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Abstract

Extracellular RNAs (exRNAs) in biofluids have attracted great interest as potential biomarkers. 

Whereas extracellular microRNAs in blood plasma are extensively characterized, extracellular 

messenger RNAs (mRNA) and long non-coding RNAs (lncRNA) are less well-studied. We report 

that plasma contains fragmented mRNAs and lncRNAs that are missed by standard small RNA-

seq protocols due to lack of 5’ phosphate or presence of 3’ phosphate. These fragments were 

revealed using a modified protocol (“phospho-RNA-seq”) incorporating RNA treatment with T4-

polynucleotide kinase, which we compared with standard small RNA-seq for sequencing 

synthetic RNAs with varied 5’ and 3’ ends, as well as human plasma exRNA. Analyzing 

phospho-RNA-seq data using a custom, high-stringency bioinformatic pipeline, we identified 

mRNA/lncRNA transcriptome fingerprints in plasma, including tissue-specific gene sets. In a 

longitudinal study of hematopoietic stem cell transplant patients, bone marrow- and liver-

enriched exRNA genes tracked with bone marrow recovery and liver injury, respectively, 

providing proof-of-concept validation as a biomarker approach. By enabling access to an 
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unexplored realm of mRNA and lncRNA fragments, phospho-RNA-seq opens up new 

possibilities for plasma transcriptomic biomarker development.

Keywords: RNA-seq, RNAseq, extracellular RNA, cell-free RNA, liquid biopsy

Introduction 

   In recent years, the discovery of a variety of extracellular RNA (exRNA) molecules present in 

the human bloodstream and other biofluids has been of great interest given their potential value 

as minimally-invasive biomarkers for a wide range of diseases (Freedman et al, 2016; Max et al, 

2018; Godoy et al, 2018; Yuan et al, 2016). To date, characterization of exRNAs in blood has 

mostly focused on microRNAs, which have been shown to be exceptionally stable in plasma 

(i.e., the acellular portion of blood) by virtue of being protected in complexes with Argonaute 

proteins and extracellular vesicles (Arroyo et al, 2011; Hunter et al, 2008). However, microRNAs 

represent a small fraction of the human transcriptome and only a small minority of microRNAs 

show exquisite tissue- or disease-specificity (Ludwig et al, 2016). The degree to which the more 

predominant components of the transcriptome, notably mRNAs and lncRNAs, are similarly 

represented in blood as exRNA is less well established. Yet mRNAs and lncRNAs are highly 

appealing from the standpoint of biomarkers for monitoring health and disease due to their 

multiple established tissue- and disease-specific gene expression signatures (Perou et al, 2000; 

Potti et al, 2006; Chen et al, 2007; Ben-Porath et al, 2008; Iyer et al, 2015; Liu et al, 2008a).

   RNA-seq has transformed transcriptome characterization in a wide range of biological 

contexts (Mortazavi et al, 2008; Wang et al, 2009) including its application to analyze exRNA in 

body fluids (Adiconis et al, 2013; Giraldez et al, 2018). These efforts have begun to elucidate the 

complex composition of exRNA in blood (Freedman et al, 2016; Max et al, 2018; Yeri et al, 

2017; Godoy et al, 2018). There have been indications of extracellular mRNA and lncRNA in 

some studies of plasma, but results have been inconsistent, with some profiling studies 

reporting a variable percentage of them and others not even reporting their presence (Freedman 

et al, 2016; Max et al, 2018; Godoy et al, 2018; Danielson et al, 2017; Koh et al, 2014; Yuan et 

al, 2016; Yeri et al, 2017; Huang et al, 2013). Moreover, these profiling studies have used a 

variety of methods to evaluate exRNA (e.g. microarrays and different methodologies for RNA-

seq) which, not surprisingly, contributes to the variation in findings across the studies.

   We hypothesized that given the high concentration of RNases in the human bloodstream 

(Kamm & Smith, 1972), mRNAs and lncRNAs, if truly present in blood plasma at all, may not 

exist in full-length form, but rather as small fragments. Furthermore, we hypothesized that 

standard ligation-based small RNA-seq methods might not detect such fragments because they 
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are designed to capture microRNAs (Hafner et al, 2008), which by virtue of being products of 

RNase III class enzymes (e.g., Dicer) consistently present 5'-monophosphate and 3'-hydroxyl 

ends (Lee et al, 2003). In contrast, the 5' and 3' ends of RNA cleavage products generated by 

other ribonucleases vary substantially, which might prevent efficient adapter ligation with typical 

small RNA-seq methods. For example, abundant RNases in human blood circulation, such as 

those belonging to the ribonuclease A superfamily (Lu et al, 2018) degrade RNA dinucleotide 

bonds, leaving a 5' hydroxyl and 3' phosphorylated product (Cuchillo et al, 2011). Therefore, we 

reasoned that in order to comprehensively sequence a broader space of exRNAs beyond 

microRNAs, it would be essential to develop modifications to small RNA-seq protocols that can 

enable capture of RNA fragments that may have these alternate 5’ and 3’ phosphorylation 

states.

   Here, we modified the standard small RNA-seq approach by incorporating both an upfront 5’ 

RNA phosphorylation / 3’ dephosphorylation step using T4 polynucleotide kinase (referred to 

here subsequently as “PNK”) and a custom, high-stringency bioinformatic data analysis pipeline 

to analyze non-microRNA small RNA fragments. This approach, which we refer to as “phospho-

RNA-seq”, revealed a large, untapped space of mRNAs and lncRNA fragments present in 

plasma. These fragments comprised tissue-specific signatures that were able to reflect 

biological processes of bone marrow reconstitution and acute liver injury in hematopoietic stem 

cell transplant (HSCT) patients. We propose that this approach opens up new opportunities for 

disease biomarker discovery through transcriptomic analysis of exRNA fragments in the 

circulation.

Results

Synthetic RNA-based technical validation of a phospho-RNA-seq protocol for recovering 

short mRNA and lncRNA fragments with ends lacking a 5’-phosphate and/or possessing 

a 3’-phosphate. 

   To evaluate the performance of both standard and phospho-RNA-seq methods for recovering 

short oligonucleotides with varying end-modifications likely to be found in human biofluids, we 

designed a synthetic reference pool comprising 476 ribonucleotides of different length (from 15 

nt to 90 nt) and sequence (Table EV1). More specifically, our pool includes 286 human 

microRNAs, 8 plant microRNAs, 164 fragments of mRNA and lncRNAs ranging from 15 nt to 90 

nt and including different end modifications (i.e. 5’ phosphorylation, 3’ phosphorylation and none 

modifications) and 18 artificial microRNA sequences as control. As depicted in Figure 1A, we 

prepared small-RNA libraries using this pool as input and following two different strategies: (i) 

standard ligation-based methodology (i.e. TruSeq small RNA protocol) and (ii) our modified 

phospho-RNA-seq approach (i.e. RNA pretreatment with PNK which phosphorylates 5’ hydroxyl 
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groups and removes 3’ phosphoryl groups from oligonucleotides, followed by standard small 

RNA library preparation methodology). Libraries were multiplexed, sequenced on a NextSeq 

platform and analyzed as described in Methods. 

   As shown in Figure 1B, both strategies were able to recover the majority of sequences with 5’ 

phosphorylation and 3’ OH in our pool, most of which are human microRNAs. In contrast, the 

phospho-RNA-seq approach recovered sequences that either lacked 5’ phosphorylation or had 

3’ phosphorylation , which were largely undetectable by the standard methodology (Figures 1B 

- 1D). We confirmed that these results were not due to differences in sequencing depth, as the 

untreated library generated 4.1 million aligned reads, compared with only 2.9 million in the PNK-

treated library. These results confirmed that standard ligation-based small-RNA protocols are 

poorly suited for capturing non-microRNA species lacking 5’ phosphorylation and, especially, 

those presenting a 3’ phosphorylation. 

Phospho-RNA-seq combined with a high stringency bioinformatic pipeline enables 

reliable detection of mRNA/lncRNA fragments in human plasma.

After validating the efficiency of our phospho-RNA-seq strategy for capturing mRNA and 

lncRNA fragments with a variety of end modifications in a setting where the ground truth is 

known (i.e. a synthetic pool of RNA), we aimed to design and test a pipeline that could enable 

reliable evaluation of mRNA and lncRNA fragments in real plasma samples, where the exRNA 

composition is unknown and the risk of false positive calling is higher. To this end, we obtained 

platelet-poor plasma from five healthy control individuals (demographic features are shown in 

Appendix Table S1), prepared triplicate libraries for each individual using both standard small 

RNA-seq methodology (TruSeq kit) and phospho-RNA-seq and performed multiplexed 

sequencing on a HiSeq platform (Figure 2A).

Initial attempts to characterize mRNA and lncRNA fragments directly from adapter-trimmed 

and length-filtered reads revealed that non-mRNA/lncRNA sequences, including fragments from 

various endogenous non-coding RNAs (defined here as rRNAs, tRNAs, microRNAs, and other 

non-coding RNAs but excluding lncRNAs, as derived from Gencode and described in detail in 

Methods) and repetitive elements, were leading to false positive detection and over-estimation 

of mRNA and lncRNA fragment abundances. To uncover relevant biological signal derived from 

mRNAs and lncRNAs, we developed a custom pipeline (Figure 2B) that employs multiple 

distinct filtering steps aimed at quantifying and removing potential sources of false signal, to 

enable the reliable detection of short mRNA and lncRNA fragments. Stage 1 of the pipeline 

involves trimming adapters, removing low-quality bases, and eliminating reads shorter than 15 

nucleotides (see Materials and Methods for additional criteria). Next, we adapted the 

sRNAnalyzer pipeline(Wu et al, 2017) to quantify and remove reads aligning to any one of 

several sequence libraries containing exogenous RNAs (bacterial, fungal and viral), various 
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endogenous non-coding RNA sequences, and other possible contaminants (transposons, 

repetitive elements and Univec contaminants) (Stage 2). Reads with no valid alignments to 

these sequence libraries in Stage 2 are then aligned to the human genome. In Stage 3, genomic 

read alignments are filtered if found to have any overlap with RepeatMasker (UCSC) and 

various endogenous non-coding annotation coordinates. This additional coordinate-based 

filtering step catches reads that were missed by the sRNAnalyzer workflow (see Materials and 

Methods for additional details).

As shown in Figure 2C, without any filtering of non-coding RNA and repeat-mapping reads, 

thousands of mRNA and lncRNA genes were falsely detected, or detected at artificially high 

levels due to a preponderance of reads aligning to transcript-embedded fragments from various 

endogenous non-coding RNA or repetitive element sequences. The alignment to sequence 

databases in Stage 2 and the coordinate-based filtering in Stage 3 provided a step-wise removal 

of false positives from these endogenous sources (Figure 2C). Accordingly, the percentage of 

reads uniquely mapped to mRNA and lncRNA exons also increases through the sequential 

filtering stages of our pipeline (Figure 2D). Therefore, our analysis demonstrates the importance 

of stringent filtering of repetitive sequences and certain non-coding RNA sequences, as failure 

to do so resulted in false-positive detection of many mRNA/lncRNA transcripts. It is also worth 

noting that sequences from libraries prepared with phospho-RNA-seq mapped more frequently 

to mRNA and lncRNA exons, than those prepared using standard small RNA-seq, with the 

former showing a 10-fold increase of mRNA/lncRNA exonic reads on average (Figure 2E).

Standard ligation based small RNA-seq pipelines are prone to false positive calling of 

mRNA/lncRNA fragments in human plasma.

To evaluate how reliable standard small RNA-seq pipelines are for calling short mRNA and 

lncRNA fragments, we processed the plasma exRNA sequencing data from a healthy individual 

through exceRpt, a pipeline specifically designed for the analysis of exRNA small RNA-seq data 

that uses its own alignment and quantification engine to map and quantify a range of RNAs 

including mRNA and lncRNA (see Materials and Methods). We then selected the 50 most 

abundant mRNA transcripts called by the exceRpt pipeline for evaluation through each stage of 

our custom high-stringency pipeline. As in our own pipeline, exceRpt first aligns adapter-

trimmed reads to several small RNA databases for quantification, and only reads with no valid 

small RNA alignments are subsequently aligned to the human genome and used for mRNA and 

lncRNA quantification. However, tracking the reads corresponding to the top 50 most abundant 

exceRpt mRNA transcripts through our own high-stringency pipeline (Figure 3A) showed that 

although all 50 transcripts were detectable at Stage 1, most of them were filtered out or 

significantly reduced in relative expression, by subsequent filtering steps in Stages 2 and 3. We 

confirmed that a high proportion of them corresponded to fragments from various endogenous 
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non-coding RNA species or repeat-mapping reads that were, therefore, ultimately filtered out in 

our pipeline (Figure 3B). Interestingly, for the libraries prepared using phospho-RNA-seq, only 

10 of the top 50 exceRpt transcripts were filtered out when analyzed through our highly stringent 

pipeline, as compared to 35 with standard small RNA-seq. These results demonstrate that 

standard small RNA-seq pipelines, even thoughtfully-designed ones like the exceRpt pipeline, 

which seek to map and remove some small RNA and repetitive sequence species prior to 

human genome alignment, are prone to false positive calling of mRNA and lncRNA fragments, 

thus limiting reliable identification of these exRNA species in plasma samples.

Assessment of short mRNA/lncRNA fragments in human plasma using phospho-RNA-seq 

and our custom, high-stringency bioinformatic pipeline.

After having validated that phospho-RNA-seq combined with a custom, high-stringency 

bioinformatic pipeline enables reliable identification of short mRNA and lncRNA fragments in 

plasma samples, we sought to assess the abundance and features of these exRNA species in 

human plasma. In order to further substantiate the validity of these cell-free mRNA fragments, 

we assessed the relative enrichment of reads aligning in the sense versus antisense orientation. 

The ligation-based library preparation we used ensures that that majority of reads are "stranded" 

-- that is, they should align in the same orientation as the transcript of origin. Spurious 

alignments from exogenous RNAs, repetitive sequences, DNA contaminants  or other noise 

introduced by sequencing artifacts is expected to be distributed more randomly, and would 

result in a more equal distribution of sense/antisense alignments. Thus, as a quality check, we 

confirmed that the exonic alignments of our plasma exRNA sequence reads were enriched for 

the sense orientation, relative to antisense, for mRNAs and lncRNAs (Figure 4A). The degree of 

enrichment for the sense orientation of lncRNAs was lower than for mRNAs, but this may be 

because the lncRNA database we used includes a diversity of lncRNA types (see Materials and 

Methods), including those overlapping mRNA transcripts on the opposite strand. Sense strand 

preference was less evident for reads aligning to introns or promoter regions of mRNA or 

lncRNA genes, consistent with the expectation that extracellular mRNA and lncRNA fragments 

result from fragmentation of mature, processed transcripts (Figure 4A). We, therefore, focused 

our analysis of plasma exRNA on reads aligning to exons of mRNA and lncRNA genes. 

We found that our strategy is able to uncover thousands of mRNAs and lncRNAs present in 

physiological conditions in plasma from healthy individuals (N=5 healthy controls) (Table EV2). 

We evaluated the read distribution of the mRNA and lncRNA fragments identified in human 

plasma with our approach (Figure 4B) and found that on average they are fairly short (i.e. 20-25 

nt range predominantly). However, it is worth mentioning that when we focused our analysis on 

the top 100 expressed mRNA and lncRNAs or on those mRNA and lncRNA expressed in all the 

samples, they tended to be slightly longer than the overall population of mRNA/lncRNA 
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fragments, suggesting that longer read lengths are more frequently associated with more 

abundant and consistently-detected genes (Figure 4B, 4D).

Among the mRNA and lncRNA fragments we found in healthy individuals were these: (i) red 

blood cell-derived transcripts including several types of hemoglobin transcripts (e.g. HBA1, 

HBA2 and HBB); (ii) platelet-derived transcripts such as platelet-derived growth factors (e.g. 

PPBP); (iii) ubiquitous, highly expressed transcripts such as ferritin chains (i.e. FTH1 and FTL), 

mitoferrin-1 (i.e. SLC25A37), conventional non-muscle myosin (i.e. MYH9), multiple 

mitochondrial transcripts (e.g. MT-TL2, MT-ND1,MT-TM, MT-TD) and actin transcripts (e.g. 

ACTB and ACTG1) and; (iv) immune-related transcripts such as MHC class I molecules (e.g. 

B2M), interleukins (e.g. IL-6) and myosin IF (MYO1F), and (v) the lncRNAs MALAT-1 and 

NEAT1 (Figure 4C and Table EV2). As expected, the mRNA and lncRNA fragments that were 

the most consistently detected across multiple individuals were also the most highly abundant 

ones (Figure 4D). 

Assessment of extracellular microRNA capture from plasma by phospho-RNA-seq.

After having demonstrated that phospho-RNA-seq combined with a stringent pipeline is 

critical for recovering mRNA and lncRNA fragments in plasma, we examined the efficiency of  

this strategy for capturing microRNAs from plasma by analyzing mature microRNA read counts 

from healthy donor plasma samples prepared with and without PNK treatment. The microRNA 

counts were obtained from the sRNAnalyzer alignment stage used in our exRNA processing 

pipeline. We found that while microRNAs were captured using the phospho-RNA-seq method, 

the standard small RNA-seq method yielded approximately ten times more microRNA reads 

(Fig EV1A). Although nearly 200 microRNAs were detected in PNK-treated samples from all five 

individuals, the additional coverage achieved by the standard small-RNA seq method enabled 

detection of 98 additional microRNAs, where detection was defined as observing them in all five 

individuals (Fig EV1B). We confirmed that these results were not due to differences in 

sequencing depth, as the standard small-RNA-seq libraries were sequenced to lesser depth 

(median of 9.2 million reads per individual after adapter trimming and size filtering) than the 

phospho-RNA-seq libraries (median of 27.9 million reads).

We found that 21 of these additional microRNAs were seen exclusively using standard small 

RNA-seq (i.e., they had zero reads across all five individuals with phospho-RNA-seq) (Fig 

EV1C). Interestingly, we found some microRNAs that were exclusively captured with phospho-

RNA-seq, in spite of the lower read coverage for microRNAs with this method (Fig EV1D). 

Closer inspection revealed that 16 of the 30 PNK-specific microRNAs were likely fragments of 

transposable or repetitive elements, or were non-functional, mis-annotated microRNAs now 

removed from miRBase annotations. However, excluding these artifactual microRNAs, 14 bona 

fide microRNAs were detected specifically in PNK-treated samples, indicating that a small 
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subset of microRNAs may be present in a modified form in plasma that prevents capture with 

traditional methods. Overall, however, our analysis indicates that standard methods are 

preferable over phospho-RNA-seq when the goal is to exclusively characterize microRNA 

profiles in plasma. 

Pathophysiologic processes are reflected in plasma exRNA transcriptome profiles 

revealed by phospho-RNA-seq. 

   Having confirmed that the phospho-RNA-seq approach with high-stringency bioinformatic 

analysis enables the detection of mRNA and lncRNA fragments consistently expressed in 

plasma from healthy individuals under homeostatic conditions, we sought to evaluate if dynamic 

(patho)physiological processes would be reflected in the expression patterns of mRNA and 

lncRNA extracellular fragments. To this end, we collected serial plasma samples from patients 

undergoing allogeneic HSCT (N=26 samples from 2 different patients), prepared phospho-RNA-

seq libraries from each time point and performed multiplex sequencing using a HiSeq platform 

(Figure 5A). 

We reasoned that in order for mRNA/lncRNA exRNA sequences in plasma to have potential 

as biomarkers, we should see patterns in specific sets of genes that correlate over time to 

biological processes happening within the patients. We began our analysis by using the EBSeq-

HMM R package (Leng et al, 2015), which uses an autoregressive Hidden Markov modeling 

strategy to test for genes that show evidence of differential expression over time (Leng et al, 

2015).  This analysis resulted in 690 (patient P04) and 275 (patient P07) genes showing 

significant (FDR < 0.01) evidence of dynamic changes in expression (Tables EV3 and EV4). 

We hypothesized that differentially-expressed transcripts with similar expression patterns might 

have similar tissue origins or biological functions. Using an unsupervised clustering strategy 

from the R package, WGCNA, we identified sets of the differentially expressed genes showing 

concordant temporal coexpression patterns (Tables EV3 and EV4). Among the differentially-

expressed transcripts of both patients, we found multiple transcripts known to be specific to or 

enriched in bone marrow (Fig 5B). The bone marrow transcripts clustered into distinct co-

expression sets identified by WGCNA. In fact, a hypergeometric test identified three distinct 

temporal co-expression clusters for subject P04 and two for subject P07, which were 

significantly enriched for bone marrow transcripts. Since HSCT is a process that can be followed 

through the peripheral white blood cell count (WBC), we plotted abundance of the significantly-

enriched clusters of bone marrow exRNA transcript fragments over time along with WBC count. 

As shown in Figure 5C, we saw that transcript fragments corresponding to the bone marrow 

gene set tracked generally with the dynamics of bone marrow reconstitution, initially declining as 

expected during the period of early neutropenia in the first week after transplant followed by a 

rise corresponding to recovery of the WBC count. 
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Interestingly, co-expression clusters were enriched for genes specific to or enriched in other 

somatic tissues. In fact, the most significantly overrepresented tissue in both individuals was the 

liver, with nearly all liver-enriched genes grouped in the same co-expression cluster (Fig 6A and 

6B). We wondered whether the liver-enriched transcripts corresponding to our liver gene set 

would track temporally with liver injury, which is common in HSCT patients, sometimes as a side 

effect of medications given as part of their clinical care. By plotting blood levels of serum 

aminotransferases (AST and ALT), two enzymes produced by liver cells that are used clinically 

for detecting liver injury, together with levels of exRNA liver-enriched transcript fragments over 

time, we saw that levels of the liver-enriched RNA fragments showed dynamic changes and 

followed a similar trend as the pattern of changes in AST/ALT (Figure 6C and 6D). Thus, we 

concluded that bone marrow-specific and liver-specific exRNA transcript fragments show distinct 

expression patterns corresponding to known biology as measured by relevant, established 

clinical laboratory markers. These results provide a proof-of-concept that this approach can 

provide access to a circulating transcriptome with potential for biomarker development. 

Discussion

 There has been rapidly growing interest in the study of exRNAs, both for their potential 

clinical application as biomarkers of disease measurable in biofluids such as blood (Roser et al, 

2018; Schwarzenbach et al, 2011), as well as for their potential biological functions (Zhang et al, 

2010; Shah & Calin, 2014; Hu et al, 2012). Most studies of exRNAs in human biofluids to date 

have focused on microRNAs. Unlike microRNAs, which are a small fraction of total genes, 

lncRNAs and mRNAs comprise a majority of the transcriptome and hold great potential as 

biomarkers given their exquisite tissue specific expression (Iyer et al, 2015; Liu et al, 2008b) and 

the fact that mRNA gene signatures in tissues have proven to be powerful biomarkers in 

different clinical settings (Perou et al, 2000; Potti et al, 2006; Ben-Porath et al, 2008; Chen et al, 

2007) . Thus, the ability to read transcriptomic information through exRNA profiles in blood 

plasma is important for enabling for clinical applications.

 However, mRNAs and lncRNAs have not been easily or consistently detectable as exRNA in 

blood plasma. RNAs found in plasma have generally been seen to be fragmented relative to 

their cellular RNA counterparts (Mitchell et al, 2008), and most studies have used small RNA-

seq protocols that are designed to sequence microRNAs. These protocols typically employ RNA 

ligase-based adapter ligations, followed by reverse transcription and PCR to generate libraries 

for high throughput sequencing. Such protocols commonly rely on the presence of 5’-phosphate 

and 3’-hydroxyl ends on the target RNA (Hafner et al, 2008), which are produced by the RNase 

III class of ribonucleases, including the double-stranded ribonuclease Dicer that is responsible 

for processing precursor microRNAs to generate mature microRNAs (Knight & Bass, 2001; Ha & 

Kim, 2014). We hypothesized that mRNA and lncRNA transcripts in the blood circulation are 
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likely to be acted upon by different classes of ribonucleases that may not produce ends 

conducive to sequencing by standard small RNA-seq library protocols. Specifically, abundant 

RNases in human circulation such as those belonging to the ribonuclease superfamily A (Lu et 

al, 2018) degrade RNA dinucleotide bonds leaving a 5' hydroxyl and 3' phosphorylated product 

(Cuchillo et al, 2011), thus rendering cleavage products unsuitable for standard ligation-based 

library preparation protocols. 

We sought to test this hypothesis using both “ground truth” samples of synthetic RNA pools 

with variable 5’ and 3’ end modification states and biological (plasma) samples. Our results 

clearly showed that PNK treatment vastly increased the recovery of fragments either lacking a 

5’-phosphate or having a 3’-phosphate. This is consistent with the properties of PNK, which has 

both 5’ kinase and 3’ phosphatase activities (Cameron & Uhlenbeck, 1977; Richardson, 1965; 

Novogrodsky & Hurwitz, 1966). Moreover, these results highlight that standard ligation-based 

small RNA-seq approaches are not well suited to characterize exRNA beyond microRNAs and 

other sequences sharing the same end chemistries. Our method revealed that human plasma 

contains abundant mRNA and lncRNA transcript fragments, corresponding to thousands of 

human genes. Thus, mRNA and lncRNA fragments are a substantial component of the 

extracellular transcriptome in human plasma. Our incorporation of synthetic RNA pools as a 

ground truth reference was especially important in our study, as it allowed us to demonstrate 

clearly that lack of 5’ phosphorylation and presence of 3’ phosphate are both impediments to 

recovery of these fragments by standard small RNA-seq. 

Although PNK treatment enabled much greater recovery of sequences lacking 5’P and/or 

3’OH, PNK is known to exhibit target nucleic acid sequence-dependent biases in its kinase and 

phosphatase activities (Lee et al, 2013). These very likely influence the distribution of 

sequences we are able to recover with the current iteration of the phospho-RNA-seq method, 

limiting the accuracy of estimating the relative abundance of different mRNA/lncRNA fragments 

within a sample. Incorporation of an Optikinase step prior to PNK has been reported to mitigate 

bias observed when using PNK alone (Lee et al, 2013), and could be tested in future iterations 

of the phospho-RNA-seq method. In addition, future studies using large, diverse sequences of 

RNA fragments with varying 5’ and 3’ phosphorylation states could be used to deeply 

characterize sequence-dependent biases of PNK treatment in the context of phospho-RNA-seq 

for recovery of mRNA/lncRNA fragments. Finally, the use of downstream library protocols that 

have less intrinsic bias (Giraldez et al, 2018) than the one used here (TruSeq) has potential to 

increase the overall recovery of unique mRNA/lncRNA fragments, as well as to improve the 

accuracy of estimating relative abundance of different fragments within a sample. 

 A key lesson learned from our study is the importance of a highly stringent data analysis for 

accurate identification of mRNA and lncRNA fragments from phospho-RNA-seq sequence data. 

This is because these relatively short sequences frequently align to multiple locations in the 

https://paperpile.com/c/2DE5yJ/gjqH1
https://paperpile.com/c/2DE5yJ/gjqH1
https://paperpile.com/c/2DE5yJ/Aqfbu
https://paperpile.com/c/2DE5yJ/mj9l+SJdq+SpUf
https://paperpile.com/c/2DE5yJ/mj9l+SJdq+SpUf
https://paperpile.com/c/2DE5yJ/LlhF
https://paperpile.com/c/2DE5yJ/LlhF
https://paperpile.com/c/2DE5yJ/5ZXLf
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genome. Thus, short fragments of RNAs arising from repetitive DNA transcription or ribosomal 

RNA fragments for example, can spuriously align to mRNA and lncRNA exons. To avoid these 

false positive calls, we developed a three step filtering pipeline specifically designed for the 

reliable identification of mRNA and lncRNA fragments. To date, pipelines for the analysis of 

small RNA-seq data such as the exceRpt pipeline 

(http://genboree.org/theCommons/projects/exrna-tools-may2014/wiki/Small_RNA-seq_Pipeline) 

have been designed with a predominant focus on microRNA annotation. Perhaps not 

surprisingly, we found that when applied to phospho-RNA-seq data analysis for mRNA/lncRNA 

identification, there was a high rate of false positive annotation. It is possible that this 

phenomenon may have affected prior results of plasma exRNA profiling using non-PNK-based 

approaches which although focused primarily on microRNAs, also commented on the finding of 

mRNA and lncRNA transcripts in plasma (Max et al, 2018; Yuan et al, 2016; Huang et al, 2013). 

Future work could determine the extent to which reports of mRNA and lncRNA fragments from 

libraries not incorporating PNK may reflect false positive mis-annotation, due to limitations of 

bioinformatic analysis pipelines. We propose that the high-stringency pipeline we describe here 

is one approach for mitigating the false positive rate, and there may be further bioinformatic 

approaches that can also be developed. 

We must acknowledge, however, that the strict filtering used to remove repeats, although 

effective in reducing false positives, also potentially removes some valuable information and can 

lead to false negatives. Future work could utilize additional features such as high-confidence 

alignments throughout the exons of a gene in the proper orientation relative to the transcript. 

This may provide enough evidence to enable us to capture reads aligning to embedded 

repetitive sequences in bona fide mRNA/lncRNA transcripts, for example.

PNK is a well-characterized enzyme frequently used to create appropriate and 

homogeneous RNA ends before long RNA sequencing. Specifically, this enzyme has been used 

in long RNA sequencing protocols to render tissue RNA suitable for adapter ligation after 

experimental heat- or alkali-based fragmentation (Lee et al, 2013; Lamm et al, 2011). PNK has 

also been included in protocols aimed to identify 5’PPP moieties that correspond to 

transcriptional start sites in bacteria (i.e. differential RNA-seq) (Vvedenskaya et al, 2015). In 

contrast, PNK is not generally used as part of small RNA protocols and it has not been 

specifically evaluated as an strategy for revealing novel mRNA/lncRNA fragment sequences in 

biological samples such as plasma, which are missed by standard ligation-based small RNA 

protocols. 

 We applied phospho-RNA-seq to analyze longitudinal plasma samples from HSCT patients 

for two reasons. The first was to provide additional validation for our methods and data analytic 

pipeline, in that finding gene signatures in plasma that correspond to known time-dependent 

biological changes in patients would make it highly unlikely that the mRNA/lncRNA fragments 

http://genboree.org/theCommons/projects/exrna-tools-may2014/wiki/Small_RNA-seq_Pipeline
https://paperpile.com/c/2DE5yJ/G0lKH+KwX7+2vAr
https://paperpile.com/c/2DE5yJ/LlhF+Q0tN
https://paperpile.com/c/2DE5yJ/Ri9R
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we found were spurious and due to mis-annotation, for example. The second was to establish 

the proof-of-concept that mRNA/lncRNA fragment gene signatures in plasma correlate with 

human biology, indicating the potential of this method as a new, broadly applicable “liquid 

biopsy” approach. As shown here, we found through an analysis beginning with temporal 

plasma exRNA gene expression profiles and progressing to identify tissue-specific gene sets 

over-represented in the dynamic profiles, that specific gene signatures corresponding to bone 

marrow and liver both tracked in a manner that paralleled the dynamic processes of bone 

marrow reconstitution and liver toxicity, respectively.

The results in HCT patients indicate that the phospho-RNA-seq approach, when combined 

with high-stringency bioinformatic data analysis, could be applied to developing biomarkers for a 

range of diseases in which tissue injury figures prominently. For example, this could include 

evaluation of the cause of hepatic injury, where plasma liver transcript signatures might provide 

more detailed information about underlying etiology than standard liver enzyme measurements 

in blood, thus assisting with differential diagnosis. Similarly, plasma transcriptome signatures 

may inform about damage to other organs, as can occur as a result of myocardial ischemia, 

autoimmune diseases, placental dysfunctions during pregnancy, and cancer treatment (e.g., 

chemotherapy, immunotherapies). We speculate that cancer tissue-specific transcript gene sets 

could also be developed for detection and longitudinal monitoring of a variety of cancer types.

Although most prior plasma exRNA studies have focused on microRNAs, mRNAs in plasma 

have been reported using methodology other than phospho-RNA-seq. In particular, a study 

using a long RNA-seq random primer cDNA synthesis protocol detected mRNAs and lncRNAs 

in plasma (Koh et al, 2014). Given that the minimal length of RNAs generally captured by that 

protocol is larger than what we observed with phospho-RNA-seq, we expect that approach is 

unlikely to have captured many of the mRNA/lncRNA fragments found in our study. Taken 

together, the results suggest that exRNA transcripts of a broad range of lengths might coexist in 

the human circulation. It remains an open question at this point as to what fraction of the plasma 

exRNA transcriptome is present as shorter fragments of the form revealed in our study, or as 

presumably longer RNAs reported in prior work (Koh et al, 2014). The shape of the exRNA size 

distribution observed in our data would indicate that longer fragments (e.g., > 100 bases) may 

exist, but may be a minority. However this question would need to be addressed in future 

studies to obtain a more accurate characterization of the exRNA transcriptome present in blood 

and other biofluids. 

Although our phospho-RNA-seq strategy allowed us to expand the spectrum of sequences 

that can be detected in plasma (i.e. sequences lacking 5’ phosphorylation and/or presenting a 3’ 

phosphate end), there are certainly still limitations of this approach. Whereas we expect that 

most of the cleavage products derived from mRNA/lncRNA in circulation will present 5’ OH and 

3’P due to the abundance of superfamily A RNAses in plasma, it is possible that there are 

https://paperpile.com/c/2DE5yJ/5dZC
https://paperpile.com/c/2DE5yJ/5dZC
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exRNAs in plasma with end groups that are not addressed by our methodology (e.g. 5’ cap). 

Second, it is worth mentioning that the efficiency of phospho-RNA-seq for identifying 

mRNA/lncRNA fragments is affected by the recovery of other abundant plasma fragments such 

as ribosomal RNA and Y RNA that can dominate the sequencing data, thus reducing the depth 

of sequencing available for detecting mRNA and lncRNA fragments. To this end, we foresee 

that in the future, the sensitivity for detecting relevant mRNA and lncRNA fragments in plasma 

might be improved by designing specific methods for depleting abundant, undesired fragments 

such as fragments of rRNAs and Y RNAs, or for enriching for fragments corresponding to panels 

of selected transcripts. It is clear that there is still room for method improvement and there may 

be many more mRNA and lncRNA fragments in plasma than we have identified here. It is also 

worth noting that new ligation-free strategies have been recently developed for small RNA-seq 

(Turchinovich et al, 2014). Future studies will be required to determine the efficiency and 

effectiveness of these approaches for detecting mRNA and lncRNA fragments in circulation. 

Moreover, taking into account our results, we envision that sequence data analytic pipelines 

specifically designed for reliable analysis of mRNA/lncRNA fragments, such as the one 

described here, will be required for the analysis of exRNA sequencing data generated with these 

strategies. 

In addition to their potential utility as biomarkers in human disease, there also remains the 

question of whether these circulating extracellular mRNA and lncRNA fragments play any 

physiological role. Multiple intriguing but controversial studies have suggested that some 

extracellular microRNAs serve a functional role by mediating cell-cell communication (reviewed 

in (Tkach & Thery, 2016)). Another recent report showed that the noncoding RNA RN7SL1 can 

be transferred between cells via an extracellular form, resulting in activation of an innate 

immune response in the recipient cell (Nabet et al, 2017). Although it is unlikely that the mRNA 

fragments we observed retain sufficient information to direct meaningful protein coding activity, 

we speculate that there may be some specific fragments that could be functional. They might 

serve as an intercellular signal through their own RNA sequence, or perhaps through 

interactions with associated RNA binding proteins that might be bound to the fragments. 

In summary, our results highlight that there is greater complexity of the extracellular 

transcriptome in human biofluids than previously known and that phospho-small RNA-seq can 

provide access to transcriptomic signatures in plasma that are inaccessible by standard small 

RNA-seq methods. The methodology presented here provides access to a new class of 

extracellular RNAs for development as liquid biopsy biomarkers for a variety of diseases. In 

addition, it may be useful to investigate this technique for application to other settings where 

RNA is highly fragmented, including formalin-fixed paraffin-embedded archival tissue 

specimens, as well as extremely old specimens of cells or tissues, where RNA may likewise be 

present in highly fragmented form.

https://paperpile.com/c/2DE5yJ/LlKy
https://paperpile.com/c/2DE5yJ/30Pl
https://paperpile.com/c/2DE5yJ/trno
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Materials and Methods

Synthetic reference sample. A synthetic equimolar pool containing 476 synthetic RNA 

oligonucleotides was prepared in an RNase-free environment and working on ice to minimize 

degradation. The pool was prepared by combining (i) 286 human microRNAs (ii) a set of 190 

additional, custom-synthesized RNA oligonucleotides, to generate the pool in which each of the 

476 RNA oligonucleotides is present at equimolar concentration. The latter set of 190 RNA 

oligonucleotides comprises microRNAs and non-microRNA sequences of varied length from 15 

to 90 nt, which were synthesized, HPLC purified and quantified spectrophotometrically by IDT 

(Coralville, IA, US). The pool of RNA oligonucleotides is available to qualified investigators 

seeking to reproduce the synthetic equimolar for non-commercial purposes, by request of the 

corresponding authors (as long as supplies last). The resulting equimolar pool was aliquoted in 

prelabeled DNA-, DNase-, RNase-, and pyrogen-free screw cap tubes with low adhesion 

surface and stored immediately at −80 C. The complete list of RNA sequences comprising the 

equimolar pool is provided in Table EV1.

Biological samples. Plasma samples from 5 healthy donors and serial plasma sample from 2 

patients undergoing allogeneic HSCT were collected in 10-mL K2EDTA plasma tubes 

(Vacutainer 366643; Becton Dickinson, Franklin Lakes, NY, US) and processed within one hour 

of blood draw following a two centrifugation protocol to obtain platelet-poor plasma as previously 

described (Cheng et al, 2013): (i) 3,400 xg at room temperature for 10 minutes with high brake; 

and (ii) 1940 xg at room temperature for 10 minutes without brake. Plasma was stored at -80C 

until RNA isolation. The University of Michigan IRB approved the study protocol to consent 

participants and collect samples. Informed consent was obtained from all subjects, and the 

samples were subsequently de-identified before distributing to the laboratory personnel 

generating the libraries. The studies conformed to the principles set out in the WMA Declaration 

of Helsinki and the Department of Health and Human Services Belmont Report.

RNA was isolated from 200 ul of plasma using the miRNeasy mini kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol with the following modifications. Plasma samples were 

mixed with five sample volumes of QIAzol reagent and vortexed for 10 s. Samples in QIAzol 

were incubated at room temperature for 5 min to inactivate RNases. Next 0.2 volumes of 

chloroform were added to each sample. At that point, the manufacturer’s protocol was followed.

https://paperpile.com/c/2DE5yJ/LD3WS
http://www.wma.net/en/30publications/10policies/b3/
http://www.wma.net/en/30publications/10policies/b3/
http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html
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Library preparation and sequencing. The input for library preparation was 10 femtomoles of 

RNA for the synthetic equimolar pool and 5 μl of RNA for the biological plasma samples.

Standard ligation-based small RNA libraries were prepared using the TruSeq small RNA kit 

(Illumina, San Diego, CA, US) according to the manufacturer’s instructions. Size selection was 

performed using pre-cast 6% acrylamide gels (Invitrogen, Carlsbad, CA, US) including all 

products from 140-200 bp plus any additional visible bands of greater size. To perform phospho-

RNA-seq, synthetic and plasma RNA samples were pretreated with T4 polynucleotide kinase 

(NEB, Ipswich, MA, US) using an RNA input of 7 ul in a final reaction volume of 10 ul and 

incubated at 37 C for 30 minutes following the manufacturer’s instructions. After the enzymatic 

treatment, synthetic RNA samples were heat inactivated at 65C for 20 minutes and biological 

RNA samples were purified by performing sequential washes in silica columns (Zymo, Irvine, 

CA, US): (i) 900 ul of buffer RWT (Qiagen, Hilden, Germany); (ii) 900 ul of buffer RPE (Qiagen, 

Hilden, Germany); (iii) 900 ul of ethanol 200 proof, molecular biology grade (Fisher Scientific, 

Waltham, MA, US) and; (iv) 900 ul of 80% ethanol. Libraries were then prepared using the 

TruSeq small RNA kit according to the manufacturer’s instructions. Size selection was 

performed as described above. For the libraries generated from patients undergoing HSCT we 

narrowed the range of size selection to 140-165 bp to reduce the abundance of contaminants 

such as Y RNAs.

   Libraries were multiplexed and sequenced using the Illumina NextSeq 500 (synthetic 

equimolar pool) and Illumina HiSeq 2500 (healthy controls and patients undergoing allogeneic 

HSCT) specifying 75 bp and 50 bp single-end runs, respectively. 

Computational Methods

exRNA Processing Pipeline

TruSeq adapters and stop oligo sequences were trimmed with cutadapt (v 1.91) using 

processing steps adapted from the sRNAnalyzer workflow (Martin, 2011; Wu et al, 2017). The 

sRNAnalyzer framework was also adapted to align adapter-trimmed reads 15 nt and longer to 

several sequence databases containing known small RNA families and contaminant sequences 

(Wu et al, 2017). A table with descriptions of the included sequences databases are provided in 

Appendix Table S2. Up to two mismatches were allowed in the alignment. 

Reads that had no valid alignments to the various endogenous non-coding RNA sequences and 

contaminant databases were aligned to the human genome (GRCh38) using STAR (v 2.5.0A) 

(Dobin et al, 2013). The following parameters were altered from default:

outFilterMultimapNmax=1000000; outFilterMismatchNoverLmax= 0.1; outFilterMatchNmin=15; 

outFilterMatchNminOverLread=0.9; outMultimapperOrder=Random ; outSAMtype=BAM 

Unsorted ; outReadsUnmapped=Fastx ; outSAMattributes=All ; 

outSAMprimaryFlag=AllBestScore ; alignIntronMax= 1; alignIntronMin= 2; 

https://paperpile.com/c/2DE5yJ/07Uf+F24c
https://paperpile.com/c/2DE5yJ/F24c
https://paperpile.com/c/2DE5yJ/ikG0
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alignSJDBoverhangMin=999

These parameters remove the splicing-aware alignment capability and limit the extent of “soft-

clipping” at the ends of the alignment.

Synthetic Pool Library Analysis

Illumina NextSeq reads from equimolar synthetic pool libraries were processed to trim 

adapters, remove low-quality bases and filter short reads using the exRNA processing pipeline 

described above. Reads as short as 15 nt were allowed for detection of the shortest oligos in the 

pool. STAR (v2.5.0A) was used to align the preprocessed reads to the equimolar pool 

sequences. The following alignment parameters were altered from default: 

outFilterMultimapNmax 1000000; outFilterMismatchNoverLmax  0.1; outFilterMatchNmin 15; 

outFilterMatchNminOverLread 0.9; outMultimapperOrder Random; outSAMtype BAM Unsorted; 

outSAMunmapped Within; outSAMattributes All; outSAMprimaryFlag AllBestScore; 

alignIntronMax  1; alignIntronMin  2; alignSJDBoverhangMin 999. Read alignments were loaded 

into R for processing and analysis. Alignments were further filtered, requiring the alignment to 

match at least 90% of the synthetic pool sequence in the sense orientation, and be at least 15 nt 

in length after soft-clipping. Read counts were scaled for multi-mapping, dividing the counts by 

the number of valid alignments obtained from the “NH” tag in the bam alignment file.

MicroRNA Analysis

Read counts for mature human microRNAs were taken from the sRNAnalyzer “.profile” 

counts generated in the processing pipeline. Only read counts with <= 1 mismatch in the sense 

orientation were used. Read counts for each microRNA were summed across technical 

replicates. Library size-adjusted read counts were calculated as counts-per-million.

MicroRNA genomic coordinates (GRCh38) were obtained from miRBase V22 

(http://www.mirbase.org/). Accession numbers missing from the coordinate gff files 

corresponded to microRNAs removed from miRBase due to lack of functional evidence, and 

were annotated as “missing from miRBase”. Transposon and repeat-associated microRNAs 

were annotated by overlapping microRNA coordinates with the RepeatMasker coordinates 

(UCSC Genome Browser; hg38), requiring a minimum of 1 nt overlap in either orientation.

Multi-mapping scaling and gene quantification.

Read counts were weighted using a strategy similar to that employed by CSEM, which 

gathers mapping information from neighboring read alignments to weight read counts towards 

loci with the most unambiguous mapping information (Chung et al, 2011). Our strategy differs in 

that we 1) gather mapping information from neighboring read alignments across all samples in 

the cohort, 2) restrict our search to directly overlapping fragments, and 3) retain the mapping 

ambiguity information to allow identification of commonly co-mapping genes. To do this, a 

bipartite network was created using the R package, igraph, to connect reads with all overlapping 

clusters of mapped loci (Csardi G, Nepusz T: The igraph software package for complex network 

http://www.mirbase.org/
https://paperpile.com/c/2DE5yJ/gpCe
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research, InterJournal, Complex Systems 1695. 2006). All connected components were 

identified, using the mapping ambiguity information from all connected reads to weight reads 

more strongly to those regions with more unambiguously-mapped reads. Read alignments were 

annotated for overlap with A) Gencode transcripts, B) Gencode various endogenous non-coding 

RNAs and C) RepeatMasker annotation coordinates (UCSC genome browser). All alignments 

were removed for any read aligning to Gencode various endogenous non-coding RNA or 

RepeatMasker loci (minimum 1 bp overlap in either orientation). 

Comparison with exceRpt pipeline

The exceRpt small exRNA analysis pipeline (v 4.6.2) implemented on the Genboree 

Workbench (http://genboree.org/java-bin/login.jsp) was used to process and analyze healthy 

control samples for a healthy control (ULMC 135), prepared both using the standard TruSeq 

small RNA library protocol, and the modified phospho-RNA-seq method. Default exceRpt 

pipeline parameters were used, except to set the minimum read length to 16, and to specify 

TruSeq small RNA adapters for trimming. Read counts from Gencode transcripts were obtained 

from the post-processed exceRpt output files, and were compared with the ULMC135 read  

counts from our pipeline collected at: (Stage 1) after adapter trimming and size filtering, (Stage 

2) after sRNAnalyzer alignment and contaminant removal and (Stage 3) after genome alignment 

and removal of RepeatMasker and various endogenous non-coding RNA coordinate-based 

annotations. Reads from each stage were aligned to the human genome with STAR, using the 

same alignment parameters described above. These parameters were largely copied from those 

used by the exceRpt pipeline to make the alignments as comparable as possible.Comparison 

was limited to genes detected by both pipelines. Because the exceRpt pipeline output included 

only summarized gene abundance, the percent of various endogenous non-coding RNA or 

repeat-aligned reads were based on the alignments from our pipeline. An alignment was 

considered “sRNA or Repeat-Aligned” if any alignments for that read overlapped RepeatMasker 

or Gencode various endogenous non-coding RNA coordinates (minimum 1 nt overlap on either 

strand). Fragments were summarized at the gene level using muti-mapping-weighted exon-

aligned fragments, comparable to that used by the exceRpt pipeline for gene-level 

quantification.

Cell free RNA enrichment in coding and non-coding regions of mRNA and lncRNA 

transcripts

Exon, intron and promoter ( 2 kb upstream + 0.2 kb downstream nt) coordinates were 

extracted from Gencode (v27) protein-coding and long non-coding RNA annotations. 

RepeatMasker and sRNA-filtered genomic alignments from the five healthy individuals were 

intersected with these coordinates, requiring a minimum of 1 bp of overlap in either orientation. 

Ambiguous annotations were allowed, but counted only once per unique combination of read 
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and feature. Read alignments were considered “Sense” or “Antisense” based on the relative 

orientation of the read alignment and the mRNA or lncRNA feature. Read length distributions 

and gene abundance was calculated based on sense-aligned exonic reads.

Analysis of Hematopoietic Stem Cell Transplantation Cohort

HiSeq reads from P04 and P07 HSCT patients were processed and filtered as described 

above. Gene-level counts were calculated separately for P07 and P04 samples, using the multi-

mapping-weighted read counts from mRNA and lncRNA exon-aligned read fragments.The 

resulting gene count matrices were normalized across samples using a robust Geometric Mean 

of Pairwise Ratios (GMPR) method, suitable for sparse data sets (Chen et al, 2018). The 

GPMR-calculated size factors were provided as input to the R package, EBSeq-HMM, which 

employs an autoregressive Hidden Markov Modeling strategy to identify genes with non-static 

expression dynamics over the course of the time series (Leng et al, 2015). EBSeq-HMM was 

run separately for P04 and P07 samples. An initial run was performed using a low number of 

iterations (n=5) to test a range of fold-change estimates (1.0 to 2.0, by 0.2). The estimate that 

maximizes the log likelihood was then used for a second run of the algorithm with a higher 

number of iterations (100). Significantly altered genes were selected at an FDR cutoff of 0.01 

(Leng et al, 2015). GMPR-normalized read counts from the significantly-altered genes were 

clustered using the WGCNA workflow (Langfelder & Horvath, 2008) 

Tissue Enrichment

Databases of tissue-enriched genes were obtained from GTex and Human Protein Atlas 

data curated by the TissueEnrich R package (Jain & Tuteja, 2018). Significant enrichment was 

determined with a hypergeometric test, and using a background of all genes used as input to 

EBSeq-HMM analysis (Leng et al, 2015). 

Data and code availability.

Sequencing data reported here are available at GEO, under the superseries, GSE126051. R 

code and processed data files are available on GitHub 

(https://github.com/rspengle/phosphosRNAseq_Manuscript_Analysis). 
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Figure Legends

Figure 1. A modified protocol overcomes the low efficiency of standard ligation-based small 

RNA library preparation methods for cloning short RNA sequences lacking 5’ phosphorylation or 

possessing 3’ phosphorylation. 

A) Schema of experimental design. 

B) Boxplots summarize the mean count per million (CPM) observed for sequences contained in 

the synthetic equimolar pool sequences (y-axis, log10 scaled) presenting different end 

modifications (x-axis), as measured from libraries prepared using a standard ligation based 

small-RNA protocol (PNK (-)) and the phospho-RNA-seq strategy (PNK (+)). Boxes represent 

the mean +/- interquartile range (IQR), and whiskers represent 1st/3rd quartile 1.5 * IQR. 

Boxplots summarize mean CPM values for n = 352 (5’ phosphorylated + 3’ OH sequences), n= 

60 (5’ OH + 3’ OH sequences ) and n = 60 (5’ OH + 3’ phosphorylated sequences). Significant 

bonferroni-adjusted p-values are shown from one-tailed Wilcoxon Rank Sum tests for 
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differences in abundance between PNK (+) and PNK (-), for sequences with the end chemistries 

shown (alternative hypothesis PNK + > PNK -). 

C, D) Scatter plots showing the read distribution (CPM) observed for sequences of the synthetic 

equimolar pool with 5’ phosphorylation (red dots) and (C) without end modifications (teal dots) or 

(D) with 3’ phosphorylation (teal dots) as measured from libraries prepared using a standard 

ligation-based small-RNA protocol (x-axis) and the phospho-RNA-seq strategy (y-axis). Marginal 

density plots are included as a summary of the data. 

Figure 2. Phospho-RNA-seq combined with stringent contaminant sequence filtering reduces 

false positive mRNA/lncRNA fragments. 

A) Schema of experimental design. 

B) Schema of bioinformatic analysis pipeline. 

C) Scatter plot showing the percentage of reads aligned to repeats and small RNAs (x-axis) for 

the each filtering stage of our custom pipeline. Dots represent the mean CPM calculated for 

each gene across the five healthy control individuals. 

D) Boxplots show the fraction of genome alignments that are unambiguously-aligned to mRNA 

and lncRNA exons, shown as the percent total reads aligned at each filtering stage. The points 

represent and the boxplots summarize the percentages calculated from combining alignments 

from three technical replicates for each of the (n = 5) healthy individuals. Boxes represent the 

mean +/- IQR, and whiskers represent 1st/3rd quartile 1.5 * IQR. 

E) Barplots show the number of uniquely-mapped (teal) and multi-mapped (red) mRNA and 

lncRNA exonic reads remaining after the final filtering stage (Stage 3). Counts are plotted for 

each of the five healthy control individuals (x-axis) both in untreated (left panel) and PNK treated 

(right panel) samples. The count values are shown along with the corresponding bar plots.

Figure 3. Re-evaluation of top transcripts called by a standard small RNA-seq analysis pipeline 

using our custom high stringency analysis pipeline. 

A) The exceRpt exRNA-seq pipeline was used to analyze  plasma RNA from a healthy control 

(ULMC135) and the 50 most highly-expressed protein-coding mRNAs were quantified using our 

pipeline. Boxplots summarize the read counts measured when processed through our repeat 

filtering stages. Results from both PNK treated and untreated samples (x-axis) are shown. Gene 

abundances are shown as log10 read counts + 1 (y-axis). Individual points are color-coded by 

the rank of the gene expression observed at the stage indicated (rank 1 = highest expressed). 

Boxes represent the mean +/- IQR, and whiskers represent 1st/3rd quartile 1.5 * IQR. 

Bonferroni-adjusted p-values are shown from Wilcoxon Rank-Sum tests comparing the gene 

expression ranks in filtering stage 1 versus stage 2 or stage 3. 
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B) Scatterplot shows the CPM values reported by the exceRpt pipeline for the 50 most highly 

expressed mRNA or lncRNA genes (x-axis), versus the percentage that we found to overlap 

RepeatMasker or sRNA annotations (y-axis). Values are plotted for ULMC135  + PNK (teal) and 

- PNK (red). 

Figure 4. Assessment of short extracellular mRNA/lncRNA fragments in human plasma using 

optimized library preparation and analysis methods. 

A) Boxplots showing the percentage of unambiguously annotated reads (y-axis) for mRNA and 

lncRNA exons, intron and promoters located in the sense and antisense strand as measured by 

phospho-RNA-seq in plasma samples from healthy controls (N=5). Boxes represent the mean 

+/- interquartile range (IQR), and whiskers represent 1st/3rd quartile 1.5 * IQR. 

B) Read length distribution of exon-aligned reads in plasma samples from healthy controls (N=5) 

prepared with phospho-RNA-seq. Read length is shown on the x-axis and the percent of exon-

aligned reads shown on the y-axis. Dots represent percentages calculated for each of the five 

healthy control individuals. A smoothed trend line is shown and color coded based on the 

categories indicated. 

C) Boxplots summarize the read length (x-axis) distributions for the 50 most highly-abundant 

genes (y-axis) across the five healthy control samples. Genes are sorted by median read length. 

Boxes represent the mean +/- interquartile range (IQR), and whiskers represent 1st/3rd quartile 

1.5 * IQR.

D) Violin plots showing gene abundance expressed as mean read counts (y-axis) as a function 

of the number of participants where they were detected (x-axis). 

Figure 5. Relationship between temporal patterns of dynamically co-expressed plasma 

mRNA/lncRNA fragments and bone marrow recovery in patients undergoing allogeneic HSCT. 

A) Schema depicts timing of the serial sample collection, experimental methodology and 

bioinformatics and enrichment analysis. 

B) Heatmaps show the expression patterns of bone marrow-enriched genes that were detected 

in patients P04 (left) and P07 (right) datasets, and found differentially abundant by EBSeq-HMM 

(FDR < 0.01). Geometric Mean of Pairwise Ratios (GMPR)-normalized read counts were 

centered gene-wise to have a mean of 0 and standard deviation of 1. The “cluster” row 

annotations indicate the co-expression cluster identified by WGCNA. P04 clusters turquoise, 

purple and red, and P07 clusters turquoise and yellow were significantly enriched for bone 

marrow transcripts (hypergeometric test; FDR < 0.01). 

C) Graphs show the expression patterns for the co-expression clusters significantly enriched for 

bone marrow-enriched transcripts. Individual points are shown for each gene in the P04 (left) 

and P07 (right) co-expression clusters, and are colored according to the cluster IDs. Colored 
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lines indicate the mean expression of each cluster, and error bars represent a bootstrapped 

(B=1000) 98% CI of the mean. Black dashed lines indicate the white blood cell counts obtained 

from lab results measured on the same day.

 

Figure 6.  Relationship between temporal patterns of dynamically coexpressed plasma 

mRNA/lncRNA fragments and liver injury in patients undergoing allogeneic HSCT.

A,B) Heatmap of liver-enriched genes detected and found differentially-abundant by EBSeq-

HMM (FDR<0.01) in (A) P04 and (B) P07 samples.The “cluster” row annotations indicate the co-

expression clusters identified by WGCNA. P04 cluster, greenyellow, and P07 cluster, blue, were 

significantly enriched for liver-specific and enriched transcripts (hypergometric test; FDR < 0.01). 

C) Graph shows the expression for genes in the P04 co-expression cluster, greenyellow, along 

with AST and ALT lab values taken on the same day. 

D) Graph shows the expression of P07 co-expression cluster, blue, along with AST and ALT lab 

values. 

Data information: (C,D) Points represent the z-transformed log2 read counts for each of the 

genes in the cluster (P04 greenyellow: n=8; P07 blue: n=28). The black lines indicate the mean 

expression of each cluster and error bars represent a bootstrapped (B=1000) 98% CI of the 

means. Blue and red dashed lines represent lab values for AST and ALT liver enzymes, 

respectively. AST and ALT levels were centered to a mean of 0 and standard deviation of 1 for 

plotting. The actual lab values are shown for all elevated readings (AST > 30; ALT > 35).  

Expanded View Figure Legends

Figure EV1. Evaluation of extracellular microRNA recovery by phospho-RNA-seq and 

standard small RNA-seq. 

A) Boxplots summarize the total number of read alignments to human mature microRNAs. 

Overlaid points indicate the respective counts for  five control individuals, obtained from  three 

technical replicates. Boxes represent the mean +/- interquartile range (IQR), and whiskers 

represent 1st/3rd quartile 1.5 * IQR.  

B) Barplots indicate the number of mature microRNA genes detected (>=1 count)  in all five 

individuals with and without PNK treatment. 

C and D) Dotplots show the expression level (counts per million) of microRNAs that were 

detected only in  the (C) standard small RNA-seq or (D) phospho-RNA-seq protocols. Five 

points are shown for each miRNA, representing the miRNA abundance in each of the five 

controls. Blue dots indicate microRNAs removed from the current version of miRBase (v22) due 

to lack of functional evidence. Green dots indicate microRNAs overlapping transposable or 

repetitive element loci. Pink dots represent microRNAs not overlapping transposons or repeats 

and which are present in the current version of miRBase (miRBase 22). The number of 
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microRNAs in each of the categories are shown in parentheses in the legend of the respective 

plots.  

Expanded View Tables

Table EV1. Sequences of the equimolar synthetic pool.

Table EV2. mRNA and lncRNA fragments detected in plasma from healthy individuals using 

phospho-RNA-seq (PNK) and standard small RNA-seq (No.PNK) combined with a custom 

analysis pipeline.

Table EV3. Table of co-expression clustering results from dynamically-expressed genes in 

HSCT patient P04.

Table EV4. Table of co-expression clustering results from dynamically-expressed genes in 

HSCT patient P07.
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