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Abstract: Children exposed to mixtures of endocrine disrupting compounds such as phthalates are at high
risk of experiencing significant friction in their growth and sexual maturation. This article is primarily
motivated by a study that aims to assess the toxicants-modified effects of risk factors related to the hazards
of early or delayed onset of puberty among children living in Mexico City. To address the hypothesis of
potential nonlinear modification of covariate effects, we propose a new Cox regression model with multiple
functional covariate-environment interactions, which allows covariate effects to be altered nonlinearly by
mixtures of exposed toxicants. This new class of models is rather flexible and includes many existing
semiparametric Cox models as special cases. To achieve efficient estimation, we develop the global partial
likelihood method of inference, in which we establish key large-sample results, including estimation
consistency, asymptotic normality, semiparametric efficiency and the generalized likelihood ratio test for
both parameters and nonparametric functions. The proposed methodology is examined via simulation
studies and applied to the analysis of the motivating data, where maternal exposures to phthalates during the
third trimester of pregnancy are found to be important risk modifiers for the age of attaining the first stage
of puberty. The Canadian Journal of Statistics 47: 204–221; 2019 © 2019 Statistical Society of Canada
Résumé: Les enfants exposés à des perturbateurs endocriniens comme les phtalates courrent un risque élevé
de problèmes relatifs à leur croissance et leur maturation sexuelle. Les auteurs s’intéressent à une étude
visant à évaluer l’effet des toxines sur les facteurs de risque liés à une puberté précoce ou retardée chez les
enfants vivant à Mexico. Afin d’accommoder l’hypothèse que certaines modifications des effets pourraient
s’avérer non linéaires, ils proposent un modèle de régression de Cox avec de nombreuses interactions
fonctionnelles entre les covariables et l’environnement, ce qui permet une altération non linéaire de l’effet
des covariables suite à une exposition à un mélange de toxines. Cette nouvelle classe de modèles présente
une grande flexibilité, au point où plusieurs modèles de Cox semi-paramétriques en sont des cas particuliers.
Pour estimer le modèle, les auteurs développent la méthode au maximum de vraisemblance partielle globale
dont ils établissent les propriétés clés, notamment la convergence, la normalité asymptotique, l’efficacité
semi-paramétrique, et la distribution du test au rapport de vraisemblance généralisé pour les paramètres
et pour les fonctions non paramétriques. Les auteurs examinent la méthodologie proposée au moyen
d’études de simulation et l’appliquent aux données ayant motivé son développement. Ils constatent que
l’exposition aux phtalates lors du troisième trimestre de grossesse modifie substantiellement l’effet des
facteurs contribuant à l’âge d’atteinte de la puberté. La revue canadienne de statistique 47: 204–221; 2019
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1. INTRODUCTION

The fundamental hypothesis of ‘‘developmental origins’’ in environmental health sciences pos-
tulates that environmental exposures during fetal and early postnatal life influence developmental
plasticity, thereby altering susceptibility to chronic diseases later on (Perera & Herbstman, 2011;
Vaiserman, 2014; Gluckman et al., 2008). A key endeavour has concerned the assessment
of the potential developmental and reproductive effects associated with the near ubiquitous
environmental exposure to endocrine disrupting compounds (EDCs), such as heavy metals and
phthalates, experienced by women and children during sensitive developmental periods (Meeker,
2012; Ma & Song, 2015). Analyzing simultaneous exposures to mixtures of toxic agents is noto-
riously difficult in the environmental health sciences, and so far only a few statistical methods
have been developed that are well-suited to this purpose. This article develops a new Cox
regression model that can assess whether or not, and if so, to what extent and in which fashion,
mixtures of toxic agents may modify the effects of risk factors related to the timing of pubertal
development.

We consider an example concerning growth that involves the covariate concurrent height,
which is known to be a strong predictor of the age of pubertal development. We are interested
in assessing how the effect of a child’s concurrent height on the age of attaining the first stage
of puberty may be modified by level of exposure to phthalates. To this end, a statistical analysis
needs to address three important questions: (i) Whether or not phthalates modify the effect of a
child’s concurrent height on the time to reach pubertal first stage? (ii) If so, which phthalates, for
example, monobutyl phthalate (MBP), monoethyl phthalate (MEP) or mono-3-carboxypropyl
phthalate (MCPP), are responsible for the modification? And (iii) In what form (linear or
nonlinear) does the toxicant mixture, that is, a combination of important phthalates, modify the
effect of concurrent height on the timing of pubertal development?

To address these questions, we consider a flexible form of functional covariate modification
to the usual Cox regression model represented by

𝜆(t) = 𝜆0(t) exp

{
d∑

k=1

𝛽k(X′𝜶k)Zk

}
, (1)

where 𝜆(t) is the hazard at time t, 𝜆0(t) is the baseline hazard and represents the hazard when
all of the covariates, (X,Zk, k = 1,… , d), are equal to zero. Here X = (X1,… ,Xq)′ is a vector
of exposed toxicants, 𝜶k is an unknown q-dimensional vector of parameters, which hereafter we
call the loading coefficients, some elements of which may be zero, resulting in different types
of mixtures for different covariates Zk. The covariates X and Zk, k = 1,… , d may be correlated.
The parameter 𝜷(⋅) = (𝛽1(⋅),… , 𝛽d(⋅))′ is a vector of d unknown functions that characterize the
forms and extents to which modification of a covariate effect alters with respect to the level of
exposure to a combination of multiple toxicants encoded in X.

When a function 𝛽k(⋅) varies in different forms, such as zero, constant, linear or nonlin-
ear, the model specified in Equation (1) allows us to answer if and how groups of phthalates
may modify the effects that a child’s height and maternal parity exhibit on the age of puber-
tal development. Recently, Lin, Tan & Li (2016) studied a single-index varying coefficient
model with homogeneous loadings across the covariates, namely, 𝜶k ≡ 𝜶, k = 1,… , d. Com-
pared to the model we have specified in Equation (1), their model aims merely at dimension
reduction and does not characterize interaction effects at all; see Ma & Song (2015) for
the explanation. Technically, their model may be regarded as a special case of the model
we identified in Equation (1); thus, via hypothesis testing, our model may be used to jus-
tify their assumption of homogeneous loading coefficients. Furthermore, by using different
specifications of 𝜷 and 𝜶k, the model that we identified in Equation (1) covers many other
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existing semiparametric models. Relevant details can be found in the associated Supplementary
Material.

In this article, inference based on the model we have proposed is developed using the idea of
efficient global partial likelihood (GPL); see Chen et al. (2010), Chen, Lin & Zhou (2012) and
Lin, Tan & Li (2016). GPL has been considered previously for a simpler case with a common
argument variable, say m, in functions 𝛽k(m), which is the case studied by Lin, Tan & Li
(2016). In contrast, the model we have specified in Equation (1) pertains to a varying-coefficient
model with different mk = X′𝜶k in 𝛽k(⋅), and represents a much more difficult problem from
the technical perspective. That is, the problem studied by Fan, Lin & Zhou (2006) allows for
simultaneous estimation of 𝛽k, which avoids the problem of the curse of dimensionality. However,
in the model we have proposed different index variables, mk = X′𝜶k, lead to a high-dimensional

setting, in which extending GPL to the additive Cox model, 𝜆(t) = 𝜆0(t) exp
{∑d

k=1 𝛽k(mk)Zk

}
,

is not a trivial challenge. The reason we use GPL is its very attractive efficiency property
for nonparametric estimation. In the current literature, such efficiency has not been widely
investigated for the additive Cox model, despite many methods that have been proposed for
nonparametric function estimation, including spline smoothing (Hastie & Tibshirani, 1990a;
1990b; Sleeper & Harrington, 1990; Huang, 1999), the marginal integration method (Linton,
Nielsen, & Van de Geer, 2003; Honda, 2005) and the backfitting method (Mammen, Linton &
Nielsen, 1999; Honda, 2005).

To address questions (i)–(iii), we also develop a generalized likelihood ratio (GLR) test for
the model we have proposed. In Cox models, methods of hypothesis testing for nonparametric
functions have not been well studied. The GLR statistic originally proposed by Fan, Zhang &
Zhang (2001) is based on a local linear estimator which, regrettably, is not directly applicable to
the GPL setting for testing a function 𝛽k(⋅). In effect, the proposed GLR test represents a useful
extension of the classical GLR test investigated in Fan, Zhang & Zhang (2001).

This article is organized as follows. Section 2 introduces GPL estimation; we estab-
lish its uniform consistency, asymptotic normality and semiparametric efficiency. Section 3
outlines the theory of inference for the loading parameters and nonparametric functions.
Simulation experiments and data examples are described in Sections 4 and 5, respectively.
Section 6 consists of some concluding remarks. Some notation and relevant conditions are
listed in the Appendix. All technical proofs may be found in the associated Supplementary
Material.

2. METHOD OF ESTIMATION

To address the identifiability issue for the model specified in Equation (1), we follow the
conditions of the single-index model (Carroll et al., 1997; Wang et al., 2010), which are: (i)‖𝜶k‖2

2 = 1, k = 1,… , d and the sign of the first component in each 𝜶k is positive; (ii) covariate X
contains no intercept term; and (iii) for a constant Zik, say Zi1 ≡ 1, the corresponding parameter
𝛽1(⋅) is centered and has mean 0. In the following subsections we provide a brief review of local
partial likelihood (LPL) and then describe our GPL method.

2.1. Local Partial Likelihood
The independent data replicates are {i,Δi,Zi,Xi} from subject i = 1,… , n, where i =
min(Ti,Ci), Ti and Ci are failure and censoring times, respectively; Δi is an indicator that
equals 1 when i is an observed failure time (i = Ti) and 0 otherwise (i = Ci). The variable
Zi = (Zi1,… ,Zid)′ ∈ Rd is a set of d covariates of interest, which may be time-dependent.
Finally, Xi = (Xi1,… ,Xiq)′ ∈ Rq is a vector of toxicant exposures. We assume that Ti and Ci are
conditionally independent, given the covariates (Xi,Zi).
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Based on the assumption that Ti follows the model specified in Equation (1), the partial
likelihood of the unknown parameters 𝜶 =

(
𝜶′

1,… ,𝜶′
d

)′ and 𝜷 = (𝛽1,… , 𝛽d)′ equals

L(𝜶, 𝜷) =
n∏

i=1

⎡⎢⎢⎢⎣
exp

{∑d
k=1 𝛽k(mik)Zik

}
∑

𝑗∈(i) exp
{∑d

k=1 𝛽k(m𝑗k)Z𝑗k

}⎤⎥⎥⎥⎦
Δi

, (2)

where mik = X′
i𝜶k and (t) = {i ∶ i ≥ t} is the set of individuals at risk immediately prior

to time t. With 𝜶k being temporarily fixed, we estimate the functions 𝛽k(vk), k = 1,… , d at a
point vk in the range of {X′

i𝜶k}n
i=1 under the assumption that each 𝛽k is continuously first-order

differentiable. Thus, for each given value vk, a Taylor series expansion leads to

𝛽k(mik) ≈ 𝛽k(vk) + �̇�k(vk)(mik − vk)
def
= 𝜁k + 𝛾k(mik − vk), (3)

where mik is a certain value in the neighbourhood of vk. In this article, ȧ(⋅) denotes the first-order
derivative of the function a(⋅). Replacing 𝜷(⋅) in Equation (2) by the linear approximation defined
in Equation (3), componentwise, gives rise to a set of parameters 𝜼k = (𝜁k, 𝛾k)′, k = 1,… , d,
which are then estimated by maximizing the local partial log-likelihood function

n∑
i=1

Δi

(
d∏

k=1

ik(vk)

){
d∑

k=1

𝛽 i(𝜼k,𝜶k, vk)Zik

− log

[ ∑
𝑗∈(i)

(
d∏

k=1

𝑗k(vk)

)
exp

(
d∑

k=1

𝛽𝑗(𝜼k,𝜶k, vk)Z𝑗k

)]}
, (4)

where 𝛽 i(𝜼k,𝜶k, vk) = Mi(𝜶k, vk)′𝜼k, Mi(𝜶k, vk) = (1,X′
i𝜶k − vk)′, and the local kernel weighting

is allocated by ik(vk) = hk
(mik − vk), hk

(x) = (x∕hk)∕hk, with  being a one-dimensional
kernel density function and hk representing the bandwidth.

It is known that the above local method suffers from the curse of dimensionality when
d ≥ 2. The backfitting iterative algorithm (Hastie & Tibshirani, 1990b) is a popular remedy for
overcoming this difficulty but establishing its large-sample theory is notoriously challenging
(Yu, Park & Mammen, 2008). On the other hand, the existing local scoring backfitting is still
based on an LPL approach (Fan, Gijbels & King, 1997), which uses data in a neighbourhood
of each fixed value of vk to estimate 𝛽k(vk). The localization suffers from a potential loss of
efficiency because data outside the neighbourhood which may provide information about 𝛽k(⋅)
are not used. To overcome this deficiency, here we adopt the method of GPL, rather than LPL,
to estimate 𝛽k(⋅).

2.2. Global Partial Likelihood
The GPL approach was first studied by Chen et al. (2010) and Chen, Lin & Zhou (2012) for the
simple setting of a single nonparametric function, where there is no curse of dimensionality. In
this article we consider a more general GPL method in order to estimate multiple nonparametric
functions 𝛽k(⋅), k = 1,… , d with different arguments. Denote a neighbourhood of a target value
vk by Bn(vk). Let Iik be an indicator that equals 1 if mik ∈ Bn(vk), and 0 otherwise. We consider a
first-order expansion of the function 𝛽k(⋅), namely

𝛽k(mik) ≈ {𝜁k + 𝛾k(X′
i𝜶k − vk)}Iik + 𝛽k(mik)(1 − Iik)

= 𝛽 i(𝜼k,𝜶k, vk)Iik + 𝛽k(mik)(1 − Iik),
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where the second term 𝛽k(mik) remains with no approximation if mik falls outside of Bn(vk).
Moreover, as suggested by Chen et al. (2010), we replace the step function Iik by a smooth
function hkhk

(mik − vk), thereby obtaining

𝛽k(mik) ≈ 𝛽 i(𝜼k,𝜶k, vk)hkhk
(mik − vk) + 𝛽k(mik)

{
1 − hkhk

(mik − vk)
}
.

The right-hand side of this expression represents a global linear approximation, which we will
denote by 𝛽

g
i (𝜼k,𝜶k, vk). Substituting 𝛽

g
i (𝜼k,𝜶k, vk) into Equation (2), with fixed 𝜶, we estimate

the parameters 𝜼k, k = 1,… , d, by maximizing the objective function

lg,𝜼(𝜼;𝜶) =
n∑

i=1

Δi

(
d∑

k=1

𝛽
g
i (𝜼k,𝜶k, vk)Zik

− log

[ ∑
𝑗∈(i)

exp

{
d∑

k=1

𝛽
g
𝑗
(𝜼k,𝜶k, vk)Z𝑗k

}])
. (5)

It is worth mentioning that Equation (5) provides the standard full partial likelihood estimator,
instead of the LPL estimator that results from maximimizing Equation (4). As a result, the
proposed method of estimation based on the use of Equation (5) has some attractive optimality
properties due to suitable choices of where and how local approximation is implemented.
Estimates that rely on the use of Equation (5) apply the local approximation in the function,
whereas the LPL associated with reliance on Equation (4) imposes the local approximation
directly on the likelihood.

To estimate 𝜶k, denote 𝜼k by 𝜼ik evaluated at X′
i𝜶k. With 𝜼ik fixed, we propose to maximize

the objective function

lg,𝜶(𝜶; 𝜼) =
n∑

l=1

{
𝑓𝜶k

(mlk)
}−1 n∑

i=1

Δi

(
d∑

k=1

𝛽
g
i (𝜼lk,𝜶k,X

′
l𝜶k)Zik

− log

[ ∑
𝑗∈(i)

exp

{
d∑

k=1

𝛽
g
𝑗
(𝜼lk,𝜶k,X

′
l𝜶k)Z𝑗k

}])
, (6)

which corresponds to a summation of Equation (5) over X′
l𝜶k, l = 1,… , n. Here 𝑓𝜶k

(v) =
1
n

∑n
i=1 hk

(
X′

i𝜶k − v
)

corresponds to a kernel estimate of the density function 𝑓𝜶k
(v) for X′

i𝜶k.

2.3. Implementation
The objective functions identified in Equations (5) and (6) are not explicitly solvable since
the true 𝛽k(⋅), k = 1,… , d are unknown. Instead, this maximization problem may be solved
by alternately updating 𝜼ik = (𝜁ik, 𝛾ik)′ =

(
𝛽k(mik), �̇�k(mik)

)′ and 𝜶k, k = 1,… , d. The following
constitutes the steps in this algorithm.
Step 0. Choose suitable initial values 𝜼(0)ik and 𝜶(0)

k such that each 𝜶(0)
k satisfies ‖𝜶(0)

k ‖ = 1 and
its first element is positive, k = 1,… , d, i = 1,… , n. For example, the loading coefficients of
the principal components may be used as initial values for 𝜶k. Then, with these fixed values for
𝜶k, a spline smoothing technique may be used to obtain initial values for the functions 𝛽k(⋅).
Our numerical results show that such choices for the initial values work well; see Section 4 for
details.
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Part 1 of Step s. Find solutions for 𝜼lk to the score equations

n∑
i=1

Δi

⎡⎢⎢⎣𝜛(s−1)
il,k (s−1)

il,k Zik −

{ ∑
𝑗∈(i)

exp

(
d∑

r=1

𝜁
(s−1)
𝑗r Z𝑗r

)}−1 ∑
𝑗∈(i)

𝜛
(s−1)
𝑗l,k

×(s−1)
𝑗l,k Z𝑗k exp

(
𝛽

g
𝑗
(𝜼lk,𝜶

(s−1)
k ,m(s−1)

lk )Z𝑗k +
∑
r≠k

𝜁
(s−1)
𝑗r Z𝑗r

)]
= 0,

where 𝜛
(s−1)
il,k =

(
1,m(s−1)

ik − m(s−1)
lk

)′
, (s−1)

il,k = hk
(m(s−1)

ik − m(s−1)
lk ), m(s−1)

ik = X′
i𝜶

(s−1)
k and

𝛽
g
𝑗

(
𝜼lk,𝜶

(s−1)
k ,m(s−1)

lk

)
= 𝜼′lk𝜛

(s−1)
𝑗l,k hk(s−1)

𝑗l,k + 𝜁
(s−1)
𝑗k

(
1 − hk(s−1)

𝑗l,k

)
. Denote these solutions by

�̂�
(s)
lk =

(
𝜁
(s)
lk , �̂�

(s)
lk

)′
for l = 1,… , n and k = 1,… , d.

Part 2 of Step s. Update 𝜶k by solving the partial score equation
n∑

l=1

{
𝑓𝜶k

(m(s−1)
lk )

}−1 n∑
i=1

Δi

(
𝛾
(s)
lk X̃il(s−1)

il,k Zik

−

{ ∑
𝑗∈(i)

exp

(
d∑

r=1

𝜁
(s−1)
𝑗r Z𝑗r

)}−1 [ ∑
𝑗∈(i)

𝛾
(s)
lk X̃𝑗l(s−1)

𝑗l,k Z𝑗k

× exp

{
𝛽

g
𝑗
(𝜼(s)lk ,𝜶k,X

′
l𝜶k)Z𝑗k +

∑
r≠k

𝜁
(s)
𝑗r Z𝑗r

}])
= 0,

where
𝛽

g
𝑗
(𝜼(s)lk ,𝜶k,X

′
l𝜶k) = 𝜼

(s)′
lk 𝜛𝑗l(𝜶k)hk(s−1)

𝑗l,k + 𝜁
(s)
𝑗k

(
1 − hk(s−1)

𝑗l,k

)
,

𝜛𝑗l(𝜶k) =
(

1, X̃′
𝑗l𝜶k

)′
, and X̃i𝑗 = Xi − X𝑗 . Denote the solution by 𝜶

(s)
k . Then set 𝜶(s)

k =

𝜶
(s)
k ∕‖𝜶(s)

k ‖ with the first element of 𝜶(s)
k positive for k = 1,… , d.

Part 3. Repeat Step s until convergence is achieved and then collect the output.
As part of this implementation, the bandwidth hk, k = 1, 2,… , d must be selected. We adopt

the K-fold cross-validation procedure (Efron & Tibshirani, 1993; Tian, Zucker & Wei, 2005). In
particular, we use the adaptive bandwidth selection method of Brockmann, Gasser & Herrmann
(1993), where the bandwidth, hQ(v), for each target point, v say, is defined in such a way that Q
percent of all the data points is used in the analysis. Following Cai, Fan & Li (2000), we choose
a value of Q that minimizes the prediction error

PE(Q) = ∫
𝜏

0

[
Ni(t) − ÊQ{Ni(t)}

]2
d

{
n∑

k=1

Nk(t)

}
, (7)

where ÊQ{Ni(t)} = ∫ t
0Yi(u) exp{

∑d
k=1 𝛽k,Q(�̂�

′
k,QXi)Zik}dΛ̂0,Q(u) is an estimate of the expected

number of events up to time t for a fixed Q value, and Ni(t) = I(Ti ≤ t,Δi = 1) is the counting
process for the total number of observed responses.

2.4. Large-Sample Properties
We now establish uniform consistency and asymptotic normality of the GPL estimators derived
by maximizing the objective functions identified in Equations (5) and (6); we denote these
by �̂� = (�̂�′

1,… , �̂�′
d)

′ and �̂�(⋅) = (𝛽1(⋅),… , 𝛽d(⋅))′. Without loss of generality let the support
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of X′𝜶k be [0, 1] and assume hk ∼ h, k = 1,… , d, namely, all bandwidths have the same
asymptotic order. Denote by 𝜶0 and 𝜷0(v) = (𝛽10(v1),… , 𝛽d0(vd))′ the true values of 𝜶 and 𝜷(⋅),
respectively. Proofs of the following theorems may be found in the associated Supplementary
Material.

Theorem 1. Under the regularity conditions (C1)–(C7) listed in the Appendix, as n → ∞ we
have

(i) ‖�̂� − 𝜶0‖ p
→ 0 and supv∈ ‖�̂�(v) − 𝜷0(v)‖ p

→ 0, where  = {(v1,… , vd)′ ∶ vk ∈ [0, 1], k =
1,… , d}.

(ii) If nh4 → 0, then
√

n
(
�̂� − 𝜶0

) d
→ N(0,𝕍 ), where the asymptotic covariance 𝕍 is specified

in Equation (A.1) in the Appendix.

(iii) (nh)1∕2
{
�̂�(v) − 𝜷0(v) −

1
2
𝜈2h2−1(𝛀)(v)

} d
→ N(0,𝚷(v)), v ∈  , where the pointwise

asymptotic covariance 𝚷(v) = 𝜈0
{−1(𝚺1∕2)(v)

}
×
{−1(𝚺1∕2)(v)

}′
, and 𝜈r = ∫ xr2

(x)dx, r = 0, 1, 2. Here the linear operator  and its inverse are the quantities defined
in Equation (A.2) of the Appendix; the functions 𝚺(v) and 𝛀(v) are also defined in the
Appendix.

When d = 1, Theorem 1 reduces to Theorems 1–3 of Lin, Tan & Li (2016). To achieve the
parametric convergence rate n−1∕2 for the estimator �̂�, it is commonly required to undersmooth
the nonparametric estimation using a kernel technique (Carroll et al., 1997; Hastie & Tibshirani,
1990b). Part (ii) of Theorem 1 in fact requires the bandwidth h = o(n−1∕4), leading to a scenario
of undersmoothing. As usual, the asymptotic normality given in part (iii) of Theorem 1 indicates
that the order of the asymptotic bias is O(h2) and the order of the asymptotic covariance is (nh)−1.
Consequently, the theoretical optimal bandwidth O(n−1∕5) may be in principle applied for the
nonparametric estimation.

To establish semiparametric efficiency in the sense of Bickel et al. (1993) for both �̂� and
�̂�(⋅), we consider a function 𝝓(v) = (𝝓′

1,𝝓2(v)′)′, which has continuous second-order derivatives
on  . Let 𝝓′

1�̂� + ∫ 𝝓′
2(v)�̂�(v)dv be an estimator of 𝝓′

1𝜶0 + ∫ 𝝓′
2(v)𝜷0(v)dv, where �̂� and �̂�(⋅)

are the proposed GPL estimators.

Theorem 2. Under the regularity conditions (C1)–(C7) listed in the Appendix, if nh4 → 0 and
nh2 → ∞, 𝝓′

1�̂� + ∫ 𝝓′
2(v)�̂�(v)dv is an efficient estimator of 𝝓′

1𝜶0 + ∫ 𝝓′
2(v)𝜷0(v)dv.

It follows that with a choice of 𝝓2(v) = 0, �̂� is an efficient estimator of 𝜶0; likewise, with a
choice of 𝝓1 = 0, ∫ 𝝓′

2(v)�̂�(v)dv is an efficient estimator of ∫ 𝝓′
2(v)𝜷0(v)dv.

Given the GPL estimates �̂�(⋅) and �̂�, we adopt the method of kernel smoothing described
in Fan, Lin & Zhou (2006) to estimate the baseline hazard function by �̂�0(t) = ∫ b(t −
u)dΛ̂0(u), where b is a bandwidth and the estimated cumulative baseline hazard function
Λ̂0(t) is

Λ̂0(t) =
1
n

n∑
i=1

∫
t

0

dNi(u)

n−1 ∑n
𝑗=1 Y𝑗(u) exp

{∑d
k=1 𝛽k(X′

𝑗
�̂�k)Z𝑗k

} .

Given the results of Theorem 1, we follow the proof in Fan, Lin & Zhou (2006) to show that both
�̂�0(t) and Λ̂0(t) are uniformly consistent estimators on (0, 𝜏), where 𝜏 is defined via condition
(C2) in the Appendix.
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3. INFERENCE

3.1. Inference for the Loading Coefficients
Utilizing the asymptotic normality described in part (ii) of Theorem 1, we now construct a
Wald statistic to test a null hypothesis H0 ∶ 𝛼k1l = · · · = 𝛼krl = 0, which pertains to a subset, say
𝜶l(r) = (𝛼k1l,… , 𝛼krl)′, of the lth vector of loading coefficients, where (k1,… , kr) is a subset of

the indices in {2,… , q}. Clearly, the Wald test statistic is 𝜒2
W = (�̂�l(r) − 0)′

{
�̂�l(r)

}−1(�̂�l(r) − 0),
where

{
�̂�l(r)

}−1
is the inverse of the estimated asymptotic covariance matrix corresponding to

subvector �̂�l(r). Under the null hypothesis H0, the statistic 𝜒2
W has an asymptotic chi-squared

distribution with r degrees of freedom.

3.2. Inference for the Nonparametric Functions
The estimated value of 𝜷(⋅) helps us understand in which form the effect of covariate Zk is
modified by an exposure mixture mk = X′𝜶k. Such an analysis simplifies the model specification,
say, to a linear interaction model. We now propose a goodness-of-fit test using a GLR statistic
for a constant function or a linear function.

In the case of a linear function, we set the null and alternative hypotheses as follows:
H0 ∶ 𝛽l(⋅) is a linear function versus H1 ∶ 𝛽l(⋅) is not a linear function. Under the alternative
H1, we obtain the GPL estimates �̂� and �̂�(⋅) described above. Under the null H0, the function
𝛽l(⋅) is estimated by 𝛽l(vl) = �̂�l0 + �̂�l1vl, with �̂�l0 and �̂�l1 being the conventional partial likelihood
estimates, given that all other parameters 𝜶 and functions 𝜷−l(⋅) = (𝛽k(⋅), k ≠ l)′ have been
estimated under the alternative H1. Then a GLR statistic is constructed as the difference

𝜆n,l = logn
(
�̂�, 𝛽l, �̂�−l

)
− logn

(
�̂�, 𝛽l, �̂�−l

)
,

where

n
(
𝜶, 𝛽l,𝜷−l

)
= exp

{
n∑

i=1

Δi

(
Wi(𝜶, 𝛽l, 𝜷−l) − log

[ ∑
𝑗∈(i)

exp
{

W𝑗

(
𝜶, 𝛽l,𝜷−l

)}])}
,

and Wi(𝜶, 𝛽l,𝜷−l) = 𝛽l(X′
i𝜶l)Zil +

∑
k≠l 𝛽k(X′

i𝜶k)Zik.

Theorem 3. Suppose the regularity conditions (C1)–(C7) listed in the Appendix hold.

(i) Under H0∶ 𝛽l(vl) follows a linear function form given by 𝜃l0 + 𝜃l1vl, we have

𝛾k𝜆n,l
d
→ 𝜒2

𝛾k𝜇nl
as n → ∞, (8)

where 𝛾k =
{(0) − 1

2
∫ 1
−1 2(t)dt

}
∕ ∫ 1

−1

{(t) − 1
2
 ∗ (t)

}2
dt,𝜇nl = |𝔻l|h−1

{(0)− 1
2

× ∫ 1
−1 2(t)dt

}
, 𝔻l = {vl ∶ vl = x′𝜶l, 𝑓𝜶l

(vl) > 0,𝜶l, x ∈ Rq} and |𝔻l| is the length of inter-
val 𝔻l. Here ‘‘∗’’ denotes the operation of convolution.

(ii) Consider H0∶ 𝛽l is a constant versus H1∶ 𝛽l is not a constant. Under this version of H0, the
result specified in Equation (8) continues to hold.

Theorem 3 shows that the asymptotic null distribution of the proposed GLR statistic is nearly
𝜒2 with a degree-of-freedom parameter that does not depend on the nuisance parameters 𝜃l0 and
𝜃l1. This aspect is known as the Wilks phenomenon; see Fan, Zhang & Zhang (2001). With this
property, the advantages of the classical likelihood ratio tests are fully inherited. For additional
discussion, consult Fan, Zhang & Zhang (2001).
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The procedure just described has been implemented as part of an R package called CoxGPLE
that is presented in the associated Supplementary Material.

4. SIMULATION STUDIES

We conducted simulation studies to examine the performance of our proposed GPL method.
We evaluated the performance of GPL for the nonparametric estimator �̂�(⋅) by the weighted
mean squared error (WMSE), WMSE = n−1

g
∑d

k=1
∑ng

𝑗=1 wk{𝛽k(v𝑗) − 𝛽k(v𝑗)}2, where w𝑗 is the
reciprocal sample variance of 𝛽𝑗(vk) over a set of grid points {vk, k = 1,… , ng}. We assessed
the performance of GPL for the parametric estimator �̂� via its bias, empirical standard deviation
(ESE) and the root mean squared error (RMSE). In all the cases we considered, we used the
Epanechnikov kernel, set ng = 100, and calculated summary statistics based on 200 simulations
with sample size n = 500.

We specified a Cox model with three covariates, (1,Z1(t),Z2), and three exposure variables,
(X1,X2,X3), that were defined as follows: 𝜆(t|X,Z) = 𝜆0(t) exp{𝜂(X,Z)},where the baseline haz-
ard function was 𝜆0(t) = 4t3 and the linear predictor was 𝜂(X,Z) = 𝛽1(X′𝜶1) + 𝛽2(X′𝜶2)Z1(t) +
𝛽3(X′𝜶3)Z2. The three coefficient functions were specified as 𝛽1(v) = 0.4{exp(2v − 0.5) −
exp(−0.5)}, 𝛽2(v) = 1.3v(0.25 − v) and 𝛽3(v) = sin(2v). In addition, to generate Z = (Z1(t),Z2)′,
with Z1(t) as a time-dependent covariate and Z2 a time-independent covariate, we first obtained
independent observations from a bivariate normal distribution, (Z̃1,Z2)′ ∼ N

{
0, 52

(
1 0.5

0.5 1

)}
, and

then set Z1(t) = Z̃1I(t ≤ 1)∕4 + Z̃1I(t > 1). The three exposure variables, X = (X1,X2,X3)′, were
sampled independently, where the first two variables were binary from Bernoulli(0.5) and
X3 ∼ Unif(0, 1). The true parameter values were set at 𝜶10 = (2, 2, 2)′∕5, 𝜶20 = (2, 2,−2)′∕3,
and 𝜶30 = (2, 2,−2)′∕3, which all have norm 1. The censoring variable C, given (Z,X),
was simulated uniformly on the interval (0, u(Z,X)), where the upper limit was specified as
u(Z,X) = c1I(𝜂(Z,X) > 𝜂0) + c2I(𝜂(Z,X) ≤ 𝜂0); the cutoff 𝜂0 was set at 0.52, the mean function
of 𝜂(Z,X), c1 = 2, and c2 = 15. The censoring rate was approximately 20%.

To evaluate the proposed GPL method, we focused on its efficiency loss relative to two
comparison models that were close to the true model. In these two comparison models, the
coefficient functions are either specified as the true functions or take the same functional
forms as those of the true functions. They were 𝜆1(t) = 𝜆0(t) exp{𝜂1(Z,X;𝜽1)} for Simulation
Model 1 (simM1), and 𝜆2(t) = 𝜆0(t) exp{𝜂2(Z,X;𝜽2)} for Simulation Model 2 (SimM 2), where,
with vk = X′𝜶k, k = 1, 2, 3, 𝜂1(Z,X;𝜽1) = 𝜃11𝛽1(v1) + (𝜃12v2 + 𝜃13v2

2)Z1(t) + 𝜃14𝛽3(v3)Z2 and
𝜂2(Z,X;𝜽2) =

{
𝜃21𝛽1(v1) + 𝜃22v1

}
+ (𝜃23 + 𝜃24v2 + 𝜃25v2

2)Z1(t) +
{
𝜃26 + 𝜃27v3 + 𝜃28𝛽3(v3)

}
Z2.

The vectors of parameters in the above parametric linear predictors were 𝜽1 = (𝜃11,… , 𝜃14)′,
𝜽2 = (𝜃21,… , 𝜃28)′, and clearly these true coefficient functions were parametrically nested in
𝜂1(⋅) and 𝜂2(⋅), respectively. When both models are correctly specified, SimM1 corresponds to a
smaller parameter space while SimM2 pertains to a larger parameter space. For models M1 and
M2, the loading coefficients 𝜶k in vk = X′𝜶k, k = 1, 2, 3, together with 𝜽1 and 𝜽2 were estimated
using conventional partial likelihood.

Panels (a), (b) and (c) of Figure 1 in the Supplementary Material display the estimated
coefficient functions at bandwidth h = 0.3, together with their empirical pointwise 95% confi-
dence bands based on 200 simulations. It is easy to see that all estimated curves (denoted by
solid lines) are close to the true curves, which are indicated by dashed lines. Some numerical
results concerning the GPL method are summarized in Table 1, including average estimation
bias and empirical standard error for functional values at v = −0.60,−0.26, 0.32, 0.90 and 1.24
over 200 replicates. These values correspond, approximately, to the 10th, 25th, 50th, 75th and
90th percentiles of the distribution of index vk = X′𝜶k for k = 1, 2, 3. Both Figure 1 in the
Supplementary Material and the results summarized in Table 1 indicate that the GPL method
performed well in this simulation setting.
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TABLE 1: Simulation study results for nonparametric estimation of the functions 𝛽k(⋅) using the proposed
GPL with bandwith h = 0.3 over 200 replicates.

Value of index v

Function Summary statistic −0.60 −0.26 0.32 0.90 1.24

Bias 0.274 0.202 0.095 0.003 −0.654

𝛽1(⋅) ESE 0.279 0.279 0.142 0.170 0.242

RMSE 0.391 0.344 0.171 0.170 0.697

Bias 0.066 −0.023 −0.008 0.062 0.156

𝛽2(⋅) ESE 0.133 0.069 0.036 0.129 0.267

RMSE 0.148 0.073 0.037 0.143 0.309

Bias 0.108 0.084 −0.083 −0.147 −0.063

𝛽3(⋅) ESE 0.075 0.043 0.036 0.040 0.058

RMSE 0.131 0.094 0.090 0.152 0.086

Table 2 reports the summary results from our simulation study concerning estimation of the
loading coefficients 𝜶k, k = 1, 2, 3 in the proposed Cox regression model and the two comparison
parametric models SimM1 and SimM2. These results include average estimation bias, ESE and
RMSE of the GPL method with bandwidth h = 0.2, 0.3, 0.4 compared to the classical partial
likelihood estimation (PLE) method used for the comparison models M1 and M2. Since Model
M1 has the coefficient functions in the linear predictor 𝜂1(⋅) specified as special parametric forms
of the true functions, it is not surprising that the PLE method with fewer parameters (Model M1)
performed the best among the various cases that we considered. The performance of the GPL
method fell between performance of the PLE methods for Models M1 and M2, suggesting that
there exists a parametric model with which the proposed nonparametric method would exhibit
similar performance. In effect, this observation suggests that the GPL method for estimating the
loading coefficients is parametrically efficient.

Using the same simulations, we also tried to compare the GPL method of estimation to the
local partial likelihood estimation (LPLE) method that we described in Section 2.1. However, we
encountered numerous instances of failure to converge numerically. For example, at bandwidth
h = 2.5 (a case of excessive oversmoothing), out of 200 simulations 67.5% failed to achieve the
required convergence criterion for LPLE. Such a numerical challenge for the LPLE method is
largely attributable to the curse of dimensionality, since the LPLE method needs to estimate three
nonparametric functions in addition to the loading coefficients 𝜶k, k = 1, 2, 3. In comparison,
only 6% of the simulations failed to converge at h = 0.4 with the proposed GPL method. Because
of this numerical instability for the LPLE method, we have omitted any details concerning
comparison of the GPL method with the LPLE method.

5. APPLICATION

The height of an adolescent has been reported as an important predictor for the age of pubertal
development (Salsberry, Regan & Pager, 2009; Karapanou & Papadimitriou 2010). Maternal
parity (the number of previous pregnancies) has also been identified as an important predictor
of pubertal onset (Ong et al., 2002). It is known that phthalates may affect the tempo of physical
growth during sensitive periods of development in childhood, which in itself is related to chronic
disease risk as well as the timing and tempo of pubertal development (Salazar et al., 2004). Several
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TABLE 2: Simulation study results of the estimation for the loading coefficients 𝜶k, k = 1, 2, 3 using
either the proposed GPL method with bandwidth h or classical partial likelihood estimation (PLE) with

parametric models SimM1 or SimM2 over 200 replicates.

Loading coefficients

Method Bandwidth Statistic 𝛼12 𝛼13 𝛼22 𝛼23 𝛼32 𝛼33

Bias 0.005 0.037 0.013 −0.022 0.002 −0.006

0.2 ESE 0.106 0.141 0.076 0.088 0.020 0.043

RMSE 0.107 0.146 0.077 0.091 0.020 0.044

Bias 0.009 0.028 0.012 −0.012 0.002 −0.007

GPL 0.3 ESE 0.089 0.123 0.078 0.106 0.020 0.039

RMSE 0.089 0.126 0.079 0.106 0.020 0.040

Bias 0.016 0.028 0.029 −0.030 0.007 −0.009

0.4 ESE 0.098 0.121 0.080 0.087 0.020 0.038

RMSE 0.099 0.125 0.085 0.092 0.021 0.039

PLE.SimM1 Bias 0.009 0.005 0.000 −0.002 −0.002 0.001

– ESE 0.102 0.109 0.039 0.063 0.015 0.021

RMSE 0.102 0.109 0.039 0.063 0.015 0.022

PLE.SimM2 Bias 0.033 0.040 −0.006 0.001 0.017 −0.020

– ESE 0.182 0.266 0.043 0.071 0.074 0.084

RMSE 0.186 0.269 0.044 0.071 0.076 0.086

studies have shown that exposure to mixtures of reproductive toxicants may disrupt complex
signalling pathways and result in cumulative effects on a child’s growth (Rider et al., 2010).

This section presents our analysis of the pubertal development data that were introduced in
Section 1. Working through multiple steps of data cleaning and validation under the guidance of
our collaborators, we obtained a sample of 549 children aged 9.8–18.1 years for the analysis. The
age at which the first stage of pubic hair developed is treated clinically as the age of attainment
for study participants, or is right-censored at the age of a subject’s last completed assessment.
The time to this event was observed during an average follow-up time of 14.3 years, and the
rate of right censoring in the study data was 14.6%. Exposure variables of interest included
prenatal exposure to MEP (X1), MBP (X2) and MCPP (X3), measured during the third trimester
of pregnancy. Other covariates of interest were maternal parity (Z1) and each child’s concurrent
height (Z2). We normalized both exposure variables and covariates in our analysis.

The primary objective of this analysis was to evaluate the functional exposure-covariate
interactions, which would allow us to answer whether or not the early life exposure in utero to
phthalates may modify the effects of maternal parity and child’s height on the age of pubertal
development. We began with a preliminary analysis that was based on two traditional Cox models:

M1: Model 1 with only main effects

𝜆(t ∣ X,Z) = 𝜆0(t) exp(𝛼1X1 + 𝛼2X2 + 𝛼3X3 + 𝛽1Z1 + 𝛽2Z2),

and
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TABLE 3: Analysis results for the pubertal development data. Regression parameter estimates from two
proportional hazards models: Model 1 involves only main covariate effects whereas Model 2 incorporates
linear interactions. Also, estimated loading coefficients for phthalate mixtures in our proposed Cox model
(Cox). The standard errors cited for Models 1 and 2 were obtained from the R package survival, whereas

those for the proposed Cox model were derived using 500 bootstrap samples.

Model Parameter Estimate Standard error P-value

𝛼1 −0.163 0.047 0.001

𝛼2 0.285 0.056 0.000

Model 1 𝛼3 −0.215 0.057 0.000

𝛽1 −0.122 0.047 0.001

𝛽2 −0.449 0.059 0.000

𝛼11 −0.163 0.050 0.001

𝛼12 0.308 0.059 0.000

𝛼13 −0.228 0.060 0.000

𝛼20 −0.117 0.047 0.013

𝛼21 −0.036 0.048 0.453

Model 2 𝛼22 −0.083 0.060 0.167

𝛼23 0.006 0.054 0.920

𝛼30 −0.487 0.060 0.000

𝛼31 0.016 0.060 0.784

𝛼32 −0.172 0.066 0.009

𝛼33 0.146 0.070 0.037

𝛼11 0.386 0.138 0.005

𝛼12 −0.771 0.060 0.000

𝛼13 0.507 0.118 0.000

𝛼21 0.420 0.177 0.018

Cox 𝛼22 −0.765 0.153 0.000

𝛼23 −0.488 0.156 0.002

𝛼31 0.359 0.095 0.000

𝛼32 −0.696 0.060 0.000

𝛼33 0.623 0.077 0.000

M2: Model 2 with linear interactions

𝜆(t ∣ X,Z) = 𝜆0(t) exp
{
𝛼11X1 + 𝛼12X2 + 𝛼13X3 +

(
𝛼20 + 𝛼21X1 + 𝛼22X2 + 𝛼23X3

)
Z1

+
(
𝛼30 + 𝛼31X1 + 𝛼32X2 + 𝛼33X3

)
Z2
}
.

Table 3 reports the results from our analysis of models M1 and M2 using the R package
survival. This preliminary analysis with M1 indicated that the phthalates MEP, MBP and MCPP

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



216 ZHO, LI, LIN AND SONG Vol. 47, No. 2

−1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
Intercept

phthalates mixture 1

C
oe

ffi
ci

en
t f

un
ct

io
n

−3 −2 −1 0 1 2 3

−
0.

5
0.

0
0.

5

Parity

phthalates mixture 2

C
oe

ffi
ci

en
t f

un
ct

io
n

−2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0 Height

phthalates mixture 3

C
oe

ffi
ci

en
t f

un
ct

io
n

FIGURE 1: Analyzing the pubertal development study. Estimated coefficient functions (solid
curves) and their corresponding 95% confidence intervals (shaded regions) for 𝛽k(⋅), k = 1, 2, 3,
together with the estimated linear coefficient functions (dashed lines) for an intercept (X1),

maternal parity (X2) and a child’s concurrent height (X3).

were significantly associated with the age of attaining the first stage of puberty. The results from
M2 suggested that the effect of height on response was modified by a combination of MBP
and MCPP (or a mixture of phthalates), whereas the effect of maternal parity was not modified
linearly by MEP, MBP or MCPP.

It is of great interest to investigate whether these phthalate mixtures may have
modified the other covariate effects in a nonlinear fashion. To proceed, we used our pro-
posed Cox model with functional covariate-exposure interactions, that is, 𝜆(t ∣ X,Z1,Z2) =
𝜆0(t) exp

{
𝛽1(X′𝜶1) + 𝛽2(X′𝜶2)Z1 + 𝛽3(X′𝜶3)Z2

}
, where the 𝛽k(⋅) represent unknown, smooth

functions and the 𝜶k = (𝛼k1, 𝛼k2, 𝛼k3)′ for k = 1, 2, 3 denote loading parameters that need to be
estimated. The initial values of both functions and loading parameters were chosen by fitting the
model using regression splines with four knots.

Based on the cross-validation criterion that we specified in Equation (7), we found Q = 0.5,
which was used for the bandwidth selection. The estimates of the loading coefficients are reported
in the lower portion of Table 3, and the estimated functions are plotted in Figure 1. To calculate
standard errors, we used the method of bootstrap resampling with 500 bootstrap samples, in
which each subject is treated as a resampling unit in order to preserve the inherent features
of the data from individual subjects. The choice of 500 bootstrap samples was determined by
monitoring the stability of the resulting standard error estimates.

To determine whether or not the covariate-exposure interactions were linear, we considered
the hypothesis H0 ∶ 𝛽k(⋅) is linear, that is, the existence of linear interactions, versus H1 ∶ 𝛽k(⋅)
is not linear, k = 1, 2, 3. The P values of the associated GLR tests were obtained from the 𝜒2

null distribution identified in Theorem 3. They were 0.396 for 𝛽1(⋅), 0.015 for 𝛽2(⋅) and 0.020
for 𝛽3(⋅), respectively. These results suggest that exposure to a mixture of these phthalates alters
the effects of maternal parity and concurrent height on the response of interest. In addition, we
considered the hypothesis H0 ∶ 𝛽1(⋅) is constant, that is, the absence of any main effect, versus
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FIGURE 2: Analyzing the pubertal development study. Estimated survival functions for the
three height groups with a fixed exposure to mixtures of phthalates mk, k = 1, 2, 3 at the first
quartile, median, and third quartiles of mixture m = 𝛼31X1 + 𝛼32X2 + 𝛼33X3. The height groups
correspond to girls with a height equal to the first quartile (solid line), median (dashed line) or

third quartile (dotted line), and an average value for maternal parity.

H1 ∶ 𝛽1(⋅) is not constant. The corresponding P value of the GLR test in this case was 0.000.
Combining the results from these two tests concerning 𝛽1, we concluded that a linear main effect
for exposure adequately captures the underlying functional form. This finding agrees with the
graphical evidence of linear functions that is displayed in Figure 1.

From the fitted model labelled ‘‘Cox’’ summarized in Table 3, as well as the estimated
coefficient functions plotted in Figure 1, it appears that greater exposure to a combination of
phthalates is associated with a delay in attaining the first stage of puberty. In general, although
a taller adolescent is more likely to reach the first stage of puberty at an older age, the level
of exposure to a mixture of maternal phthalates appears to alter, nonlinearly, the relationship
between concurrent height and the age at which the first stage of puberty is attained. Likewise,
with respect to maternal parity, its effect on response is also modified in a nonlinear manner by
exposure to a mixture of maternal phthalates.

Panels (a), (b) and (c) in Figure 2 display estimated survival functions for the three height
groups with the quartiles of exposure to phthalates mixtures m = 𝛼31X1 + 𝛼32X2 + 𝛼33X3, when
maternal parity is fixed at its average value in the study data. Readers can see that at a fixed
quartile level of exposure to the phthalates mixture and at an average value of maternal parity,
a taller adolescent tends to experience a slower progression to sexual maturation, as measured
by observing the Tanner stage for pubic hair. Notice, also, that more severe exposure to the
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phthalates mixture is associated with a longer delay in attaining the first stage of puberty.
Unfortunately, the two parametric models, namely Model 1 and Model 2, failed to capture these
nonlinear interaction effects. Such estimated patterns and interpretations with respect to the
effect of prenatal exposure to the phthalates mixture and other risk factors, such as maternal
parity and concurrent height, have been detected and estimated via the modelling of nonlinear
effects. In this instance, the insights gained represented meaningful scientific knowledge for our
collaborators.

6. CONCLUDING REMARKS

This article has focused on developing a new Cox regression model to address methodological
needs in the evaluation of nonlinear interaction effects arising during studies in the environmental
health sciences, where existing methods have shown that they are unable to provide satisfactory
solutions. One advantage of the proposed method pertains to the estimating efficiency of the
proposed GPL method of estimation that uses all the data in both nonparametric and parametric
parameter estimation, compared to existing methods such as the local scoring backfitting method
introduced by Buja, Hastie & Tibshirani (1989) that uses only local data. We established
both estimation consistency and asymptotic normality as part of our investigation of this new
methodology. We also proposed a GLR test that enabled us to test for a particular hypothesized
form of functional interaction effects, such as constants and linear functions. We showed that
this test satisfies the Wilks phenomenon that makes implementing the test straightforward.

In addition, we developed the R package coxphGPLE to implement our proposed methodol-
ogy. The estimates given in our R package are assumed to satisfy regularity condition (C6), which
is listed in the Appendix to the article. Initial values are critically important in the search for reli-
able solutions. Inspecting bootstrap estimates is useful to check local convexity of the objective
functions empirically, which is essential for consistent parametric and nonparametric estimation.

Although the methodology that we have proposed is primarily motivated by modelling func-
tional covariate-environment interactions, the proposed methods, as well as the corresponding
theoretical results, are quite general and should be applicable to problems from other fields
of study. As usual, bandwidth selection and use of the bootstrap to calculate standard errors
are computationally demanding. To estimate the unknowns in a model with functional interac-
tions any researcher would certainly need a reasonably large sample size. In addition, we also
assumed that any right censoring of the response was independent, which may not hold in some
applications. An important future project would involve extending the current model to permit
a high-dimensional vector of toxicants in the formation of mixtures. In this case, the number
of loading coefficients would also be high-dimensional and hard to estimate. We believe that
developing a regularized method of estimation that can accommodate such high-dimensional
situations is well worth exploring.
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Appendix

Notation
Let 0 = {𝜹(v) = (𝛿1(v1),… , 𝛿d(vd))′ ∶ v ∈  , 𝜹(v) is continuous on }. Let𝚯 denote the sup-
port of 𝜶, 𝑓 be the density function of the p-dimensional vector X, 𝑓𝜶k

(⋅) be the density
function of m𝑗k = X′

𝑗
𝜶k, 𝑓𝜶k ,𝜶r

(vk, vr) be the density function of (m𝑗k,m𝑗r) and g𝜶k
(v) =

E(X|X′𝜶k = v). To simplify the notation, we use 𝑓k(v) = 𝑓𝜶k
(v), 𝑓kr(vk, vr) = 𝑓𝜶k ,𝜶r

(vk, vr) and
gk(v) = g𝜶k0

(v). Denote the survival function by P(t ∣ z, x) = Pr( > t ∣ Z = z,X = x), and let
[ai]d1 = (a1,… , ad)′. Denote W(𝜶, 𝜹) = 𝜹(𝜶∘X)′Z with 𝜶∘X = [𝜶′

lX]dl=1. Let W = W(𝜶0, 𝜹0),
Wi = Wi(𝜶0,𝜷0) = 𝜷0(𝜶0∘Xi)′Zi and m𝑗k,0 = X′

𝑗
𝜶k0.

The asymptotic covariance 𝕍 mentioned in part (ii) of Theorem 1 is

𝕍 = Π−1
2

[
∫
𝜏

0
E
{
𝜉i(t)⊗2P(t|Zi,Xi) exp

(
Wi

)}
𝜆0(t)dt

]
(Π−1

2 )′, (A.1)

where 𝜉i(t) and Π2 can be found in the corresponding Supplementary Material.
Functions𝚺(v) and𝛀(v) that appear in the asymptotic expression given in part (iii) of Theorem

1 are equal to 𝛀(x) = 𝚺(x)�̈�0(x), 𝚺(x) = diag(Ξ1,20(x1),… ,Ξd,20(xd)), �̈�0(x) =
[
𝛽k0(xk)

]d
k=1,

Ξk,i𝑗(v) = Ξk,i𝑗(𝜶0,𝜷0, v), Ξk,i𝑗(𝜶, 𝜹1, v) = ∫ 𝜏0 sk,i𝑗(t;𝜶, 𝜹1, v)𝜆0(t)dt. The linear operator  in part
(iii) of Theorem 1 is equal to

(𝝓)(x) = ∫
1

0

{
((x) − 𝔼(x)) Π−1

2 10(v) + ((x, v) −  (x, v))
}
𝝓(v)dv, (A.2)

for any vector function 𝝓. Let 𝝍(x) = −1(𝛀)(x), which means 𝝍(x) is the solution that
satisfies (𝝍)(x) = 𝛀(x). Additional details concerning notation can be found in the associated
Supplementary Material.

Regularity Conditions
(C1) The kernel function (x) is a symmetric density function with compact support [−1, 1] and

continuous derivatives.
(C2) The quantity 𝜏 is a finite positive value such that Pr(T > 𝜏) > 0 and Pr(C = 𝜏) > 0.
(C3) (Z,X) are bounded with compact support, and P(C = 0 ∣ Z = z,X = x) < 1.
(C4) 𝜶 ∈ 𝚯, where 𝚯 is a bounded compact set.
(C5) Let g𝜶k

(v) = E(X𝑗|X′
𝑗
𝜶k = v). The density function 𝑓𝜶k

(v) of X′𝜶k is bounded away from
zero; g𝜶k

(v) and 𝑓𝜶k
(v) have continuous second-order derivatives with respect to v for any

𝜶k. The function 𝜷(v) and sk,i𝑗(t;𝜶k,𝜽, 𝜹1, v) are twice continuously differentiable with
respect to v ∈ [0, 1] for any t ∈ [0, 𝜏], 𝜶 ∈ 𝚯, 𝜹1 ∈ 0.
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(C6) For k = 1,… , d, there exists a unique root (𝜶, 𝜹1) of the following equations:

∫
𝜏

0

{
rk(t;𝜶k,𝜶0, 𝜷0, 𝜹2) − rk(t;𝜶k,𝜶, 𝜹1, 𝜹2)

s00(t)
s00(t;𝜶, 𝜹1)

}
𝜆0(t)dt = 0,

∫
𝜏

0

{
sk,10(t;𝜶k,𝜶0, 𝜷0,mik) − sk,10(t;𝜶k,𝜶, 𝜹1,mik)

s00(t)
s00(t;𝜶, 𝜹1)

}
𝜆0(t)dt = 0,

in 𝜹1 ∈ 0 and 𝜶 ∈ 𝚯 for any bounded 𝜹2 and mik = X′
i𝜶k.

(C7) h2 log(n) → 0 and nh3 → ∞.
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