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Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and
dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two
decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measure-
ment error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because
the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical prac-
tice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance
standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being
a QIB as defined by the Radiological Society of North America’s Quantitative Imaging Biomarkers Alliance (QIBA). The
goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide
technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging
community. Some of QIBA’s development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB
profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available
research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This
review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their
reproducibility and repeatability.
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In the last decade, there have been major rapid advances in
the field of magnetic resonance imaging (MRI), including

advancements in hardware, acquisition pulse sequences, image
reconstruction, and data analysis algorithms.1–9 These techno-
logical advances have fostered a timely focus on quantitative
MRI (qMRI), which purports the ability to derive objective
metrics from images that relate to specific physical or bio-
physical properties of the imaged tissue. Two prime qMRI
examples are diffusion-weighted imaging (DWI) and dynamic
contrast-enhanced (DCE)-MRI, which allow characterization
of tissue cellularity inferred from water mobility and micro-
vascular properties, derived from exogenous contrast agent
(CA) kinetics, respectively. Applications of qMRI include
detection of disease and its evolution in progression or response
to therapies that affect the relevant biophysical property of tis-
sue (eg, cytotoxic therapies that reduce cellularity).10–13 These
methods have been covered in excellent reviews detailing the
technical aspects and their applications.5–9,14–17 As the quanti-
tative measurements derived from DWI (eg, mean diffusivity)
and DCE (eg, volume transfer constant) are utilized in clinical
trials of new treatment strategies, or for precision medicine and
personalized cancer care, the technical confidence of these mea-
surements in repeatability and reproducibility is ever more
critical.18–20 Expert task forces of the Quantitative Imaging
Biomarkers Alliance (QIBA) have devoted significant resources
to write DWI and DCE profiles and review over 1000 scien-
tific articles in this area, but such literature review efforts have
yielded few original articles with adequately described test–
retest data. The lack of repeatability and reproducibility litera-
ture in this area creates a roadblock for clinical translation of
quantitative DWI and DCE-MRI. This review focuses on the
clinical and technical needs for quantitative DWI and DCE
derived imaging biomarkers and provides recommendations for
image acquisition, analysis, and quality control relevant to
improving precision and accuracy, or reducing measurement
error for the derived quantitative metrics. This review is limited
to the use of DWI and DCE for evaluation of tumors in the
brain, prostate, breast, liver, and head and neck, recognizing
that studies of different organs imply varying technical proto-
cols and challenges.

Understanding the Impact of Precision and
Accuracy in Quantitative Imaging
Quantitative imaging metrics reflect relevant information
about a biological process by measuring biophysical parame-
ters that could be used as biomarkers, rather than relying
solely on relative differences in image signal intensity
(of arbitrary scale and units), as in routine diagnostic imaging.
However, the quantitative images must be standardized and
optimized to generate protocols for acquisition and analysis of
these biomarkers. Kessler et al. have defined the term Quanti-
tative Imaging Biomarker (QIB) as “An objective

characteristic derived from an in vivo image measured on a
ratio or interval scale as an indicator of normal biological pro-
cesses, pathogenic processes, or a response to a therapeutic
intervention.”21 Unlike conventional diagnostic imaging,
where sensitivity and specificity are used to describe the pre-
dictive power of the qualitative test for the patient popula-
tion, the technical performance of a QIB in quantitative
imaging, particularly its bias (accuracy), precision (variability),
and linearity, determine its inherent reliability (confidence
interval) to diagnose, monitor, and predict outcome.

The objective of a test–retest study is to measure the
degree to which test results are consistent over time.22–26 The
internal consistency is a measure of the correlation between
two sets of imaging data performed on two occasions. In a
test–retest study, subjects are scanned at least twice over a
short period of time to ensure that no biological change has
occurred. From each image, the biomarker measurement is
derived completely and independently of the results from the
other scan. Sometimes a subject is scanned twice in the same
study session; it is important in these instances that the sub-
ject leaves the table and is repositioned for the second scan.
In other situations, particularly those involving CA adminis-
tration, a subject might be scanned a second time the next
day or so. For example, administering a gadolinium-based CA
to a patient in a clinical trial twice on the same day is not
practical due to retention of the CA in a lesion and the con-
cern for patient safety. For this reason, it is not surprising that
test–retest data are limited in sample size. Although test–
retest studies are ideally performed on clinical subjects, esti-
mates of test–retest variability can be obtained from phantom
studies.27,28 It is generally recognized that these estimates are
likely to underestimate the true variability seen in clinical
subjects. The variability could be due to patient movement
that adds to variation in the signal intensity measurement
compared with the phantom study.

Precision Metrology
Repeatability and Reproducibility
Repeatability represents the measurement precision, or close-
ness of agreement, of replicate measurements made over a
short period of time. These replicate measurements are made
with the same measurement procedure, operator, measuring
system, operating condition, and physical location.21 Repro-
ducibility is similar to repeatability, except that in acquiring
the measurements, some aspect of the procedure, or timing,
differs (eg, different operator, different scanner, etc.).21 For
instance, systematic measurement bias between different scan-
ners would be expected to impact reproducibility compared
with more controlled (single-system) repeatability values.

Repeatability is often quantified by the within-subject
standard deviation (wSD) or variance. For example, for
N subjects, each with replicate measurements, one could use
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Table 1 to estimate the wSD. Large values of wSD indicate
that confidence in any single measurement of the biomarker
should be minimal because a second measurement is likely to
differ considerably. Small values of the wSD boost confidence
in the reliability of the measurement. Of course, “large”
vs. “small” should be interpreted relative to known, or antici-
pated, biomarker differences between normal/abnormal tis-
sues, across patient groups, or change with time in an
individual patient/lesion undergoing treatment.

When a patient is followed longitudinally to measure
tumor treatment response or progression, there is a need to
understand how to interpret observed differences in bio-
marker values. Small differences may be attributable to just
measurement error, whereas large differences exceed the
expectation from simple measurement error. To reduce mea-
surement error, a standardized protocol should be implemen-
ted on a pretested measurement device and kept consistent in
the course of the study. If the wSD is known from relevant
prior studies, a threshold can be calculated for when the dif-
ference between two longitudinal measurements is attribut-
able to measurement error and when it can be confidently
attributable to a true change. The “test–retest” procedure is
designed to estimate wSD.22,23 From this, the repeatability
coefficient (RC) is calculable29 and represents the least signifi-
cant difference between two repeated measurements taken
under identical conditions, usually at a confidence level of
95%. It can be calculated as follows:

RC = 1:96×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wSD2

p
= 2:77×wSD ð1Þ

For example, if a test–retest of DWI is performed and
the wSD is estimated at 10, then RC = 27.7. This means that
if the difference between a patient’s baseline and follow-up
measurements is < –27.7, or > + 27.7, then real change (out-
side of the measurement error) has occurred with 95% confi-
dence. If the difference is between –27.7 and +27.7, it may
be due to measurement imprecision.

When the repeatability varies with the magnitude of the
QIB measurements, the within-subject coefficient of variation
(wCV) is sometimes used to quantify the variability.29 The
wCV is commonly used with imaging biomarkers because
often the wSD is small for small QIB values but increases
with larger QIB values. The steps for calculating the wCV are
given in Table 2. Instead of the RC, the %RC is calcu-
lated as:

%RC = 2:77 × wCV ð2Þ

For example, if a test–retest of DCE is performed and
the wCV is estimated at 10%, then the %RC = 27.7%. This
means that if the percent change (eg, difference between a
patient’s baseline and follow-up measurements divided by the
baseline measurement × 100) is < –27.7% or > 27.7%, then
real change has occurred with 95% confidence. If the percent
change is between –27.7% and +27.7%, it may be due to
measurement imprecision.

Based on the current literature, %RC values for tumor
apparent diffusion coefficient (ADC) region of interest (ROI)
measurements derived from monoexponential modeling of
DWI data in three different organs are as follows: brain =
11%,30–32 liver = 26%,33–36 and prostate = 47%.37–40 This
assumes the wCV for tumors in the brain is 3.97%, 9.38%
for the liver, and 16.97% for the prostate. The claim state-
ments for the tumor ROIs in these organs can be found
in the DWI QIBA profile (https://qibawiki.rsna.org/
images/7/7d/QIBADWIProfilev1.45_20170427_v5_accepted_
linenumbers.pdf).

The %RC values for volume transfer constant (Ktrans)
measurements in tumors, derived from pharmacokinetic
(PK) modeling of DCE data, in two different organs is as fol-
lows: 21.3% for the brain and 55.7% for the prostate. This
assumes that the wCV for tumors in the brain is 7.7% and
20.1% for the prostate.41,42 The claim statements for the

TABLE 1. Steps for Calculating the Within-Subject
Deviation

Steps
Method for calculating within-subject
deviation (wSD)

1 Calculate the variance for each of N subjects from
their replicate measurements.

2 Take the mean of the variances over the N
subjects. This gives an estimate of the within-
subject variance.

3 Take the square root of the estimated within-
subject variance to get an estimate of the wSD.

TABLE 2. Steps for Calculating the Within-Subject
Coefficient of Variation

Steps
Method for calculating within-subject coefficient
of variation (wCV)

1 Calculate the variance and mean for each of N
subjects from their replicate measurements.

2 Calculate the wCV2 for each of the N subjects by
dividing their variance by their squared mean.

3 Take the mean of the wCV2 over the N subjects.

4 Take the square root of the value in step 3 to get
an estimate of the wCV.
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tumor measurements in these organs can be found in the DCE
QIBA profile (http://qibawiki.rsna.org/index.php/Profiles).

Figure 1 illustrates the impact of the wCV (or wSD) on
this decision cutpoint. It shows that when the imaging methods
have good repeatability, earlier and more confident conclusions
can be made about changes in patients’ QIB measurements. For
example, when the wCV is low, eg, 5%, a real change in Ktrans

of 14% (or larger) can be detected with 95% confidence. If the
wCV is moderate, eg, 15%, a change of over 40% is needed to
rule out the measurement error. A doubling of Ktrans, equivalent
to 100% change, would have to occur to detect a real change
with 95% confidence when the wCV is 36%.

It is likewise important to know a QIB’s reproducibility
when measuring the change in a patient from baseline. Often,
slightly different imaging methods are used at baseline and
follow-up, eg, a different scanner, a different radiologist, or
even a different facility. If the reproducibility of a QIB is
known, then the minimum detectable difference can be calcu-
lated. The minimum detectable difference when different
imaging methods are used is called the reproducibility coeffi-
cient and it is calculated similarly to the RC as described
above.43 However, the reproducibility coefficient is often sig-
nificantly larger than the RC because of the additional vari-
ance associated with the different imaging methods and their
systematic biases. It is critical to recognize these sources of
additional error and their effect on interpreting patients’
quantitative images.

The sample sizes of test–retest studies in the literature
vary considerably, from a couple of subjects to the study by
Petersen et al, where 28 sites in Asia, Europe, and North
America participated, and a total of 284 healthy volunteers
were scanned.26 Usually, studies have included results from
fewer subjects than that mentioned above.22–25 Obuchowski
and Bullen have performed a simulation study to determine
the minimum sample size needed in test–retest studies.44

They have determined that estimates of precision should be
based on a sample size of at least N = 35 to provide true
95% confidence intervals for a patient’s QIB measurement
and for change in the QIB over time. Note that the estimate
of precision could come from a single test–retest study with
N ≥ 35, or calculated as a summary measure from a meta-
analysis of multiple test–retest studies45 where the combined
sample size is N ≥ 35.

Phantom-based Methodology to Improve qMRI
Precision
DWI. Diffusion MRI assesses the Brownian motion of water
molecules noninvasively. On the timescale relevant to clinical
DWI, water mobility is obstructed by tissue microstructure,
including extracellular tortuosity, cell membranes, organelles,
and macromolecular components.46 This sensitivity to micro-
structure enables DWI to elucidate impediments on a
micrometer-size scale to the usual random Brownian motion.
The ADC value is the key quantification parameter of DWI
images typically of interest for clinical decision making3,26,30

and is derived from monoexponential modeling of the signal
intensity as a function of b-value minimizing effects of perfu-
sion and restricted diffusion.46 The diffusion coefficient has
temperature dependence in pure water of 2.4% per degree
Celsius.47,48 This dependency is rarely of concern in vivo
because body temperature is well regulated, and other bio-
physical properties have much greater influence on tissue
water mobility. For instance, dense tumors typically exhibit
lower values of ADC than benign tissues because of higher
cell packing.

The primary use of a phantom is to standardize DWI
acquisition schemes across multiple vendors, software, and
hardware platforms, and certify proper calibration and per-
formance of the systems to ensure adequate ADC measure-
ment, accuracy, and reproducibility. The indispensable
value of the phantom is in providing ground-truth parame-
ter values fundamentally independent of measurement
method both for acquisition and image analysis. Therefore,
phantom measurements can be used to improve the quality
of DWI images by minimizing artifacts and geometrical dis-
tortions, and ensuring a high degree of reproducibility
across different sites and scanner platforms. For reproduc-
ibility evaluation, it is important that the field of view
(FOV), b-values, imaging matrix, repetition time (TR), echo
time (TE), parallel imaging factor, number of slices, slice
positions, and slice thickness are held constant and match
clinical protocols.

Many materials have been used in DWI phantoms,
such as aqueous solutions of polydimethylsiloxane, polyvinyl-
pyrrolidone, sucrose, or polymers, liquid paraffin, alkanes,
and pure water.28,49–51 The aqueous solutions and pure water
are good choices for a phantom because of their nontoxicity
and availability. Temperature dependence of ADC measures

FIGURE 1: The %RC is the cutpoint where a change in the
biomarker measurements is considered a real change, not
merely a measurement error, with 95% confidence. The graph
illustrates how this cutpoint increases with the within-subject CV
(wCV). When the wCV is small (ie, high precision), very small
changes in the biomarker can be detected. Whereas when the
wCV is large (ie, low precision), large changes in the biomarker
are needed before one can be confident that a real change has
occurred.
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can be mitigated using an ice-water bath to ensure 0�C mea-
surement across scanners.51 Moreover, the diffusion coeffi-
cient of water at 0�C is �1.1 × 10-3mm2/s, which is well
within the tissue ADC range.39,52–56 However, the longitudi-
nal relaxation time (T1) and transverse relaxation time (T2)
for ice-water are much longer than most tissues. One recom-
mended simple phantom design has been described by Che-
nevert et al51 and consists of two cylinders of polypropylene,
with the larger one containing ice and water. A smaller tube
is filled with distilled water in thermal equilibrium at 0�C.
Theoretically, the ADC value in this phantom should be
independent of the acquisition protocol used at each site.
This nontoxic and stable ice-water phantom can be readily
manufactured on-site and has already been utilized for quanti-
tative DWI quality assurance (QA) by several multisite clini-
cal trials (ACRIN 6698, 6701, and 6702).57,58 Figure 2
shows representative intrasite ice-water phantom repeatability
measurements acquired four times to calculate water ADC at
0� C in a multisite setting using the same MRI protocol. The
CV for each of these three sites was 0.6%, 0.1%, and 1.1%.
The biggest differences found between different MRI protocols
are in: FOV, number of slices, TR, and TE. Therefore, in
practice, variability between DWI protocols influences the
measured ADC value, and the differences found across mea-
surements are about 10% from the literature value.51,59,60 The
most significant differences were observed between MRI sys-
tem manufacturers due to distinct gradient designs leading to
spatially-dependent bias in diffusion weighting b-values.28,58

The use of an application-specific phantom, such as that
developed by the National Institute of Standards and Tech-
nology (NIST) and QIBA to evaluate ADC measurement lin-
earity for multi-b-value DWI studies using an array of ADC
values is also recommended.61,62 The phantom is constructed
using varying concentrations of polyvinylpyrrolidone (PVP,
[0, 10, 20, 30, 40, and 50%]) in an aqueous solution to gen-
erate physiologically relevant ADC values63 and is available
from High Precision Device (Boulder, CO). The space
between the vials within the phantom can be filled with an
ice-water bath for temperature control. Figure 3 shows repre-
sentative multisite DWI data for 3T MRI scanners with
repeatability measures. The recommended QIBA protocol for
repeatability assessment with PVP phantom uses b-values of
0, 500, 900, and 2000 s/mm2 and is repeated four times,
based on the guideline. QIBA provides scan protocols and
software for standard analysis of quantitative DWI phantom
data on the Quantitative Imaging Data Warehouse (QIBA
QIDW, rsna.org/qidw).

DCE-MRI. DCE is a noninvasive technique that measures
microvascular permeability, blood perfusion and volume frac-
tions of the extravascular extracellular space (EES) and blood
plasma space. One of the technique involves serial acquisi-
tions of T1-weighted images before, during, and after

intravenous injection of gadolinium-labeled CAs. This review
focuses on the DCE T1 measurement techniques. These CAs
are low-molecular-weight paramagnetic complexes that extrava-
sate to EES through vascular space. DCE analysis allows mea-
surement of signal change on an ROI or voxel. DCE time-
course data have been analyzed using heuristic approaches and
quantitative kinetic analysis based on the tissue compartmental
models. The heuristic, semiquantitative measurement of the
blood-normalized initial-area-under-the-gadolinium curve
(IAUGCBN) has been described in the QIBA DCE profile
(http://qibawiki.rsna.org/index.php/Profiles).16,64 Areas show-
ing a rapid, high concentration uptake and fast washout of the
CA are generally correlated with regions of malignancy within
suspicious neoplastic lesions.65–67 The kinetics of the DCE
time-course data depend on unique tumor vascular characteris-
tics and thus the derived imaging metrics have found relevance
in oncological applications.4,10,42,68

With proper PK modeling of DCE time-course data,
QIBs can be estimated. The most commonly used QIB for
characterizing tumor vascular properties is the CA volume trans-
fer constant (Ktrans), which has been detailed in the DCE pro-
file (http://qibawiki.rsna.org/index.php/Profiles). The PK
models used for DCE data analysis are the standard Tofts
model (TM),14 which estimates Ktrans and volume fraction of
EES (ve) and the extended Tofts model (ETM),14 which pro-
vides estimate of Ktrans and ve, and an additional metric, volume
fraction of blood plasma space, vp. To estimate these QIBs,
such models require additional information such as input of tis-
sue native T1 values and arterial input function (AIF).

A DCE experiment is basically a measurement of T1

changes in a tissue during the passage of CA. A static phan-
tom has been proposed in an initial work by ACRIN CQIE69

FIGURE 2: Box-and-whisker plot demonstrating ADC repeatability
of water for multisite results at 3T MRI scanners using the ice-
water phantom. Note: Inset is the ADC map of the phantom.
(Images contributed by authors from sites 1, 2, and 3: Memorial
Sloan Kettering Cancer Center, Columbia University Medical
Center, and University of Michigan.)
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and then by QIBA to standardize DCE acquisition protocols
across hardware platforms from various vendors to verify cali-
bration and performance of the systems. Phantom quality
control may ensure adequate precision and reproducibility in
T1 measurements, a prerequisite for performing quantitative
DCE analysis. It also allows for the measurement of the con-
trast response of the employed DCE acquisition sequence
across a range of T1 relaxation rates observed in in vivo DCE
studies and the stability of that contrast response over time
and across system upgrades.70,71

DCE acquisition parameters can vary significantly across
vendors, scanners, station software packages, and magnetic
field strengths. Often, each vendor and platform has preferred
acquisition protocols. The T1 values in clinics are influenced
by B1 field inhomogeneity, incomplete spoiling of transverse
magnetization, and MR sequence used for the range of T1

values to be measured.70 One of the QIBA recommendations
is to standardize acquisition parameters to reduce sources of
variability for DCE imaging, possibly at the expense of mod-
erate protocol capabilities for some systems. Before acquiring
data from subjects, it is essential that the selected pre-DCE
T1 mapping protocol be performed on the static standardized
phantom multiple times (or on different days) with the phan-
tom repositioned for each experiment. This provides an esti-
mate of true scanner variance and bias for T1 values.

One recommended QIBA DCE T1 phantom contains
vials of varying concentrations of nickel chloride solutions.70

Figure 4 shows the phantom design that consists of two sets
of spherical inserts. The spheres were doped with nickel chlo-
ride to achieve T1 values spanning the range expected in vas-
cular and tissue compartments during a DCE study. For the
vascular input function spheres, the T1 values range between
0.75–41.6s−1, and for the tissue spheres, the range is
0.67–7.5s−1. To mimic the coil loading of a patient, the
phantom was filled with a 30-mM sodium chloride (Sigma-
Aldrich, St. Louis, MO) solution. The scan protocol for T1

measurement consists of acquiring coronal fast spoiled gra-
dient echo sequences with variable flip angles (VFAs) of
30�, 25�, 20�, 15� 10�, 5�, and 2� to fully cover the range
used for T1 mapping in clinical studies.70 Test–retest reli-
ability and T1 accuracy evaluation using the QIBA DCE
phantom should be considered for longitudinal studies. In
addition to the DCE phantom, QIBA also provides an
automated T1 quantification software application, DCE-
Tool, to analyze the data acquired from the QIBA DCE
phantom (QIBA DCE-MRI WG at rsna.org/qidw). This
phantom and analysis software has been used for site quali-
fication and requalification in support of ACRIN 6701, a
DCE and DWI test–retest clinical trial in prostate cancer
patients (unpublished data). Spatially dependent B1 field
inhomogeneity effects, which are more significant at higher
field strengths, such as 3T, may confound VFA T1 data
when acquired over large anatomic regions, necessitating B1

mapping and corrections to be included in the T1 measure-
ment protocols. These effects will be addressed by version
2.0 of the RSNA QIBA DCE-MRI Profile that is currently
under development.

In addition to static T1 phantoms, some investigators
have developed dynamic phantoms for MRI (Kim et al)71,
and computed tomography (CT) (Driscoll et al)72. The
recent perfusion phantom was developed to correct MR
scanner-dependent variations in estimates of the tissue perfu-
sion parameters in the abdomen.71 The design of Kim et al is
shown in Fig. 5a71 and is small enough to be imaged together
with a patient for real-time quality assurance. Repeatability of
the contrast enhancement curve of this phantom was mea-
sured using three phantoms placed at the isocenter of a 3T
scanner, and the intraclass correlation coefficient was higher
than 0.99 (Fig. 5b). Kim et al have demonstrated that this
phantom significantly reduced the variation in quantifying
perfusion parameters of various abdominal tissues across two
different 3T scanners.71 However, the stability of this and

FIGURE 3: Repeatability results obtained using the National Institute of Standards and Technology/Radiological Society of North
America QIBA diffusion-weighted imaging phantom containing vials with varying concentrations of polyvinylpyrrolidone (0–50%) to
generate physiologically relevant ADC values at different vial positions (c = central; o = outer; i = inner). The phantom and ADC
image are shown as insets in the graph. Graph showing ADC (mean ± SD) values for each vial in four experiments performed at (a)
site 1, (b) site 2, and (c) site 3. (Images contributed by authors from sites 1, 2, and 3: Memorial Sloan Kettering Cancer Center;
Columbia University Medical Center, and University of Michigan.)
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other dynamic phantoms will need to be validated in longitu-
dinal multisite trials because such dynamic phantoms are dif-
ficult to produce in a manner that provides consistent results
across phantoms and time.

Clinical Data-Driven Approaches to Improve qMRI
Precision
DWI. The QIBA/Diffusion Biomarker Committee Task Force
is dedicated to developing a DWI profile. The task force

FIGURE 4: (a) The QIBA dynamic contrast-enhanced phantom layout with 32 spheres, with different concentrations of NiCl2
solutions for varying T1 relaxation rates (R1). (b) T1-weighted MR image of the phantom showing the 32 spheres, and (c) R1 values of
the 8-vascular input function mimicking inserts compared with NIST theoretical R1 values. (d) R1 values for the 24 tissue-mimicking
inserts. (Images contributed by Edward Jackson, University of Wisconsin-Madison.)

FIGURE 5: Portable perfusion phantom and its repeatability measurement. (a) Photograph of a portable perfusion phantom, and (b)
contrast enhancement curves of three phantoms placed in a 3T MR imaging scanner (temporal resolution = 2.9 sec). Repeatability
determined by the intraclass correlation coefficient is larger than 0.99. (Images contributed by Harrison Kim, University of Alabama
at Birmingham).
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members reviewed over 1000 research articles to develop the
profile claim statement based on clinical data from several
organ systems, including the brain, liver, and prostate.
Table 3 summarizes key scan protocol parameters for the
brain (3A), prostate (3B), and liver (3D) from the QIBA pro-
file (https://qibawiki.rsna.org/index.php/Profiles) to be rele-
vant to a wider scientific audience. The tables have been
adapted from the profile with permission from QIBA.
Organs, such as breast (Table 3C)8,73 and head and neck
(Table 3E),55,68,74 were not covered in the profile due to a
lack of sufficient test–retest data. These review results point
out the limited test–retest literature in various organs in the
clinical oncology setting.

Clinical DWI is typically acquired using a diffusion-
weighted, single-shot echo planar imaging (SS-EPI) sequence.
The acquisition parameters are detailed in Table 3 for the five
specific organs outlined in this review.3,8,10,74–85 Protocol
optimization is a prerequisite for obtaining optimum signal-
to-noise ratio for the DWI images because artifacts can be sig-
nificant. Techniques that reduce the number of phase-
encoding steps and FOV, resulting in reduced artifacts, are
preferred.86 There are newer developments in DWI building
on SS-EPI such as reduced FOV acquisition or multishot
EPI.87,88 To reduce susceptibility artifacts and to improve
spatial resolution compared with SS-EPI methods, the propel-
ler/blade diffusion methods have also been used.89,90 Selec-
tion of optimum b-values for a specified organ is also an
important parameter that should be optimized for signal-to-
noise ratio.38,39 Another point in technique optimization is
“landmark on the organ of interest” to confirm that organ
position is close to the isocenter to minimize b-value nonuni-
formity across the organ.91

Prior to the analysis, a radiologist draws an ROI on the
DWI images guided by ancillary MR images, radiologic and
clinical information. The ROI encompasses the entire tumor
or tissue of interest. A DWI protocol includes producing an
ADC map based on a monoexponential fit to images
obtained using two or more b-values. Generally, at least three
orthogonal diffusion directions are probed, with the resultant
maps generated from combinations of the directional data,
assuming isotropic diffusion.3,53

Sb=S0 = expð−b × ADCÞ ð3Þ

where Sb and S0 are the signal intensities with and without
diffusion weighting, respectively, and b is the diffusion
weighting factor (b-value, s/mm2).

Most MRI scanners have capabilities for automatically
producing ADC maps from the DWI images using propriety
software based on monoexponential modeling of the data.
Figures 6b, 7b, 8c, 9d, and 10b show representative ADC
maps derived from patients with tumors in the brain, pros-
tate, breast, liver, and head and neck, respectively.

As discussed above, the QIBA/DWI Biomarker Task
Force members performed an extensive literature search and
found limited articles with test–retest data and therefore
reported the %RC for ADC in tumor ROIs derived from
monoexponential modeling of DWI data only in three differ-
ent organs as follows: brain = 11%,30–32 liver = 26%,34–36,52

and prostate = 47%.37,40 The details on literature and assump-
tions used to inform these 95% confidence interval (CI) values
are adapted from the QIBA/DWI profile with permission. Spe-
cifically, meta-analysis was performed on the available test–
retest study reports (eg, 2–3 per organ) acquired with qualita-
tively similar acquisition protocols (detailed in the QIBA/DWI
profile) to pool maximum sets of subjects (>30) sufficient to
satisfy statistical significance. The estimated wCV for mean
ADC in an ROI between 1–4 cm2 was 3.97% for brain,30–32

9.38% for liver,33–35 and 16.97% for prostate.37–40 The
derived CIs could likely be improved by more advanced organ-
specific acquisition protocols to achieve better QIB precision.

DCE-MRI. Similar to diffusion, the QIBA/Perfusion Bio-
marker Committee Task Force has invested significant effort
in updating the original DCE profile (https://qibawiki.rsna.
org/index.php/Profiles). The new version of the DCE profile,
version 2.0 (under development), includes the brain
(Table 3A),75,81,92 prostate (Table 3B),38,39,76,78 and breast
(Table 3C).8,79,93 The tables have been adapted from the
working document of the profile with permission from
QIBA. Specific scan parameters for head and neck10,74,94 and
liver80,95 were not included in the profile due to limited test–
retest clinical data, but are reflected in Table 3D and
Table 3E, respectively. It is important to emphasize that even
though the DCE literature consists of many studies of tumors
in various organs, important repeatability and reproducibility
data are lacking. The major challenge for such DCE test–
retest studies is the need to repeat the CA injection. The ret-
est for DCE should be performed after the first CA injection
has been eliminated from the patient, which typically
requires about 24 hours. The half-life of common low-
molecular-weight gadolinium CAs is �90 minutes; retention
in some tissues and lesions can be significantly longer. This
creates issues with the logistics of repeating the experiments.
Additional CA injections also require Institutional Review
Board approval, which is especially pertinent given the
increasing awareness of nephrogenic systemic fibrosis in
patients with abnormal renal function and potential brain
deposition of gadolinium in patients with normal renal
function.96

DCE is typically acquired using a T1-weighted, fast
spoiled gradient recalled echo sequence, and the temporal res-
olution is determined by the pulse sequence acquisition
parameters and the spatial resolution and anatomic coverage
required for the organ under study. The rate at which the CA
extravasates from the vasculature depends on the molecular
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size of the CA. With low-molecular-weight agents, the tem-
poral resolution required to observe microvessel permeability
is typically on the order of 5–20 seconds.14,18,97

Similar to DWI, the ROIs for data analysis are often
determined by experienced radiologists. DCE data are some-
times analyzed using qualitative or semiquantitative methods.

FIGURE 6: Representative pretreatment MR images of a patient with grade IV brain tumor (65 years, female). (a) T2-weighted image.
(b) ADC × 10-3 (mm2/s) map generated using 3 b-values (b = 0, 100, 1000 s/mm2). (c) Ktrans (min−1) map generated from DCE data
with insert of T1-weighted gadolinium contrast image. (Images contributed by Thomas Chenevert, University of Michigan.)

FIGURE 7: Representative pretreatment MR images of a patient with prostate cancer—Gleason Score 4 + 3 (66 years, male). (a) T2-
weighted image, (b) ADC × 10−3 (mm2/s) map generated using two b-values (ie, b = 0, 600 s/mm2), and (c) Ktrans (min−1) map
generated from DCE data. (Images contributed by Susan M. Noworolski, University of California San Francisco.)

FIGURE 8: Representative MR images from a breast cancer patient (34 years old, female) with grade II invasive ductal carcinoma
(IDC) in the right breast. (a) T2-weighted image with fat saturation, (b) color Ktrans (min−1) map of the tumor overlaid on T1-weighted
DCE image with fat saturation, and (c) representative ADC × 10−3 (mm2/s) map from a breast cancer patient (37 years, female) with
grade II IDC in the right breast. Composite ADC map was generated from DWI with b = 0 and 800 s/mm2 showing decreased ADC
in tumor. (Images contributed by Wei Huang, Oregon Health & Science University.)
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DCE profile details the heuristic approach using the
IAUGCBN parameter (http://qibawiki.rsna.org/index.php/
Profiles). Accurate AIF and native tissue T1 (ie, T10) measure-
ments are the first necessary steps for PK modeling of DCE
data with TM and ETM.14 There are several ways to deter-
mine AIF,98–101 each with its pros and cons. The AIF should
be measured from the feeding vessel of the tumor. In practi-
cality, the AIF is often measured in a nearby major blood ves-
sel within the vicinity of the tumor. For instance, the carotid
arteries are commonly used for head and neck cancer and the
aorta for liver cancer. However, due to the image volume cov-
erage, angulation, or the absence of major vessels in the scan

volume, direct measurement of AIF from the acquired images
may not always be possible.

The time course of the CA concentration in the tissue,
Ct(t), for the TM is based on the Kety exchange equations14:

CtðtÞ =K trans
ðt
0
e −kepðt −τÞCpðτÞdτ ð4Þ

where Cp(t) is the time course of the plasma concentration of
the CA, Ktrans (min−1) is the volume transfer constant (vas-
cular space to the EES), and kep = Ktrans/ve (min−1) is the
rate constant for CA transport from the EES to vascular
space.

FIGURE 9: Representative MR images from a recurrent hepatocellular carcinoma patient (57 years old, male) acquired on a 3T MRI
scanner. DCE MRI image showing (a) enhancing tumor and (b) contrast enhancement time course. (c) The gadolinium concentration
time course and extended Tofts model fit and (d) composite ADC map generated from DWI with b = 0, 600 s/mm2 from the same
patient. (Images contributed by Sachin Jambawalikar, Columbia University Medical Center.)

FIGURE 10: Representative pretreatment MR images of head and neck cancer patient (52 years old, male). (a) T2-weighted image,
(b) ADC × 10−3 (mm2/s) map overlaid on diffusion-weighted (b = 0 s/mm2) images generated using 10 b-values (0, 20, 50, 80,
200, 300, 500, 800, 1500, and 2000 s/mm2), (c) Ktrans (min−1) map overlaid on precontrast T1-weighted image. (Images contributed
by Amita Shukla-Dave, Memorial Sloan Kettering Cancer Center.)
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The ETM incorporates the vascular compartment in
modeling the tissue CA concentration.14 For the ETM, Ct(t),
can be expressed as:

CtðtÞ =K trans
ðt
0
e −kepðt −τÞCpðτÞdτ + νpCpðtÞ ð5Þ

Figures 6c, 7c, 8b, and 10c show representative Ktrans

maps derived from patients with tumors in the brain, pros-
tate, breast, and head and neck, respectively. Figure 9a–c
shows CA uptake and CA time course of concentration
curves for the aorta and tumor in the liver. The currently
available test–retest DCE data have illustrated that the %RC
for Ktrans in a tumor ROI is 21.3% for brain and 55.7% for
prostate.41,42 The statistical approach used to derive this per-
formance claim information for DCE profile is similar to the
one applied in the QIBA/DWI profile.

The DCE data acquisition in clinics for organs such as
breast, prostate, and liver is slightly challenging when compared
with brain and head and neck. In this review, we highlight a
few key acquisition aspects for these organs. The typical acquisi-
tion parameter range for breast DCE is detailed in
Table 3C. There is a unique difference between DCE of the
breast and that of other organs, largely due to the clinical need
for bilateral scanning, which require full breast coverage with
high spatial resolution because breast cancer has a high incidence
of contralateral and multifocal disease,102 and clear assessment of
lesion morphology is essential for cancer diagnosis.103,104 For
example, the American College of Radiology breast MRI lexicon
recommends an image slice thickness of no more than 2 mm or
thinner. There is a trade-off between spatial and temporal resolu-
tions, when using conventional gradient-echo pulse sequences,
low temporal resolution breast DCE protocols on commercial
scanner systems are commonly used in clinical settings and
large-scale clinical trials such as the ISPY-1105,106 and ISPY-2107

trials. Due to poor accuracy in quantitative PK analysis of DCE
data,67,108,109 semiquantitative analyses (ie, uptake slope, percent
signal change, time to peak, signal enhance ratio, etc.) of DCE
time course data are generally employed in this circumstance.110

The results of a simulation study by Henderson et al have
shown that a temporal resolution of 16 seconds or less is pre-
ferred for PK analysis of breast DCE data.111 Using parallel
imaging acceleration together with k-space undersampling in
acquisition and view sharing in reconstruction, several commer-
cially available methods such as TWIST (time-resolved angiogra-
phy with stochastic trajectories),112–114 DISCO (differential
subsampling with Cartesian ordering),115,116 and 4D THRIVE
(T1 high resolution isotropic volume examination) sequences117

allow for simultaneous high spatial and temporal resolution in
acquisitions of 3D breast DCE data. For breast DCE, the AIF
can be determined using direct measurement from an axillary
artery,118 the reference-tissue method,119,120 or the population-
averaged AIF.113,114,121

For prostate DCE, data acquisition details are given in
Table 3B,122 which suggests at least a 10-sec temporal resolu-
tion and 30 timepoints, resulting in a 5-minute total scan
time. Spatial resolution is �1 mm in-plane with 3-mm-thick
sections. These values are based on the PI-RADS_v2 recom-
mendations for clinical acquisition.123 Studies from the litera-
ture generally meet these criteria with more variation in spatial
resolution (0.7–1.9 mm in-plane resolution and 3–4 mm slices)
and, for some studies, higher to moderate temporal resolution
(3–10 sec).122,124 The best spatial or temporal resolutions
and/or increased coverage can be obtained via the use of key-
hole imaging, parallel imaging, or compressed sensing.122,125

Usually, the AIF is directly measured from iliac arteries.
For liver DCE, data acquisition details are provided in

Table 3D.126–132 One of the major challenges in acquisition
of liver DCE data is the respiratory motion of the abdomen.
Keeping this in mind, DCE images are mostly acquired with
a series of multiple breath-holds and/or shallow breathing. In
order to achieve the optimum tradeoff between temporal and
spatial resolution, the procedure commonly used in the clini-
cal setting is to coach the patients to hold their breath for
�15 sec (expiratory phase), followed by a 5-sec break and
then repeat the acquisition multiple times for a total of
2–5 min.129,132 This allows acquiring high temporal resolu-
tion DCE data <5 sec (ideal �3 sec) at the first breath-hold
for the accurate quantification of the AIF. Generally, 10–12
coronal slices are acquired to bisect both the lesion and aorta,
ensuring that the lesion is in the center of FOV in the
superior–inferior direction. In addition, on a 3T scanner, a
B1-mapping sequence for correction of the T10 mapping is
recommended.126,130,131 Even though the liver has dual
blood supply inputs (portal vein and aorta), and tumors are
highly vascular, quantitative PK analysis software applications
generally use a single input TM. However, recent work for
liver DCE analysis has evaluated hepatic perfusion quantifica-
tion using a dual-input kinetic model.127,128

Pearls and Pitfalls as qMRI Precision Is
Improved
The role of qMRI in clinical oncology settings has been ele-
gantly reviewed in the past.1,10,133–138 This review is focused
on the need for more test–retest studies, defining repeatability
and reproducibility, and determining the extent of repeatabil-
ity and reproducibility determinations that have been per-
formed in phantoms and patients and reported in the
literature with adequate technical data and details to allow a
statistically robust meta-analysis. Although there are about
1000 publications for human subject DWI and DCE studies
in oncology in the literature, the test–retest pool of articles is
still quite limited. In the development of a QIB that can be
used in clinical trials or practice, a critical step is understand-
ing the test–retest precision for a specific acquisition and
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analysis protocol; hence, this dearth of test–retest data is lim-
iting both imaging biomarker discovery and clinical applica-
tion of more advanced quantitative imaging methods.

Proposal for qMRI Precision Studies
QIBA (http://www.rsna.org/qiba/) seeks to improve the value
and practicality of QIBs by reducing variability across devices,
patients, sites, and time.43 The common platform for commu-
nicating strategies to improve technical performance for QIB
applications is through QIBA Profiles. Profiles are developed
using published data to generate evidence-based performance
claims that inform users about what quantitative results can be
achieved by following the profile guidelines.139 For example, in
longitudinal claims, the Profile provides a cutpoint for when a
true change has occurred as well as a range of values for the true
change in the biomarker.139 For each of these claims, data on
the imaging procedure’s precision is critical to obtain, particu-
larly its ability to provide repeatable measurements when there
has been no biological change in the subject.21 The estimate of
precision is then used to construct the cutpoint to distinguish
true change in the biomarker from measurement error.

The precision estimate is also essential in planning clini-
cal trials. Whether the QIB is being used as an integrated or
integral biomarker, the estimate of its precision is needed to
predict the required trial size. Underestimating the wSD or
wCV will lead to a trial that lacks adequate statistical power,
and overestimating wSD or wCV will lead to a trial with a larger

N (and higher cost) than needed. Thus, a reliable estimate of the
precision is critical to clinical decision-making as well as under-
standing the potential role of the QIB in diagnosis, prediction,
and treatment monitoring. These general guidelines are relevant
both for the studies using conventional acquisition protocols and
for more advanced quantitative imaging techniques (eg, MR fin-
gerprinting140,141) seeking translation to clinical practice. Such
methods hold promise for providing multiple quantitative MRI
parameters from a fast (single) acquisition, although their specific
implementations for quantitative DWI and DCE are currently
sparse. Prior to test–retest precision studies, these advanced multi-
parametric model-based methods would also need to demonstrate
a level of accuracy with respect to conventional acquisition and
image analysis techniques (that quantify individual diffusion and
perfusion parameters) using physical and digital phantoms that
provide ground-truth parameter values.

There is a paucity of studies assessing the repeatability
of imaging procedures for measuring QIBs. The published
test–retest studies are often small (eg, <10), poorly designed
(eg, changing protocols, varying times between imaging), and
their results are presented using metrics that are neither gen-
eralizable to other sites (eg, intraclass correlation coefficients)
nor lend themselves to meta-analyses.

In conclusion, QIBA recommends reproducibility and
repeatability of DWI and DCE studies in phantoms and
patients for identification of QIBs to be used in multicenter
oncology trials.

TABLE 3. A: Typical DWI and DCE Acquisition Details for Brain Imaging

Parameters DWI DCE

Field Strength 1.5 T/3T 1.5 T/3T

Acquisition
Sequence

SS-EPI 3D SPGR

Receive Coil
type

≥8channel head
array coil

≥8channel head
array coil

Lipid
Suppression

On On

Slice
thickness
(mm)

4-5 ≤5

Gap thickness
(mm)

0-2 0-1

FOV (mm) 220-240 220-240

Acquisition
Matrix

160-256 x 160-256 or
1.5 – 1 mm in
plane resolution

256 x 128-160

Plane
Orientation

Axial Axial
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TABLE 3. Continued

Parameters DWI DCE

Phase/
frequency
encode
direction

AP/RL AP/RL

Receiver
bandwidth
(Hz/pixel)

Max possible in freq
encoding direction
(acceptable >1000)

250

Specific
Parameters

DWI Sequence Class
• Monopolar
• Bipolar
• Bipolar Double
Spin Echo

Contrast# Pre-Contrast Post-Contrast

# b-values ≥2 (including
b=0 s/mm2)

# Phases ≥ 5 40-80

Minimum highest
b-value (s/mm2)

850-1000 # Averages ≥ 1 1

# Averages ≥2 Flip Angles
(FAs) (deg)

2-30* 25-30

Diffusion
Directions

3
orthogonal

# Flip Angles
(FAs)

2-7 1

TR (ms) 3000-5000 TR (ms) 3-8¥ 3-8

TE (ms) Minimum TE (ms) ≤3¥ ≤3

In plane parallel
imaging

2 Temporal Resolution (s)
/Total Acquisition
Time (min)

<10 (ideal 5)/5-10

Total Acquisition
Time (min)

3 #Contrast Dose and IV injection rate see references
*Variable FAs for T10 measurement
¥Ensure TR/TE stays constant for all flip angles

TABLE 3. B: Typical DWI and DCE Acquisition Details for Prostate Imaging

Parameters DWI DCE

Field Strength 3T 1.5 T/3T

Acquisition
Sequence

SS-EPI 3D SPGR

Receive Coil
type

> 8 channel torso array coil; pelvic phase
array/endorectal coils; body array coil)

> 8 channel torso array coil; pelvic phase array coil/
endorectal coils; body array coil)

Lipid
Suppression

On NA

Slice thickness
(mm)

3-5 ≤ 5

Gap thickness
(mm)

0-1 0-1
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TABLE 3. Continued

Parameters DWI DCE

FOV (mm) 240-260 260-300

Acquisition
Matrix

224-128 x 224-128; 1-2 mm in-plane
resolution

≤256 x 160

Plane
Orientation

Axial Axial

Phase/frequency
encode
direction

AP/RL RL/AP

Receiver
bandwidth
(Hz/pixel)

Max possible in freq encoding direction
(acceptable > 1000)

250

Specific
Parameters

DWI Sequence Class
• Monopolar
• Bipolar
• Bipolar Double
Spin Echo

Contrast# Pre-Contrast Post-Contrast

# b-values 2 (including
b < 50-

100 s/mm2)

# Phases ≥ 5 Sufficient to allow
acquisition of
at least 5 min

post
injection; ≥ 30

Minimum highest
b-value (s/mm2)

500-1500 # Averages ≥ 1 1

# Averages 2-≥ 4 Flip Angles
(FAs) (deg)

2-15* 10-15

Diffusion
Directions

≥ 3
orthogonal

# Flip Angles
(FAs)

3-5 1

TR (ms) ≤ 4000 TR (ms) < 5 ¥ < 5

TE (ms) Minimum TE (ms) ≤ 2 ¥ ≤ 2

In plane
parallel imaging

2 Temporal
Resolution (s) /
Total Acquisition
Time (min)

<10/5-10

Total Acquisition Time
(min)

3 #Contrast Dose and IV injection rate see references
*Variable FAs for T10 measurement
¥Ensure TR/TE stays constant for all flip angles
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TABLE 3. C: Typical DWI and DCE Acquisition Details for Breast Imaging

Parameters DWI DCE

Field Strength 1.5T/3T 1.5 T/3T

Acquisition
Sequence

SS-EPI/SE-EPI 3D SPGR

Receive Coil
type

≥ 4 channel breast
phase array coil

≥ 4 channel breast phase array coil

Lipid
Suppression

On On

Slice
thickness
(mm)

4-5 ≤ 2.5

Gap thickness
(mm)

0-1 0

FOV (mm) 260-360 To cover the entire breast whether uni- or bi-lateral

Acquisition
Matrix

128-192 X 128-192 ≥ 192x256;1-1.5 mm in-plane resolution

Plane
Orientation

Axial Sagittal for single breast coverage; axial for bi lateral coverage

Phase/
frequency
encode
direction

RL/AP RL/AP for axial bilateral; HF/AP for sagittal unilateral

Receiver
bandwidth
(Hz/pixel)

Max possible in freq encoding
direction

250

Specific
Parameters

DWI Sequence Class
• Monopolar
• Bipolar
• Bipolar Double
Spin Echo

Contrast# Pre-Contrast Post-Contrast

# b-values ≥ 2 # Phases ≥ 2 Sufficient to allow
acquisition for ≥ 8
min post injection

Minimum highest
b-value (s/mm2)

800 # Averages ≥1 1

# Averages ≥ 2 Flip Angle (FA) (deg) 2-30* 10-30

Diffusion
Directions

3
orthogonal

# Flip Angles (FAs) 3-5 1

TR (ms) ≥ 4000 TR (ms) < 8 ¥ < 8

TE (ms) Minimum TE (ms) ≤ 3 ¥ ≤ 3

In plane parallel
imaging

2 Temporal Resolution(s) /Total
Acquisition Time (min)

≤ 20 / ≥ 8

Total Acquisition
Time (min)

4-6 #Contrast Dose and IV injection rate see references
*Variable FAs for T10 measurement
¥Ensure TR/TE stays constant for all flip angles
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TABLE 3. D: Typical DWI and DCE Acquisition Details for Liver Imaging

Parameters DWI DCE

Field Strength 1.5 T/3T 1.5 T/3T

Acquisition
Sequence

SS-EPI 3D SPGR

Receive Coil type > 6-16 channel torso array coil > 8-32 channel flexible or AP body array coil

Lipid Suppression On On

Slice thickness
(mm)

5-7 4-5

Gap thickness
(mm)

0-1 0

FOV (mm) 300-450 280-380

Acquisition Matrix 160-196 x 160-192 or 2-3 in-plane
resolution

320 × (160-192)

Plane Orientation Axial Oblique

Phase/frequency
encode direction

AP/RL AP/RL

Receiver bandwidth
(Hz/pixel)

Max possible in freq encoding
direction (acceptable > 1000)

250

Specific
Parameters

DWI Sequence Class
• Monopolar
• Bipolar
• Bipolar Double Spin Echo

Contrast# Pre-Contrast Post-Contrast

# b-values ≥2 (including
one
b = 50-100 s/
mm2)

# Phases ≥ 5 100

Minimum highest
b-value (s/mm2)

600-800 # Averages ≥ 2 1

# Averages 2-≥4 Flip Angles (FAs) (deg) 2-30* 20-30

Diffusion
Directions

3 orthogonal # Flip Angles (FAs) 3-5 1

TR (ms) > 2000 TR (ms) 3-7 ¥ 3-7

TE (ms) Minimum TE (ms) ≤ 5¥ ≤ 5

In plane parallel
imaging

2-3 Temporal Resolution
(s) /
Total Acquisition
Time
(min)

< 5(ideal�3)/5

Total Acquisition
Time (min)

�5 #Contrast Dose and IV injection rate see reference
*Variable FAs for T10 measurement
¥Ensure TR/TE stays constant for all flip angles
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Lipid Suppression On On

Slice thickness (mm) ≥5 ≥5

Gap thickness (mm) 0 0

FOV (mm) 220-380 180-220

Acquisition Matrix 128x128 256 x 128

Plane Orientation Axial Axial

Phase/frequency encode
direction

AP/RL RL/AP

Receiver bandwidth (Hz/
pixel)

Max possible in freq encoding
direction

250

Specific Parameters DWI Sequence Class
• Monopolar
• Bipolar
• Bipolar Double
Spin Echo

Contrast# Pre-Contrast Post-Contrast

# b-values ≥3 # Phases ≥5 40-80

Minimum highest
b-value (s/mm2)
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3
orthogonal

# Flip Angles
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In plane parallel
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Total Acquisition
Time (min)
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Total Acquisition Time
(min)

3 #Contrast Dose and IV injection rate see references
*Variable FAs for T10 measurement
¥Ensure TR/TE stays constant for all flip angles
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