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t Abstract 

With the availability of large-scale biobanks, genome-wide scale phenome-wide 

association studies are being instrumental in discovering novel genetic variants 

associated with clinical phenotypes. As increasing number of such association results 

from different biobanks become available, methods to meta-analyse those association 

results is of great interest. Because the binary phenotypes in biobank-based studies are 

mostly unbalanced in their case-control ratios, very few methods can provide well-

calibrated tests for associations. For example, traditional Z score-based meta-analysis 

often results in conservative or anti-conservative type I error rates in such unbalanced 

scenarios. We propose two meta-analysis strategies that can efficiently combine 

association results from biobank-based studies with such unbalanced phenotypes, 

using the saddlepoint approximation-based score test method (SPA). Our first method 

involves sharing the overall genotype counts from each study, and the second method 

involves sharing an approximation of the distribution of the score test statistic from 

each study using cubic Hermite splines. We compare our proposed methods with a 

traditional Z score-based meta-analysis strategy using numerical simulations and real 

data applications, and demonstrate the superior performance of our proposed methods 

in terms of type I error control. 

Keywords: Biobank; Meta-analysis; GWAS; Saddlepoint Approximation; Case-

Control studies 

Introduction 

Genome-wide scale phenome-wide association analysis (Hebbring, 2014) is gaining 

increasing attention in the human genetics community in the recent years. The 
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t availability of detailed phenotypic information from the electronic health record 

(EHR) systems in large biobanks as well as the recent advancements in genotyping 

and imputation technologies (Das et al., 2016) are allowing researchers to phenotype 

thousands of traits and genotype tens of millions of variants in large cohort studies. 

Several biobank studies, including UK-Biobank (Bycroft et al., 2017), Michigan 

Genomics Initiative and Nord-Trøndelag Health Study (Krokstad et al., 2013) 

currently attempt to test for associations in all genotype-phenotype pairs, which 

results in billions of tests. These large-scale analyses have great potential to find novel 

genotype-phenotype associations, which will help uncover underlying molecular 

mechanism of clinical phenotypes. 

In a typical phenome-wide association study (PheWAS) in biobanks, most of the 

phenotypes are binary with unbalanced (1:5) or often extremely unbalanced (1:500) 

case-control ratios, which results in performing 1000s of unbalanced case-control 

GWASs. For example, ~1400 case-control studies in the UK Biobank interim release 

data have more than 100 controls per case (see histogram in Figure S1, supplementary 

materials A). Under such case-control imbalance, the standard asymptotic tests such 

as the Wald test, score test and likelihood ratio test can severely inflate the type I 

errors resulting in several spurious associations, especially for the low frequency 

(0.01<MAF<0.05) and rare (MAF<0.01) variants (Dey, Schmidt, Abecasis, & Lee, 

2017; Ma, Blackwell, Boehnke, Scott, & investigators, 2013). To obtain well-

calibrated p values in such situations, Ma et al. (2013) proposed to use the Firth’s 

penalized likelihood ratio test (Firth, 1993). Since the Firth’s test is computationally 

too expensive to be used for billions of association tests, Dey et al. (2017) developed 

a fast saddlepoint approximation-based score test, fastSPA, which is computationally 

much faster than the Firth’s test. 
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t As more and more association results from different biobanks become available, 

meta-analysing (Evangelou & Ioannidis, 2013) the results from the unbalanced 

GWASs is the logical next step to improve the power to detect novel genotype-

phenotype associations. Z-score based approach, (Cooper, Hedges, & Valentine, 

2009) which converts p-values to normal Z-scores for combining multiple study p-

values, has been a standard meta-analysis method in GWASs (Evangelou & Ioannidis, 

2013). However, even though p-values from fastSPA and Firth’s test are well 

calibrated in a single study, combining them through Z-score method can fail to 

control for type I errors. Ma et al. (2013) has shown that combining Firth’s test-based 

p values through Z-score method can produce conservative or anti-conservative 

behaviours especially when the case-control ratio is unbalanced and the variant minor 

allele count (MAC) is small. This may be because the study-specific p-values have 

discrete distribution due to case-control imbalance and small MAC. As shown in our 

simulation studies, the same problem also occurs in the meta-analysis using fastSPA-

based p values. To facilitate the meta-analysis of the biobank-based GWASs, we need 

a robust method to control for type I errors regardless case-control ratios and MAC. 

In this paper, we first evaluate the performance of the Z-score based meta-analysis 

procedure using the fastSPA test-based p values under extensive simulation settings 

and real datasets, and propose two alternative meta-analysis strategies to obtain well-

calibrated meta-analysis p values. The first method involves sharing the overall 

number of homozygous minor and heterozygous genotypes for each genetic variant, 

in addition to the case-control sample size and p value shared in the Z-score-based 

meta-analysis strategy. The second method involves sharing the observed within-

study score statistics and the cumulant generating functions (CGF) of those score 

statistics using a spline-based approach, which will be used to carry out saddlepoint 
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t approximation to obtain the meta-analysis p value. The additional information 

facilitates approximating the distributions of the study-specific score statistics, which 

can be discrete, asymmetric and different from the traditionally used normal 

distribution. Through extensive simulation studies and an analysis of the UK Biobank 

data, we show that the proposed methods can control the type I error rates and retain 

similar power as a joint analysis as well as being scalable to large scale PheWASs. 

Methods 

Model for single study association test and saddle point approximation (SPA)  

We consider J case-control studies, where the thj study has sample size jn . Within 

each individual study, we follow the regression model and testing procedure described 

in Dey et al. (2017). For the thi subject in the thj study, let ( ) 1j
iY = or 0 denote the 

case-control status, ( )j
iX denote the 1k × vector of non-genetic covariates (including 

the intercept) and ( ) 0,1,2j
iG =  denote the number of minor alleles of the variant to be 

tested. Let ( )jβ be the 1k × vector of coefficients for the non-genetic covariates and 

( )jγ be the genotype log odds ratio. We use the following logistic regression model to 

perform association test in the thj study.  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )logit Pr  for 1, 2, ,| , .1
Tj j j j j j j

i i i i i jY X G i nX G β γ  = + = … =   (2.1)  

Let ( )ˆ j
iµ  be the maximum likelihood estimator of ( )( ) ( ) ( )Pr 1 |j j j

i i iY Xµ = =  under the 

null hypothesis ( )
0 : 0jH γ = . Further, let ( )( ) ( ) ( )

1 ,,
T T

jn
j j jX X X…=  be the jn k× matrix 

of covariates, ( )( ) ( ) ( )
1 , ,

Tj j j
nG GG …=  be the genotype vector, ( )jW be a diagonal 
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t matrix with thi  diagonal element ( )( ) ( )1ˆ ˆj j
i iµ µ− , and 

( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T Tj j j j j j j j jG X X W X X W GG

−
= −  be the covariate-adjusted genotype 

vector. Then, the score statistic for testing ( )
0 : 0jH γ = will be 

( )( ) ( ) ( ) ( )

1

ˆ
j

j j j j
i

n

i
i iGS Y µ

=

= −∑   . To apply the saddlepoint approximation-based score test 

(SPA test), we first need to calculate the cumulant generating function (CGF) of the 

score statistic and its first and second derivatives given by, 

 

( )

( )
( )
( )

( )

( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )2( ) ( )
( ) ( ) ( ) ( )

2( ) ( ) (

1

) (1 )

1

1

( ) log 1 ,

1
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∑

  

Using the saddlepoint approximation method (Barndorff-Nielsen, 1990; Daniels, 

1954), the distribution function of ( )jS  at the observed score statistic s can be 

approximated by, 

 ( )( ) 1 log ,Pr jS s vw
w w

  < ≈ Φ +  
  

  

where ( )( )( )ˆ ˆ ˆ)sgn( 2 jt ts K tw −= , ( )( )''ˆ ˆjt tv K= , t̂  is the solution to the equation 

( )( )' ˆjK t s= , and Φ is the standard normal distribution function. The fastSPA (Dey et 

al., 2017) test implements a faster version of this saddlepoint approximation method, 

which can be applied to obtain the p value ( )jp . One of the steps implemented in the 
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t fastSPA test is to apply the saddlepoint approximation method only if the score 

statistic lies outside a certain standard deviation threshold from the mean. If the score 

statistic lies inside the standard deviation threshold, then the fastSPA test uses the 

normal approximation to calculate the p values because the normal approximation 

behaves well near the mean. In this paper, we will consider the p values using two 

such standard deviation threshold, 2 and 0.1, and will denote the tests by fastSPA – 2 

and fastSPA – 0.1, respectively. 

P value-based meta-analysis and Normal distribution-based Z-score method  

We first introduce a framework for p value-based meta-analysis. In this framework, 

the study-specific p values ( )( )jp s are inverted to obtain the signed scores ( )jR s  using 

some distributions ( )jF s, for , ,1j J= … , where the signs are determined by the 

directions of associations. We call ( )jF s reference distributions. Then, the meta-

analysis score is given by ( )

1

j
met

J

j
aR R

=

= ∑ where each ( ) ( )~j jFR under the null 

hypothesis of no association. Traditional Z-score-based meta-analysis is a special case 

of this framework, where the reference distributions are normal distributions with 

means zero and variances given by the effective sample sizes of the individual studies. 

The effective sample size (Han & Eskin, 2011) is calculated as *
1 04 /j j j jnn n n= , 

where 1jn and 0jn are the number of cases and controls in the thj study, respectively. 

This meta-analysis method first inverts the p-values using a standard normal 

distribution to obtain the signed Z-scores ( )( ) 1 ( ) / 2j jZ p−Φ= ± , where the signs 

depend on the directions of associations. Then, the scores ( )jR s are calculated as

( ) * ( )j j
j ZR n= , for , ,1j J= … , and the meta-analysis score is given by 
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1 1

~ 0,
J J

j
meta j

j j
R N nR

= =

 
 


=


∑ ∑  under the null hypothesis. We can test the null 

hypothesis of no association between the phenotype and the variant by testing 

*

1

/
J

meta meta j
j

nZ R
=

= ∑ , which follows (0,1)N  under the null hypothesis. 

This meta-analysis strategy can control for type I error rates when each study-specific 

p-value follows the uniform distribution. When the case-control is unbalanced and 

variants are rare, however, each study-specific test statistic ( )jS  can have a discrete 

and often very skewed null distribution, which can result in the set of possible study-

specific p values to be discrete, and the two-sided probabilities that constitute those p 

values, to be asymmetric. In such situations, although saddlepoint approximation 

(SPA) can be applied to control type I error rates within each individual study, 

inverting such SPA-based p values to normally distributed Z-scores might not be 

appropriate, and can introduce systematic bias. 

We notice that the best possible reference distribution ( )jF would be the null 

distribution of the score statistic ( )jS under model (2.1) (let it be ( )jF ). In that case, 

( )jR s will be the same as ( )jS s. Within each individual study, ( )jF can be 

approximated based on the CGF of the score statistic, using the SPA method. 

However, it is difficult to share the CGFs as summary level statistics. In our first 

method, we suggest sharing the overall genotype counts from the individual studies to 

construct our reference distributions. For the second approach, we propose a simpler 

technique to approximate ( )jF s using summary level statistics and suggest sharing 

( )jS s instead of the p values so that we can directly use ( ) ( )j jR S= . This is equivalent 

to a p value-based meta-analysis using the approximations of ( )jF s as the reference 
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t distributions ( )jF s, because ( )jR s will closely approximate ( )jS s when ( )jF s closely 

approximate ( )jF . Although our approaches require more information than just the p-

values, case-control sample sizes and directions of associations, the additional 

information is also summary level information and hence does not need individual 

level data. 

Genotype-count-based method 

Here we propose a practical approach to approximate the CGFs using the genotype 

counts (number of 0, 1, 2 genotypes) at different markers. For rare variants where 

homozygous minor genotypes are usually not present in the data, or for variants that 

follow Hardy-Weinberg equilibrium, sharing only the minor allele counts (MAC) will 

be sufficient, as the genotype counts can be easily calculated based on the MACs. 

Suppose, for the thj study, the genotype counts for the variant to be tested are 0 1,j jm m

and 2jm  ( )0 1 2j j j jm m m n+ + =  corresponding to the genotypes 0,1 and 2 

respectively. Then, we can construct the genotype vector ( )*jG  of length jn  where the 

first 2jm elements are 2s, next 1jm elements are 1s, and the rest are 0s. We propose 

using the null distribution (let it be ( )*jF ) of the score statistic in the following 

genotype-only model (2.2) as our reference distribution, 

 ( ) ( )* ( )* ( )* ( )*1| )logit Pr( j j j j j
i i iY G Gα γ  = = +   (2.2)  

where ( )*j
iG is the thi elements of ( )*jG , ( )*jα  is the intercept and ( )*jγ is the genotype 

log odds ratio. Intuitively, when the non-genetic covariates are relatively balanced 

across cases and controls, the discreteness and asymmetry in the null distribution of 
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t the score statistic mainly depend on the imbalance or the rarity of the phenotype and 

the genotype. Therefore, the null distribution of the score statistic under the genotype-

only model can be a reasonable alternative to the traditionally used normal 

distribution, as a reference distribution. To apply this method, we first need to 

calculate the CGF of the score statistic and its first and second derivatives in the 

genotype-only model (2.2) given by, 

 

( )

( )
( )
( )

( )*

( )*

( )*
( )*

( )* ( )* ( )*

2( )* ( )* ( )*( )* ( )*
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( ) log 1 ,
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1
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G tj j jj j
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j
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G tj G j

t

i
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n
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K e
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e e
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µ µµ

µ µ µ µ
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−=
−

=

= − +

−
= =

− +  − +
 

∑

∑ ∑
  

where ( )* ( )* ( )*j j j
i iG G G= − is the mean-centered genotypes, and ( )*ˆ jµ =  the proportion 

of cases, is the maximum likelihood estimator of ( )( )* ( )Pr 1j j
iYµ = =  under the null 

hypothesis * ( )*
0 : 0jH γ = . Based on this CGF, we can approximate the distribution 

( )*jF and calculate the score ( )jR by inverting ( )*jF at the signed fastSPA p-value, 

( )jp± , which is calculated from the model (1.1) with all covariates. Since the signed p 

values have one-to-one relationships with the score values, the inversion of ( )jp±  to 

obtain the score ( )jR  can be performed using root-finding algorithms such as Newton-

Raphson (Press, 1992), Brent (Brent, 1973), bisection (Press, 1992) etc. In our 

implementation, we applied Brent’s method for this purpose. The meta-analysis score 

( )

1

j
met

J

j
aR R

=

= ∑  will then have the CGF ( )*

1

J
j

meta
j

KK
=

= ∑ , and we can apply the SPA 

test on metaR to obtain the meta-analysis p-value. 
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t CGF sharing-based method 

The aforementioned genotype count sharing-based method assumes relatively 

balanced covariates, which have little effect on the discreteness and asymmetry of the 

null distribution of the score statistics. A more general and mathematically 

appropriate approach would be to share and utilize the whole CGFs of the within-

study score statistics for constructing the reference distribution. Since sharing a 

complicated function like a CGF using only summary statistics is very difficult, we 

propose to share the function only at some node-points, and reconstruct the function at 

the meta-analysis stage using spline approximations. Detailed methodology for this 

approach is provided in Appendix A, supplementary materials A. 

Software implementation 

We implemented all our proposed methods and the Z-score-based method in our R 

package SPAtest (available on CRAN). The software can be used to perform fastSPA 

or Score test and prepare summary level information relevant to the different meta-

analysis methods, as well as to perform the final meta-analysis. The software can also 

perform a hybridized meta-analysis based on the availability of different kinds of 

summary level information. For example, suppose one study provides only the p value 

and direction of association, a second study additionally provides the genotype counts 

or minor allele count (if it is a rare variant), and a third study provides the score 

statistic and spline-based information. Then, a hybrid meta-analysis approach will be 

to use a normal reference distribution for the p value from the first study, and a 

reference distribution based on the genotype-only model for the p value from the 

second study to calculate the converted scores and their corresponding CGFs. The 

CGF of the score statistic in the third study can be reconstructed based on spline 
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t approximation. Then, the final meta-analysis score will be the sum of those individual 

scores, and the corresponding CGF will be the sum of those individual CGFs. The 

meta-analysis p value can then be obtained using the saddlepoint approximation 

method. 

Numerical Simulations 

We evaluated the type I error rates and empirical powers of the Z-score based and 

proposed methods through extensive simulation studies. We considered three different 

simulation study settings. For the first setting, we meta-analysed seven studies coming 

from the same population where the genotypes and the non-genetic covariates are 

simulated independently. For the second setting, we considered a meta-analysis of 

seven studies where the genotypes and the non-genetic covariates were simulated 

based on the MAF and principal component (PC) scores in different ethnic groups in 

the UK Biobank data. In the third setting, we assessed the performance of the methods 

when a smaller but balanced case-control study is meta-analysed along with a small 

number of larger but unbalanced biobank-based studies.  

Simulation Study 1: Our first simulation study was designed to represent a meta-

analysis of multiple studies from the same population. We considered seven studies 

with sample sizes 2000jn =  for all ,71,j = … . We further considered three case-

control ratios: balanced with the case-control ratio of 1:1 within each study, 

moderately unbalanced with the case-control ratio of 1:9 within each study, and 

extremely unbalanced with the case-control ratio of 1:49 within each study. For each 

choice of case-control ratio, the phenotypes in the thj study were simulated using the 

following logistic model,  
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t  ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 2logit Pr  for 1,2, ,1 0.5 ,j j j j j j

i i jY X X G i nα γ  = × + + = …= +    (3.1) 

where ( )
1 ~ (0,1)jX N  and ( )

2 ~ (0.5)jX Bernoulli were the non-genetic covariates, and 

the genotypes ( ( )j
iG s) were generated from a (2, )Binomial p  distribution where p

(same across the seven studies) was the minor allele frequency (MAF). The intercepts 

( ( )jα s) were selected such that the prevalence within each study would become 0.01. 

The parameters ( )jγ s represent the within-study log-odds ratios. For the type I error 

comparisons, all ( )jγ s were set to be 0. A wide range of ( )jγ values were used for the 

power calculations (see Results).  

To compare the type I error rates of different methods under different MAFs, we 

considered five different MAFs, 0.001,0.005,0.01,0.05,0.1p = , and simulated 85 10×  

variants for each of the MAFs and the three case-control ratios. We recorded the 

number of rejections at 55 10α −= × and 85 10−× genome-wide significance levels. We 

further performed a power comparison with 5000 simulated variants for each of the 

three case-control ratios and two choices of the MAF, 0.01,p = and 0.05 , at different 

values of ( )jγ . As the genome-wide significance threshold for power calculations, we 

used both a nominal 85 10α −= × , and a type I error adjusted empirical α where the 

corresponding method has type I error 85 10−× . The empirical α level was calculated 

based on 85 10× simulated datasets from the simulation setting described above (seven 

studies, each with 2000 samples) where the MAFs were sampled from the MAF 

spectrum (Figure S2, supplementary materials A) of the white British ancestry group 

(~117K samples) in the UK Biobank interim release data. 
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t Simulation study 2: Our second simulation study was designed to represent a trans-

ethnic meta-analysis, where contrary to the first simulation study setting, we not only 

allow the MAFs to be different across the studies, but also simulate the genotypes in a 

way such that they are correlated with the covariates to adjust for. We considered 

seven studies with sample sizes 2000jn =  for all ,61,j = … , and 7 1500n = . To 

simulate the genotypes and the non-genetic covariates from a realistic meta-analysis 

of GWAS, we used genotype data from the UK Biobank interim release data (UK 

Biobank, 2015). The first five studies included first four principal component (PC) 

scores as covariates and genotypes simulated from the MAF spectrum of the white 

ancestry group in the UK Biobank samples. To maintain the correlated nature of the 

genotypes and the PC scores, genotypes were simulated using PC scores. We further 

added a binary covariate generated from a (0.5)Bernoulli  distribution independent of 

the PC scores and the genotypes. Covariates and genotypes were simulated in a 

similar way for study six and seven based on the south Asian and black ancestry 

groups, respectively. The model to simulate the phenotypes was similar to the one 

used in the first simulation study, except for different non-genetic covariates. Detailed 

explanation of the simulation procedure is provided in Appendix B, supplementary 

materials A. 

In Transethnic studies, variants have different MAFs across different ancestry groups. 

To calculate the type I error rates for diverse scenarios of MAFs, we first considered 

three MAF bins for the alleles of the simulated variants: rare variants with MAF < 

0.01, low frequency variants with 0.01 < MAF < 0.05 and common variants with 

MAF > 0.05. We then categorized the simulated variants in four categories based on 

their allele frequencies (AF): a) all rare, when the variant has the same minor rare 
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t allele in all seven studies, b) all low frequency, when the variant has the same low 

frequency allele in all seven studies, c) all common, when the variant has the same 

common allele in all seven studies, and d) different AF, when the variant falls in 

different MAF bins in at least two different studies. The different AF category also 

includes variants which have different alleles as the minor alleles in different studies. 

For each variant category and case-control ratio, we simulated 85 10×  datasets under 

the null hypothesis and recorded the number of rejections at the genome-wide 

significance levels 55 10α −= × and 85 10α −= × . 

Simulation Study 3: We investigated the performance of different meta-analysis 

strategies when a balanced case-control study, which is smaller in sample size, is 

meta-analysed along with two larger biobank-based unbalanced studies. This 

simulation study represents the real-world meta-analyses where the researchers collect 

balanced case-control data on rare traits/diseases, and attempt to meta-analyse them 

with association results from a small number of larger cohort-based studies. To 

simulate the genotypes, non-genetic covariates and the phenotypes, we used the same 

simulation and logistic regression models as in our first simulation study setting. The 

sample size for the balanced case-control study was 2000 with 1000 cases and 1000 

controls, and the unbalanced studies had sample size 10000 each. We considered two 

case-control ratios for these unbalanced studies: moderately unbalanced with case : 

control = 1 : 9 within each study, and extremely unbalanced with case : control = 1 : 

49 within each study. For each of the case-control ratio, we compared the type I error 

rates of different methods under five different MAFs, 0.001,0.005,0.01,0.05,0.1p =  

based on 85 10×  simulated variants each. 
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t For the first two simulation settings and the unbalanced studies in the third simulation 

setting, the within-study p values were calculated using the traditional score test 

(Score), fastSPA test with 2 standard deviations threshold (fastSPA – 2), and fastSPA 

test with 0.1 standard deviations threshold (fastSPA – 0.1). Since score test is 

relatively well-calibrated for balanced case-control studies (Dey et al., 2017), only 

Score p values were calculated for the balanced study in the third simulation setting. 

We then considered the following meta-analysis methods to compare their type I error 

rates and empirical powers: Z-score-based meta-analysis (Z-score), genotype count 

sharing-based meta-analysis (GC), and CGF sharing-based meta-analysis (CGF-

Spline). Score p values were meta-analysed using the Z-score method, fastSPA – 2 

and fastSPA – 0.1 p values were meta-analysed using the Z-score and GC methods, 

and the within-study observed score statistics were meta-analysed using the CGF-

Spline method. For the balanced case-control study in the third simulation setting, the 

Z-scores obtained from the Score p values were used in the GC method, and the 

corresponding normal distribution-based CGFs were used in the CGF-Spline method. 

We also compared the type I error rates and the empirical powers of a joint analysis 

(Joint) using the fastSPA – 2 test on the pooled data as the gold standard. We further 

provided a computation time comparison of our proposed methods in Appendix C, 

supplementary materials A. 

UK Biobank data analysis 

We demonstrated the performance of our proposed methods by analysing two 

phenotypes based on the UK Biobank interim release data (UK Biobank, 2015). The 

UK Biobank (Bycroft et al., 2017) contains detailed phenotypic information based on 

electronic health records for ~500K individuals in the United Kingdom. In the interim 
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t release (May 2015), information on ~150K individuals were released to the public. 

Details about the data and pre-processing are provided in Appendix D, supplementary 

materials A. A histogram of the case-control ratios (Figure S1, supplementary 

materials A) of different binary phenotypes shows that the ratios are heavily skewed 

towards zero, which means the binary phenotypes are mostly unbalanced.  

To compare our proposed methods with the Z-score-based meta-analysis method, we 

analysed two phenotypes, Ulcerative Colitis (PheWAS code: 555.2, case : control

1:100≈ ), and Psoriasis (PheWAS code: 696.4, case : control 1:165≈ ) based on 

117,494 unrelated samples from the white British ancestry group of the interim 

release data. The samples were then divided into 22 groups based on the assessment 

centre where they first consented to be included in the biobank. We selected 19 

centres (Table S1, supplementary materials A) with at least 5 cases for each of the two 

phenotypes, and treated these centres as our individual studies to perform association 

analyses of the phenotypes on the autosomal variants within each of them. For the 

within-study association analyses, we applied fastSPA – 2, fastSPA – 0.1 and Score 

tests, adjusting for age, sex, genotyping array, and first four principal components. 

Individuals which had phenotype or at least one covariate information missing, were 

removed from the analysis of that corresponding phenotype. We only applied the 

within-study tests for variants with within-study MAC at least three. Because the 

genotype count-based meta-analysis requires the overall genotype counts, we applied 

our within-study tests on the best called genotypes instead of dosages in the imputed 

data. We then meta-analysed the results using the Z-score-based meta-analysis (Z-

score), genotype count sharing-based meta-analysis (GC), and CGF sharing-based 

meta-analysis (CGF-Spline). The meta-analysis methods were only applied for 

variants that were tested in at least two different studies, and the overall MACs were 
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t at least ten. For each phenotype, ~29 million variants were meta-analysed. We further 

performed a joint analysis (Joint) with the pooled samples using the fastSPA – 2 test, 

adjusting for the assessment center. Due to the computational burden of performing a 

pooled joint analysis, we only performed it for the variants with GC – fastSPA – 2 p 

values smaller than 35 10−× . Otherwise, we recorded the p values from GC – fastSPA 

– 2 method as the joint analysis p values. 

Results 

In this section, we evaluate the performance of the proposed methods against the Z-

score-based meta-analysis based on the numerical simulations and the UK Biobank 

data application described above. 

Numerical Simulations 

Type I error comparison: The type I error comparison based on simulation study 1 

(Figure 1) clearly shows that the proposed CGF-Spline and GC methods provided 

well-controlled type I error rates across all the MAFs and all the case-control ratios. 

Expectedly, the joint analysis also controlled the type I error rates. On the other hand, 

the Z-score method resulted in inflated type I error rates in moderately unbalanced 

and extremely unbalanced settings, especially for the rarer minor allele frequencies. 

Interestingly, the Z-score method with fastSPA-0.1 performed worse than that with 

fastSPA-2, although fastSPA-0.1 used the saddlepoint approximation to more variants. 

This further verifies our assertion that using normal distributions to invert the study-

specific p values which are possibly discrete, asymmetric and originally calculated 

using the saddlepoint approximation, can result in failure to control type I error in the 

meta-analysis process. In contrast, the GC method shows similar performance using 
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t fastSPA – 0.1 and fastSPA – 2 p values, which shows its robustness in meta-analysing 

p values regardless of whether they were originally calculated using the normal 

approximation or the saddlepoint approximation. For MAF = 0.001 under the 

extremely unbalanced setting, there is conservative behaviour shown by the Z-score 

method when using fastSPA – 0.1 or fastSPA – 2 p values at 55 10α −= × level. All 

methods provided well-controlled type I error rates for the balanced case-control ratio. 

We further simulated 85 10× datasets under the settings of simulation study 1 with a 

much more extreme case-control ratio (1:99), and even under such extreme case-

control imbalance, our proposed methods showed well-controlled type I errors, 

whereas the Z-score method overall resulted in type I error inflation (Figure S3, 

supplementary materials A).Similar observation follows for simulation study 2. The 

type I error comparison (Figure 2) suggests that our proposed methods showed no 

sign of type I error inflation across different MAFs and case-control ratios, whereas 

the Z-score method resulted in inflated type I error rates for the moderately 

unbalanced and extremely unbalanced settings, especially for the all rare, all low 

frequency and different MAF categories. Z-score method using Score p values had the 

maximum inflation across all categories. 

In simulation study 3, we also have similar results (Figure 3) for our proposed 

methods. However, the Z-score method using the fastSPA – 0.1 or fastSPA – 2 p 

values showed no sign of significant type I error inflation in the extremely unbalanced 

case-control setting, and only slight inflation in the moderately unbalanced setting. 

This suggests that the Z-score-based method can be adequate for controlling the type I 

error rates when only a small number of biobank-based studies are included in the 

meta-analysis. However, as seen from the other two simulation studies, the Z-score 
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t method may fail to control type I error rates when large number of unbalanced studies 

are involved. 

Power comparison: Next, we compare the empirical powers of different meta-

analysis strategies along-with the joint analysis as the gold standard under the first 

simulation setting. Because the Z-score-based meta-analysis method provided inflated 

type I error rates as seen in the type I error comparisons, we used empirical α levels 

calculated from type I error simulations for each method where the empirical type I 

error rate becomes 85 10−× . The power curves (Figure 4) show that the Z-score 

method has slightly lower power (lowest when using score test p values) in the 

moderately and extremely unbalanced case-control ratios. Our proposed methods 

provide very similar power to the joint analysis, and all methods provide similar 

power in the balanced case-control setting. When nominal 85 10α −= × level was used 

(Figure S4, supplementary materials A), the Z-score method expectedly showed 

higher powers in the unbalanced settings since it is not calibrated for its type I errors. 

UK Biobank data analysis  

We meta-analysed the results from 19 individual studies (assessment centers) for the 

phenotypes Ulcerative Colitis and Psoriasis, using the Z-score-based meta-analysis 

(Z-score), genotype count sharing-based meta-analysis (GC), and CGF sharing-based 

meta-analysis (CGF-Spline). The quantile-quantile (QQ) plots presented in Figure 5 

and Figure 6 show that the meta-analysis p values from our proposed methods closely 

follow the uniform distribution, whereas those from the Z-score method are either 

much smaller (Z-score method using Score or fastSPA – 0.1 p values) or larger (Z-

score method using fastSPA – 2 p values) than expected for rare variants (MAF < 

0.01). This suggests conservative behaviour of the Z-score method when using the 

This article is protected by copyright. All rights reserved. 



 
A

ut
ho

r 
M

an
us

cr
ip

t fastSPA – 2 p values, and extremely anti-conservative behaviour when using fastSPA 

– 0.1 or Score p values. On the other hands, both the GC and CGF-Spline methods 

improve the accuracy of the meta-analysis p values and provide well-calibrated QQ 

plots. Further, the QQ plots from our proposed methods show similar behaviour to the 

QQ plots from the Joint analysis (Figure S5, supplementary materials A). We also 

presented the genomic control inflation factors ( λ ) of different meta-analysis 

strategies in Table S2, supplementary materials A. For Ulcerative Colitis, all our 

proposed methods showed no inflation or deflation in the genomic controls at p value 

quantiles q = 0.01 and 0.001, whereas the Z-score method showed severely inflated 

inflation factors when using the Score (eg. 1.34λ =  at 0.01q = ) and fastSPA – 0.1 

(eg. 3.16λ =  at 0.01q = ) p values and deflated inflation factors when using the 

fastSPA – 2 (eg. 0.82λ =  at 0.01q = ) p values at those p value quantiles. This result 

further supports the observations made from the QQ plots. When considering the 

inflation factors at the median p value quantile ( 0.5q = ), the CGF-Spline ( 0.74λ = ) 

and GC method using fastSPA – 2 p values ( 0.84λ = ) showed deflated inflation 

factors, and GC method using fastSPA – 0.1 p values ( 1.40λ = ) showed inflated 

inflation factor. This is expected, since the SPA test p values near the median are not 

calculated using the saddlepoint approximation as discussed in Dey et al. (2017). In 

that paper, they also found inflated genomic control factors for fastSPA – 0.1 and 

deflated genomic control factors for fastSPA – 2 p values at the median level for 

extremely unbalanced case-control ratios. The inflation factors showed similar 

patterns for Psoriasis. However, at p value quantile q = 0.001, the GC method using 

fastSPA – 2 p values, and the CGF-Spline method showed slightly larger than 

expected inflation factors ( 1.10λ = for both methods). This might be due to the 

presence of the Major Histocompatibility Complex (MHC) in the 6p21 region which 

This article is protected by copyright. All rights reserved. 



 
A

ut
ho

r 
M

an
us

cr
ip

t contains a large number of polymorphic variants and it is a known associated region 

for Psoriasis (Stuart et al., 2015). After excluding the MHC region from the inflation 

factor calculation, the inflation factors became very close to unity. 

The top genome-wide significant SNPs in different regions, identified by the CGF-

Spline method, are listed in Table S3, supplementary materials A. The top significant 

SNPs were identical for the genotype count method. The p values for the top 

significant SNPs were similar for all the methods, except Z-score-based meta-analysis 

using Score and fastSPA – 0.1 p values. Zscore method using Score p values resulted 

in much smaller meta-analysed p values for all of those SNPs, and Z-score method 

using fastSPA – 0.1 p values resulted in surprisingly large p values for testing 

Psoriasis on the two SNPs on chromosome 22 (rs549956609 and rs560106765). All 

other meta-analysis procedures and the joint analysis on these two SNPs resulted in p 

values which were close to the genome-wide significance level (GC – fastSPA – 2, 

CGF-Spline, and Joint analysis p values smaller than, and GC – fastSPA – 0.1 and 

Zscore – fastSPA – 2 p values larger than 85 10α −= ×  level.) 

Applicability on imputed dosages: To assess the performance of our methods with 

genotype dosage data, we further performed our within-study tests to calculate the p 

values, scores and spline-based summary statistics using the dosage data, and then 

meta-analysed the results using our proposed methods. For the GC method, we 

calculated the within-study p values based on the dosages, but constructed the 

genotype-only model using genotype counts calculated using three methods: counting 

the best-called genotypes (BCG), rounding off the dosages to the nearest integers and 

counting them (Rounded Dosages), and genotype counts obtained from the MACs 

assuming Hardy-Weinberg equilibrium (HWE). We also compared the results with a 
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t joint analysis performed in the same way described for the genotype data analysis. 

The resulting QQ plots (Figure S6, S7 and S8, supplementary materials A) showed no 

sign of inflation or deflation for the GC methods, and showed very similar behaviour 

to the QQ plots from the CGF-Spline method and the Joint analysis (Figure S9, 

supplementary materials A). which suggests that the methods are robust for the 

analysis of dosage data. 

We further generated the QQ plots for four different ranges (< 0.3, 0.3 – 0.6, 0.6 – 

0.9, and ≥ 0.9) of imputation quality Impute-INFO scores (Howie, Donnelly, & 

Marchini, 2009) (supplementary materials B). Overall, our proposed methods 

provided close to uniform QQ plots. For variants with smaller INFO scores (INFO < 

0.6), the GC method using fastSPA – 0.1 p values showed small amount of inflation 

when the best-called genotypes (BCG) or rounded dosage values (Rounded Dosage) 

were used. However, GC method using only MAC information provided the most 

calibrated (close to the uniform distribution) QQ plots. This is expected, because 

lower imputation quality is more often observed for rare variants, for which MAC 

information is enough to calculate the genotype counts, as we do not usually observe 

homozygous minor genotypes. 

Discussion 

In this paper, we evaluated the performance of the traditional Z-score-based meta-

analysis strategy to combine association results from multiple unbalanced genome-

wide association studies, and proposed two alternative strategies that can provide 

well-calibrated meta-analysis p values, even when the case-control ratios are 

extremely unbalanced and the minor allele counts are small. Through extensive 

numerical studies and an application on the UK Biobank data, we showed that the Z-
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t score-based method can result in conservative or anti-conservative behaviour in the 

meta-analysis p values, whereas our proposed methods provided well-controlled type 

I error rates. The proposed methods also showed similar empirical powers as a joint 

analysis on the pooled data. 

When the effect sizes are not available, such as in the case of the saddlepoint 

approximation-based test, it is widely popular to use the Z-score-based meta-analysis 

approach and combine the individual p values into a meta-analysis p value. In our 

third simulation setting, we showed that the Z-score-based approach can still be 

appropriate when only a small number of biobank-based studies with unbalance 

phenotypes are included in the meta-analysis. However, we will suggest the 

researchers to be cautious when using the Z-score-based approach, as including more 

such unbalanced studies can result in a loss of calibration in the meta-analysis p 

values. When effect size estimates are available, for example when using the Firth’s 

bias-corrected likelihood ratio test (Firth, 1993), the inverse variance-weighted 

method is another popular meta-analysis approach used by the researchers. However, 

Ma et al. (2013) showed that the inverse variance-weighted meta-analysis method 

using the Firth’s bias-corrected effect size estimates also results in type I error 

inflation when meta-analysing several unbalanced studies. 

In this paper, we assumed that the individual studies do not have genetically related 

samples. In presence of related samples, the SAIGE test (Zhou et al., 2017) can 

properly account for the sample relatedness and provide accurate p values in single 

studies with unbalanced case-control ratios. As the SAIGE p values are calculated 

using the saddlepoint approximation method based on the score statistic and its CGF, 

the spline-based meta-analysis method can still be applicable for combining multiple 
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t studies that are analysed using SAIGE. However, the genotype count-based method 

may not be appropriate in such scenarios as the genotype-only model does not contain 

any information about the sample relatedness. The applicability of our methods in 

studies containing genetically related samples, is left for future research. 

Comparing the two proposed methods, the spline-based method (CGF-Spline) does 

not require any assumption on the effect of the non-genetic covariates since it 

reconstructs spline approximations of the null distributions of the score statistics and 

uses them to calculate the meta-analysis p values. Thus, it is more suitable to be 

applied regardless of the covariate effects. On the other hand, the genotype count-

based method (GC) assumes relatively balanced non-genetic covariates with low 

covariate effects. However, the numerical simulations with very strong covariate 

effects (Figure S10, supplementary materials A) also showed no sign of type I error 

inflation or deflation for this method. Another difference between the proposed 

methods is in their applicability on imputed dosage data. As the GC method requires 

the overall genotype counts to construct the genotype-only model, it is more suitable 

to be applied when the within-study analyses are performed on the best-called 

genotypes instead of dosages. The CGF-spline method is robust in this aspect as it can 

utilize the CGFs of the test statistics regardless of whether they were calculated from 

genotype or dosage data. However, in our UK Biobank data analysis example, both 

our proposed methods showed no sign of inflation or deflation of type I errors, even 

when the within-study tests were performed on dosage data. Therefore, for practical 

application purposes, the genotype count-based method can be used to obtain accurate 

meta-analysis p values. One advantage of the genotype count-based method is that it 

is software-independent, and requires information which are more readily available 

compared to the spline-based method. 
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Figures 

Figure 1: Type I error comparison between the Z-score based meta-analysis and our 

proposed CGF-Spline and Genotype Count (GC) methods where the phenotypes, non-

genetic covariates and the genotypes are simulated as described in simulation study 1. Joint 
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t represents the joint analysis with the pooled data. The top and the bottom panels show 

empirical type I error rates at genome-wide significance levels 55 10α −= × and 
85 10α −= × , respectively. From left to right, the plots consider the within-study case-

control ratios 1:1, 1:9 and 1:49, respectively. In each plot, the X-axis represents MAFs with 

expected MACs per study in parenthesis, and the Y-axis (in logarithmic scale) represents 

the empirical type I error rates. 95% confidence intervals at different MAFs are also 

presented. 

 

 

 

 

Figure 2: Type I error comparison between the Z-score based meta-analysis and our 

proposed CGF-Spline and Genotype Count (GC) methods where the phenotypes, non-

genetic covariates and the genotypes are simulated as described in simulation study 2. Joint 

represents the joint analysis with the pooled data. The top and the bottom panels show 

empirical type I error rates at genome-wide significance levels 55 10α −= × and 
85 10α −= × , respectively. From left to right, the plots consider the within-study case-
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t control ratios 1:1, 1:9 and 1:49, respectively. In each plot, the X-axis represents different 

MAF groups: Rare (variant is rare in all studies), Low frequency (variant is low frequency 

in all studies), Common (variant is common in all studies) and Different AF (variant is in 

different allele frequency group in at least two different studies). The Y-axis (in logarithmic 

scale) represents the empirical type I error rates. 95% confidence intervals at different 

MAFs are also presented. 

 

 

 

 

 

Figure 3: Type I error comparison between the Z-score based meta-analysis and our 

proposed CGF-Spline and Genotype Count (GC) methods where the phenotypes, non-

genetic covariates and the genotypes are simulated as described in simulation study 3. Joint 

represents the joint analysis with the pooled data. The top and the bottom panels show 

empirical type I error rates at genome-wide significance levels 55 10α −= × and 
85 10α −= × , respectively. The left and right panels consider the within-study case-control 
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t ratios 1:9 and 1:49, respectively for the unbalanced studies. In each plot, the X-axis 

represents MAFs with expected MACs in parenthesis, and the Y-axis (in logarithmic scale) 

represents the empirical type I error rates. 95% confidence intervals at different MAFs are 

also presented. The empirical type I error rates were almost identical between ZScore – 

fastSPA – 2 and ZScore – fastSPA – 0.1, and between GC – fastSPA – 2 and GC – fastSPA 

– 0.1, and hence the lines are sometimes overlapped in this plot. 
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t  

Figure 4: Power curves for the Z-score, CGF-Spline and Genotype Count (GC) 

methods. Top panel considers MAF = 0.01 and bottom panel considers MAF = 0.05. From 

left to right, the plots consider case-control ratios 1:1, 1:9 and 1:49, respectively. In each 

plot the X-axis represents genotype odds ratios and the Y-axis represents the empirical 

power. Empirical power was estimated from 5000 simulated datasets at their type I error 

adjusted empirical α  levels where their empirical type I errors are equal to 85 10−× . 
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t Figure 5: QQ plots for Ulcerative Colitis based on the UK Biobank interim release 
data. QQ plots using the Z-score method are provided in the left panel, and the QQ plots 
using our proposed methods are provided on the right panel. The plots are color-coded 
based on different MAF categories. 
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t Figure 6: QQ plots for Psoriasis based on the UK Biobank interim release data. QQ 
plots using the Z-score method are provided in the left panel, and the QQ plots using our 
proposed methods are provided on the right panel. The plots are color-coded based on 
different MAF categories. 
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