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Women of African ancestry present with more advanced ovarian tumors and have lower 

five-year survival than Caucasian women.  Progress in determining risk factors 

contributing to those differences in ovarian cancer development and mortality is 

hampered by the dearth of research.  This study shows novel associations of genetic 

variants from EGFR and UGT2A1/2 gene regions with ovarian cancer in African 

Americans that is suggestive of proliferation and tobacco metabolism pathway 

alterations that contribute to health disparities.  
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NOVELTY & IMPACT STATEMENTS 

Women of African ancestry present with more advanced ovarian tumors and have lower 

five-year survival than Caucasian women.  Progress in determining risk factors 

contributing to those differences in ovarian cancer development and mortality is 

hampered by the dearth of research.  This study shows novel associations of genetic 

variants from EGFR and UGT2A1/2 gene regions with ovarian cancer in African 

Americans that is suggestive of proliferation and tobacco metabolism pathway 

alterations that contribute to health disparities.  

 

 

ABSTRACT 

An association between genetic variants in the vitamin D receptor (VDR) gene and 

epithelial ovarian cancer (EOC) was previously reported in women of African ancestry 

(AA).  We sought to examine associations in VDR and additional genes from vitamin D 

biosynthesis and pathway targets (EGFR, UGT1A, UGT2A1/2, UGT2B, CYP3A4/5, 

CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC). Genotyping was performed using 

the custom-designed 533,631 SNP Illumina OncoArray with imputation to the 1,000 

Genomes Phase 3 v5 reference set in 755 EOC cases, including 537 high-grade serous 

(HGSOC), and 1,235 controls.  All subjects are of African ancestry (AA).  Logistic 

regression was performed to estimate odds ratios (OR) and 95% confidence intervals 

(CI). We further evaluated statistical significance of selected SNPs using the Bayesian 

False Discovery Probability (BFDP). A significant association with EOC was identified in 

the UGT2A1/2 region for the SNP rs10017134 (per allele OR = 1.4, 95% CI = (1.2, 1.7) 

p=1.2 x 10-6, BFDP=0.02); and an association with HGSOC was identified in the EGFR 

region for the SNP rs114972508 (per allele OR = 2.3, 95% CI = (1.6, 3.4) p=1.6 x 10-5, 

BFDP=0.29) and in the UGT2A1/2 region again for rs1017134 (per allele OR = 1.4, 95% 

CI = (1.2, 1.7) p=2.3 x 10-5, BFDP=0.23).  Genetic variants in the EGFR and UGT2A1/2 

may increase susceptibility of EOC in AA women. Future studies to validate these 
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findings are warranted.  Alterations in EGFR and UGT2A1/2 could perturb enzyme 

efficacy, proliferation in ovaries, impact and mark susceptibility to EOC.   

 

 

 

INTRODUCTION 

Women of African ancestry (AA) have the lowest incidence of ovarian cancer 

worldwide, but they tend to present with more advanced tumors and have lower five-

year survival (35%) compared to women of European descent (47%) in nearly every 

cancer subtype 1, 2. Compared to Caucasian women, there have been fewer published 

studies investigating the association between common risk factors, such as tubal 

ligation, use of hormonal contraceptives, obesity, body powder and dietary patterns, and 

ovarian cancer risk in AA 1, 3-9. Moreover, the investigation of genetic susceptibility to 

epithelial ovarian cancer (EOC) in AA has not been comprehensive. The limited 

assessment of genetic susceptibility among AA are in modest sized study populations of 

candidate genes including the repeat polymorphisms of the androgen receptor (AR), 

vitamin D receptor (VDR) and cellular transport genes, where an association with risk of 

ovarian cancer was observed 10-12.  

The vitamin D receptor mediates the regulation of a pleotropic cascade of 

physiological responses; including those involved in phase I and phase II detoxification 

and the epidermal growth factor receptor (EGFR) proliferation pathways in ovarian and 

other cancer cell lines; through VDR/DNA interactions and bioavailability of vitamin D 13-

17.  A VDR variant, rs7305032, was associated with ovarian cancer in 125 cases and 

155 controls of AA but other observations were limited because of small sample size 11.  

Moreover, known genetic varations in the VDR/vitamin D biosynthesis and pathway 

target genes have been implicated in AA disease risk. Therefore an objective of this 

study was assess those variants in ovarian cancer in women of African ancestry in a 

large sample.  

Using a candidate gene approach, SNPs were selected from genes involved in 

vitamin D biosynthesis and metabolism; and putative targets of VDR regulation.  Genes 

of the vitamin D biosynthesis pathways included cytochrome P450s: CYP2R1, 
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CYP27B1, CYP24A1, CYP11A1, and group-specific component-Vitamin D-binding 

protein (GC) which collectively are responsible for the homeostatic control and 

bioavailability of vitamin D 18-23.  The candidate genes involved in vitamin D metabolic 

processes included CYP3A4/5 and UDP-glucuronosyltransferase 1A  (UGT1A) locus 

members responsible for glucuronidation and hydroxylation of the biologically active and 

circulatory forms of vitamin D.  These genes are also inclusive of candidates regulated 

by vitamin D/VDR binding which included CYP3A4/5, UGT1A locus members, EGFR 

and UDP-glucuronosyltransferase 2 (UGT2) locus members; and associated, in part, 

with other cancers in AA individuals 24-39.  Thus, variants in VDR and additional genes 

from vitamin D biosynthesis and pathway targets are viable candidates to investigate 

the genetic underpinnings of ovarian cancer risk in women of African descent.   

In this study, SNPs from 11 gene regions: VDR, EGFR, UGT1A, UGT2A1/2, 

UGT2B, CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC, were 

genotyped, imputed then assessed for risk of EOC and high grade serous ovarian 

cancer (HGSOC) in cases and controls of AA from the African American Cancer 

Epidemiology Study (AACES) 40 and the Ovarian Cancer Association Consortium 

(OCAC) 41.   

MATERIALS AND METHODS 

Study Populations 

The Genetic Associations and Mechanisms in Oncology (GAME-ON) project comprised 

63, mostly, case-control studies from four continents (North America, Europe, Asia and 

Australia). Only 32 studies contributed subjects of African Ancestry, including AACES 

and studies in OCAC, and were included in the current analysis (Supplemental Table 1).  

AACES, previously described elsewhere 40, is a multi-center population-based case-

control study of newly diagnosed invasive EOC in African American women that 

enrolled study subjects between 2010 and 2015. Established in 2005, OCAC is an 

international consortium focused on genetic association and pooled risk factor analyses. 

The current analyses included 1,990 samples: 1,235 controls and 755 invasive EOC 

cases who passed quality control filters, all of whom were AA. The majority of the EOC 

cases were HGSOC (n= 537, 71%), followed by 49 mucionous cases (7%), 28 
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endometrioid cases (4%), 23 clear cell cases (3%), 12 mixed histology (2%) and 53 

other (7%). All subjects included in this analysis provided written informed consent as 

well as data and blood samples under ethically approved protocols. 

Genotyping, ancestry analysis and quality control 

Genotyping of AA women from OCAC was completed using the custom-designed 

533,631 SNP array, the Illumina OncoArray. Sample level quality control included 

restriction to females, filter on call rate > 95%, heterozygosity (either too big or too 

small), removal of ineligible samples, and relationship inference to check for unexpected 

first degree relatives. SNP level quality control included filter on call rate > 95%, and 

Hardy-Weinberg Equilibrium p-value > 1x10-5. After applying these procedures, 471,780 

SNPs remained. 

 Intercontinental ancestry was calculated for the OCAC and AACES samples 

using the software package FastPop 42 that was developed specifically for the 

OncoArray Consortium. Only the African ancestry samples defined as having >50% AA 

were used for the present analyses reported here. Seventy-seven cases and 120 

controls were omitted due to African ancestry <50% and one gender mismatch.  

Principal components computed using FastPop were further used to adjust for 

population structure in our analyses. 

Genotype Imputation Analysis 

Using the genotyped SNPs that passed quality control, haplotypes were phased using 

SHAPEIT v2 followed by imputation to the 1,000 Genomes Phase 3 v5 reference set 

using Minimac3.   

Gene Region and SNP Selection 

Eleven gene regions were defined based on human genome build 37. SNPs within the 

selected regions were filtered on imputation quality score (minimac imputation R-

squared) > 0.5 for imputed SNPs, or Hardy-Weinberg Equilibrium p-value > 1.0 x 10-5 

for genotyped SNPs. Quantile-quantile plots on the EOC and HGSOC dataset 

(Manichaikul et al., unpublished) have lambdas of 1.01 each within normal range 43.  
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The imputation quality scores for significant SNPs are provided.  We further applied 

filter on effective heterozygosity count > 30.  After applying filters, the following numbers 

of SNPs were remaining in each of the selected gene regions for EOC: 288 in VDR, 433 

in UGT2A1/2, 6302 in UGT2B, 919 in UGT1A, 963 in EGFR, 17 in CYP2R1, 4 in 

CYP27B1, 113 in CYP24A1, 90 in CYP11A1, 411 in CYP3A4/5 and 296 in GC.  For 

selected regions for HGSOC analysis, the number of SNPs were:  234 in VDR, 413 in 

UGT2A1/2, 5674 in UGT2B, 833 in UGT1A, 824 in EGFR, 15 in CYP2R1, 4 in 

CYP27B1, 106 in CYP24A1, 82 in CYP11A1, 375 in CYP3A4/5 and 282 in GC. 

Statistical Analysis 

Genetic association testing was carried out with adjustment for two principal 

components (PCs) of ancestry using a logistic regression model that accounts for 

genotype uncertainty under a score test as implemented in SNPTEST v2.5.2 to 

estimate odds ratios (OR) and 95 % confidence intervals (CI). For each gene region, we 

applied a gene-specific Bonferroni-threshold for statistical significance defined as 0.05 / 

number of SNPs examined for that gene. We further assessed the main results with an 

alternative to the Bonferroni threshold using the Bayesian False Discovery Probability 

(BFDP) which provides the posterior probability of a false discovery based on a given 

prior probability of non-null association at a given SNP 44. For this study we specified a 

prior probability of association at each SNP under investigation based on the total 

number of SNPs within each candidate gene region as 0.5 x 1/(NSNP / 3) where NSNP 

represents the number of SNPs in the given candidate gene region. We considered 

NSNP/3 to be an approximation of the effective number of independent SNPs within in 

each gene region, taking into account the fact that many SNPs will be correlated due to 

linkage disequilibrium. Accordingly, the specified prior indicates a 50% chance of true 

discovery within each gene region, with the prior probability of non-null association 

distributed randomly among all SNPs within the region.  In order to avoid spurious 

positive associations, we applied a filter on effective heterozygosity count (HC) > 30 in 

each of cases and controls. Here, HC is defined as N x MAF x (1-MAF) for each SNP, N 

represents the sample size (either the number of cases or the number of controls), and 

MAF represents the SNP minor allele frequency. Based on 755 EOC cases and 537 
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HGSOC cases, respectively, applying this filter equates to applying a SNP MAF filter of 

4.2% and 6% in analysis of EOC and HGSOC, respectively.  Statistical power 

calculations for AA study participants and Caucasians are included in Supplemental 

Tables 2 and 3. 

 

 RESULTS 

VDR Pathway Gene Regions and risk of EOC 

SNPs from eleven gene regions (CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, 

CYP11A1, EGFR, GC, UGT1A, UGT2A1/2, UGT2B and VDR) from VDR biosynthesis 

and pathway targets were assessed for association with EOC (Supplemental Table 4).  

The top associations are reported in table 1. Individuals carrying the major allele of SNP 

rs10017134 of the UGT2A1/2 gene region had an increased odds of EOC when 

corrected for multiple comparisons (OR=1.4, 95% CI=(1.2, 1.7), p=1.2x10-6).  The BFDP 

for rs10017134 of 0.020 corresponds to 98% posterior probability of non-null 

association for this SNP. Significant associations with EOC were also observed for 

UGT2A1/2 SNPs, rs2288741 and rs11939884.  The variants are found in both UGT2A1 

and UGT2A2 as the genes share common exons 2 through 6 45.  Supplemental Table 5 

summarizies other notable (p<0.01) SNP associations with EOC in the OncoArray 

analysis. 

 

VDR Pathway Gene Regions and risk of HGSOC 

SNPs from the ten gene regions from VDR biosynthesis and pathway targets 

were assessed for association with HGSOC (Supplemental Table 4).  The top 

associations are in reported in table 2. Individuals carrying the minor allele of EGFR 

SNP rs114972508 had more than two-fold increased odds of HGSOC (OR=2.3, 95% 

CI=(1.2, 3.4), p=1.6x10-5) (Table 2).  The posterior BFDP is 29% for SNP rs114972508 

corresponds to 71% posterior probability of non-null association.  SNP rs10017134 of 

the UGT2A1/2 gene region also showed association with HGSOC (OR=1.4, 95% 

CI=(1.2, 1.7), p=2.3x10-5) (Table 2).  The posterior BFDP is 22.8%.  Supplemental 
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Table 6 summarizies other notable (p<0.01) SNP associations with HGSOC in the 

OncoArray analysis.   

 

DISCUSSION 

 Few studies have investigated the genetic susceptibility for ovarian cancer 

among women of African descent. The assessment of candidate SNPs from 

chromosomal regions that contain genes regulated by VDR activity provides some 

evidence of association with EOC risk. The notable findings from this analysis show, for 

the first time, that risk assessments of variants in the UGT2A1/2 and EGFR gene 

regions are suggestive of associations with EOC and HGSOC. The results also 

demonstrate evidence of associations for other SNPs from the candidate gene regions 

with EOC and HGSOC. Although the candidate SNPs are located in intronic regions 

there is ample evidence that many gene regulatory regions are present in those regions 

including encoded microRNAs, alternate splice sites, and cis-regulatory modules and 

transcription factors binding sites 46-48. In addition, recent studies have shown using 

targeted RNAseq analysis that there are numerous splice variants of the UGT genes 49. 

 The UGT2A1 and 2A2 genes are distinguished by unique first exons joined to 

common exons 2–6 and are located downstream of UGT2B4 on chromosome 4 45.  

UGT2A transcripts have been detected in several extrahepatic tissues such as the lung, 

trachea, larynx, intestine, pancreas and kidney 50. UGT2A1 is an extrahepatic enzyme 

that is expressed mainly in the nasal epithelium, catalyzing the glucuronidation of 

testosterone and epitestosterone at considerable rates and has similar kinetics as the 

UGT2B gene family members 51.  There are reports that this enzyme also has activity 

toward estrogen metabolites epiestradiol and β-estradiol 52.  UGT2A1 has exhibited 

highest expression in the lung, followed by trachea, tonsil, larynx, colon, olfactory 53. 

UGT2A2 mRNA expression was reported in fetal and adult nasal mucosa tissues 54.  

However, unlike UGT2A1, other expression analyses suggested that wild-type UGT2A2 

had the highest expression in the breast, followed by trachea, larynx, and kidney 55.  

      Neither the UGT2A1 gene, nor UGT2A2 expression have been examined in ovarian 

tissue.  However, VDR ChIPseq peak locations have been identified 430 kb 

downstream of the UGT2A1/2 locus in experiments with THP-1 cells treated with 
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1a,25(OH)2D3, the biologically active form of the vitamin D hormone, suggestive of a 

regulatory role for vitamin D 56.  Splice variants found in UGT2A1/2 that are highly 

conserved among both UGT1A and UGT2 gene families have been implicated in altered 

glucuronidation activity against tobacco carcinogenesis 49, 53, 55, 57.  Two of the UGT2A1 

SNPs associated with EOC and HGSOC in this study are intron variants (rs10017134 

and rs2288741) while the third (rs11939884) is a 3’ UTR variant.  It is probable that 

these variants alter enzyme function in target tissues including ovarian and/or alter risk 

in AA smokers. Of note, cigarette smoking has been found to be associated with the 

risk of mucinous EOC, but not HGSOC among Caucasion women 58. Moreover, 

providing some plausibility for the mechanism of the observed SNP association, a 

recent report suggests that cigarette smoking may be associated with serous EOC 

among African American women although a dose-response relationship was not 

observed 59.  The association of genes from the UGT superfamily with ovarian cancer 

in AA is consistent with significant associations observed for Caucasian women for 

UGT1A12.  However in that study, no association was observed for AA samples which 

had a MAF of 0.42 for the risk allele while Caucasians had MAF of 0.07.  Some but not 

all MAFs for the relationships observed in this study differ by race so it is unlikely to 

explain racial differences in race.  

 The EGFR gene product has been a chemotherapeutic target for EOC since 

overexpression has been linked to poor prognosis in ovarian cancer patients 60-62. The 

signaling pathway for EGFR is mediated by ligands including the epidermal growth 

factor in the regulation of cell proliferation, differentiation and apoptosis in normal cells.  

Research into the mechanisms of EGFR overexpression has focused on mutations and 

amplifications in the coding region of the gene containing the receptor tyrosine kinase 

domain 63. However, few studies on SNP variants in this region have been linked to 

EOC or other ovarian cancer histologic subtypes 61, 63.  EGFR SNP rs114972508 is 

located in intron 1 of the EGFR gene. The location of the SNP is approximately 70 kb 

upstream of a VDR binding site also within EGFR intron 1 that has been shown 

experimentally to down regulate EGFR expression and proliferative function 15.  

Perhaps changes in the intron sequences may impact EGFR function and subsequently 

be as critical to cellular homeostasis as the receptor tyrosine function that has been 
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extensively researched. Thus, EGFR SNPs could be abrogating vitamin D hormone 

regulation of ovarian cell proliferation and increasing susceptibility for the development 

of HGSOC in AA women.  

 Although we were unable to confirm the association between previously 

identified VDR variants and risk of EOC, a recent case-control study of women of 

European ancestry (10,065 cases, 21,654 controls) showed that SNPs associated with 

decreased circulating 25-hydroxyvitamin D were associated with ovarian cancer and 

HGSOC 64 while another study showed that AA women exposed to increased sunlight 

had a decreased risk for ovarian cancer 8. These observations suggest that other 

mechanisms affecting vitamin D hormone activity independent of the VDR may be 

important in ovarian cancer etiology.  

The main observations in the current study result from imputations of genotyped 

SNPs but independent of VDR  variant association with EOC and HGSOC. The VDR 

SNPs previously observed to be associated with the risk of EOC 11, including rs7975232 

and rs7305032, were not associated with risk of EOC in the current study 

(Supplemental table 7).  A look up of the significant study SNPs in archived OCAC data 

on Caucacians shows no significant associations for the UGT2A1/2 SNPs. Data on the 

EGFR SNP was not available (Supplemental Table 8).  Other VDR SNPs showed 

nominal (non-Bonferroni corrected) associations with EOC but not with HGSOC 

(Supplemental Table 7). Although the largest study to date of genetic association with 

EOC in AA, the modest sample size remains a limitation of the current study and 

therefore some of the nominal SNP associations may be a result of inadequate power. 

The analyses are underpowered for discovery analysis across the selected gene 

regions and important associations may have been missed, nonetheless, we still found 

significantly associations with EOC and HGSOC. Several suggestive and nominal SNP 

associations (outside of Bonferroni significance) may provide some insight and 

consideration for future experimental studies to further explore the relevance of vitamin 

D biosynthesis and pathway target genes. Larger studies of AA are warranted to clarify 

these finding. 

In summary, this study reports, for the first time, an association between EGFR 

and UGT2A1/2 variants with ovarian cancer risk in AA women. These gene variants 
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could perturb cell proliferation and enzyme efficacy in ovaries and impact susceptibility 

to ovarian cancer by altering growth and intercellular hormone metabolism.  Future 

studies are needed to validate the associations of the imputed SNPs and to determine 

their impact on cancer development.  Currently, there are no published reports of 

population studies of UGT2A1/2 polymorphisms in Europeans or other racially distinct 

groups in larger sample sizes than this AA study that would allow intricate gene-

environment analysis. At this present time, there is only speculative evidence that 

UGT2B gene region variants may be associated with differences in nicotine metabolism 

across African American, Native Hawaiian, Caucasian, Latino, and Japanese American 

smokers 65, 66.  Analyses of the UGT2A1/2 variants across populations may reveal 

differential risk to ovarian disease. In addition, expression and functional analysis in 

ovarian tissue needs to be accomplished to elucidate the impact on tissue homeostasis.  

In spite of the limitations of this study, these results provide new insight into proliferative 

and hormone target pathways that may represent important opportunities for the 

development of chemotherapeutic targets and intervention strategies.    
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Table 1.  Top  SNP  P-values from gene regions associated with EOC in African American OncoArray analysis 

SNP ID 

(Effect / other allele) 

Nearest gene(s) 

Effect 

Allele 

Frequency 

N OR 95% CI P-value 

Bayesian 

False 

Discovery 

Probability 

(BFDP) 

Imputation 

quality 

rs10017134 (C/T) UGT2A1/2a* 0.73 1990 1.4 (1.2, 1.7) 1.2 x 10-6 0.020 0.998 

rs2288741 (T/G) UGT2A1/2* 0.73 1990 1.4 (1.2, 1.6) 1.9 x 10-6 ------- ------- 

rs11939884 (T/G) UGT2A1/2a* 0.14 1990 0.7 (0.5, 0.8) 1.7 x 10-6 ------- ------- 

a

Imputed 

*Bonferroni correction was applied to adjust for multiple SNPs comparisons. There were 433 SNPs in UGT2A1/2 gene. BFDP is 

reported based on a prior probability of association (pi0) equal to 0.6 * 1/(Number of SNPs / 3). 

 

 

 

Table 2.  Top  SNP  P-values from gene regions associated with HGSOC in African American OncoArray analysis 

SNP ID 

(Effect / other allele) 

Nearest gene(s) 

Effect Allele 

Frequency 
N OR 95% CI P-value 

Bayesian 

False 

Discovery 

Probability 

(BFDP) 

Imputation 

quality 

rs114972508 (T/C) EGFRa*
 0.04 1772 2.3 (1.2, 3.4) 1.6 x 10-5 0.293 0.890 

rs10017134 (C/T) UGT2A1/2a+ 0.72 1772 1.4 (1.2, 1.7) 2.3 x 10-5 0.228 0.998 

rs2288741 (T/G) UGT2A1/2+ 0.72 1772 1.4 (1.2, 1.7) 3.1 x 10-5 -------- ------- 

a

Imputed 
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*Bonferroni correction was applied to adjust for multiple SNPs comparisons. There were 824 SNPs in EGFR gene, and 413 SNPs 

in UGT2A1/2 gene. BFDP is reported based on a prior probability of association (pi0) equal to 0.5 * 1/(Number of SNPs / 3). 
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