B cells are not increased with the presence of preterm or term 
labor; yet, specific subsets (B1 and plasmablasts) undergo alterations in women with 
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1  | INTRODUC TION

Preterm labor, which commonly precedes preterm birth,1,2 is a 
syndrome involving multiple pathological processes.3,4	Among	the	
known mechanisms, pathological inflammation is the best‐charac‐
terized causal link to preterm labor and birth.5‐14 To date, the most 
studied causes of pathological inflammation leading to preterm 
labor have been (a) intra‐amniotic infection/inflammation resulting 
from microbial invasion of the amniotic cavity5,7,8,15‐33 and (b) intra‐
amniotic inflammation without detectable microorganisms (ie, ster‐
ile intra‐amniotic inflammation) identified by using both molecular 
and conventional microbiological techniques,32,34‐38 proposed to be 
due to endogenous danger signals, or alarmins.39‐49 Most research 
concerning inflammation‐induced preterm labor has therefore fo‐
cused on the innate limb of immunity.50‐73 Yet, several studies re‐
ported strong evidence that T cells, the primary cellular component 
of the adaptive immune system, are present at the maternal‐fetal 
interface.74‐89 More recently, we provided evidence indicating that 
T cells are also implicated in the mechanisms that lead to labor at 
term84,85 and spontaneous preterm labor.90‐97 However, the main 
humoral component of adaptive immunity, B cells, has been less in‐
vestigated in the context of labor at term or preterm labor.

B cells were first observed in the placental bed of women early in 
gestation,98 which was confirmed by later studies.99,100 During early 
pregnancy, B cells are implicated in the mechanisms of maternal‐fetal 
tolerance.101‐115 Decidual B cells modestly increase between 27 and 
33 weeks of gestation followed by a slight decline at term.100 Multiple 
studies reported that B cells are present at the human maternal‐fetal 
interface (ie, decidua basalis and decidua parietalis) in the absence of 
labor at term.76,77,99,116,117 Moreover, B cells seem to be increased in 
the decidua basalis,77 but not in the decidua parietalis,77,116 during the 
physiological	process	of	 labor	at	term.	A	recent	study	provided	evi‐
dence indicating a role for B cells in the pathogenesis of preterm labor: 
The results showed an increased proportion of B cells in the decidua 
parietalis of women who underwent spontaneous preterm labor com‐
pared to those with labor at term.118 However, the above mentioned 
study did not include gestational age‐matched controls, allowing for 
further investigation of the B‐cell compartment at the human mater‐
nal‐fetal interface in both labor at term and preterm labor.

In the current study, we performed immunophenotyping of the 
decidua basalis and decidua parietalis of women who underwent the 

physiological process of labor at term or the syndrome of preterm 
labor leading to preterm birth. Decidual tissues from gestational 
age‐matched controls were also included. In addition, the B‐cell 
subsets in acute and chronic maternal inflammatory lesions of the 
placenta were compared. Lastly, the production of cytokines by de‐
cidual B cells was determined.

2  | MATERIAL S AND METHODS

2.1 | Human subjects, clinical specimens, and 
definitions

Samples of the human placental basal plate (maternal side of the 
placenta, decidua basalis) and chorioamniotic membranes (am‐
nion, chorion, and decidua parietalis) were collected from patients 
within 30 minutes after delivery at Hutzel Women's Hospital in 
the	Detroit	Medical	Center,	Detroit,	MI,	USA,	 in	 partnership	with	
Wayne State University School of Medicine and the Perinatology 
Research Branch, an intramural program of the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development, 
National Institutes of Health, U.S. Department of Health and Human 
Services	(NICHD/NIH/DHHS),	Detroit,	MI,	USA.	Case-matched	ma‐
ternal and cord blood samples were also collected in some cases. 
The collection and utilization of biological materials for research pur‐
poses were approved by the Institutional Review Boards of Wayne 
State	University	and	NICHD.	All	participating	women	provided	writ‐
ten informed consent prior to the collection of samples.

The study groups included women who delivered at term with 
labor (TIL) or without labor (TNL) and women who delivered preterm 
with labor (PTL) or without labor (PTNL). Preterm birth was defined 
as delivery before 37 weeks of gestation. Labor was defined by the 
presence of regular uterine contractions at a frequency of at least 
two contractions every 10 minutes with cervical changes resulting 
in delivery. The TIL and PTL study groups were subdivided based on 
the	presence	of	acute	histologic	chorioamnionitis	(ACA)	and	chronic	
histologic	 chorioamnionitis	 (CCA)	 (see	 “Section	2.2”	 for	diagnostic	
criteria). Patients with neonates having congenital or chromosomal 
abnormalities were excluded from this study. The clinical and demo‐
graphic characteristics of the study population are shown in Tables 1 
and 2. Both the decidua basalis and decidua parietalis were collected 
from most patients; however, the decidua basalis was not available 

chronic chorioamnionitis. Therefore, B cells are solely implicated in the pathological 
process of preterm labor in a subset of women with chronic inflammation of the pla‐
centa. These findings provide insight into the immunology of the maternal‐fetal inter‐
face in preterm and term labor.
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B1 B cells, chronic chorioamnionitis, funisitis, memory B cells, naïve B cells, placental 
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in a few cases. Therefore, Table 1 describes patients from which the 
decidua basalis was available, and Table 2 describes patients from 
which the decidua parietalis was used for experiments.

2.2 | Placental histopathological examination

Placentas were examined histologically by a perinatal pathologist 
blinded to clinical diagnoses and obstetrical outcomes according to 
standardized Perinatology Research Branch protocols. Briefly, three 
to nine sections of the placenta were examined, and at least one full‐
thickness section was taken from the center of the placenta; other 
sections	were	 taken	 randomly	 from	 the	 placental	 disc.	 Acute	 and	
chronic inflammatory lesions of the placenta (maternal inflammatory 
response and fetal inflammatory response) were diagnosed accord‐
ing to established criteria, including staging and grading.94,119‐122 
Maternal acute placental inflammation was defined by the infiltra‐
tion of neutrophils into the chorion and amnion, termed acute his‐
tologic	 chorioamnionitis	 (ACA).119,121 Maternal chronic histologic 
chorioamnionitis	 (CCA)	 was	 defined	 as	 lymphocytic	 infiltration	
into the chorionic trophoblast layer or chorioamniotic connective 
tissue.90,94

2.3 | Decidual leukocyte isolation

Decidual leukocytes were isolated from the decidual tissue of pa‐
tients from each study group as previously described.123 Briefly, the 
decidua basalis was collected from the basal plate of the placenta, 
and the decidua parietalis was separated from the chorioamniotic 
membranes	 (Figure	 1A).	 The	 decidual	 tissues	 were	 homogenized	
in	StemPro	Accutase	Cell	Dissociation	Reagent	 (Life	Technologies,	
Grand	 Island,	 NY,	 USA)	 using	 a	 gentleMACS	Dissociator	 (Miltenyi	
Biotec,	San	Diego,	CA,	USA).	Homogenized	tissues	were	incubated	
in	Accutase	for	45	minutes	at	37°C	with	gentle	agitation.	After	incu‐
bation, tissues were washed in 1× phosphate‐buffered saline (PBS; 
Life Technologies) and filtered through a 100‐μm	cell	strainer	(Fisher	
Scientific,	Durham,	NC,	USA).	The	 resulting	 cell	 suspensions	were	
centrifuged at 300 × g	 for	10	minutes	at	4°C.	The	decidual	mono‐
nuclear	 cells	were	 then	 separated	using	 a	density	 gradient	 (Ficoll-
Paque	 Plus;	 GE	 Healthcare	 Biosciences,	 Piscataway,	 NJ,	 USA)	 in	
accordance with the manufacturer's instructions. The cells collected 
from the mononuclear layer of the density gradient were washed 
with 1× PBS and immediately used for immunophenotyping.

2.4 | Immunophenotyping of decidual B cells

Mononuclear cell suspensions from decidual tissues were 
stained	 with	 the	 LIVE/DEAD	 Fixable	 Yellow	 Dead	 Cell	 Stain	 kit	
(ThermoFisher	 Scientific/Molecular	 Probes,	 Eugene,	 OR,	 USA)	
prior to immunophenotyping. Mononuclear cell suspensions were 
then	washed	with	stain	buffer	 (CAT#554656;	BD	Biosciences,	San	
Jose,	 CA,	USA)	 and	 incubated	with	 20	μL	 of	 human	 FcR	 Blocking	
Reagent	(CAT#130-059-901;	Miltenyi	Biotec)	in	80	μL of stain buffer 
for	10	minutes	at	4°C.	The	cells	were	 incubated	with	extracellular	

fluorochrome‐conjugated anti‐human monoclonal antibodies for 
30	minutes	at	4°C	in	the	dark	(Table	S1).	Stained	cells	were	washed	
and	 resuspended	 in	 0.5	mL	 of	 FACS	 staining	 buffer	 and	 acquired	
using	 an	 LSRII	 flow	 cytometer	 and	 FACSDiva	 6.0	 software	 (BD	
Biosciences). The absolute number of cells was determined using 
CountBright absolute counting beads (Life Technologies, Molecular 
Probes).	The	analysis	and	figures	were	acquired	using	FlowJo	soft‐
ware	 version	 10	 (FlowJo,	 LLC,	 Ashland,	 OR,	 USA).	 Lymphocytes	
were	gated	using	forward	scatter	(FSC)	vs	side	scatter	(SSC).	B	cells	
were gated as CD19+CD3− cells within the lymphocytic and viability 
gates	(Figure	1B).	The	cell	surface	markers	(Table	S1)	used	to	identify	
the different B‐cell subsets were determined by an extensive litera‐
ture search (Table 3). Cytokine expression by decidual B cells was 
also performed using specific monoclonal antibodies directly after 
isolation from the tissue without stimulation (Table S1).

2.5 | Statistics

Statistical analyses were conducted using SPSS software version 
19.0	 (IBM	 Corporation,	 Armonk,	 NY,	 USA).	 The	Mann-Whitney	U 
test was used for comparisons between the two study groups. Two‐
tailed (P‐values without an asterisk) or one‐tailed (P‐values with an 
asterisk) P-values	were	 reported.	 The	 Friedman	 test	was	 used	 for	
comparisons between decidual tissues and blood samples collected 
from	 the	 same	 patients.	 For	 patient	 demographics,	 the	 Kruskall-
Wallis	 test	 was	 performed	 for	 continuous	 variables	 and	 Fisher's	
exact	 test	 for	 nominal	 variables.	 A	 P‐value <0.05 was considered 
statistically significant.

3  | RESULTS

3.1 | In the absence of acute or chronic 
chorioamnionitis, total B cells are more abundant 
in the decidua parietalis of women who delivered 
preterm than in those who delivered at term, 
regardless of the process of labor

Figure	 1A	 shows	 the	 spatial	 localization	 of	 the	 decidua	 basalis	
and decidua parietalis. The gating strategy used to identify total B 
cells	is	shown	in	Figure	1B.	First,	we	compared	the	proportion	of	
total B cells in the decidual tissues to those in the maternal blood 
and cord blood. The frequency of B cells in the decidua basalis 
and decidua parietalis was lower than that observed in maternal 
blood	and	cord	blood	 (Figure	1C).	Most	of	 the	B	cells	present	 in	
the decidua basalis and decidua parietalis co‐expressed CD20, 
as	 did	 the	B	 cells	 in	maternal	 blood	 and	 cord	blood	 (Figure	1D).	
Yet, a CD19+CD20− subset present in decidual tissues was rarely 
found	in	maternal	blood	and	cord	blood	(Figure	1D).	The	number	
of B cells in the decidua basalis and decidua parietalis ranged from 
2 × 102 to 2 × 105	cells	(Figure	S1),	considerably	lower	than	previ‐
ously reported.118 Our finding is consistent with previous studies 
indicating that the B‐cell population is a small fraction among de‐
cidual leukocytes.85,123 Preterm placentas are significantly smaller 
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than term placentas, and the amount of decidual tissue available 
varies among patients; therefore, flow cytometry quantification 
may not allow calculation of the absolute number of decidual B 
cells.	For	this	reason,	we	used	frequencies,	also	referred	to	as	pro‐
portions, throughout the study.

In the decidua basalis, the total number of B cells did not vary 
among the term and preterm groups (TNL vs TIL vs PTNL vs PTL, 
Figure	1E).	Further,	no	differences	were	observed	among	those	groups	
when samples were allocated into subgroups comparing acute and 
chronic	 inflammatory	 lesions	 of	 the	 placenta	 (Figure	 1F).	 In	 the	 de‐
cidua parietalis, the total number of B cells did not vary among term 
and preterm groups when placental inflammation was not considered 
(TNL	vs	TIL	vs	PTNL	vs	PTL,	Figure	1G).	 In	 the	absence	of	acute	or	
chronic chorioamnionitis, the decidua parietalis of women who deliv‐
ered preterm had higher proportions of B cells than those who deliv‐
ered at term, regardless of the presence of labor (PTNL or PTL vs TNL 
or	TIL,	Figure	1H).	These	data	indicate	that	B	cells	are	more	abundant	in	
preterm gestation than at term, consistent with findings previously re‐
ported.100 Yet, contrary to what has been reported,77,118 the processes 
of preterm and term labor did not alter the frequency of total B cells. 
In the decidua parietalis, B cells were more abundant in women with 
chronic chorioamnionitis who underwent labor at term compared to 

those	without	 this	placental	 lesion	 (TIL	with	CCA	vs	TIL	or	TIL	with	
ACA,	Figure	1H).	However,	no	differences	were	observed	in	B-cell	fre‐
quencies	between	the	PTL	and	PTL	with	CCA	groups.

3.2 | Identification of different B‐cell subsets in the 
decidual tissues

Next, we performed an extensive literature review of the markers 
used to identify the main B‐cell subsets (Table 3). Two main B‐
cell	subsets	have	been	described:	B1	and	B2	B	cells	(Figure	2A).124 
Both B1 and B2 B cells can become transitional B cells, naïve B 
cells, class‐switched memory B cells, non–class‐switched memory 
B	cells,	and	plasmablasts	(Figure	2B).124 CD19+ B cells were subdi‐
vided into the above‐mentioned B‐cell subsets. The gating strat‐
egy	used	 to	 identify	 these	B-cell	 subsets	 is	 shown	 in	Figure	2C.	
We found that B2 B cells were more abundant in the decidual 
tissues than B1 B cells, which made up a distinct but very small 
population (data not shown). Therefore, the B1 B cells were con‐
sidered	by	themselves.	A	t-SNE	plot	showing	the	different	B-cell	
subsets	 identified	 in	 the	decidual	 tissues	 is	 shown	 in	Figure	2D.	
Transitional and naïve B cells were the most abundant subsets in 
the	decidual	tissues	(Figure	2D).

F I G U R E  1   Immunophenotyping	of	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	Representation	of	the	spatial	localization	of	
the	decidua	basalis	and	decidua	parietalis.	(B)	Flow	cytometry	gating	strategy	used	to	identify	B	cells	in	the	decidual	tissues.	Lymphocytes	
were	gated	using	forward	scatter	(FSC)	vs	side	scatter	(SSC).	B	cells	were	gated	as	CD19+CD3− cells within the viability and lymphocytic 
gates. (C) The proportion of CD19+ B cells in samples of case‐matched decidua basalis, decidua parietalis, maternal blood, and cord 
blood (n = 5). (D) Co‐expression of CD20 by CD19+ B cells in the decidua basalis, decidua parietalis, maternal blood, and cord blood. The 
proportions of CD19+ B cells in the decidua basalis (E) or decidua parietalis (G) from women who delivered at term with labor (TIL) or without 
labor	(TNL)	and	women	who	delivered	preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	PTL	patients	
were	subdivided	into	those	with	acute	histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA),	and	those	without	
these	lesions.	Non-labor	controls	without	ACA	or	CCA	were	included	as	well.	The	proportions	of	CD19+	B	cells	in	the	decidua	basalis	(F)	or	
decidua	parietalis	(H)	in	these	patient	subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	interquartile	ranges,	
respectively

TA B L E  3   Markers to identify B‐cell subsets

B cell subsets Immunophenotype References

B1 B cells CD19+CD27+CD43+ Griffin et al,133,154 Torring et al,155 Inui et al156

B2 B cells CD19+CD23+ CD27−CD43− Griffin et al,133 Deng et al157

Transitional B cells CD19+CD38hiCD24hi Marie‐Cardine et al,158 Ha et al,159 Seifert et al,160 de Masson et al,161 Cherukuri et al,162 
Heidt et al,163 Latorre et al,164 Tebbe et al,165 Luk et al,166 Demoersman et al,167 Li et 
al168

Naïve B cells CD19+CD27−IgD+ Guerreiro‐Cacais et al,169 So et al,170 Heath et al,171 Cantaert et al,172 Toapanta et al,173 
Jansen	et	al,174 Castaneda et al,175 Wu et al,176 Nakayama et al177

Class‐switched 
memory B cells

CD19+CD27+IgD− Anolik	et	al,178 Tian et al,179 Ghannam et al,180 Palanichamy et al,126 Berkowska et al,181 
Morbach et al,182 Wu et al,183 So et al,170 Heath et al,171 Topanta et al,173 Labuda et 
al,184 Degauque et al,185 Zhang et al,186 Bagnara et al,187 Czarnowicki et al,188 Hayashi 
et al,189 Mensah et al,190 Woda et al,191 Castaneda et al,175 Martins et al192

Non–class‐switched 
memory B cells

CD19+CD27+IgD+ Anolik	et	al,178 Tian et al,179 Palanichamy et al,126 Colonna‐Romano et al,193	Jacobi	et	
al,194 Wu et al,183 So et al,170 Heath et al,171 Topanta et al,173 Weller et al,195 Labuda et 
al,184 Clemente et al,196 Czarnowicki et al,188 Mensah et al,190 Castaneda et al,175 
Martins et al,192 Corneth et al,197 Torigoe et al,198 Hu et al199

Plasmablasts CD19+CD20−CD38+CD24− Morbach et al,200 Lin et al,201 Benett et al202
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F I G U R E  2  B-cell	subsets	in	the	decidua	basalis	and	decidua	parietalis.	(A)	Schematic	representation	of	B1	and	B2	B	cells.	(B)	Schematic	
representation	of	the	B-cell	subsets	identified	in	the	decidual	tissues.	(C)	Flow	cytometry	gating	strategy	used	to	identify	the	following	
B‐cell subsets: B1 B cells (CD3‐CD19+CD20+CD27+CD43+ cells); transitional B cells (CD3‐CD19+CD20+CD38hiCD24hi cells); naïve B cells 
(CD3‐CD19+CD20+CD27−IgD+ cells); class‐switched memory B cells (CD3‐CD19+CD20+CD27+IgD−	cells); non–class‐switched memory 
B cells (CD3‐CD19+CD20+CD27+IgD+ cells); and plasmablasts (CD3‐CD19+CD20−CD38+CD24−	cells).	(D)	A	representative	t-distributed	
stochastic neighbor embedding (t‐SNE) dot plot visualizing B‐cell subsets in the decidual tissues. Red = B1 B cells, purple = transitional B 
cells, orange = naïve B cells, blue = class‐switched memory B cells, green = non–class‐switched memory B cells, turquoise = plasmablasts, 
and gray = other CD19+ B cells
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3.3 | B1 B cells are increased in the decidual 
tissues of women with chronic chorioamnionitis who 
underwent labor at term or preterm labor

B1 B cells were rarely found in the decidual tissues, as shown in 
the	t-SNE	plot	(Figure	3A).	In	the	decidua	basalis,	the	frequency	of	
B1 B cells did not change between the labor and no labor groups 
(TNL	vs	TIL	and	PTNL	vs	PTL,	Figure	3B).	A	higher	proportion	of	
B1 B cells was observed in women who underwent preterm labor 
compared to those who underwent labor at term (PTL vs TIL, 
Figure	3B).	This	difference	was	most	likely	driven	by	the	presence	
of chronic chorioamnionitis in the preterm labor group (PTL with 
CCA,	 Figure	 3C).	 The	 presence	 of	 chronic	 chorioamnionitis	 also	
increased the proportion of B1 B cells in labor at term (TIL with 
CCA	vs	TIL	or	TIL	with	ACA,	Figure	3C).	 In	 the	decidua	parieta‐
lis, B1 B cells were less abundant in women who underwent labor 
at term compared to those who delivered at term without labor 
(TIL	vs	TNL,	Figure	3D).	However,	women	who	underwent	 labor	
at term with chronic chorioamnionitis had higher proportions of 

B1	B	cells	than	those	without	this	placental	lesion	(TIL	with	CCA	
vs	 TIL,	 Figure	 3E).	 Women	 who	 underwent	 preterm	 labor	 with	
chronic chorioamnionitis also had higher proportions of B1 B cells 
compared	to	those	without	this	placental	lesion	(PTL	with	CCA	vs	
PTL	or	PTL	with	ACA,	Figure	3B).	These	 results	 show	 that	B1	B	
cells are increased in the decidual tissues of women who under‐
went labor at term or preterm labor in the presence of chronic 
chorioamnionitis, but not in those with acute chorioamnionitis or 
without placental lesions.

3.4 | Transitional B cells were reduced in the 
decidual tissues of women with preterm labor 
compared to gestational age‐matched controls

Transitional B cells are the critical link between bone marrow 
immature B cells and mature B cells present in the peripheral 
repertoire.125,126 The transitional B‐cell subset is thought to rep‐
resent a key negative selection checkpoint for autoreactive B 
cells.127,128 Transitional B cells were one of the most abundant 

F I G U R E  3  B1	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	stochastic	neighbor	embedding	
(t‐SNE) dot plot visualizing B1 B cells in the decidual tissues. Red = B1 B cells and gray = other CD19+ B cells. The proportions of B1 B cells in 
the decidua basalis (B) or decidua parietalis (D) from women who delivered at term with labor (TIL) or without labor (TNL) and women who 
delivered	preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	PTL	patients	were	subdivided	into	those	with	
acute	histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA)	and	those	without	these	lesions.	Non-labor	controls	
without	ACA	or	CCA	were	included	as	well.	The	proportions	of	B1	B	cells	in	the	decidua	basalis	(C)	or	decidua	parietalis	(E)	in	these	patient	
subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	interquartile	ranges,	respectively
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B‐cell subsets present in the decidual tissues, as shown in the 
t-SNE	plot	 (Figure	4A).	 In	 the	decidua	basalis,	 the	proportion	of	
transitional B cells was lower in women who underwent preterm 
labor compared to those who delivered preterm in the absence of 
labor	 (PTL	vs	PTNL,	Figure	4B).	Additionally,	 transitional	B	cells	
were less abundant in women who underwent preterm labor with 
or without placental lesions compared to those who delivered 
preterm	without	labor	(PTL	with	CCA,	PTL	with	ACA,	and	PTL	vs	
PTNL,	Figure	4C).	However,	transitional	B	cells	were	more	abun‐
dant in women who delivered preterm without labor than in those 
who delivered at term in the absence of labor (PTNL vs TNL, 
Figure	4B).	In	the	decidua	parietalis,	transitional	B	cells	were	less	
abundant in women who underwent preterm labor than in those 
who	delivered	preterm	without	 labor	 (PTL	vs	PTNL,	Figure	4D).	
Transitional B cells were even fewer in women who underwent 
preterm labor with chronic chorioamnionitis than in those with‐
out	this	placental	lesion	(PTL	with	CCA	vs	PTL,	Figure	4E).	Taken	
together, these data show that transitional B cells are reduced in 
women with preterm labor compared to gestational age‐matched 
controls.

3.5 | Naïve B cells undergo mild alterations in the 
decidual tissues

Naïve B cells were another abundant B‐cell subset found in the de‐
cidual	tissues,	as	shown	in	the	t-SNE	plot	(Figure	5A).	In	the	decidua	
basalis, naïve B cells did not vary among the study groups (TNL vs TIL 
vs	PTNL	vs	PTL,	Figure	5B).	In	the	absence	of	placental	lesions,	naïve	
B cells were modestly higher in women who delivered preterm with‐
out labor than in those who delivered at term without labor (PTNL 
vs	TNL,	Figure	5C).	In	the	decidua	parietalis,	naïve	B	cells	were	re‐
duced in women who underwent preterm labor compared to those 
who	delivered	preterm	without	labor	(PTL	vs	PTNL,	Figure	5D).	This	
reduction was driven by the presence of chronic chorioamnionitis 
given that women who underwent preterm labor with this placental 
lesion tended to have fewer naïve B cells in the decidua parietalis 
(Figure	5E).	Women	with	preterm	labor	and	chronic	chorioamnionitis	
also had fewer naïve B cells than those with labor at term (PTL with 
CCA	vs	TIL	with	CCA,	Figure	5E).	In	summary,	naïve	B	cells	undergo	
mild alterations in the decidua basalis of women with preterm labor 
and chronic chorioamnionitis.

F I G U R E  4  Transitional	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	stochastic	neighbor	
embedding (t‐SNE) dot plot visualizing transitional B cells in the decidual tissues. Red = transitional B cells and gray = other CD19+ B cells. 
The proportions of transitional B cells in the decidua basalis (B) or decidua parietalis (D) from women who delivered at term with labor 
(TIL)	or	without	labor	(TNL)	and	women	who	delivered	preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	
PTL	patients	were	subdivided	into	those	with	acute	histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA)	and	
those	without	these	lesions.	Non-labor	controls	without	ACA	or	CCA	were	included	as	well.	The	proportions	of	transitional	B	cells	in	the	
decidua	basalis	(C)	or	decidua	parietalis	(E)	in	these	patient	subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	
interquartile ranges, respectively

0

10

20

30

40
50

%
 C

D
38

H
I C

D
24

H
I c

el
ls

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

TNL TIL PTNL PTL

Decidua parietalis

P = 0.02*

0

10

20

30

TIL 
with
CCA

TIL 
with
ACA

TNL TIL PTNL PTL PTL
with
ACA

PTL
with
CCA

%
 C

D
38

H
I C

D
24

H
I c

el
ls

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

Decidua parietalis

P = 0.01

0

20

40

60

80

TNL TIL PTNL PTL

%
 C

D
38

H
I C

D
24

H
I c

el
ls

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

Decidua basalis

P = 0.02

P = 0.03*

0

20

40

60

80

TIL 
with
CCA

TNL TIL PTNL PTLTIL 
with
ACA

PTL
with
ACA

PTL
with
CCA

%
 C

D
38

H
I C

D
24

H
I c

el
ls

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

Decidua basalis

P = 0.01

Transitional B cells 

Other CD19+ B cells

(A)

(B) (C)

(D) (E)



     |  11 of 22LENG Et aL.

3.6 | Class‐switched and non–class‐switched 
memory B cells are rare and undergo mild alterations 
in the decidual tissues

Naïve B cells can undergo class‐switch recombination generating 
class‐switched or non‐class‐switched memory B cells.129 Next, we 
examined whether these B‐cell subsets were present in the decidual 
tissues. Class‐switched and non‐class‐switched memory B cells were 
rarely	present	in	the	decidual	tissues	(Figures	6A	and	7A).	In	the	de‐
cidua basalis, class‐switched memory B cells were more abundant 
in women who underwent preterm labor than in those with labor at 
term	(PTL	vs	TIL,	Figure	6B).	This	increase	was	most	likely	due	to	the	
presence of chronic chorioamnionitis since women who underwent 
preterm labor with this placental lesion tended to have higher pro‐
portions of class‐switched memory B cells than those without the 
lesion	 (PTL	with	CCA	vs	PTNL,	PTL,	or	PTL	with	ACA,	Figure	6C).	
In the absence of placental lesions, class‐switched memory B cells 
were less abundant in women who underwent labor at term (TIL 
vs	TNL,	Figure	6C).	However,	class-switched	memory	B	cells	were	
more abundant in women who underwent labor at term with chronic 
chorioamnionitis than in those with acute chorioamnionitis (TIL with 

CCA	vs	TIL	with	ACA,	 Figure	6C).	 In	 the	decidua	parietalis,	 class-
switched memory B cells were less abundant in women with labor 
at term than in those who delivered at term without labor (TIL vs 
TNL,	 Figure	 6D),	which	was	 consistently	 observed	 in	 the	 absence	
of	placental	 lesions	 (Figure	6E).	No	differences	were	observed	be‐
tween women who delivered preterm with and without labor (PTNL 
vs	PTL,	Figure	6D).

Non‐class‐switched memory B cells were even less abun‐
dant than class‐switched memory B cells in the decidual tissues 
(Figure	 7A).	 In	 the	 decidua	 basalis,	 non-class-switched	memory	 B	
cells did not vary among the study groups (TNL vs TIL vs PTNL vs 
PTL,	Figure	7B).	When	the	patients	were	divided	into	subgroups	ac‐
cording to the presence of placental lesions, a slight increase in the 
proportion of non‐class‐switched memory B cells was observed in 
women who underwent labor at term with chronic chorioamnion‐
itis	compared	to	 those	with	acute	chorioamnionitis	 (TIL	with	CCA	
vs	 TIL	with	 ACA,	 Figure	 7C).	 In	 the	 decidua	 parietalis,	 non-class-
switched memory B cells were less abundant in women who under‐
went preterm labor than those who delivered preterm without labor 
(PTL	vs	PTNL,	Figure	7D).	This	was	most	likely	driven	by	the	pres‐
ence of chronic chorioamnionitis since women with this placental 

F I G U R E  5  Naïve	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	stochastic	neighbor	embedding	
(t‐SNE) dot plot visualizing naïve B cells in the decidual tissues. Red = naïve B cells and gray = other CD19+ B cells. The proportions of naïve 
B cells in the decidua basalis (B) or decidua parietalis (D) from women who delivered at term with labor (TIL) or without labor (TNL) and 
women	who	delivered	preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	PTL	patients	were	subdivided	into	
those	with	acute	histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA),	and	those	without	these	lesions.	Non-labor	
controls	without	ACA	or	CCA	were	included	as	well.	The	proportions	of	naïve	B	cells	in	the	decidua	basalis	(C)	or	decidua	parietalis	(E)	in	
these	patient	subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	interquartile	ranges,	respectively

0

10

20

30

40

50

TNL TIL PTNL PTL

Decidua parietalis

P = 0.04*

%
 C

D
27

- Ig
D

+
ce

lls
 

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

TIL 
with
CCA

0

20

40

60

TNL TIL PTNL PTLTIL 
with
ACA

PTL
with
ACA

PTL
with
CCA

%
 C

D
27

- Ig
D

+
ce

lls
 

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

Decidua parietalis

P = 0.04*

0

20

40

60

80

TNL TIL PTNL PTL

%
 C

D
27

- Ig
D

+
ce

lls
 

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

Decidua basalis

TIL 
with
CCA

TIL 
with
ACA

0

20

40

60

80

100
Decidua basalis

TNL TIL PTNL PTL PTL
with
ACA

PTL
with
CCA

%
 C

D
27

- Ig
D

+
ce

lls
 

w
ith

in
 C

D
19

+ C
D

20
+ 

ga
te

P = 0.03*

Naïve B cells

Other CD19+ B cells

(A)

(B) (C)

(D) (E)



12 of 22  |     LENG Et aL.

lesion had lower proportions of this B‐cell subset than those with‐
out	the	 lesion	(PTL	with	CCA	vs	PTL	and	PTNL,	Figure	7E).	 In	the	
absence of placental lesions, a small reduction in the proportion of  
non‐class‐switched memory B cells was also observed in women 
with labor at term compared to those without labor (TIL vs TNL, 
Figure	 7E).	 However,	 women	 who	 underwent	 labor	 at	 term	 with	
chronic chorioamnionitis had greater proportions of non‐class‐
switched memory B cells than those without this placental lesion 
(TIL	with	CCA	vs	TIL,	Figure	7E).

Therefore, class‐switched and non‐class‐switched memory B 
cells are rare in the decidual tissues and undergo mild alterations 
with the presence of labor and/or chronic placental inflammation.

3.7 | Plasmablasts seemed to increase 
in the decidual tissues of women with chronic 
chorioamnionitis who underwent labor at term or 
preterm labor

Naïve B cells and memory B cells can differentiate into plasmab‐
lasts.129,130 We then investigated the presence of plasmablasts in the 

decidual tissues. Plasmablasts were a relatively abundant population 
in	the	decidual	tissues	(Figure	8A).	In	the	decidua	basalis	and	decidua	
parietalis, plasmablasts did not vary among the study groups (TNL vs 
TIL	vs	PTNL	vs	PTL,	Figure	8B,D).	When	the	samples	were	divided	
into subgroups according to the presence of placental lesions, we 
consistently found that women who underwent labor at term with 
chronic chorioamnionitis had higher proportions of plasmablasts than 
those without this placental lesion in both the decidua basalis and 
decidua	parietalis	(TIL	with	CCA	vs	TIL	or	TIL	with	ACA,	Figure	8C,E).	
Plasmasblasts also seemed to be more abundant in women who un‐
derwent preterm labor with chronic chorioamnionitis than in those 
without	this	placental	lesion	(Figure	8C,E).	These	data	show	that	plas‐
mablasts are abundant in the decidual tissues of women who under‐
went labor at term or preterm labor with chronic chorioamnionitis.

3.8 | B cells in the decidual tissues expressed high 
levels of IL‐12, IL‐6, and/or IL‐35

Recent studies indicated that, besides production of antibodies, B 
cells participate in immune responses by producing inflammatory 

F I G U R E  6  Class-switched	memory	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	stochastic	
neighbor embedding (t‐SNE) dot plot visualizing class‐switched memory B cells in the decidual tissues. Red = class‐switched memory B cells 
and gray = other CD19+ B cells. The proportions of class‐switched memory B cells in the decidua basalis (B) or decidua parietalis (D) from 
women who delivered at term with labor (TIL) or without labor (TNL) and women who delivered preterm with labor (PTL) or without labor 
(PTNL).	N	=	6-37	per	group.	The	TIL	and	PTL	patients	were	subdivided	into	those	with	acute	histologic	chorioamnionitis	(ACA)	or	chronic	
histologic	chorioamnionitis	(CCA)	and	those	without	these	lesions.	Non-labor	controls	without	ACA	or	CCA	were	included	as	well.	The	
proportions	of	class-switched	memory	B	cells	in	the	decidua	basalis	(C)	or	decidua	parietalis	(E)	in	these	patient	subgroups.	N	=	4-16	per	
group. Red midlines and whiskers indicate medians and interquartile ranges, respectively
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cytokines.131,132 We investigated whether decidual B cells produce 
pro‐ and anti‐inflammatory cytokines associated with the process 
of labor. In the decidua basalis and decidua parietalis, a small pro‐
portion	of	B	cells	expressed	cytokines	(Figure	9A,C).	In	the	decidua	
basalis, B cells expressed higher levels of interleukin (IL)‐12 and 
IL-35	 than	 IFN-γ,	 IL-2,	 IL-4,	 IL-6,	 IL-10,	 and	 TNF-α	 (Figure	 9B).	 In	
the decidua parietalis, B cells expressed higher levels of IL‐12 and 
IL-6	 than	 other	 cytokines	 (Figure	 9D).	 These	 results	 show	 that	 B	
cells participate in the inflammatory milieu at the maternal‐fetal 
interface.

4  | DISCUSSION

4.1 | Principal findings

The principal findings of this study are as follows: (a) In the ab‐
sence of acute or chronic chorioamnionitis, total B cells were 

more abundant in the decidua parietalis of women who delivered 
preterm than in those who delivered at term, regardless of the 
presence of labor; (b) decidual transitional and naïve B cells were 
the most abundant B‐cell subsets; (c) decidual B1 B cells were in‐
creased in women with either labor at term or preterm labor with 
chronic chorioamnionitis compared to those without this placen‐
tal lesion; (d) decidual transitional B cells were reduced in women 
with preterm labor compared to those without labor; (e) decidual 
naïve B cells, class‐switched and non‐class‐switched memory B 
cells were rare and underwent mild alterations with the process 
of preterm labor; (f) decidual plasmablasts seemed to increase in 
women with labor at term or preterm with chronic chorioamnio‐
nitis;	and	(g)	decidual	B	cells	expressed	high	levels	of	IL-12,	 IL-6,	
and/or IL‐35. These findings indicate that specific B‐cell popu‐
lations at the maternal‐fetal interface undergo alterations in a 
subset of women with either labor at term or preterm labor and 
chronic chorioamnionitis.

F I G U R E  7  Non–class-switched	memory	B	cells	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	
stochastic neighbor embedding (t‐SNE) dot plot visualizing non–class‐switched memory B cells in the decidual tissues. Red = non–class‐
switched memory B cells and gray = other CD19+ B cells. The proportions of non–class‐switched memory B cells in the decidua basalis 
(B) or decidua parietalis (D) from women who delivered at term with labor (TIL) or without labor (TNL) and women who delivered 
preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	PTL	patients	were	subdivided	into	those	with	acute	
histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA),	and	those	without	these	lesions.	Non-labor	controls	
without	ACA	or	CCA	were	included	as	well.	The	proportions	of	non–class-switched	memory	B	cells	in	the	decidua	basalis	(C)	or	decidua	
parietalis	(E)	in	these	patient	subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	interquartile	ranges,	
respectively
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4.2 | In the absence of acute or chronic 
chorioamnionitis, total B cells were more abundant 
in the decidua parietalis of women who delivered 
preterm than in those who delivered at term, 
regardless of the presence of labor

Herein, we found that total B cells were not increased in the de‐
cidua basalis and decidua parietalis of women who underwent labor 
at term compared to those who delivered at term without labor. 
This finding is consistent, in part, with what has previously been 
published. We and other investigators have reported that there 
are no differences in the proportion of B cells in the decidua pari‐
etalis of women who delivered at term with and without labor.77,85 
However, previous studies have shown that the decidua basalis of 
women who underwent spontaneous labor at term had greater 
proportions of total B cells than those who delivered at term with‐
out labor.77 The discrepancy between the above‐mentioned study 

and our findings could be explained by the fact that we considered 
only viable B cells. These findings show that the frequency of total 
viable B cells is not altered with the physiological process of labor 
at term.

We also found that total B cells were not increased in the de‐
cidua basalis and decidua parietalis of women who underwent 
preterm labor compared to those who delivered preterm in the ab‐
sence of labor. To our knowledge, it is the first time that this com‐
parison between preterm labor cases and gestational age‐matched 
controls	has	been	made.	A	previous	study	reported	that	the	abun‐
dance of B cells in the decidua parietalis was significantly increased 
in women who underwent spontaneous preterm labor compared to 
those who underwent spontaneous labor at term.118 However, this 
comparison warrants caution given that gestational age  influences 
the proportion of B cells found in the decidual tissues.100 Without 
considering acute and chronic chorioamnionitis, no differences 
in the frequency of total B cells in the decidua parietalis were 

F I G U R E  8  Plasmablasts	in	the	decidua	basalis	and	decidua	parietalis.	(A)	A	representative	t-distributed	stochastic	neighbor	embedding	
(t‐SNE) contour plot visualizing plasmablasts in the decidual tissues. Red = plasmablasts, blue = CD19+CD20− B cells and gray = other CD19+ 

B cells. The proportions of plasmablasts in the decidua basalis (B) or decidua parietalis (D) from women who delivered at term with labor 
(TIL)	or	without	labor	(TNL)	and	women	who	delivered	preterm	with	labor	(PTL)	or	without	labor	(PTNL).	N	=	6-37	per	group.	The	TIL	and	
PTL	patients	were	subdivided	into	those	with	acute	histologic	chorioamnionitis	(ACA)	or	chronic	histologic	chorioamnionitis	(CCA)	and	those	
without	these	lesions.	Non-labor	controls	without	ACA	or	CCA	were	included	as	well.	The	proportions	of	plasmablasts	in	the	decidua	basalis	
(C)	or	decidua	parietalis	(E)	in	these	patient	subgroups.	N	=	4-16	per	group.	Red	midlines	and	whiskers	indicate	medians	and	interquartile	
ranges, respectively
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observed between women who underwent preterm labor and 
those with term labor. Women with preterm labor, but without 
acute or chronic chorioamnionitis, had higher frequencies of de‐
cidual B cells compared to those with labor at term. Nonetheless, 
this increase in the proportion of total B cells was also observed by 
comparing women who delivered preterm in the absence of labor 
to those who delivered at term without labor. Therefore, these data 
indicate that the process of preterm labor does not increase the 
proportion of total B cells in the decidua parietalis; rather, it is an 
effect of gestational age.

After	the	two	study	groups	were	subdivided	based	on	the	pres‐
ence of acute or chronic chorioamnionitis, we found that the fre‐
quency of total B cells in the decidua basalis did not significantly 

vary. Yet, differences in B‐cell proportions in the decidua parieta‐
lis were observed among the study groups. This result is explained 
by the fact that acute and chronic chorioamnionitis are diagnosed 
in the chorioamniotic membranes, located next to the decidua pa‐
rietalis.94,121 Of interest, the presence of chronic chorioamnionitis 
increased the frequency of total B cells in the decidua parietalis 
of women with labor at term but not in those with preterm labor 
(Figure	 1H).	 These	 findings	 suggest	 that	 the	 process	 of	 chronic	
chorioamnionitis in labor at term is distinct from that observed in 
women with preterm labor.

Different B‐cell subsets were present in the decidual tissues; 
yet, we focused our discussion on the main differences observed in 
women with labor at term and those with preterm labor.

F I G U R E  9  Cytokine	expression	by	decidual	B	cells.	(A	and	C)	Staggered	offset	overlay	histograms	of	cytokines	expressed	by	B	cells	
(CD45+CD3‐CD19+CD20+	cells)	in	the	decidua	basalis	and	parietalis.	Four	representative	samples	of	decidual	B	cells	isolated	from	women	
who delivered preterm or term. Control histograms represent signals derived from isotypes or autofluorescence controls. (B and D) 
Proportions	of	B	cells	expressing	IFN-γ,	IL-2,	IL-4,	IL-6,	IL-10,	IL-12,	IL-35,	and	TNF-α in the decidua basalis and parietalis
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4.3 | Decidual B1 B cells are increased in women 
with chronic chorioamnionitis who underwent labor 
at term or preterm labor

B1 B cells show a skewed antigen receptor repertoire toward self‐
antigens, as well as tonic B‐cell receptor intracellular signaling, 
spontaneous secretion of IgM, and efficient T‐cell stimulation.133 
Herein, we found that B1 B cells are increased in the decidua ba‐
salis and decidua parietalis of women with either labor at term or 
preterm labor with chronic chorioamnionitis. These data suggest, 
for the first time, a role for decidual B1 B cells in the pathological 
process of chronic chorioamnionitis associated with either labor at 
term or preterm labor. Potentially, B1 B cells could be participating 
in the stimulation of CD8+ cytotoxic T cells, which can induce apop‐
tosis of trophoblasts leading to maternal anti‐fetal rejection.94 More 
recently, we found that both decidual CD4+ and CD8+ T cells from 
women who underwent spontaneous preterm labor displayed an ef‐
fector memory phenotype and expressed high levels of granzyme B 
and perforin,97 molecules capable of cytotoxicity.134‐140 B1 B cells 
constitutively secrete IL‐10,141 suggesting that these cells are impli‐
cated in the regulation of such a chronic inflammatory process asso‐
ciated with labor at term and preterm labor. Given that B1 B cells are 
either pro‐inflammatory (through cytotoxic CD8+ T‐cell stimulation) 
or anti‐inflammatory (through IL‐10 secretion), their role may vary in 
chronic chorioamnionitis and requires further research.

4.4 | Decidual naïve B cells undergo mild alterations 
with the process of preterm labor and/or placental 
inflammation

During a primary response, transitional B cells differentiate to naïve 
B cells that upon a secondary response can generate memory B 
cells.142 Naïve B cells and memory B cells display differential ex‐
pression of IgD or CD27 and in vitro function following BCR stim‐
ulation.143‐145 Overall, naïve B cells present antigen‐inexperienced 
responses compared to memory B cells.145 Naïve B cells can also 
proliferate into short‐lived plasmablasts or plasma cells that produce 
low‐affinity antibodies.146 In the current study, we found that naïve 
B cells were reduced in patients with preterm labor and chronic cho‐
rioamnionitis, but no differences were observed in memory B cells. 
Yet, decidual tissues from women who underwent preterm labor 
with chronic chorioamnionitis tended to have greater proportions of 
plasmablasts. These data suggest that, in women with preterm labor 
and chronic chorioamnionitis, naïve B cells might proliferate to plas‐
mablasts in the decidual tissues. However, additional investigation 
of decidual B cells is required to strengthen this proposed concept.

4.5 | Decidual plasmablasts increase in women who 
underwent either labor at term or preterm labor with 
chronic chorioamnionitis

Plasmablasts are newly differentiated B cells that can leave the 
lymphoid organs and home in either tissue or bone marrow.147,148 

Additionally,	they	are	capable	of	differentiating	 into	fully	mature	
plasma cells.149 Plasmablasts are usually short‐lived and can be 
generated inside and outside of the germinal centers.150 In gen‐
eral, plasmablasts represent an accessible source of mature an‐
tibodies characterized by the regulation of several transcription 
factors, such as BLIMP1 (B‐lymphocyte‐induced maturation pro‐
tein	 1)	 and	 IRF4	 (interferon-regulatory	 factor	 4).151 Our results 
showed that plasmablasts seemed to increase in women who un‐
derwent either labor at term or preterm labor with chronic cho‐
rioamnionitis. These data suggest that, in addition to T cells, the 
hallmark of chronic chorioamnionitis,94 B‐cell antibody‐mediated 
responses are implicated in the chronic inflammatory process as‐
sociated with preterm labor and birth.

4.6 | B cells can express cytokines in the 
decidual tissues

Cytokine production by B cells is implicated in multiple aspects of 
immunity.132 Thus, B cells can express pro‐ and anti‐inflammatory cy‐
tokines to mediate immune responses.131,132 Herein, we found that, 
in both the decidua basalis and decidua parietalis, B cells expressed 
high levels of IL‐12, a cytokine that increased in the amniotic fluid of 
women with preterm labor and preterm birth.46 In the decidua pari‐
etalis,	B	cells	also	expressed	high	levels	of	IL-6,	a	cytokine	released	by	
gestational tissues and highly relevant in the pathological process of 
preterm labor.26,152 Therefore, these data provide evidence that, by 
releasing cytokines, B cells at the maternal‐fetal interface contribute 
to the pro‐inflammatory microenvironment associated with labor. B 
cells, however, could also be participating in the regulation of such 
a hostile microenvironment, given that these cells also expressed a 
high level of IL‐35, an immunosuppressive cytokine previously re‐
ported to be expressed by the placental tissues.153	Further	studies	
are needed to investigate whether decidual B cells display different 
cytokine profiles than those derived from gestational age‐matched 
controls.

5  | CONCLUSION

The current study provides the characterization of B‐cell subsets at 
the human maternal‐fetal interface during labor at term and preterm 
labor. In the absence of acute or chronic chorioamnionitis, total B 
cells are more abundant in the decidua parietalis of women who de‐
livered preterm than in those who delivered at term, regardless of the 
process of labor. Yet, an increase in the proportions of B1 B cells and 
plasmablasts was observed in women who underwent labor at term 
or preterm labor with chronic chorioamnionitis compared to those 
without this placental lesion. Decidual B cells are capable of produc‐
ing pro‐ and anti‐inflammatory cytokines. In conclusion, the B‐cell 
compartment at the maternal‐fetal interface undergoes alterations 
in women with either labor at term or preterm labor and chronic cho‐
rioamnionitis, suggesting that these adaptive immune cells are impli‐
cated in the process of labor associated with chronic inflammation of 
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the	placenta.	Additional	experimentation	 is	 required	 to	 investigate	
the functionality of chronic chorioamnionitis‐derived B cells.
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