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In this supplementary material, we provide simulation results for the different simulation
settings considered in Table 2 of the manuscript.

1 Simulation Results

We provide simulation results for the settings considered in the paper. We firs remind the
simulation settings.

1.1 Simulation Settings

We consider the following simulation settings for comparison of different methods.
We consider n = 500 observations and p = 10/20 covariates. The regression model is

y = µ(x) + ε,

with ε ∼ N(0, σ2). Different settings for the conditional mean function µ(x) are considered.
In Table 1, we provide the different choices considered for µ(x).
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Table 1: Simulation settings: in Columns Main (and Inter), “L” indicates linear main
(ineraction) effects, “NL” indicates nonlinear main (ineraction) effects, “No” indicates no
ineraction effect. True Effects column gives indices of active main and interaction effects
where “*” denotes nonlinearity.

Main Inter Mean Function True Effects

L No (a) µa(x) = 2 +
5∑

i=1

xi 1,2,3,4,5

(b) µb(x) = 2 + 8(|x1| − 1)2 + 4||x2| − 1|+
5∑

i=3

xi

(c) µc(x) = 2 + (|x1| ≥ 1.5&|x1| ≤ 2)) + 1(|x1| ≤ 0.5)

NL No +2 1(0.5 ≤ |x1| ≤ 1.5) + 4||x2| − 1|+
5∑

i=3

xi 1∗,2∗,3,4,5

(d) µd(x) = 2 + 2|x1| 1(|x1| < 1) + 2 1(|x1| > 1)

+4||x2| − 1|+
5∑

i=3

xi

L L (e) µd(x) = 2 +
5∑

i=1

xi + 6x4x5 1,2,3,4,5,(4×5)

(f) µf (x) = µb(x) + 6x4x5
NL L (g) µg(x) = µc(x) + 6x4x5 1∗,2∗,3,4,5,

(h) µh(x) = µd(x) + 6x4x5 (4×5)
(i) µi(x) = µb(x) + 8|x1|||x2| − 1|

NL NL (j) µj(x) = µc(x) + 8|x1|||x2| − 1| 1∗,2∗,3,4,5,
(k) µk(x) = µd(x) + 8|x1|||x2| − 1| (1∗ × 2∗)

(l) µl(x) = µi(x) + 8x3
√
|x2|

NL NL (m) µm(x) = µj(x) + 8x3
√
|x2| 1∗,2∗,3,4,5,

(n) µn(x) = µk(x) + 8x3
√
|x2| (1∗ × 2∗), (2∗ × 3∗)

(o) µo(x) = 2 + 1(1.5 ≤ |x1| ≤ 2) + 1(|x1| ≤ 0.5)

+2 1(0.5 ≤ |x1| ≤ 1.5) +
5∑

i=3

xi + 8|x1|||x2| − 1|

NL NL (p) µp(x) = 2 + 1(1.5 ≤ |x1| ≤ 2) + 1(|x1| ≤ 0.5)

+2 1(0.5 ≤ |x1| ≤ 1.5) +
5∑

i=3

xi + 8|x1|||x2| − 1| 1∗,3,4,5,(1 × 2)

(q) µq(x) = 2 + 2|x1| 1(|x1| < 1) + 2 1(|x1| > 1)

+
5∑

i=3

xi + 8|x1|||x2| − 1|

1.2 Results

We present the results for the different mean structures given by rows (a-q) given in Table
1 for p = 10 or p = 20 and noise standard deviation σ = 1. For screening, we present the
results based on the top p effects. The conclusions from these additional simulation results
also demonstrate that SNIF has very competitive performance across simulation settings.
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(a)

(b)

Models (a) - (b) with p = 10 covariates
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(c)

(d)

Models (c) - (d) with p = 10 covariates
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(e)

(f)

Models (e) - (f) with p = 10 covariates
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(g)

(h)

Models (g) - (h) with p = 10 covariates
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(i)

(j)

Models (i) - (j) with p = 10 covariates
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(k)

(l)

Models (k) - (l) with p = 10 covariates
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(m)

(n)

Models (m) - (n) with p = 10 covariates
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(o)

(p)

Models (o) - (p) with p = 10 covariates
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(q)

Model (q) with p = 10 covariates
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(a)

(b)

Models (a) - (b) with p = 20 covariates
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(c)

(d)

Models (c) - (d) with p = 20 covariates
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(e)

(f)

Models (e) - (f) with p = 20 covariates
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(g)

(h)

Models (g) - (h) with p = 20 covariates
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(i)

(j)

Models (i) - (j) with p = 20 covariates
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(k)

(l)

Models (k) - (l) with p = 20 covariates
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(m)

(n)

Models (m) - (n) with p = 20 covariates
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(o)

(p)

Models (o) - (p) with p = 20 covariates
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(q)

Model (q) with p = 20 covariates
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