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Abstract15

In situ observing networks are increasingly being used to study greenhouse gas16

emissions in urban environments. While the need for sufficiently dense observations has17

often been discussed, density requirements depend on the question posed and interact with18

other choices made in the analysis. Focusing on the interaction of network density with19

varied meteorological information used to drive atmospheric transport, we perform geosta-20

tistical inversions of methane flux in the South Coast Air Basin, California in 2015-201621

using transport driven by a locally tuned Weather Research and Forecasting (WRF) config-22

uration as well as by operationally-available meteorological products. We find total-basin23

flux estimates vary by as much as a factor of two between inversions, but the spread can24

be greatly reduced by calibrating the estimates to account for modeled sensitivity. Using25

observations from the full Los Angeles Megacities Carbon Project observing network, in-26

versions driven by low-resolution generic wind fields are robustly sensitive (p<0.05) to27

seasonal differences in methane flux and to the increase in emissions caused by the 201528

Aliso Canyon natural gas leak. When the number of observing sites is reduced, the bas-29

inwide sensitivity degrades, but flux events can be detected by testing for changes in flux30

variance, and even a single site can robustly detect basin-wide seasonal flux variations.31

Overall, an urban monitoring system using an operational methane observing network and32

off-the-shelf meteorology could detect many seasonal or event-driven changes in near real33

time – and, if calibrated to a model chosen as a transfer standard, could also quantify ab-34

solute emissions.35

1 Introduction36

Recent years have seen increased efforts to quantify greenhouse gas emissions at37

or below the scale of individual cities. In complement to process-based inventories [Gur-38

ney et al., 2012], aircraft campaigns [Mays et al., 2009; Wecht et al., 2014], and analysis39

of satellite data [Kort et al., 2012; Ye et al., 2017] among other methods, a common ap-40

proach has been to deploy a network of sensors within and around a city [McKain et al.,41

2012; Breon et al., 2014; McKain et al., 2015; Richardson et al., 2016; Shusterman et al.,42

2016; Pugliese, 2017; Verhulst et al., 2017]. The density and placement of sensors within43

a network, together with the local meteorology and the spatiotemporal pattern of emis-44

sions, determines the extent to which the network is reliably sensitive to emissions over45

the whole region of interest and within the relevant time scale. Prospective network design46
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studies [e.g., Kort et al., 2013; Turner et al., 2016; Lopez-Coto et al., 2017] have attempted47

to ensure adequate sensitivity, but the standard of adequacy is necessarily relative to some48

particular purpose or question.49

Much urban monitoring work focuses on improving the precision of absolute flux50

estimates, setting goals such as “to quantify CO2 and CH4 emission rates at 1 km2 reso-51

lution with a 10% or better accuracy and precision” [Davis et al., 2017]. Such precision52

may be a long way off or may not be achievable in every setting; however, a variety of53

other questions of interest can be answered without precisely constraining the absolute54

fluxes. For example: what seasonal variations and/or year-over-year trends exist in emis-55

sions rates, and what fraction of emissions can be attributed to the urban biosphere or to56

specific anthropogenic source sectors? An operational monitoring system might be able to57

detect an unusual excursion in the urban flux, and even to suggest a source location, even58

if the baseline flux is not known accurately.59

In addition, network density interacts with a host of other factors that also impact60

the precision and confidence with which the above questions can be answered, including:61

representation of background concentrations and of the biosphere flux contribution, the62

statistical method to be used and the choices made in implementing that method (such as63

the specification of covariance parameters and the choice of a prior), and modeling of me-64

teorology and of transport processes. This complex web of factors, and their interactions65

and contributions to the overall uncertainty in modeled posterior fluxes, are only beginning66

to be understood, especially in the urban setting. In this study, we focus on the meteo-67

rological driver of transport and how it impacts the inverse results. Future work should68

consider other factors, including the interaction of data density and driving meteorology69

with the choice of inversion methodology.70

Representation of atmospheric transport is believed to be an important source of er-71

ror in estimating GHG fluxes using atmospheric (in situ or column) observations [McKain72

et al., 2012; Feng et al., 2016]. However, there is no generally-adopted scheme for quanti-73

fying the effects of transport error. In inversions, some authors simply increase the model-74

data mismatch covariance across the board to account for transport error [e.g., Breon et al.,75

2014]. Lin and Gerbig [2005] proposed using the increase in the variance of modeled con-76

centrations when the observed error statistics of the wind components are incorporated77

as additional stochastic variability in the transport model. Recently, Gourdji et al. [2018]78
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showed that some of the effects of wind speed error could be mitigated by specifying an79

additional covariance proportional to the discrepancy in wind speed between model and80

observations.81

Along with quantifying transport error, it is difficult to validate transport models or82

meteorological models in their role as drivers of transport in estimating fluxes for a par-83

ticular question. On their own, meteorological models can be validated against point ob-84

servations, most commonly of wind speed and direction and/or mixing depth. Validation85

of this kind is often used to tune model parameters or to choose a boundary-layer physics86

scheme or other model configuration [e.g., Nehrkorn et al., 2013; Feng et al., 2016], but87

does not directly address the fidelity of the transport or the impact on flux estimation.88

Deng et al. [2017] performed a semi-direct evaluation of coupled weather-transport models89

by comparing the marginal posterior likelihoods of the resulting CO2 flux estimates. Di-90

rect validation of transport using controlled release of an inert tracer is also possible [e.g.,91

Harrison et al., 2012] but rarely included in urban studies.92

In this study, rather than focus on the optimization of meteorological representation93

to achieve highest accuracy, highest resolution inversion results, we instead assess whether94

non-optimized, rapidly available meteorological products can successfully underpin an at-95

mospheric inversion system. We focus on questions of whether such a system can detect96

anomalous high emissions events, and whether seasonal flux behaviors can be robustly in-97

ferred. If a rapidly available meteorological product can successfully underpin such a sys-98

tem, this indicates near-real time inversions driven by such a product could be conducted99

and expected to produce statistically useful results in near-real time.100

To pursue such an approach, we consider Los Angeles as an ideal test case. Cali-101

fornia has had extensive study and validation of transport models [Angevine et al., 2012,102

2013; Zhao et al., 2009; Bagley et al., 2017]. A statewide assessment of transport is sum-103

marized in Bagley et al. [2017], and a regional assessment in the greater Los Angeles area104

in this study indicated little seasonally dependent bias. For Los Angeles specifically, pre-105

vious work has assessed meteorological representation, determining what could be con-106

sidered an optimal approach to high-resolution simulations and performing substantive107

validation [Feng et al., 2016; Angevine et al., 2013].108

With this meteorological underpinning, Yadav et al. [2018] performs inversions in109

Los Angeles evaluating what can be learned with such an optimized system. In this study,110
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rather than focusing on developing and validating an optimal transport representation, we111

use the Yadav et al. [2018] results as a ’base’ case. We compare estimated fluxes from112

geostatistical inversions driven by this optimized base system with fluxes estimated from113

geostatistical inversions driven by three broadly-available models or reanalysis products:114

High-Resolution Rapid Refresh (HRRR), North American Regional Reanalysis (NARR),115

and the Global Data Assimilation System (GDAS). We evaluate how these different inver-116

sions perform at determining the absolute flux, detecting both anomalous high emissions117

events and seasonal flux variance across the basin, and evaluate the role of observation118

site density is achieving these objectives. Los Angeles provides an opportunistic location119

for these tests as the large leak from the Aliso Canyon storage facility, which released an120

estimated 97,100 Mg over four months beginning in October 2015 [Conley et al., 2016],121

provides what could be considered a tracer release experiment for our purposes. Addition-122

ally, seasonal variation in methane emissions has been previously observed and reported123

[Yadav et al., 2018], and also provide a challenge test case for our non-optimized meteoro-124

logical drivers.125

2 Approach126

We perform geostatistical inversions of methane flux between July 1, 2015 and De-127

cember 31, 2016, using transport driven by each of four meteorological models or reanal-128

ysis products: WRF, HRRR, NARR, and GDAS. Each product is used to drive the La-129

grangian transport model STILT [Lin et al., 2003; Nehrkorn et al., 2010] in order to esti-130

mate the sensitivity of in situ CH4 mole fraction measurements to emissions fluxes. We131

estimate fluxes using a geostatistical inversion system based on that developed by Yadav132

et al. [2018], with a spatial resolution of 0.03 degrees within the SoCAB and at a tem-133

poral resolution of four days. The study domain along the coast of Southern California,134

along with the locations of the observing sites and the Aliso Canyon gas storage facility, is135

shown in Figure 1.136

One of the four meteorological drivers we consider, the Weather Research and Fore-137

casting model (WRF) as configured by Feng et al. [2016], has been extensively validated138

by those authors against observations of wind speed and direction and of PBL height in139

the Los Angeles area, as well as by comparing forward-modeled CO2 emissions from the140

detailed Hestia inventory to in situ and flask mole fraction observations. That validation141

provided the basis for the WRF runs used in Yadav et al. [2018], which are the same ones142
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we use here. The inner WRF domain, which includes the region considered here, has a143

spatial resolution of 1.3 km and a time step of less than one minute. More details of the144

WRF setup are given in Supplementary Table S1.145

To verify that this WRF configuration makes a reasonable base case for a locally-146

tuned driver of transport, we supplement the existing validation by Feng et al. [2016]147

by directly testing observable meteorological variables in the WRF configuration against148

those measured at 42 surface observation sites. Agreement is generally good. Across four-149

day periods between January 2015 and March 2016 (overlapping but not identically with150

our inversion timeframe), 10 m wind speed bias errors are below 0.5 m/s in 87% of cases,151

with RMS errors generally in the 1.5 to 2.0 m/s range. Bias errors in 2 m temperature152

are below 1 K in 92% of cases with RMS errors generally around 1.5 to 2.0 m/s. Despite153

strong seasonal variation in meteorology in Southern California, we find no discernible154

seasonality in RMS or bias errors of temperature or wind speed; see Supplemental Figure155

S1. While future improvements of transport representation are always possible, the combi-156

nation of past validation and the meteorological comparison presented here establish that157

it is reasonable for us to treat the WRF system as a representative base case for a locally-158

tuned driver of transport.159

In contrast, the NOAA High Resolution Rapid Refresh model (HRRR) [Benjamin160

et al., 2016] has a resolution of 3 km over the continental United States and uses a WRF161

physics model assimilating radar data every 15min, but is not optimized for the local en-162

vironment. HRRR output is available as of mid-2015, albeit with some gaps, most notably163

in August 2016 when the model was upgraded to Version 2. In addition, some STILT runs164

driven by HRRR fail before the full prescribed simulation period is complete. We exclude165

from the HRRR inversions any observations for which the necessary HRRR fields are not166

available or for which the HRRR-STILT sensitivity calculations cover 12 hours or less due167

to gaps in STILT-HRRR. The latter condition excludes 4.2% of observations, spanning168

every month of the study period but especially concentrated (6.9%) in November 2015169

through March 2016. Although the increased failure rate coincides with the Aliso Canyon170

gas leak, we judge that it remains low enough to permit evaluation of the HRRR-STILT171

inversion.172

The North American Regional Reanalysis (NARR) [Mesinger et al., 2006] and the173

Global Data Assimilation System (GDAS) are much coarser, with resolutions of 32 km174
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and 0.5 degrees respectively and timesteps of 3 hrs, but cover larger areas (North America175

and the whole globe). An advantage to using HRRR, NARR, and GDAS is that all are176

run in a routine operational mode; output can be downloaded from the NOAA READY177

archive in a format immediately suitable for transport modeling. For low cost, low latency178

flux estimation in any urban environment, these products are available off-the-shelf.179

We would not expect coarse products like NARR and GDAS to accurately represent180

conditions on fine spatial scales within our estimation domain, which spans only about181

200 km from east to west. The complex topography and sea breeze circulation pattern of182

the LA basin [Lu and Turco, 1994, 1995] further complicate the environment for transport183

modeling. Lin et al. [2017] emphasize the failure of transport driven by coarse meteorol-184

ogy to reproduce the diurnal cycle of CO2 mole fraction in mountainous terrain. However,185

several factors may mitigate the effect of poorly resolved topography: while the SOCAB186

domain includes significant elevation changes, most of the observing sites are located in187

the valley; CH4 flux generally has a less pronounced diurnal cycle than does CO2 flux;188

and, as recommended by Lin et al. [2017] for coarse meteorology, we use only observa-189

tions taken between 12:00 and 16:00 local time, when the terrain effects are minimized190

and the representation of vertical mixing is believed to be most reliable.191

Driven by each meteorological product, STILT simulates the transport of 800 parti-192

cles 60 hours back in time from each observation. The 60-hour simulation time was cho-193

sen conservatively to ensure that all recent within-domain influences on the particles are194

captured. In addition to advection, STILT includes a stochastic component that can simu-195

late particle motion on spatial and temporal scales shorter than that of the driving meteo-196

rology, which may help mitigate the effect of using temporally coarse products like NARR197

and GDAS.198

Our inversions process data from the surface monitoring network maintained by204

the LA Megacities Carbon Project, which measures CH4 mole fractions at nine loca-205

tions within our domain: Granada Hills (GRA), Mount Wilson Observatory (MWO),206

Pasadena/Caltech (CIT), downtown LA at the University of Southern California (USC),207

Compton (COM), CSU Fullerton (FUL), UC Irvine (IRV), Ontario (ONT), and San Bernardino208

(SBC). Detailed information about each site is given in [Verhulst et al., 2017]. Data avail-209

ability for each site during the study period is shown in Supplementary Figure S2; an ad-210

ditional site at Canoga Park (CNP) was not used here because it came online only in Oc-211
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Figure 1. Colors: Elevation map of the study domain. Circles: locations of observing sites. The three sites

included in the reduced network are indicated by their three-letter codes. The star in the western part of the

domain indicates the location of the Aliso Canyon facility. Scale bars indicate the grid sizes for the WRF (1.3

km), HRRR (3 km), NARR (32 km), and GDAS (0.5◦) meteorological fields, showing the coarse resolution of

the latter fields relative to the domain.
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tober 2016, at the end of our study period. Background concentrations are estimated as in212

Verhulst et al. [2017].213

In order to test the impact of network density, we also perform inversions using a214

reduced network and using a single observing site (in addition to the background site).215

The single-site inversions use the network’s most centrally-located site, at the University216

of Southern California in downtown Los Angeles (USC). The USC site was chosen to re-217

flect a plausible design for a network consisting of only a single site, which would likely218

be designed to be sensitive to as much of the domain as possible at least part of the time.219

The reduced-network inversions use the sites at Fullerton (FUL), in the eastern part of the220

domain, and at Granada Hills (GRA), in the northwest near the Aliso Canyon facility, in221

addition to the USC site. These sites are selected to cover a broad domain in the basin222

and because observations are available for these three sites for the vast majority of the223

study period. In both the single-site and reduced-network cases, we would expect inver-224

sion performance to suffer if sites covering less of the domain were chosen. A complete225

description of the observing network is available in Verhulst et al. [2017].226
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In all inversions, we employ the geostatistical inversion methodology developed by227

Yadav et al. [2018]. In addition to a model linearly proportional to the distribution of228

emissions in the CALGEM inventory [Zhao et al., 2009; Jeong et al., 2012], we include229

a spatially constant model component, since we expect that the inversions using coarse230

meteorology may be unable to resolve the location of detected fluxes. Note that no input231

singles out either the location or the time period of the Aliso Canyon natural gas leak. In232

other words, this inversion makes use of no prior knowledge of the leak. We constrain the233

methane fluxes to nonnegative values using a bounded version of limited memory BFGS234

optimization [Byrd et al., 1995], which is well suited to rapidly minimizing functions of235

many variables and thus facilitates rapid, near-real time calculations. This is different from236

the Lagrange multiplier approach used in Yadav et al. [2018]. Additional subtle differ-237

ences between the WRF inversion case here and that of Yadav et al. [2018] are that we238

exclude periods in which STILT transport fails using any of our meteorological prod-239

ucts (as described above), our focused time series is slightly different, and we do not in-240

clude the Canoga Park site when it comes online late in the time period. These differences241

are driven by either the motivation to construct a fast, operational system or to ensure we242

make fair 1:1 comparisons across meteorological products.243

The nonnegativity constraint on fluxes makes the posterior emissions probability244

non-Gaussian, which prevents us from calculating posterior uncertainties analytically. Un-245

certainties can be computed as in Yadav et al. [2018] by generating realizations from the246

posterior covariance distribution. However, each inversion covers only two consecutive247

four-day periods, the first of which is discarded as a spin-up window. As a result, the248

posterior uncertainty may not fully account for variation due to changes in the (actual or249

modeled) sensitivity of the observations to localized surface fluxes. That variation is es-250

pecially important for our purposes, since we test the detectability of localized flux events251

and since we use coarse meteorological products in which the footprint of sensitivity may252

be misplaced even when its magnitude is correct. We therefore rely on the spread of flux253

estimates across a number of consecutive four-day periods, rather than a calculated uncer-254

tainty for any given period, as an estimate of variance when testing for flux changes (see255

section 3.2). For future near-real-time applications, this method has the additional advan-256

tage of saving the computing time needed to generate the realizations.257
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3 Analysis258

3.1 Basin Total Flux259

Estimated whole-basin methane fluxes from each of the four inversions are shown260

in Figure 2. The Aliso Canyon event and seasonal cycle, known features we are using to261

test operational meteorologies, appear evident in all inversions and we assess this statisti-262

cally in section 3.2. All inversions show emissions up-ticks prior to the start of the Aliso263

Canyon event, which could be indicative of the leak beginning before the noted start date,264

or part of the seasonal increase in emissions. While this study does not attribute this fea-265

ture, note that it is not explained by the timing of the four-day periods used in the inver-266

sion, since the increase begins in periods which do not overlap the reported leak. Consid-267

ering emissions magnitudes, when the full observing network is included, estimates using268

transport driven by WRF and NARR average 53 and 47 Mg/hr outside the Aliso Canyon269

leak period, respectively, in broad agreement with the 35 to 50 Mg/hr range of baseline270

emissions estimates in other studies [e.g. Wennberg et al., 2012; Peischl et al., 2013; Wecht271

et al., 2014; Wong et al., 2015]. That our estimates fall at the upper end of that range is272

not surprising given that much of the previous work relied on observations taken in May-273

June 2010, not during the peak of the seasonal emissions cycle (see section 3.2). Esti-274

mates using HRRR are considerably higher than those using WRF, by about 96% on av-275

erage over the 18-month study period, and estimates using GDAS are somewhat lower, by276

about 16% on average.277

Much of the difference in estimated flux is explained by the difference in overall284

mean total sensitivity assigned by each model to the measurement network. We compute285

the mean total sensitivity Hmean for each model over the 18-month period of the study by286

summing the sensitivity of the nine measurement sites, then taking the mean over spa-287

tial flux grid cells and over observation times. In order to make a direct comparison, we288

exclude (for all models) observations for which HRRR fields are missing or for which289

HRRR-STILT runs failed; see Section 2. Treating WRF as a transfer standard, we per-290

form an empirical calibration, scaling the posterior fluxes sj from the NARR, HRRR, and291

GDAS-driven inversions (j) by the ratios of the sensitivities computed using those models292

relative to those using WRF:293

scal, j =
Hmean, j

Hmean,WRF
× s (1)
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Figure 2. Points: estimated total CH4 flux time series for the South Coast Air Basin (SoCAB), at four-day

time intervals, according to inversions using transport driven by each of four meteorological models and using

the full observing network (9 sites), a reduced network (3 sites), or a single observing site. Curves: 28-day

running means of each time series for visual reference (not used in the analysis). The shaded band indicates

the typical range of estimates in past studies. The dashed vertical lines indicate the start and end dates of the

Aliso Canyon natural gas leak.
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Figure 3. Estimated SoCAB total CH4 flux time series in inversions using the full observing network after

calibration by scaling the fluxes by the relative total sensitivity assigned to the observing network by each

driver of the transport model. The calibration brings the estimates into close agreement overall. Curves:

28-day running means of each time series for visual reference (not used in the analysis). The shaded band

indicates the typical range of estimates in past studies. The dashed vertical lines indicate the start and end

dates of the Aliso Canyon natural gas leak.
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After calibration, the mean posterior emissions scal, j come into much closer alignment294

overall. The difference in mean flux over the full 18-month study period relative to the295

WRF inversion is reduced to 17% with HRRR and 1% with GDAS and increases mod-296

estly to 3% with NARR. The scaled time series are shown in Figure 3. As we look at in-297

creasingly shorter time scales, more scatter remains between the calibrated flux estimates.298

The mean residual difference between monthly mean fluxes from the WRF inversion and299

calibrated estimates over the same periods from the other inversions is about 20% with300

HRRR and NARR and about 25% with GDAS. Individual four-day flux estimates after301

calibration are moderately well correlated overall, r = 0.47 to 0.50, but often diverge (see302

Supplementary Figure S3).303

If the sensitivity bias could be corrected using direct observations, our results sug-310

gest that accurate flux estimates might be possible, at least one monthly and longer time311

scales, using more widely available models than is generally assumed. However, several of312
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the meteorological factors most clearly linked to the sensitivity fail to explain the differ-313

ence. STILT computes sensitivity to surface fluxes by tracking the amount of time simu-314

lated air parcels spend in contact with the surface. The sensitivity Hi j of the ith observa-315

tion to the jth flux region is given by [Lin et al., 2003]316

Hi j =
mair

ρj

τ

zj
; τ =

1
Ni

Ni∑
pi=1
∆tpi, j (2)

where zj is the mixing depth, accounting for the effect of dilution, and τ is the average317

time spent by the parcels within the bottom one-half of the mixing layer above the flux re-318

gion. The average is taken over Ni simular parcels released backwards from the ith obser-319

vation and indexed by pi . On the basis of these relations, we would expect the intermodel320

differences in sensitivity to be explained by systematic differences either in the mixing321

height or in the residence time, i.e., the time for air to travel from the edge of the study322

domain to the observing site, as driven by the wind speed.323

In the STILT runs driven by each model or reanalysis product, we computed the324

mean time spent in the domain by measured air parcels before encountering an obser-325

vation site (residence time) as well as the time-averaged mixing depth along the parcel’s326

path. The same filtering was applied as in computing the mean sensitivities. As shown in327

Table 1, the results do not explain the differences in sensitivity. On average, mixing depths328

in HRRR are almost the same as those in WRF, and residence times are only modestly329

shorter – yet the sensitivity is much less. On the contrary, mixing depths in NARR are330

80% higher on average than those in WRF, yet the sensitivity is very similar.331

Since parcels may be within the horizontal extent of the domain but above the bot-338

tom half of the mixing layer (and therefore considered by STILT to be insensitive to sur-339

face fluxes), we also computed the fraction of their residence time that measured parcels340

spent near the surface. As shown in Table 1, this ‘near-surface fraction’ differs from WRF341

by no more than 13% in any of the other models. The expected combined effect of the342

mixing depth, residence time, and near-surface fraction is summarized on the fourth line343

of Table 1, in which we compute the relative sensitivity predicted by those mean variables344

according to345

Hmean
Hmean,WRF

=
zWRF

z
×

τ

τWRF
×

f
fWRF

(predicted) (3)

where f is the near-surface fraction. The resulting prediction fails to capture the actual346

differences in total mean sensitivity, which are given on the last line of Table 1.347
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WRF HRRR NARR GDAS

Mixing Depth (m) 615 612 / 99% 1109 / 180% 573 / 93%

Residence Time (min) 315 278 / 88% 250 / 79% 308 / 98%

Near-Surface Fraction 0.57 0.49 / 87% 0.65 / 115% 0.45 / 80%

Predicted Relative Sensitivity - / 77% / 51% / 84%

Actual Relative Sensitivity - / 53% / 96% / 120%

Table 1. First three rows: mean values of meteorological variables expected to contribute to sensitivity, for

STILT driven by each of four models or reanalysis products. These variables are described in section 3.1, and

percentages are relative to the same variables in WRF. Fourth row: expected ratios of the sensitivity in HRRR,

NARR, and GDAS, relative to that in WRF, given the above variables. Fifth row: actual ratios of the sentivity

in HRRR, NARR, and GDAS to that in WRF. The actual relative sensitivities are not accurately predicted on

the basis of the mean meteorological variables.

332

333
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336

337

Therefore, although basin-wide, 18-month-average sensitivity explains the gross dif-348

ferences in estimated flux between the inversions, the basin-wide, 18-month-average dif-349

ferences in the relevant underlying meteorological variables do not control the sensitivity350

in the same way. In the transport model, the whole basin is not treated as a single region;351

rather, Equation 2 applies separately in each 0.03-degree grid cell and for each four-day352

period, and the fine-scale interactions between the variables have a substantial effect.353

An important implication is that our modeled average sensitivities could not be cal-354

ibrated to ground truth by debiasing the underlying meteorological variables in a basin-355

averaged manner. For example, using lidar observations in Pasadena, California (colocated356

with one of the LA Megacities observing sites), Ware et al. [2016] showed that NARR357

persistently overestimates the mixing depth at that location, by more than a factor of two358

on average, and that any local mixing depth bias in WRF was likely much smaller. In-359

deed, we can see in Table 1 that mixing depths in NARR are very high on average over360

the whole domain. However, if the estimated fluxes in the NARR inversion were scaled to361

correct for this bias as suggested by Ware et al. [2016], the result would be to introduce a362

large positive bias into the fluxes. Of course, wind speed and mixing depth observations363

can be used to evaluate and improve meteorological drivers of transport, as was done for364
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the WRF configuration employed here by Feng et al. [2016] – but our results show that a365

mean calibration factor constructed from those observations could not be reliably correct.366

We might expect that the mean meteorological variables would better predict the to-367

tal sensitivity over shorter time periods, since correlations between the variables might be368

less important. However, we find that this is not the case on monthly timescales (see Sup-369

plementary Table S2), nor do calibration factors constructed from monthly average total370

sensitivities perform as well as the calibration factors calculated over the full 18-month371

study period. Calibration factors computed seasonally do somewhat better, but in most372

cases, seasonal mean fluxes come into closer agreement after applying the full 18-month373

calibration than after applying seasonal calibration. Overall, the calibration method seems374

to be most effective when applied over a year or more.375

One alternative to computing calibration factors from meteorological observations376

could be to run a trusted custom model for a limited period, compute a calibration using377

the mean sensitivity for that period, then continue estimating fluxes using an operational378

product. Though the time period of our study is too limited for a conclusive demonstra-379

tion, our experience suggests that this approach could be successful. We computed cal-380

ibration factors for each of HRRR, NARR, and GDAS based on the first twelve months381

of the study period, then applied those factors to the flux estimates for the last six months,382

July-December 2016. That calibration reduced the difference in mean flux between HRRR-383

and WRF-driven inversions from 103% to 2% and between GDAS- and WRF-driven in-384

versions from 15% to 6%, though it increased the difference between NARR- and WRF-385

driven inversions modestly, from 16% to 22%.386

3.2 Anomaly and Trend Detection387

We evaluate the ability of each inversion system to detect changes in the total basin388

flux, both seasonally and due to an unusual event or change. We test significance using389

Welch’s unequal-variances t-test, which has similar power to a standard t-test and is ap-390

propriate whether or not the samples to be compared have the same variance. The signifi-391

cances (p-values) for all the tests described in this section are given in Table 2.392

In all of the inversions using the full observing network, we observe a seasonal393

trend in CH4 emissions. Emissions in November-December 2016 are estimated to be 38%394

(NARR inversion) to 83% (GDAS inversion) higher than those in July-August. These pe-395
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riods were selected so as not to overlap the timeframe of the Aliso Canyon leak, in order396

to isolate the ‘normal’ seasonal difference. The estimated difference is significant at the397

95% level or better in all four inversions. The consistent detection and timing of the sea-398

sonal change, regardless of the meteorology used to drive transport, reinforce its status as399

a robust and substantial feature of Los Angeles methane emissions.400

We also test the detectability of the increase in flux during the Aliso Canyon leak401

period. To remove the impact of the seasonal dependence, we compare the period October402

24 through December 27, 2015 to the corresponding period in 2016 (in an operational403

setting, the comparison would generally be to previous years). The difference is significant404

at the 95% level in Welch’s t-test in the HRRR, NARR, and GDAS inversions but much405

less significant (p=0.17) in the WRF inversion. Note that this test of event detectability is406

distinct from quantifying the rate of a known leak as in Yadav et al. [2018].407

Our ability to observe the Aliso Canyon gas leak using the LA Megacities observ-408

ing network is limited by its position near the edge of the inversion domain, such that its409

emissions are observable only intermittently. However, as is apparent in Figure 2, this in-410

termittency can result in an increase in the variance of the retrieved fluxes, which may be411

significant even, or indeed especially, when the change in mean is not. In fact, in an F-test412

for difference of variance comparing October-December 2015 to 2016 as above, the in-413

crease in retrieved flux variance during the Aliso Canyon period is nearly as significant or414

more significant than the change in mean flux in the inversions driven by HRRR, NARR,415

and GDAS. The increase in variance is not significant (p=0.32) in the inversion driven by416

WRF, which shows the least variability relative to the estimated flux values. These results417

highlight the complimentary value of the two approaches, particularly for less-optimized418

meteorology.419

That the inversion driven by WRF does not significantly detect the Aliso Canyon426

event using our tests may be surprising. One plausible explanation is that, during the leak427

period, the WRF inversion produces consistent but only moderately elevated flux esti-428

mates. This moderate increase is not sufficient to distinguish itself from the corresponding429

increase in late 2016. By contrast, the other inversions produce exceptionally high esti-430

mates for some four-day periods. Even though estimates for other periods are not elevated,431

the average increase is sufficient for detection.432
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a.) Seasonal Difference, Welch’s t-test

WRF HRRR NARR GDAS

Full Network 0.047* <0.001* 0.048* 0.012*

Reduced Network 0.024* <0.001* 0.075 <0.001*

USC Site Only 0.53 0.0012* 0.025* 0.015*

b.) Aliso Canyon Period, Welch’s t-test

WRF HRRR NARR GDAS

Full Network 0.17 0.025* 0.016* 0.039*

Reduced Network 0.63 0.004* 0.051 0.30

USC Site Only 0.15 0.39 0.24 0.89

c.) Aliso Canyon Period, F-test for Difference of Variance

WRF HRRR NARR GDAS

Full Network 0.32 <0.001* <0.001* 0.044*

Reduced Network 0.60 0.056 0.016* 0.021*

USC Site Only 0.45 0.21 0.36 0.82

Table 2. Summary of p-values of two-sided tests for changes in mean emissions (a and b) or variance of

emissions (c), comparing summer to winter of 2016 (a) or the first 64 days of the Aliso Canyon gas leak in

2015 to the equivalent period in 2016 (b and c). Tests significant at the 95% level are indicated with an aster-

isk. Seasonal flux differences are detected in most cases even with reduced observations; the Aliso Canyon

leak is detected with the full network in the non-WRF inversions and with the reduced network in some cases

using the test of difference of variance.

420

421

422

423

424

425
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The difference in variability between the WRF inversion and the others may be due433

to the assignment of covariance parameters according to Restricted Maximum Likelihood434

(RML) analysis. Rather than assign prior uncertainties by expert judgment, RML finds the435

combination of covariances that make the actual observations most likely, given the sen-436

sitivity footprints computed by the transport [Michalak et al., 2004]. The variances of the437

observations and the spatial pattern of prior covariance are therefore intermediate statisti-438

cal quantities which are calculated during the course of the inversion. In our WRF-driven439

inversion, RML assigns most of the prior covariance to the spatially constant pattern. The440

result is that the cost of attributing an observed excess mole fraction to a flux is mostly441

insensitive to the spatial distribution of the observation’s sensitivity footprint. In the other442

inversions, although the magnitude of prior covariance is similar on average, RML assigns443

more weight to the spatial pattern proportional to the CALGEM inventory, so the penalty444

for assigning an excess flux is more spatially variable. This would tend to make the in-445

version more sensitive to the modeled wind direction, which may not be accurate. If the446

footprint of a high observed mole fraction falls over a source known to CALGEM, the447

flux estimate can be increased a great deal at little cost; but if the footprint falls over an448

area without sources in CALGEM, increasing the flux estimate is costly.449

In general, the threshold for a flux event to be detectable by a given observing and450

inversion system depends not only on the magnitude of the event but also on its duration451

and variance. It also depends on the event’s timing, because the mean flux and variance452

during the reference period used for comparison will vary according to the seasonal cy-453

cle. By way of an example, for a hypothetical event persisting at least from September 4454

to October 26, 2017 (and compared to the corresponding period in 2016), we compute the455

sensitivity according to the better of Welch’s t-test and the F-test for difference of vari-456

ance for a range of estimated flux increases and variances. The results are shown in Fig-457

ure 4 for the inversions driven by each of the four meteorological products. In this exam-458

ple, a flux increase estimated at 30-40% above the baseline by an inversion using WRF459

or NARR would be detected as significant if the variance were approximately unchanged.460

The same is true for an increase estimated at 20-30% by the inversion using GDAS or es-461

timated at about 20% by the inversion using HRRR. Note, however, that the same thresh-462

olds do not persist at other times and that the threshold for the actual flux increase due to463

an event may be higher if the event is not consistently upwind of the observing sites.464
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Figure 4. Sensitivity (p-values) of inversions using each meteorological driver to hypothetical flux events

occurring between September 4 and October 26, 2017, as a function of the change in mean flux and vari-

ance relative to the same period in 2016. The inversions shown here use the full observing network (9 sites).

Changes in mean flux are less significant when accompanied by high variance, but sufficiently large variance

increases are themselves significant in an F-test.

465

466

467

468

469
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3.3 Network Density470

As the number of observing sites is reduced, the methane flux retrievals generally471

become noisier, exhibiting greater variance even in the absence of any known flux event.472

In almost all cases, robustly detecting the Aliso Canyon leak event is more difficult with473

only three observing sites than with the full network. However, the HRRR-driven inver-474

sion remains sensitive to the change in mean flux (p=0.004) and the NARR- and GDAS-475

driven inversions remain sensitive to the increase in variance (p=0.016 and p=0.021, re-476

spectively).477

With only a single observing location, none of our inversions can detect a significant478

change either in the mean or in the variance of the fluxes during the Aliso Canyon leak.479

The USC site alone can constrain only a small part of the study domain, and even that480

part only inconsistently. Figure 5 illustrates the decrease in measurement constraint when481

the number of the number of observing sites is reduced.482

By contrast, even a single measurement location is sufficient in most of our inver-489

sions (excepting that using WRF) to observe the seasonal cycle. Broad and consistent490

sensitivity may be less critical for this purpose than for detecting a point source event491

because the seasonal difference is likely to be widely distributed throughout the domain.492

Although our study period is too short to observe it, we might expect the same to apply to493

year-over-year secular changes.494

4 Conclusions495

Our results suggest that the ability of an in situ observing network to detect changes496

in emissions may be less sensitive to the choice of transport driver than are estimates of497

the absolute total flux. Much of the difference in absolute flux estimates between inver-498

sions driven by divergent meteorology seems to be attributable to biases in long-term sen-499

sitivity, which can be calibrated by comparison to a trusted model chosen as a transfer500

standard. Debiasing with weather observations (e.g. scaling results by observed bias in501

mixing depth) would not be successful as the sensitivity bias is not predicted by the mean502

values of the relevant underlying meteorological variables. However, an accurate total es-503

timate is not a prerequisite for observing changes, including seasonally or in the case of504

leaks or other large anomalies. Although our study period is not long enough to directly505

observe, trends over the course of years could likely be characterized in the same way. We506
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Figure 5. Heat map: sensitivity of the full observing network (9 sites), a reduced network (3 sites), and the

USC site alone to fluxes within the SoCAB during the first four days of the Aliso Canyon natural gas leak, Oc-

tober 24-27, 2015, as computed by STILT driven by each of four meteorological products. Circles: locations

of observing sites. The three sites included in the reduced network are indicated by their three-letter codes.

The star near the western edge of the domain indicates the location of the Aliso Canyon facility. The breadth

and magnitude of sensitivity degrade as measuring locations are removed.
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484

485

486

487

488
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find that even with only a single observing site, seasonal flux changes emerge as robustly507

detectable with operational meteorology supporting an inversion, suggesting sparse urban508

networks can potentially provide valuable, rapid information.509

The ability of a surface network to detect flux changes contributes to the function-510

ing of a ‘tiered’ observing system [Duren and Miller, 2012] for megacities carbon emis-511

sions, which includes continuous monitoring at the urban scale, targeted deployments to512

characterize significant individual sources, and regional or boundary condition data from513

aircraft and satellites, as well as bottom-up inventories. A flux inversion system run oper-514

ationally could provide the first notice of events worthy of more detailed investigation by515

other methods. The more quickly these events can be identified, the better opportunity we516

will have to quantify and characterize them as well as to inform stakeholders.517

So far, the ability to usefully detect emissions events using urban concentration mea-518

surements has been limited by the long time delay, typically measured in years, between519

collecting initial data and producing a flux estimate. (An exception was the near-real-time520

monitoring performed by Lauvaux et al. [2013] in Davos, Switzerland in 2011-2012.) One521

major source of latency is the time, expense, and computational resources involved in me-522

teorological modeling for transport. Others have begun demonstrating forward model sim-523

ulations using operational meteorology Pugliese [2017]. We now have demonstrated that524

at least some operational monitoring goals utilizing atmospheric inversions can be met us-525

ing a variety of meteorological products, including several that are made available on a526

routine basis and nearly in real time. Output from HRRR is posted on the NOAA READY527

archive each day, covering the previous day. Continuous archival of GDAS has recently528

been supplanted by Global Forecast System (GFS) short-term forecasts, which are initial-529

ized with GDAS but have twice the resolution both in space (0.25 degrees) and in time530

(3 hours). GFS zero-hour forecasts are finalized the same day, and since GFS covers the531

whole globe, they can be retrieved for the vicinity of any major city or other area of inter-532

est. Our work shows that the coarse spatial resolution of these products does not necessar-533

ily limit their utility in an urban setting.534

Once the meteorological fields are ready, the remaining computational requirements535

can be modest. For this study, calculating influence footprints with STILT using HRRR536

meteorology took about fifteen minutes for each observation on a 2.2 GHz CPU with 128537

GB of RAM. In total, running footprints for up to 16 observations in parallel, the foot-538
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prints for a single inversion covering two consecutive four-day periods took about 5.5539

hours to calculate. In an operational mode, each day’s footprints could be run the next540

day, taking less than one hour. The geostatistical inversions themselves each took only541

about two minutes, although that time would be longer if we computed posterior covari-542

ances as in Yadav et al. [2018] or, especially, if we allowed off-diagonal terms in the prior543

covariances.544

This suggests that the remaining obstacle for an operational near-real time inversion545

system lies not in latency of meteorological drivers, flux priors, or inversion calculation,546

but instead on the rapid collection of QA/QC’d network observations, and in cases where547

global models are used for background concentrations, the latency of those global model548

runs. Given that this work suggests fluxes can be estimated rapidly once concentration549

data is collected and quality-controlled, accelerating this step could see a near-real time550

system actually implemented.551
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