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Abstract
1.	 Species-specific diversification rates, or ‘tip rates’, can be computed quickly from 
phylogenies and are widely used to study diversification rate variation in relation 
to geography, ecology and phenotypes. These tip rates provide a number of theo-
retical and practical advantages, such as the relaxation of assumptions of rate 
homogeneity in trait-dependent diversification studies. However, there is sub-
stantial confusion in the literature regarding whether these metrics estimate spe-
ciation or net diversification rates. Additionally, no study has yet compared the 
relative performance and accuracy of tip rate metrics across simulated diversifica-
tion scenarios.

2.	 We compared the statistical performance of three model-free rate metrics (in-
verse terminal branch lengths; node density metric; DR statistic) and a model-
based approach (Bayesian analysis of macroevolutionary mixtures [BAMM]). We 
applied each method to a large set of simulated phylogenies that had been gener-
ated under different diversification processes. We summarized performance in 
relation to the type of rate variation, the magnitude of rate heterogeneity and rate 
regime size. We also compared the ability of the metrics to estimate both specia-
tion and net diversification rates.

3.	 We show decisively that model-free tip rate metrics provide a better estimate of 
the rate of speciation than of net diversification. Error in net diversification rate 
estimates increases as a function of the relative extinction rate. In contrast, error 
in speciation rate estimates is low and relatively insensitive to extinction. Overall, 
and in particular when relative extinction was high, BAMM inferred the most ac-
curate tip rates and exhibited lower error than non-model-based approaches. DR 
was highly correlated with true speciation rates but exhibited high error variance, 
and was the best metric for very small rate regimes.

4.	 We found that, of the metrics tested, DR and BAMM are the most useful metrics 
for studying speciation rate dynamics and trait-dependent diversification. 
Although BAMM was more accurate than DR overall, the two approaches have 
complementary strengths. Because tip rate metrics are more reliable estimators 
of speciation rate, we recommend that empirical studies using these metrics exer-
cise caution when drawing biological interpretations in any situation where the 
distinction between speciation and net diversification is important.
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1  | INTRODUC TION

Rates of speciation and extinction vary through time and among lin-
eages (Alfaro et al., 2018; Etienne & Haegeman, 2012; Jetz, Thomas, 
Joy, Hartmann, & Mooers, 2012; Moen & Morlon, 2014; Nee, 
Mooers, & Harvey, 1992; Sanderson & Donoghue, 1996), contrib-
uting to dramatic heterogeneity in species richness across the tree 
of life (Alfaro et al., 2009; Barker, Burns, Klicka, Lanyon, & Lovette, 
2013; Jetz et al., 2012). By characterizing variation in rates of specia-
tion and extinction, we can better understand the dynamics of bio-
logical diversity through time, across geographic and environmental 
gradients (Mittelbach et al., 2007; Rabosky, Title, & Huang, 2015; 
Ricklefs, 2006; Silvestro, Schnitzler, & Zizka, 2011; Zink, Klicka, & 
Barber, 2004), and in relation to traits and key innovations (Beaulieu 
& O'Meara, 2016; FitzJohn, Maddison, & Otto, 2009; Near et al., 
2012). Consequently, there has been great interest in statistical 
methods for inferring rates of speciation and extinction from mo-
lecular phylogenies.

Although rates of diversification have traditionally been quantified 
for clades, there has been a growing interest in estimating species-
specific rates of diversification, which we refer to here as ‘tip rates’. Tip 
rates are increasingly used to describe patterns of geographic and trait-
associated variation in diversification (Freckleton, Phillimore, & Pagel, 
2008; Harvey & Rabosky, 2017; Jetz et al., 2012; Kennedy et al., 2016; 
Quintero & Jetz, 2018; Rabosky et al., 2018). It may seem strange to 
view evolutionary rates as a property of individual lineages, but such 
rates emerge naturally from the birth–death model we typically use to 
conceptualize the diversification process (Nee, May & Harvey 1994; 
Nee et al., 1992). Under the birth–death process, individuals (species) 
are characterized by per-lineage rates of species origination (speciation, 
λ) and extinction (μ). For the purposes of inference, these rates are typ-
ically assumed to be constant among contemporaneous members of a 
focal clade. However, tip rates can be viewed as our best estimate of 
the present-day rate of speciation or extinction for an individual lin-
eage, conditional on past (usually recent) evolutionary history. As such, 
they provide information about the expected amount of time that will 
elapse before a lineage splits or becomes extinct.

A number of approaches have been used to estimate tip rates, 
including both model-based and non-model-based approaches (i.e. 
models that are parameterized with speciation and extinction rates, 
vs. metrics that simply rely on branch lengths and splitting events). 
These approaches vary in terms of how much information they 
derive from a focal species (i.e. a terminal branch) relative to the 
amount of information they incorporate from other regions of the 
phylogeny. On one end of the spectrum, tree-wide estimates (i.e. 
one rate for the entire phylogeny) of speciation and extinction rates 
under a constant-rate birth–death (CRBD) model provide tip rates 

that are maximally auto-correlated (identical) across species in the 
clade; such rates for any given species are not independent of rates 
for any other species in the group of interest. On the other end of the 
spectrum, terminal branch lengths can be used to derive a censored 
estimate of the rate of speciation that is minimally autocorrelated 
with rates for other species in the focal clade. Terminal branch 
lengths are largely unique to each species (rates might be identical 
only for sister taxa), but provide a noisy measure of speciation, due 
to the stochasticity inherent in the diversification process (Nee, May, 
et al., 1994), and they have been employed as a summary statistic in 
assessing model adequacy (Bromham, Hua, & Cardillo, 2016; Gomes, 
Sorenson, & Cardoso, 2016). In contrast to single (terminal) branch 
estimates, tree-wide estimates should be less susceptible to stochas-
tic noise, because they incorporate information from the entirety of 
the tree (e.g. multiple branches are used in the estimates). Of course, 
the tree-wide estimate necessarily assumes that all tips share a com-
mon underlying diversification process. Other tip rate metrics fall 
somewhere between these two extremes, incorporating some tree-
wide information but relaxing the assumption of homogeneous rates 
across all lineages (node density metric: Freckleton et al., 2008; DR: 
Jetz et al., 2012). The estimation of tip-specific rates thus entails a 
trade-off between the precision of individual estimates and the sto-
chastic error associated with those estimates.

Bayesian analysis of macroevolutionary mixtures (BAMM; 
Rabosky, 2014) is a model-based approach that can accommo-
date heterogeneity in the rate of diversification through time and 
among lineages. BAMM simulates a posterior distribution of mac-
roevolutionary rate shift configurations given a phylogeny of inter-
est; marginal rates of speciation and extinction for individual taxa 
can then be extracted from this distribution. In this framework, the 
correlation in rates between any pair of species is a function of the 
posterior probability that they share a common macroevolutionary 
rate regime (Rabosky, Donnellan, Grundler, & Lovette, 2014). If the 
tree-wide posterior probability of rate variation is low, the marginal 
rates estimates for individual species will be similar across the entire 
tree, as under a CRBD model. Likewise, any pair of taxa that are con-
sistently assigned to the same macroevolutionary rate regime will 
necessarily have identical tip rates.

Tip rates are best suited to a host of questions and hypotheses 
where the diversification dynamics over the evolutionary history of 
a group are either less relevant, or no more relevant, than the rates 
of diversification closer to the present day. For example many hy-
potheses involving trait-dependent diversification implicitly assume a 
time-homogeneous, or constant through time, effect of the trait on 
diversification rate (Claramunt, 2010; Coyne & Orr, 2004; FitzJohn, 
2010; Jablonski, 2008; Kay et al., 2006). Harvey and Rabosky (2017) 
found that the use of tip rates for assessing correlations between 
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continuous traits and diversification has good performance across 
a range of diversification scenarios. Furthermore, hypotheses per-
taining to non-historical geographic patterns of diversity are also 
better addressed with recent rates of diversification. For example 
many hypotheses for the latitudinal diversity gradient propose time-
homogeneous effects of particular environmental factors (tempera-
ture, energy, geographic area) on rates of diversification (Kennedy 
et al. 2014; Mittelbach et al., 2007; Rabosky et al., 2018, 2015; 
Schluter, 2016). Put simply, if such time-homogeneous processes have 
shaped the latitudinal diversity gradient (e.g. correlation between 
speciation and temperature: Rohde, 1992), then the effect should be 
manifest in the distribution of present-day evolutionary rates.

At present, there is substantial confusion in the literature over 
what quantity various tip rate metrics actually measure. The DR sta-
tistic (Jetz et al., 2012) was originally described as a measure of the 
‘species-level lineage diversification rate’. While supplemental analy-
ses and subsequent work suggested that DR was a better measure of 
speciation rate than net diversification (Belmaker & Jetz, 2015; Jetz 
et al., 2012; Quintero & Jetz, 2018), many studies have nonetheless 
continued to describe DR as an estimate of the lineage-level net di-
versification rate (Cai et al., 2017; Marin & Hedges, 2016; Oliveira 
et al., 2016; and many others).The node density metric of Freckleton 
et al. (2008) has also been described as a measure of net diversifica-
tion. Whether these metrics more accurately measure speciation or 
net diversification is critically important for interpreting biodiversity 
patterns (e.g. two regions might differ dramatically in speciation rate, 
but net diversification rates in each might nonetheless be zero). An ob-
jective of our study is thus to compare the ability of DR, node density 
and other metrics to estimate speciation and net diversification rates.

Despite the potential utility of tip rates in geographic and trait-
based analyses of speciation rate heterogeneity (Belmaker & Jetz, 
2015; Jetz et al., 2012; Oliveira et al., 2016; Quintero & Jetz, 2018), 
there has yet been no comprehensive comparative assessment of the 
accuracy and precision of the estimates, save for supplemental analy-
ses in Jetz et al. (2012) and Quintero and Jetz (2018). BAMM has low 
power to infer small rate regimes (Meyer & Wiens, 2017; Rabosky, 
Mitchell, & Chang, 2017), leading to the possibility that other ap-
proaches might perform better for smaller phylogenies or when the 
variation in rates among clades is subtle. However, DR and related 
methods will always identify variation in tip rates, even when none ex-
ists, provided there is stochastic variation in branch lengths. A goal of 
this study is therefore to evaluate the trade-off between the stochas-
tic noise inherent in non-model-based approaches, and the conserva-
tive but less noisy estimates from model-based metrics. We compare 
the performance of these metrics across a range of simulation sce-
narios, which include both discrete and continuous variation in rates.

2  | MATERIAL S AND METHODS

2.1 | Tip rate metrics

We assessed the accuracy of four tip rate metrics in this study at 
quantifying rates of speciation. As we demonstrate below (see also 

Supplementary figure 5 in Jetz et al., 2012; extended figure 5 in 
Quintero & Jetz, 2018; Belmaker & Jetz, 2015), these metrics are 
estimators of speciation rate and not net diversification rate, and we 
refer to them as such throughout. The first metric is the inverse of the 
equal splits measure (Redding & Mooers, 2006), also called the DR 
statistic (Jetz et al., 2012), DivRate (Belmaker & Jetz, 2015; Oliveira 
et al., 2016), ES (Harvey & Rabosky, 2017) or tip DR (Quintero & Jetz, 
2018), which we denote in this study as λDR. This species-specific 
measure incorporates the number of splitting events and the in-
ternode distances along the root-to-tip path of a phylogeny, while 
giving greater weight to branches closer to the present (Jetz et al., 
2012; Redding & Mooers, 2006). λDR is computed as:

where �DRi
 is the tip rate for species i, Ni is the number of branches 

between species i and the root, bj is the length of branch j, starting 
at the terminal branch ( j = 1) and ending with the root. Jetz et al. 
(2012) demonstrated that, for trees deriving from a Yule process, 
and with mild extinction, the mean λDR across tips converges on the 
true speciation rate.

We also considered a simpler metric, node density (Freckleton 
et al., 2008; denoted by λND). This is simply the number of splitting 
events along the path between the root and tip of a phylogeny, di-
vided by the age of the phylogeny. While λDR down-weights the con-
tribution of branch lengths that are closer to the root, λND equally 
weights the contributions of all branches along a particular root-to-
tip path, regardless of where they occur in time. Under a pure-birth 
model (μ = 0), both λDR and λND should yield unbiased estimates of 
the rate of speciation.

The third measure we considered is the inverse of the terminal 
branch lengths (λTB). Rapid speciation rates near the present should 
be associated with proportionately shorter terminal branches; 
smaller values of λTB should thus characterize species with faster 
rates of speciation. This measure has recently been used as a sum-
mary statistic to assess model adequacy in trait-dependent diversi-
fication studies (Bromham et al., 2016; Gomes et al., 2016; Harvey 
& Rabosky, 2017). Following Steel and Mooers (2010), we note that 
the terminal branch lengths can be used to derive an estimate of the 
speciation rate; this follows from the fact that interior and termi-
nal branches have the same expected value under the Yule process 
(Steel & Mooers, 2010). The corresponding estimator for the i’th tip, 
λTB is approximately 1/2b where b is the length of a given terminal 
branch (Steel & Mooers, 2010). To our knowledge, λTB has not been 
used to explicitly estimate tip rates as we do here, but given its utility 
as a summary statistic and general theoretical properties (Steel & 
Mooers, 2010), we see value in comparing the performance of this 
metric to others currently in use.

Finally, we considered a Bayesian, model-based approach to 
estimating tip rates. BAMM (Rabosky, 2014) assumes that phyloge-
nies are generated by a set of discrete diversification regimes. Using 
MCMC, the program simulates a posterior distribution of rate shift 
regimes, from which marginal posterior rate distributions can be 

�DRi
=

Ni∑

j=1

bj
1

2j−1
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extracted for each tip in the phylogeny. Priors for BAMM analyses 
were set using default settings from the setBAMMpriors function 
from BAMMtools (Rabosky, Grundler, et al., 2014). The prior param-
eterizations specified by this function ensure that the prior density 
on relative rate changes across the tree is invariant to the scale of 
the tree (e.g. multiplying branch lengths by 106 will not change in-
ferences about relative rates across the tree). We denote BAMM 
tip speciation rates (mean of the marginal posterior) as λBAMM. As 
BAMM also estimates extinction rates for each regime, we also cal-
culated tip-specific net diversification rate as λBAMM − μBAMM, de-
noted as rBAMM.

2.2 | Tip rate metrics estimate speciation, not net 
diversification

As suggested previously (Belmaker & Jetz, 2015; supplemental analy-
ses in Jetz et al., 2012), DR and presumably other tip-based measure-
ments, more accurately estimate the rate of speciation than the rate 
of net diversification. However, numerous studies continue to refer to 
DR as a measure of net diversification (Marin & Hedges, 2016; Oliveira 
et al., 2016; Cai et al., 2017; Quintero & Jetz, 2018; and many others). 
This is incorrect and it is straightforward to demonstrate that λTB, λND 
and λDR are more reliable measures of speciation rates and not net di-
versification rates, at least when extinction is moderate to high.

To illustrate this property of the metrics, we applied all approaches 
to constant-rate birth–death phylogenies simulated across a range of 
extinction fractions (ε = μ/λ), including pure-birth trees (ε = 0) as well 
as trees exhibiting very high turnover (ε = 1). To evaluate accuracy 
of speciation estimates as a function of ε, we generated 1,000 phy-
logenies with 100 tips each, where λ and ε were drawn from uniform 
distributions (λ: [0.05, 0.3]; ε: [0, 1]). Importantly, when λ is sampled 
uniformly with respect to ε, the distribution of r is not uniform: the 
mean, range and variance in r decrease dramatically as ε increases. 
To evaluate the accuracy of r as a function of ε, we thus generated a 
second set of trees by sampling r and ε from uniform distributions (r: 
[0.05, 0.3], ε [0, 1]). As a result, λ has constant mean and variance with 
respect to ε in the first set of simulations, and the same is true for r 
in the second set of simulations (Figure S1). All phylogeny simulations 
were conducted with the TreeSim package in r (Stadler, 2011).

We compared tip rate metrics to true speciation rates λTRUE (with 
the first simulation set) and to true net diversification rates rTRUE 
(with the second simulation set). We evaluated mean per-tip accu-
racy of the tip rate metrics with three measures of error:

where λi is the estimated tip rate for species i out of N total spe-
cies, λTRUE is the true tip rate. Mean absolute error and root mean 
square error capture the magnitude in error in tip rates, and mean 
proportional error quantifies the bias in tip rates, as a function of the 
true tip rates (Rabosky, Donnellan, et al., 2014). In analyses below, 
all error summaries yield generally congruent results; results for 
mean absolute error are presented in the main text, and others in 
the supplement.

2.3 | Assessment of tip rate metrics

We tested the performance of the metrics by compiling publicly 
available datasets from a number of simulation-based studies 
(Table 1). By focusing on simulations from previously published 
work, we thus ensured that the simulation process itself was ef-
fectively blinded to the objectives of this study. We further note 
that our trial datasets included several studies that were critical 
of BAMM (Meyer & Wiens, 2017; Moore, Höhna, May, Rannala, & 
Huelsenbeck, 2016). These simulated trees include rate hetero-
geneity in time and across lineages. Together, these phylogenies 
present a wide range of tree sizes and diversification rate shifts, 
providing an ideal comparative dataset for our purposes. To more 
easily distinguish between these tree types in the text, we refer to 
the BAMM-type, multi-regime time-constant phylogenies simply 
as ‘multi-regime’, and the multi-regime diversity-dependent phy-
logenies simply as ‘diversity-dependent’, even though discrete rate 
shifts are present in both types of trees. In addition to discrete-
shift scenarios (e.g. BAMM-type process), we simulated phylog-
enies under an ‘evolving rates’ model of diversification (Rabosky, 
2010; as corrected in Beaulieu & O'Meara, 2015) to explore per-
formance of tip rate metrics when diversification rates change 
continuously and independently along branches, as might occur 
if diversification rates are correlated with an underlying continu-
ous trait (FitzJohn, 2010). In these simulations, we allowed the 
logarithm of λ to evolve across the tree under a Brownian motion 
process, while holding ε constant. The magnitude of rate hetero-
geneity among branches is controlled by the diffusion parameter 
σ, where greater values lead to greater heterogeneity in speciation 
rates. Although published phylogenies with rate data were una-
vailable for this simulation scenario, we used simulation code and 
parameters taken directly from Beaulieu and O'Meara (2015) to 
generate trees with similar statistical properties to those in their 
study. Simulations were performed with the following param-
eters: λ = 0.078, 0.103, 0.145, 0.249 and ε = 0.0, 0.25, 0.50, 0.75. 
We simulated 100 phylogenies for each (λ, ε) pair, and for three 
values of σ (σ = 0.03, 0.06, 0.12). We evaluated tip rate accuracy 
by comparing estimated to true tip rates, using the absolute and 
proportional error metrics described above. We also examined 
the correlation between true and estimated tip rates, combin-
ing tip rates from all phylogenies generated under the same class 
of diversification process, and visualizing these data as density 
scatterplots, generated with the LSD package in R (Schwalb et al., 
2018), where colours indicate the density of points.

mean absolute error=

Ni∑

i=1

|||
�i−�TRUEi

|||
∕N

RMSE=
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√

Ni∑

i=1

(
�i−�TRUEi

)2
∕N
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i=1
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Size of diversification rate regimes might be an important factor 
in a tip rate metric's ability to accurately estimate rates. For exam-
ple BAMM's statistical power in detecting a shift to a new rate re-
gime is a function of the number of taxa in that rate regime, and tip 
rates for taxa from small regimes will more likely be parameterized 
according to the larger parent regime or the tree-wide average rate 
(Rabosky et al., 2017); this is the expected behaviour when BAMM 
fails to identify a rate shift. However, non-model-based approaches 
such as those examined in this study might be more accurate for small 
regimes. To explore how rate regime size influences the accuracy of 
tip rate metrics, we calculated the mean tip rate for each true rate 
regime from all multi-regime phylogenies (simulation datasets from 
Meyer & Wiens, 2017; Mitchell, Etienne, & Rabosky, 2018; Moore 
et al., 2016; Rabosky et al., 2017). We then calculated the Pearson 
correlation coefficient and the slope of a linear model between true 
and estimated mean regime rates. We explored the performance of 
all metrics with respect to regime sample size, as in Rabosky et al. 
(2017, figure 13). For comparison, we repeated all performance sum-
maries on tip rates estimated by applying a simple constant-rate 
birth–death (CRBD) process to each simulated phylogeny. This ex-
ercise is an important control, because it indicates how much error 
we would expect for each simulated phylogeny under the simplifying 
(incorrect) assumption that rates are constant among lineages and 
through time for each dataset.

3  | RESULTS

3.1 | Speciation or net diversification?

As expected, the tip rate metrics examined in this study are more 
accurate estimators of the rate of speciation (λ) and not the net 
rate of species diversification (r). Mean absolute error increased 

exponentially with respect to the extinction fraction ε (Figure 1). 
However, mean absolute error in speciation rate was largely invari-
ant with respect to ε (0.95 quantile of r-based and λ-based mean 
absolute error for λDR: 2.28 and 0.17 respectively). Nearly identical 
patterns were found with RMSE (Figure S2). Note that r and λ for 
these simulations were drawn from identical uniform distributions, 
and absolute error in the rates is thus comparable. Proportional error 
generally exhibited the same pattern, and in terms of λ vs. r, differ-
ences in speciation-based error varied across ε (Figure S3). There 
was a weak but significant trend towards progressively greater un-
derestimation of speciation rates with increasing values of relative 
extinction (linear model slopes: −0.08, −0.014, −0.011 for λND, λDR 
and λBAMM respectively). Overall, error was highest for λTB by an 
order of magnitude (Figure S4), and decreased progressively with 
λND and λDR, with the lowest overall error in λBAMM. BAMM esti-
mates of net diversification rate were relatively accurate, except at 
the highest values of ε (Figures 1, S2 and S3).

3.2 | Tip rate accuracy across rate-variable 
phylogenies

Tip rates estimated with BAMM were consistently more ac-
curate than those obtained using the other methods across all 
diversification scenarios considered, including multi-regime, 
diversity-dependent and evolving rates trees (Figure 2). λDR was 
the second-most accurate metric, although its relationship with 
true rates was substantially weaker than λBAMM. λND and λTB were 
correlated with true rates but performed relatively poorly overall. 
However, λTB performed better than λND, and just as well as λDR at 
estimating speciation rates for diversity-dependent trees (Figures 2 
and S5). All metrics performed best for multi-regime trees, followed 
by evolving rates and diversity-dependent trees respectively. For 

TABLE  1 Summary of simulated phylogenies used in this study

Simulation model Number of trees Tree size Regime number Source

Single-regime, constant-rate birth–death 100 100 1 Mitchell and Rabosky (2016) 

Single- and multi-regime, constant-rate 
birth–death

100 51–148 1–6 Moore et al. (2016)

Single- and multi-regime, constant-rate 
birth–death

400 10–4,296 1–67 Rabosky et al. (2017)

Multi-regime, constant-rate birth–death 20 939–3,708 11 Meyer & Wiens (2017)

Single- and multi-regime, constant-rate 
birth–death

188 4–3,955 1–73 Mitchell et al. (2018)

Single-regime, constant-rate birth–
death, lambda uniform

1,000 100 1 This study

Single-regime, constant-rate birth–
death, net diversification uniform

1,000 100 1 This study

Pure birth root regime, 1–4 discrete 
shifts to diversity-dependent regimes

1,200 54–882 1–5 Rabosky (2014) and Mitchell and 
Rabosky (2016) 

Speciation rate evolves via diffusion 
process

1,200 25–1,208 1 Rabosky (2010), Beaulieu and 
O’Meara (2015), and Rabosky 
(2016); and this study 
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diversity-dependent trees, λND rates are effectively uncorrelated 
with the true rates (Figure 2). Additionally, the performance of the 
different tip rate metrics for multi-regime phylogenies is not sen-
sitive to the source of the simulated phylogenies (Figure S6). We 
found that BAMM substantially outperformed all other metrics on 
datasets from studies that independently assessed BAMM's per-
formance (Figure S6: Moore et al., 2016; Meyer & Wiens, 2017). 
Tip rates were also generally but more weakly correlated with true 
net diversification rates, with the exception of λND, which was un-
correlated with true rates for diversity-dependent trees, presum-
ably because this metric equally weights the full depth of the tree 
(Figure S7).

In terms of mean per-tip error, λBAMM consistently outper-
formed the other metrics for multi-regime, diversity-dependent 
and evolving rates trees (Figures 3 and S8). Error in λBAMM in-
creased as a function of rate heterogeneity for evolving rate 
phylogenies, but was largely independent of the magnitude of 
rate heterogeneity for the other scenarios. λDR generally ex-
hibited greater error than λBAMM, and this error increased as 
a function of the level of heterogeneity for both the evolving 
rates and multi-regime trees. Error in λDR was generally invari-
ant to the number of rate regimes for the diversity-dependent 
scenarios. However, λDR tended to have greater error than tip 
estimates from a simple model that assumes no variation in 
rates through time or among lineages (λCRBD; all tips assigned 
the tree-wide CRBD rate). λND performed somewhat similar to 
λDR for constant-rate and evolving rates trees, but worse for 

diversity-dependent trees. Error in λTB increased with increasing 
rate heterogeneity for constant-rate and evolving rates trees, 
but was relatively unaffected by rate heterogeneity in diversity-
dependent trees (Figure S9). However, error for this metric was 
far greater than for all other tip metrics.

3.3 | Effects of regime size on performance

Both metrics of performance assessment – the Pearson corre-
lation and OLS slope – generally increased with increasing re-
gime size (Figure 4). This was found to be true for all tip rate 
metrics, although λTB and λND never achieved high performance. 
λDR tended to perform better than other metrics when small rate 
regimes were included (e.g. 10 tips or fewer); however, the slope 
between estimated and true rates was greater than 1 across 
the majority of minimum regime sizes, indicating that λDR over-
estimates speciation rates (see also Figure S3). Similar patterns 
were observed for net diversification rates with λDR, but the 
magnitude of the overestimation was greater than for speciation 
(Figure S10). λBAMM, in contrast, approached a slope of 1 when 
estimating speciation rates and slightly underestimated net di-
versification rates (regimes with >30 tips: OLS slope = 0.96 for 
λ, 0.87 for r).

Absolute error in regime mean tip rates was lowest for λDR and 
λBAMM, regardless of the size of the rate regime (Figure 5). BAMM's 
ability to accurately estimate tip rates improved with regime size, 
whereas absolute error was relatively consistent across regime sizes 

F IGURE  1 Mean absolute error in λ (top) and r (bottom) for three different tip rate metrics, across a range of relative extinction rates. 
For BAMM, the estimated speciation and net diversification rates are presented in the top and bottom panels respectively. Absolute error 
of zero implies perfect accuracy. Inset plots show error in λ with truncated y-axis scale to facilitate comparison among metrics. All tip rate 
metrics track λ more accurately than they track r. See Figure S4 for λTB, which performed much worse than the other metrics
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for λDR for regimes greater than 10 species. We also found that λDR 
slightly outperformed λBAMM for small rate regimes.

Note that, in Figures 4 and 5, each rate regime is treated as 
a single data point. Rate regimes of sizes 1,000, 100 and 1 tip 
are equivalent under this method of error assessment. Figure 4 
assesses how well these methods estimate rates for individ-
ual regimes, regardless of the size of those regimes. In contrast, 
Figures 1–3 ask how well these methods perform at estimating 
rates for a given tip.

4  | DISCUSSION

We assessed several tip rate metrics and confirmed that these are 
more accurate estimators of the rate of speciation, rather than net 
diversification (Figures 1, 4, S7 and S10). This distinction was es-
pecially pronounced at high extinction fractions, where the rate of 
lineage turnover is high, and rates of speciation and net diversifica-
tion have the potential to be more divergent. These results are con-
sistent with supplemental analyses performed in Jetz et al. (2012). 

F IGURE  2 True tip rates (λTRUE) in relation to estimated tip rates. Tip rates were compared separately for different major categories of 
phylogeny simulations (rows) and are plotted separately by inference method (columns). Plotting region is restricted to the 99th percentile of 
true rates, but Spearman correlations between true and estimated rates (lower right of each figure panel) are based on the full range of the 
data. Colours indicate the density of points in the scatter plots. The horizontal gaps in λND for diversity-dependent trees are an artefact of all 
trees having the same crown age. λBAMM exhibited the strongest correlation with true rates for all simulation categories
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F IGURE  3 Mean per-tip absolute error in speciation rates as a function of the magnitude of rate heterogeneity in each simulated 
phylogeny. Results are presented separately for different categories of rate variation (Table 1); left column shows estimates from a constant-
rate birth–death model for reference. The boxes and whiskers represent the 0.25–0.75, and the 0.05–0.95 quantile ranges respectively. In 
some cases, λND and λDR had more error than a simple CRBD model with no variation in tip rates. λBAMM had the least amount of error across 
all amounts of rate heterogeneity. See Figure S9 for λTB
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It is also important to note that recent extinction will have a much 
greater influence on these metrics than extinction events deeper in 
time (Quental & Marshall, 2011). Net diversification rate is a critical 
determinant of species richness, yet this quantity is potentially inde-
pendent of the underlying rate of speciation. Misinterpretation of tip 
rate metrics could therefore lead to highly misleading perspectives 
on large-scale diversity dynamics. As we demonstrate (Figures 1, S2 
and S3), tip rate metrics (λND, λDR) provide relatively little information 
about net diversification, and high values of these metrics are fully 
consistent with equilibrial models of speciation where the true net 
diversification rate is zero. Thus, λDR and λND should not be used to 
support claims about the dynamics of species richness or net diver-
sification per se without independent evidence bearing on plausible 
levels of extinction.

In terms of accuracy, we found that BAMM performed better 
than non-model-based metrics across all datasets we considered: 
estimated tip rates were most highly correlated with true tip rates, 
and mean per-tip error in rates was lower across a range of rate-
variable simulation scenarios. This performance is likely to be at least 
partially due to the inclusion of extinction in the BAMM inference 
model. BAMM is expected to perform well for phylogenies with 
discrete shifts in diversification rates as this type of rate variation 
is most consistent with BAMM's assumptions (Mitchell & Rabosky, 
2016; Mitchell et al., 2018; Rabosky, 2014; Rabosky et al., 2017). 
However, BAMM performed surprisingly well for the evolving rates 
phylogenies, which conform poorly to the assumptions of the in-
ference model. In these trees, the rate of speciation changes con-
tinuously under a diffusion process, and as a result, the phylogeny 
exhibits rate heterogeneity without discrete rate shifts.

On evolving rates phylogenies, λBAMM performed better than λDR 
(Figure 2; Spearman's ρ for λBAMM = 0.83, ρ for λDR = 0.62), despite 
the fact that λDR does not rely on the detection of distinct rate re-
gimes to estimate tip rates (Figure 5). λBAMM also exhibited the low-
est mean per-tip error across varying levels of rate heterogeneity 
(Figure 3).

Why do λBAMM and λDR exhibit such striking differences in per-
formance across the simulation scenarios considered here? To illus-
trate the differences between inference under these metrics, we 
compared true tip rates to λBAMM and to λDR on a simulated birth–
death tree with a single rate shift (Figure 6), as well as on one evolv-
ing rates tree simulated for this study (Figure 7). It is clear that if 
BAMM has the statistical power to detect true rate shifts, then it will 
perform well under rate shift scenarios. In contrast, λDR tracks true 
rate shifts but exhibits high sample variance. With an evolving rates 
tree (Figure 7), the simulation model is very different from the infer-
ence model in BAMM. However, it conservatively places rate shifts 
in order to accommodate rate heterogeneity that is spread across 
the phylogeny under a rather different model of rate variation. λDR 
also broadly tracks the overall pattern of the true rates, but the vari-
ance in the corresponding estimates is so high that performance is 
negatively affected. If we calculate mean (absolute) per-tip error in 
λBAMM and λDR, the error is relatively similar between λBAMM and λDR, 
but the variance in per-tip error for λDR is higher. Overall, BAMM 
exhibited substantially lower error than λDR under precisely this sce-
nario (Figure 3).

Thus, although BAMM is conservative in the estimation of tip rates 
relative to λDR, the method exhibits lower overall error. It appears that 
λDR can recover more subtle rate heterogeneity relative to BAMM 
(see Rabosky et al., 2017 for discussion of power in BAMM), but this 
apparent power advantage comes at the cost of increased variance 
(error) in the resulting estimates. Remarkably, on a per-tip basis, we 
find that a simple constant-rate birth–death process (λCRBD) frequently 
yields tip estimates with lower median error and less error variance 
than those obtained with λDR (Figure 3), despite the simplifying (and 
incorrect) assumption that rates are identical across all tips in a given 
tree. For example across all multi-regime simulations (Figure 3), λCRBD 
point estimates were more accurate than the corresponding λDR point 
estimates for 84% of trees in the simulations; for λBAMM, the λCRBD 
estimates were more accurate for a much smaller fraction of the total 
(36%). Similar results were noted for diversity-dependent (λCRBD more 

F IGURE  5 Mean per-regime absolute error in relation to true rate regime size, as binned into 10 size categories. The boxes and whiskers 
represent the 0.25–0.75, and the 0.05–0.95 quantile ranges respectively. Perfectly estimated rates have an error of zero. λDR and λBAMM 
exhibit the least error when averaged by regimes, and λDR does slightly better for small clades (10-clade median error 0.07 for λDR, and 0.08 
for λBAMM)
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accurate than 98% of λDR estimates, vs. 15% of λBAMM estimates) and 
evolving rates trees (λCRBD more accurate than 93% of λDR estimates, 
vs. 36% of λBAMM estimates). Given that λDR can and does track true 
heterogeneity in speciation rate (Figures 6 and 7), this pattern sug-
gests that the metric is especially sensitive to the stochastic variation 
in branch lengths that can emerge even when all tips have the same 
underlying speciation rate.

Regardless of the performance summaries presented in this article, 
important questions remain with respect to how well tip rate metrics 
can estimate the true rate of speciation from empirical phylogenies. 
The phylogenies analysed in this study were simulated under idealized 
processes and neglect potential biases and sources of uncertainty that 
are present in real datasets. For example if the process of speciation 
takes time to complete, as is generally believed to be the case (i.e. the 
protracted speciation process; Rosindell, Cornell, Hubbell, & Etienne, 
2010; Etienne & Rosindell, 2012), then the most recent speciation 
events may still be on-going at the present and typical species-level 
molecular phylogenies may fail to recognize these events. This will 
lead to an overestimation of terminal branch lengths, as some termi-
nal branches potentially include incipient species. A related bias might 

arise due to incomplete taxon sampling, which disproportionately 
affects the length of terminal (or otherwise recent) branch lengths 
(Pybus & Harvey, 2000). Likewise, variation in taxonomic practice 
across a phylogeny might lead to spurious rate variation, particularly if 
different species concepts are used, or if some clades in the phylogeny 
– but not others – have been subject to population genetic analysis or 
screens for cryptic species diversity. Additionally, it has been shown 
that BAMM and other methods may fail to infer accurate speciation 
rate dynamics if the phylogeny is in diversity decline – that is when ex-
tinction rates increase towards the present and ultimately exceed spe-
ciation rates (Burin, Alencar, Chang, Alfaro, & Quental, 2018; Quental 
& Marshall, 2011). A major, if obvious, caveat in the interpretation of 
tip rates is that they apply to recent speciation rates and are neces-
sarily limited with respect to inferences about historical variation in 
speciation rate.

The greater the importance of the terminal branches in tip rate 
metrics, the greater the impact these biases might have on tip rate es-
timates. On one end of the spectrum, metrics such as λTB will be very 
sensitive to such biases as they rely exclusively on terminal branch 
lengths. Such approaches may retain utility as summary statistics 

F IGURE  6 Relationship between λTRUE, 
λBAMM, and λDR for a simulated phylogeny 
containing a single rate shift (orange 
circle). Subplots to the right of the tree 
illustrate true and estimated rates for each 
tip (left) and corresponding absolute error 
(right). Asterisks at the bottom denote 
mean per-tip error in tip rate metrics. 
Mean per-tip error is relatively low and 
similar between λDR and λBAMM, but the 
sample variance in λDR tip rates is high. 
In this example, the variance in absolute 
per-tip error in λDR is 0.002 vs. 0.0003 for 
λBAMM. On average, λDR tends to either 
overestimate or underestimate rates 
relative to λBAMM, even if the mean per-tip 
error is relatively low for both metrics
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(e.g. Bromham et al., 2016), but we found that λTB exhibited the great-
est amount of error in estimating speciation rates. On the other end 
of the spectrum, a metric like λND would be minimally impacted as 
this metric is attempting to capture an average speciation rate over 
an entire root-to-tip path and does not upweight the contribution of 
recent branch lengths. λDR is likely somewhere in the middle of this 
spectrum, as it gives decreasing weight to branches towards the root. 
λBAMM is potentially sensitive to such issues as well, although it may 
be possible to analytically correct for some biases in the mechanics 
of the model itself (e.g. Etienne & Rosindell, 2012; Rosindell et al., 
2010).

Potential empirical biases aside, tip rates present a number 
of practical advantages in the study of diversification rate varia-
tion. First, tip rates can be summarized and compared across non-
monophyletic assemblages of species (Belmaker & Jetz, 2015; Jetz 
et al., 2012; Kennedy et al., 2016; Oliveira et al., 2016; Quintero & 
Jetz, 2018; Rabosky et al., 2018), making it possible to summarize 
rate characteristics of entire communities or regional assemblages of 
species. Second, estimation of rates at the present should be more 
robust to the influence of extinction, as extinction can erase the 

history of lineage splitting deeper in the phylogeny (Nee, May, et al., 
1994; Nee, Holmes, May, & Harvey et al., 1994; Rabosky & Lovette, 
2008). Third, tip-specific rates can be paired with species-specific 
trait values or geographic attributes in order to test potential trait- 
or geography-dependent speciation rates (Freckleton et al., 2008; 
Harvey & Rabosky, 2017; Jetz et al., 2012; Rabosky & Goldberg, 
2017). Tip rates make it possible to relax strong assumptions of rate 
homogeneity within character states, which are inherent to certain 
trait-dependent models, including BiSSE and GeoSSE (Goldberg, 
Lancaster, & Ree, 2011; Maddison, Midford, & Otto, 2007; Ng & 
Smith, 2014). Recent work has provided a conceptually rich and ro-
bust interpretive framework for SSE models that does not assume 
rate-constancy within character states (Beaulieu & O'Meara, 2016; 
Caetano, O'Meara, & Beaulieu, 2018), but tip rates nonetheless can 
provide an important check on results obtained with SSE models 
by providing a direct means of visualizing the relationship between 
branch lengths and character states (Bromham et al., 2016; Harvey & 
Rabosky, 2017; Hua & Bromham, 2016). Visual inspection of data in 
this fashion has the potential to reduce false positives by calling at-
tention to potential outliers and other sources of model inadequacy 

F IGURE  7 Relationship between 
λTRUE, λBAMM, and λDR for a phylogeny 
simulated under an ‘evolving rates’ model, 
such that the speciation rate itself varies 
under a diffusion model. See Figure 6 
for additional details. Neither metric is 
particularly well equipped to infer the 
true rate variation in this case. However, 
λBAMM's conservative estimates are still 
more accurate relative to λDR, which is 
negatively impacted by high variance in 
tip rates. Here, variance in absolute per-tip 
error in λDR is 0.012 vs. 0.003 for λBAMM
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(Maddison & FitzJohn, 2014; Rabosky & Goldberg, 2015). A final ad-
vantage for non-model-based tip rates, especially λDR, is that they can 
profitably be applied to extremely large phylogenies: there are few 
computational limits to using them on phylogenies with tens of thou-
sands of tips or more, in contrast to formal model-based approaches 
for which BAMM, HiSSE (Hidden State Speciation and Extinction; 
Beaulieu & O'Meara, 2016), and other methods are poorly suited. 
This computational efficiency also lends itself to more readily ac-
counting for phylogenetic uncertainty, because tip rate metrics can 
rapidly be computed across posterior distributions of phylogenies 
and averaged (e.g. see Jetz et al., 2012; Rabosky et al., 2018).

In summary, tip rates offer a number of theoretical and practi-
cal advantages, particularly in the study of associations between 
traits and diversification. We found that λBAMM outperformed 
other metrics evaluated in this study and proved to be relatively 
accurate, even under diversification scenarios that depart from 
the BAMM inference model. λDR underperformed in comparison 
to λBAMM, but in many cases still did reasonably well, particularly 
for small rate regimes. Despite our performance results, λDR is 
likely to remain a useful tool in the study of trait- and geography-
dependent diversification (Harvey & Rabosky, 2017; Rabosky & 
Goldberg, 2017).
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