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Abstract
1.	 Species-specific	diversification	rates,	or	‘tip	rates’,	can	be	computed	quickly	from	
phylogenies	and	are	widely	used	to	study	diversification	rate	variation	in	relation	
to	geography,	ecology	and	phenotypes.	These	tip	rates	provide	a	number	of	theo-
retical	 and	 practical	 advantages,	 such	 as	 the	 relaxation	 of	 assumptions	 of	 rate	
homogeneity	 in	 trait-dependent	 diversification	 studies.	 However,	 there	 is	 sub-
stantial	confusion	in	the	literature	regarding	whether	these	metrics	estimate	spe-
ciation	or	net	diversification	rates.	Additionally,	no	study	has	yet	compared	the	
relative	performance	and	accuracy	of	tip	rate	metrics	across	simulated	diversifica-
tion	scenarios.

2.	 We	compared	 the	 statistical	performance	of	 three	model-free	 rate	metrics	 (in-
verse	 terminal	 branch	 lengths;	 node	density	metric;	DR	 statistic)	 and	 a	model-
based	approach	(Bayesian	analysis	of	macroevolutionary	mixtures	[BAMM]).	We	
applied	each	method	to	a	large	set	of	simulated	phylogenies	that	had	been	gener-
ated	under	 different	 diversification	processes.	We	 summarized	performance	 in	
relation	to	the	type	of	rate	variation,	the	magnitude	of	rate	heterogeneity	and	rate	
regime	size.	We	also	compared	the	ability	of	the	metrics	to	estimate	both	specia-
tion	and	net	diversification	rates.

3.	 We	show	decisively	that	model-free	tip	rate	metrics	provide	a	better	estimate	of	
the	rate	of	speciation	than	of	net	diversification.	Error	in	net	diversification	rate	
estimates	increases	as	a	function	of	the	relative	extinction	rate.	In	contrast,	error	
in	speciation	rate	estimates	is	low	and	relatively	insensitive	to	extinction.	Overall,	
and	in	particular	when	relative	extinction	was	high,	BAMM	inferred	the	most	ac-
curate	tip	rates	and	exhibited	lower	error	than	non-model-based	approaches.	DR	
was	highly	correlated	with	true	speciation	rates	but	exhibited	high	error	variance,	
and	was	the	best	metric	for	very	small	rate	regimes.

4.	 We	found	that,	of	the	metrics	tested,	DR	and	BAMM	are	the	most	useful	metrics	
for	 studying	 speciation	 rate	 dynamics	 and	 trait-dependent	 diversification.	
Although	BAMM	was	more	accurate	than	DR	overall,	the	two	approaches	have	
complementary	strengths.	Because	tip	rate	metrics	are	more	reliable	estimators	
of	speciation	rate,	we	recommend	that	empirical	studies	using	these	metrics	exer-
cise	caution	when	drawing	biological	 interpretations	 in	any	situation	where	the	
distinction	between	speciation	and	net	diversification	is	important.
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1  | INTRODUC TION

Rates	of	speciation	and	extinction	vary	through	time	and	among	lin-
eages	(Alfaro	et	al.,	2018;	Etienne	&	Haegeman,	2012;	Jetz,	Thomas,	
Joy,	 Hartmann,	 &	 Mooers,	 2012;	 Moen	 &	 Morlon,	 2014;	 Nee,	
Mooers,	&	Harvey,	 1992;	 Sanderson	&	Donoghue,	 1996),	 contrib-
uting	to	dramatic	heterogeneity	in	species	richness	across	the	tree	
of	life	(Alfaro	et	al.,	2009;	Barker,	Burns,	Klicka,	Lanyon,	&	Lovette,	
2013;	Jetz	et	al.,	2012).	By	characterizing	variation	in	rates	of	specia-
tion	and	extinction,	we	can	better	understand	the	dynamics	of	bio-
logical	diversity	through	time,	across	geographic	and	environmental	
gradients	 (Mittelbach	 et	al.,	 2007;	 Rabosky,	 Title,	 &	Huang,	 2015;	
Ricklefs,	2006;	Silvestro,	Schnitzler,	&	Zizka,	2011;	Zink,	Klicka,	&	
Barber,	2004),	and	in	relation	to	traits	and	key	innovations	(Beaulieu	
&	O'Meara,	 2016;	 FitzJohn,	Maddison,	 &	Otto,	 2009;	Near	 et	al.,	
2012).	 Consequently,	 there	 has	 been	 great	 interest	 in	 statistical	
methods	 for	 inferring	 rates	of	 speciation	and	extinction	 from	mo-
lecular	phylogenies.

Although	rates	of	diversification	have	traditionally	been	quantified	
for	 clades,	 there	 has	 been	 a	 growing	 interest	 in	 estimating	 species-	
specific	rates	of	diversification,	which	we	refer	to	here	as	‘tip	rates’.	Tip	
rates	are	increasingly	used	to	describe	patterns	of	geographic	and	trait-	
associated	variation	in	diversification	(Freckleton,	Phillimore,	&	Pagel,	
2008;	Harvey	&	Rabosky,	2017;	Jetz	et	al.,	2012;	Kennedy	et	al.,	2016;	
Quintero	&	Jetz,	2018;	Rabosky	et	al.,	2018).	 It	may	seem	strange	to	
view	evolutionary	rates	as	a	property	of	individual	lineages,	but	such	
rates	emerge	naturally	from	the	birth–death	model	we	typically	use	to	
conceptualize	 the	diversification	process	 (Nee,	May	&	Harvey	1994;	
Nee	et	al.,	1992).	Under	the	birth–death	process,	individuals	(species)	
are	characterized	by	per-	lineage	rates	of	species	origination	(speciation,	
λ)	and	extinction	(μ).	For	the	purposes	of	inference,	these	rates	are	typ-
ically	assumed	to	be	constant	among	contemporaneous	members	of	a	
focal	clade.	However,	tip	rates	can	be	viewed	as	our	best	estimate	of	
the	present-	day	 rate	of	 speciation	or	extinction	 for	an	 individual	 lin-
eage,	conditional	on	past	(usually	recent)	evolutionary	history.	As	such,	
they	provide	information	about	the	expected	amount	of	time	that	will	
elapse	before	a	lineage	splits	or	becomes	extinct.

A	number	of	approaches	have	been	used	to	estimate	tip	rates,	
including	both	model-	based	and	non-	model-	based	approaches	 (i.e.	
models	that	are	parameterized	with	speciation	and	extinction	rates,	
vs.	metrics	that	simply	rely	on	branch	lengths	and	splitting	events).	
These	 approaches	 vary	 in	 terms	 of	 how	 much	 information	 they	
derive	 from	 a	 focal	 species	 (i.e.	 a	 terminal	 branch)	 relative	 to	 the	
amount	of	 information	 they	 incorporate	 from	other	 regions	of	 the	
phylogeny.	On	 one	 end	 of	 the	 spectrum,	 tree-	wide	 estimates	 (i.e.	
one	rate	for	the	entire	phylogeny)	of	speciation	and	extinction	rates	
under	a	 constant-	rate	birth–death	 (CRBD)	model	provide	 tip	 rates	

that	are	maximally	auto-	correlated	 (identical)	across	species	 in	the	
clade;	such	rates	for	any	given	species	are	not	independent	of	rates	
for	any	other	species	in	the	group	of	interest.	On	the	other	end	of	the	
spectrum,	terminal	branch	lengths	can	be	used	to	derive	a	censored	
estimate	of	 the	 rate	of	 speciation	 that	 is	minimally	 autocorrelated	
with	 rates	 for	 other	 species	 in	 the	 focal	 clade.	 Terminal	 branch	
lengths	are	largely	unique	to	each	species	(rates	might	be	identical	
only	for	sister	taxa),	but	provide	a	noisy	measure	of	speciation,	due	
to	the	stochasticity	inherent	in	the	diversification	process	(Nee,	May,	
et	al.,	1994),	and	they	have	been	employed	as	a	summary	statistic	in	
assessing	model	adequacy	(Bromham,	Hua,	&	Cardillo,	2016;	Gomes,	
Sorenson,	&	Cardoso,	2016).	In	contrast	to	single	(terminal)	branch	
estimates,	tree-	wide	estimates	should	be	less	susceptible	to	stochas-
tic	noise,	because	they	incorporate	information	from	the	entirety	of	
the	tree	(e.g.	multiple	branches	are	used	in	the	estimates).	Of	course,	
the	tree-	wide	estimate	necessarily	assumes	that	all	tips	share	a	com-
mon	underlying	 diversification	 process.	Other	 tip	 rate	metrics	 fall	
somewhere	between	these	two	extremes,	incorporating	some	tree-	
wide	information	but	relaxing	the	assumption	of	homogeneous	rates	
across	all	lineages	(node	density	metric:	Freckleton	et	al.,	2008;	DR:	
Jetz	et	al.,	2012).	The	estimation	of	tip-	specific	rates	thus	entails	a	
trade-	off	between	the	precision	of	individual	estimates	and	the	sto-
chastic	error	associated	with	those	estimates.

Bayesian	 analysis	 of	 macroevolutionary	 mixtures	 (BAMM;	
Rabosky,	 2014)	 is	 a	 model-	based	 approach	 that	 can	 accommo-
date	heterogeneity	 in	 the	 rate	of	 diversification	 through	 time	and	
among	 lineages.	BAMM	simulates	 a	 posterior	 distribution	of	mac-
roevolutionary	rate	shift	configurations	given	a	phylogeny	of	inter-
est;	marginal	 rates	of	 speciation	and	extinction	 for	 individual	 taxa	
can	then	be	extracted	from	this	distribution.	In	this	framework,	the	
correlation	in	rates	between	any	pair	of	species	is	a	function	of	the	
posterior	probability	that	they	share	a	common	macroevolutionary	
rate	regime	(Rabosky,	Donnellan,	Grundler,	&	Lovette,	2014).	If	the	
tree-	wide	posterior	probability	of	rate	variation	is	low,	the	marginal	
rates	estimates	for	individual	species	will	be	similar	across	the	entire	
tree,	as	under	a	CRBD	model.	Likewise,	any	pair	of	taxa	that	are	con-
sistently	 assigned	 to	 the	 same	macroevolutionary	 rate	 regime	will	
necessarily	have	identical	tip	rates.

Tip	 rates	are	best	suited	to	a	host	of	questions	and	hypotheses	
where	the	diversification	dynamics	over	the	evolutionary	history	of	
a	group	are	either	less	relevant,	or	no	more	relevant,	than	the	rates	
of	 diversification	 closer	 to	 the	 present	 day.	 For	 example	many	 hy-
potheses	involving	trait-	dependent	diversification	implicitly	assume	a	
time-	homogeneous,	or	constant	through	time,	effect	of	the	trait	on	
diversification	rate	 (Claramunt,	2010;	Coyne	&	Orr,	2004;	FitzJohn,	
2010;	Jablonski,	2008;	Kay	et	al.,	2006).	Harvey	and	Rabosky	(2017)	
found	 that	 the	 use	 of	 tip	 rates	 for	 assessing	 correlations	 between	
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continuous	 traits	 and	 diversification	 has	 good	 performance	 across	
a	 range	 of	 diversification	 scenarios.	 Furthermore,	 hypotheses	 per-
taining	 to	 non-	historical	 geographic	 patterns	 of	 diversity	 are	 also	
better	 addressed	 with	 recent	 rates	 of	 diversification.	 For	 example	
many	hypotheses	for	the	latitudinal	diversity	gradient	propose	time-	
homogeneous	effects	of	particular	environmental	 factors	 (tempera-
ture,	 energy,	 geographic	 area)	 on	 rates	 of	 diversification	 (Kennedy	
et	al.	 2014;	 Mittelbach	 et	al.,	 2007;	 Rabosky	 et	al.,	 2018,	 2015;	
Schluter,	2016).	Put	simply,	if	such	time-	homogeneous	processes	have	
shaped	 the	 latitudinal	 diversity	 gradient	 (e.g.	 correlation	 between	
speciation	and	temperature:	Rohde,	1992),	then	the	effect	should	be	
manifest	in	the	distribution	of	present-	day	evolutionary	rates.

At	 present,	 there	 is	 substantial	 confusion	 in	 the	 literature	 over	
what	quantity	various	tip	rate	metrics	actually	measure.	The	DR	sta-
tistic	 (Jetz	et	al.,	2012)	was	originally	described	as	a	measure	of	the	
‘species-	level	lineage	diversification	rate’.	While	supplemental	analy-
ses	and	subsequent	work	suggested	that	DR	was	a	better	measure	of	
speciation	rate	than	net	diversification	(Belmaker	&	Jetz,	2015;	Jetz	
et	al.,	2012;	Quintero	&	Jetz,	2018),	many	studies	have	nonetheless	
continued	to	describe	DR	as	an	estimate	of	the	lineage-	level	net	di-
versification	 rate	 (Cai	 et	al.,	 2017;	Marin	 &	 Hedges,	 2016;	 Oliveira	
et	al.,	2016;	and	many	others).The	node	density	metric	of	Freckleton	
et	al.	(2008)	has	also	been	described	as	a	measure	of	net	diversifica-
tion.	Whether	these	metrics	more	accurately	measure	speciation	or	
net	diversification	is	critically	important	for	interpreting	biodiversity	
patterns	(e.g.	two	regions	might	differ	dramatically	in	speciation	rate,	
but	net	diversification	rates	in	each	might	nonetheless	be	zero).	An	ob-
jective	of	our	study	is	thus	to	compare	the	ability	of	DR,	node	density	
and	other	metrics	to	estimate	speciation	and	net	diversification	rates.

Despite	 the	potential	utility	of	 tip	 rates	 in	geographic	and	 trait-	
based	 analyses	 of	 speciation	 rate	 heterogeneity	 (Belmaker	 &	 Jetz,	
2015;	Jetz	et	al.,	2012;	Oliveira	et	al.,	2016;	Quintero	&	Jetz,	2018),	
there	has	yet	been	no	comprehensive	comparative	assessment	of	the	
accuracy	and	precision	of	the	estimates,	save	for	supplemental	analy-
ses	in	Jetz	et	al.	(2012)	and	Quintero	and	Jetz	(2018).	BAMM	has	low	
power	 to	 infer	 small	 rate	 regimes	 (Meyer	&	Wiens,	 2017;	Rabosky,	
Mitchell,	 &	 Chang,	 2017),	 leading	 to	 the	 possibility	 that	 other	 ap-
proaches	might	perform	better	for	smaller	phylogenies	or	when	the	
variation	 in	 rates	 among	 clades	 is	 subtle.	However,	DR	 and	 related	
methods	will	always	identify	variation	in	tip	rates,	even	when	none	ex-
ists,	provided	there	is	stochastic	variation	in	branch	lengths.	A	goal	of	
this	study	is	therefore	to	evaluate	the	trade-	off	between	the	stochas-
tic	noise	inherent	in	non-	model-	based	approaches,	and	the	conserva-
tive	but	less	noisy	estimates	from	model-	based	metrics.	We	compare	
the	performance	of	 these	metrics	across	a	 range	of	simulation	sce-
narios,	which	include	both	discrete	and	continuous	variation	in	rates.

2  | MATERIAL S AND METHODS

2.1 | Tip rate metrics

We	assessed	 the	accuracy	of	 four	 tip	 rate	metrics	 in	 this	 study	at	
quantifying	rates	of	speciation.	As	we	demonstrate	below	(see	also	

Supplementary	 figure	5	 in	 Jetz	 et	al.,	 2012;	 extended	 figure	5	 in	
Quintero	&	 Jetz,	 2018;	Belmaker	&	 Jetz,	 2015),	 these	metrics	 are	
estimators	of	speciation	rate	and	not	net	diversification	rate,	and	we	
refer	to	them	as	such	throughout.	The	first	metric	is	the	inverse	of	the	
equal	splits	measure	(Redding	&	Mooers,	2006),	also	called	the	DR 
statistic	(Jetz	et	al.,	2012),	DivRate	(Belmaker	&	Jetz,	2015;	Oliveira	
et	al.,	2016),	ES	(Harvey	&	Rabosky,	2017)	or	tip DR	(Quintero	&	Jetz,	
2018),	which	we	denote	 in	 this	 study	as	λDR.	 This	 species-	specific	
measure	 incorporates	 the	 number	 of	 splitting	 events	 and	 the	 in-
ternode	distances	along	 the	 root-	to-	tip	path	of	a	phylogeny,	while	
giving	greater	weight	to	branches	closer	to	the	present	(Jetz	et	al.,	
2012;	Redding	&	Mooers,	2006).	λDR	is	computed	as:

where	�DRi
	is	the	tip	rate	for	species	i,	Ni	is	the	number	of	branches	

between	species	i	and	the	root,	bj	is	the	length	of	branch	j,	starting	
at	 the	 terminal	 branch	 ( j = 1)	 and	 ending	with	 the	 root.	 Jetz	 et	al.	
(2012)	 demonstrated	 that,	 for	 trees	 deriving	 from	 a	Yule	 process,	
and	with	mild	extinction,	the	mean	λDR	across	tips	converges	on	the	
true	speciation	rate.

We	also	considered	a	 simpler	metric,	node	density	 (Freckleton	
et	al.,	2008;	denoted	by	λND).	This	is	simply	the	number	of	splitting	
events	along	the	path	between	the	root	and	tip	of	a	phylogeny,	di-
vided	by	the	age	of	the	phylogeny.	While	λDR	down-	weights	the	con-
tribution	of	branch	 lengths	that	are	closer	to	the	root,	λND	equally	
weights	the	contributions	of	all	branches	along	a	particular	root-	to-	
tip	path,	regardless	of	where	they	occur	in	time.	Under	a	pure-	birth	
model	(μ	=	0),	both	λDR and λND	should	yield	unbiased	estimates	of	
the	rate	of	speciation.

The	third	measure	we	considered	is	the	inverse	of	the	terminal	
branch	lengths	(λTB).	Rapid	speciation	rates	near	the	present	should	
be	 associated	 with	 proportionately	 shorter	 terminal	 branches;	
smaller	 values	 of	 λTB	 should	 thus	 characterize	 species	with	 faster	
rates	of	speciation.	This	measure	has	recently	been	used	as	a	sum-
mary	statistic	to	assess	model	adequacy	in	trait-	dependent	diversi-
fication	studies	(Bromham	et	al.,	2016;	Gomes	et	al.,	2016;	Harvey	
&	Rabosky,	2017).	Following	Steel	and	Mooers	(2010),	we	note	that	
the	terminal	branch	lengths	can	be	used	to	derive	an	estimate	of	the	
speciation	 rate;	 this	 follows	 from	 the	 fact	 that	 interior	 and	 termi-
nal	branches	have	the	same	expected	value	under	the	Yule	process	
(Steel	&	Mooers,	2010).	The	corresponding	estimator	for	the	i’th	tip,	
λTB	is	approximately	1/2b	where	b	is	the	length	of	a	given	terminal	
branch	(Steel	&	Mooers,	2010).	To	our	knowledge,	λTB	has	not	been	
used	to	explicitly	estimate	tip	rates	as	we	do	here,	but	given	its	utility	
as	 a	 summary	 statistic	 and	 general	 theoretical	 properties	 (Steel	&	
Mooers,	2010),	we	see	value	in	comparing	the	performance	of	this	
metric	to	others	currently	in	use.

Finally,	 we	 considered	 a	 Bayesian,	 model-	based	 approach	 to	
estimating	tip	rates.	BAMM	(Rabosky,	2014)	assumes	that	phyloge-
nies	are	generated	by	a	set	of	discrete	diversification	regimes.	Using	
MCMC,	the	program	simulates	a	posterior	distribution	of	rate	shift	
regimes,	 from	 which	 marginal	 posterior	 rate	 distributions	 can	 be	

�DRi
=

Ni∑

j=1

bj
1

2j−1
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extracted	for	each	tip	in	the	phylogeny.	Priors	for	BAMM	analyses	
were	 set	using	default	 settings	 from	 the	 setBAMMpriors	 function	
from	BAMMtools	(Rabosky,	Grundler,	et	al.,	2014).	The	prior	param-
eterizations	specified	by	this	function	ensure	that	the	prior	density	
on	relative	rate	changes	across	the	tree	is	 invariant	to	the	scale	of	
the	tree	(e.g.	multiplying	branch	lengths	by	106	will	not	change	in-
ferences	 about	 relative	 rates	 across	 the	 tree).	We	 denote	 BAMM	
tip	 speciation	 rates	 (mean	of	 the	marginal	 posterior)	 as	 λBAMM.	As	
BAMM	also	estimates	extinction	rates	for	each	regime,	we	also	cal-
culated	 tip-	specific	 net	 diversification	 rate	 as	 λBAMM	−	μBAMM,	 de-
noted	as	rBAMM.

2.2 | Tip rate metrics estimate speciation, not net 
diversification

As	suggested	previously	(Belmaker	&	Jetz,	2015;	supplemental	analy-
ses	in	Jetz	et	al.,	2012),	DR	and	presumably	other	tip-	based	measure-
ments,	more	accurately	estimate	the	rate	of	speciation	than	the	rate	
of	net	diversification.	However,	numerous	studies	continue	to	refer	to	
DR	as	a	measure	of	net	diversification	(Marin	&	Hedges,	2016;	Oliveira	
et	al.,	2016;	Cai	et	al.,	2017;	Quintero	&	Jetz,	2018;	and	many	others).	
This	is	incorrect	and	it	is	straightforward	to	demonstrate	that	λTB, λND 
and λDR	are	more	reliable	measures	of	speciation	rates	and	not	net	di-
versification	rates,	at	least	when	extinction	is	moderate	to	high.

To	illustrate	this	property	of	the	metrics,	we	applied	all	approaches	
to	constant-	rate	birth–death	phylogenies	simulated	across	a	range	of	
extinction	fractions	(ε = μ/λ),	including	pure-	birth	trees	(ε	=	0)	as	well	
as	 trees	 exhibiting	 very	 high	 turnover	 (ε	=	1).	 To	 evaluate	 accuracy	
of	speciation	estimates	as	a	function	of	ε,	we	generated	1,000	phy-
logenies	with	100	tips	each,	where	λ and ε	were	drawn	from	uniform	
distributions	(λ:	 [0.05,	0.3];	ε:	 [0,	1]).	 Importantly,	when	λ	 is	sampled	
uniformly	with	respect	 to	ε,	 the	distribution	of	 r	 is	not	uniform:	 the	
mean,	 range	 and	 variance	 in	 r	 decrease	dramatically	 as	 ε	 increases.	
To	evaluate	the	accuracy	of	r	as	a	function	of	ε,	we	thus	generated	a	
second	set	of	trees	by	sampling	r and ε	from	uniform	distributions	(r: 
[0.05,	0.3],	ε	[0,	1]).	As	a	result,	λ	has	constant	mean	and	variance	with	
respect	to	ε	in	the	first	set	of	simulations,	and	the	same	is	true	for	r 
in	the	second	set	of	simulations	(Figure	S1).	All	phylogeny	simulations	
were	conducted	with	the	treesiM	package	in	r	(Stadler,	2011).

We	compared	tip	rate	metrics	to	true	speciation	rates	λTRUE	(with	
the	 first	 simulation	 set)	 and	 to	 true	 net	 diversification	 rates	 rTRUE 
(with	the	second	simulation	set).	We	evaluated	mean	per-	tip	accu-
racy	of	the	tip	rate	metrics	with	three	measures	of	error:

where	λi	 is	 the	estimated	 tip	 rate	 for	 species	 i	 out	of	N	 total	 spe-
cies,	λTRUE	 is	the	true	tip	rate.	Mean	absolute	error	and	root	mean	
square	error	capture	the	magnitude	in	error	 in	tip	rates,	and	mean	
proportional	error	quantifies	the	bias	in	tip	rates,	as	a	function	of	the	
true	tip	rates	(Rabosky,	Donnellan,	et	al.,	2014).	In	analyses	below,	
all	 error	 summaries	 yield	 generally	 congruent	 results;	 results	 for	
mean	absolute	error	are	presented	 in	 the	main	 text,	and	others	 in	
the	supplement.

2.3 | Assessment of tip rate metrics

We	tested	the	performance	of	the	metrics	by	compiling	publicly	
available	 datasets	 from	 a	 number	 of	 simulation-	based	 studies	
(Table	1).	 By	 focusing	 on	 simulations	 from	 previously	 published	
work,	we	thus	ensured	that	the	simulation	process	 itself	was	ef-
fectively	blinded	to	the	objectives	of	this	study.	We	further	note	
that	our	trial	datasets	 included	several	studies	that	were	critical	
of	BAMM	(Meyer	&	Wiens,	2017;	Moore,	Höhna,	May,	Rannala,	&	
Huelsenbeck,	 2016).	 These	 simulated	 trees	 include	 rate	 hetero-
geneity	 in	time	and	across	 lineages.	Together,	these	phylogenies	
present	a	wide	range	of	tree	sizes	and	diversification	rate	shifts,	
providing	an	ideal	comparative	dataset	for	our	purposes.	To	more	
easily	distinguish	between	these	tree	types	in	the	text,	we	refer	to	
the	BAMM-	type,	multi-	regime	time-	constant	phylogenies	simply	
as	 ‘multi-	regime’,	and	the	multi-	regime	diversity-	dependent	phy-
logenies	simply	as	‘diversity-	dependent’,	even	though	discrete	rate	
shifts	are	present	 in	both	types	of	trees.	 In	addition	to	discrete-	
shift	 scenarios	 (e.g.	 BAMM-	type	process),	we	 simulated	 phylog-
enies	under	an	‘evolving	rates’	model	of	diversification	(Rabosky,	
2010;	as	corrected	in	Beaulieu	&	O'Meara,	2015)	to	explore	per-
formance	 of	 tip	 rate	 metrics	 when	 diversification	 rates	 change	
continuously	 and	 independently	 along	branches,	 as	might	 occur	
if	diversification	rates	are	correlated	with	an	underlying	continu-
ous	 trait	 (FitzJohn,	 2010).	 In	 these	 simulations,	 we	 allowed	 the	
logarithm	of	λ	to	evolve	across	the	tree	under	a	Brownian	motion	
process,	while	holding	ε	constant.	The	magnitude	of	rate	hetero-
geneity	among	branches	is	controlled	by	the	diffusion	parameter	
σ,	where	greater	values	lead	to	greater	heterogeneity	in	speciation	
rates.	Although	published	phylogenies	with	 rate	data	were	una-
vailable	for	this	simulation	scenario,	we	used	simulation	code	and	
parameters	 taken	directly	 from	Beaulieu	and	O'Meara	 (2015)	 to	
generate	trees	with	similar	statistical	properties	to	those	in	their	
study.	 Simulations	 were	 performed	 with	 the	 following	 param-
eters:	λ	=	0.078,	0.103,	0.145,	0.249	and	ε	=	0.0,	0.25,	0.50,	0.75.	
We	simulated	100	phylogenies	 for	each	 (λ,	ε)	pair,	and	 for	 three	
values	of	σ	 (σ	=	0.03,	0.06,	0.12).	We	evaluated	tip	rate	accuracy	
by	comparing	estimated	to	true	tip	rates,	using	the	absolute	and	
proportional	 error	 metrics	 described	 above.	 We	 also	 examined	
the	 correlation	 between	 true	 and	 estimated	 tip	 rates,	 combin-
ing	tip	rates	from	all	phylogenies	generated	under	the	same	class	
of	 diversification	 process,	 and	 visualizing	 these	 data	 as	 density	
scatterplots,	generated	with	the	LSD	package	in	R	(Schwalb	et	al.,	
2018),	where	colours	indicate	the	density	of	points.
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|||
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Size	of	diversification	rate	regimes	might	be	an	important	factor	
in	a	tip	rate	metric's	ability	to	accurately	estimate	rates.	For	exam-
ple	BAMM's	statistical	power	 in	detecting	a	shift	to	a	new	rate	re-
gime	is	a	function	of	the	number	of	taxa	in	that	rate	regime,	and	tip	
rates	for	taxa	from	small	regimes	will	more	likely	be	parameterized	
according	to	the	larger	parent	regime	or	the	tree-	wide	average	rate	
(Rabosky	et	al.,	2017);	this	 is	the	expected	behaviour	when	BAMM	
fails	to	identify	a	rate	shift.	However,	non-	model-	based	approaches	
such	as	those	examined	in	this	study	might	be	more	accurate	for	small	
regimes.	To	explore	how	rate	regime	size	influences	the	accuracy	of	
tip	rate	metrics,	we	calculated	the	mean	tip	rate	for	each	true	rate	
regime	from	all	multi-	regime	phylogenies	 (simulation	datasets	from	
Meyer	&	Wiens,	2017;	Mitchell,	 Etienne,	&	Rabosky,	2018;	Moore	
et	al.,	2016;	Rabosky	et	al.,	2017).	We	then	calculated	the	Pearson	
correlation	coefficient	and	the	slope	of	a	linear	model	between	true	
and	estimated	mean	regime	rates.	We	explored	the	performance	of	
all	metrics	with	 respect	 to	 regime	sample	size,	as	 in	Rabosky	et	al.	
(2017,	figure	13).	For	comparison,	we	repeated	all	performance	sum-
maries	 on	 tip	 rates	 estimated	 by	 applying	 a	 simple	 constant-	rate	
birth–death	 (CRBD)	process	 to	 each	 simulated	phylogeny.	 This	 ex-
ercise	is	an	important	control,	because	it	indicates	how	much	error	
we	would	expect	for	each	simulated	phylogeny	under	the	simplifying	
(incorrect)	 assumption	 that	 rates	 are	 constant	 among	 lineages	 and	
through	time	for	each	dataset.

3  | RESULTS

3.1 | Speciation or net diversification?

As	expected,	 the	 tip	 rate	metrics	examined	 in	 this	study	are	more	
accurate	 estimators	 of	 the	 rate	 of	 speciation	 (λ)	 and	 not	 the	 net	
rate	 of	 species	 diversification	 (r).	 Mean	 absolute	 error	 increased	

exponentially	 with	 respect	 to	 the	 extinction	 fraction	 ε	 (Figure	1).	
However,	mean	absolute	error	in	speciation	rate	was	largely	invari-
ant	with	 respect	 to	 ε	 (0.95	 quantile	 of	 r-	based	 and	 λ-	based	mean	
absolute	error	for	λDR:	2.28	and	0.17	respectively).	Nearly	identical	
patterns	were	 found	with	RMSE	 (Figure	S2).	Note	 that	 r and λ	 for	
these	simulations	were	drawn	from	identical	uniform	distributions,	
and	absolute	error	in	the	rates	is	thus	comparable.	Proportional	error	
generally	exhibited	the	same	pattern,	and	in	terms	of	λ	vs.	r,	differ-
ences	 in	 speciation-	based	 error	 varied	 across	 ε	 (Figure	S3).	 There	
was	a	weak	but	significant	trend	towards	progressively	greater	un-
derestimation	of	speciation	rates	with	 increasing	values	of	relative	
extinction	(linear	model	slopes:	−0.08,	−0.014,	−0.011	for	λND,	λDR 
and λBAMM	 respectively).	 Overall,	 error	 was	 highest	 for	 λTB by an 
order	 of	 magnitude	 (Figure	S4),	 and	 decreased	 progressively	 with	
λND and λDR,	 with	 the	 lowest	 overall	 error	 in	 λBAMM.	 BAMM	 esti-
mates	of	net	diversification	rate	were	relatively	accurate,	except	at	
the	highest	values	of	ε	(Figures	1,	S2	and	S3).

3.2 | Tip rate accuracy across rate- variable 
phylogenies

Tip	 rates	 estimated	 with	 BAMM	 were	 consistently	 more	 ac-
curate	 than	 those	 obtained	 using	 the	 other	 methods	 across	 all	
diversification	 scenarios	 considered,	 including	 multi-	regime,	
diversity-	dependent	 and	 evolving	 rates	 trees	 (Figure	2).	 λDR	 was	
the	 second-	most	 accurate	 metric,	 although	 its	 relationship	 with	
true	rates	was	substantially	weaker	than	λBAMM. λND and λTB were 
correlated	with	true	rates	but	performed	relatively	poorly	overall.	
However,	λTB	performed	better	than	λND,	and	just	as	well	as	λDR	at	
estimating	speciation	rates	for	diversity-	dependent	trees	(Figures	2	
and	S5).	All	metrics	performed	best	for	multi-	regime	trees,	followed	
by	evolving	rates	and	diversity-	dependent	trees	respectively.	For	

TABLE  1 Summary	of	simulated	phylogenies	used	in	this	study

Simulation model Number of trees Tree size Regime number Source

Single-	regime,	constant-	rate	birth–death 100 100 1 Mitchell	and	Rabosky	(2016)	

Single-		and	multi-	regime,	constant-	rate	
birth–death

100 51–148 1–6 Moore	et	al.	(2016)

Single-		and	multi-	regime,	constant-	rate	
birth–death

400 10–4,296 1–67 Rabosky	et	al.	(2017)

Multi-	regime,	constant-	rate	birth–death 20 939–3,708 11 Meyer	&	Wiens	(2017)

Single-		and	multi-	regime,	constant-	rate	
birth–death

188 4–3,955 1–73 Mitchell	et	al.	(2018)

Single-	regime,	constant-	rate	birth–
death,	lambda	uniform

1,000 100 1 This	study

Single-	regime,	constant-	rate	birth–
death,	net	diversification	uniform

1,000 100 1 This	study

Pure	birth	root	regime,	1–4	discrete	
shifts	to	diversity-	dependent	regimes

1,200 54–882 1–5 Rabosky	(2014)	and	Mitchell	and	
Rabosky	(2016)	

Speciation	rate	evolves	via	diffusion	
process

1,200 25–1,208 1 Rabosky	(2010),	Beaulieu	and	
O’Meara	(2015),	and	Rabosky	
(2016);	and	this	study	
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diversity-	dependent	 trees,	 λND	 rates	 are	 effectively	 uncorrelated	
with	the	true	rates	(Figure	2).	Additionally,	the	performance	of	the	
different	tip	rate	metrics	for	multi-	regime	phylogenies	is	not	sen-
sitive	 to	 the	 source	of	 the	 simulated	phylogenies	 (Figure	S6).	We	
found	that	BAMM	substantially	outperformed	all	other	metrics	on	
datasets	 from	 studies	 that	 independently	 assessed	BAMM's	per-
formance	 (Figure	S6:	Moore	 et	al.,	 2016;	Meyer	&	Wiens,	 2017).	
Tip	rates	were	also	generally	but	more	weakly	correlated	with	true	
net	diversification	rates,	with	the	exception	of	λND,	which	was	un-
correlated	with	true	rates	for	diversity-	dependent	trees,	presum-
ably	because	this	metric	equally	weights	the	full	depth	of	the	tree	
(Figure	S7).

In	 terms	 of	 mean	 per-	tip	 error,	 λBAMM	 consistently	 outper-
formed	the	other	metrics	for	multi-	regime,	diversity-	dependent	
and	 evolving	 rates	 trees	 (Figures	3	 and	 S8).	 Error	 in	 λBAMM in-
creased	 as	 a	 function	 of	 rate	 heterogeneity	 for	 evolving	 rate	
phylogenies,	 but	was	 largely	 independent	 of	 the	magnitude	of	
rate	 heterogeneity	 for	 the	 other	 scenarios.	 λDR	 generally	 ex-
hibited	 greater	 error	 than	 λBAMM,	 and	 this	 error	 increased	 as	
a	 function	 of	 the	 level	 of	 heterogeneity	 for	 both	 the	 evolving	
rates	and	multi-	regime	 trees.	Error	 in	λDR	was	generally	 invari-
ant	 to	 the	number	of	 rate	 regimes	 for	 the	diversity-	dependent	
scenarios.	However,	 λDR	 tended	 to	 have	 greater	 error	 than	 tip	
estimates	 from	 a	 simple	 model	 that	 assumes	 no	 variation	 in	
rates	 through	 time	 or	 among	 lineages	 (λCRBD;	 all	 tips	 assigned	
the	 tree-	wide	CRBD	 rate).	λND	performed	 somewhat	 similar	 to	
λDR	 for	 constant-	rate	 and	 evolving	 rates	 trees,	 but	 worse	 for	

diversity-	dependent	trees.	Error	in	λTB	increased	with	increasing	
rate	 heterogeneity	 for	 constant-	rate	 and	 evolving	 rates	 trees,	
but	was	relatively	unaffected	by	rate	heterogeneity	in	diversity-	
dependent	trees	(Figure	S9).	However,	error	for	this	metric	was	
far	greater	than	for	all	other	tip	metrics.

3.3 | Effects of regime size on performance

Both	metrics	 of	 performance	 assessment	 –	 the	Pearson	 corre-
lation	 and	OLS	 slope	 –	 generally	 increased	with	 increasing	 re-
gime	 size	 (Figure	4).	 This	 was	 found	 to	 be	 true	 for	 all	 tip	 rate	
metrics,	although	λTB and λND	never	achieved	high	performance.	
λDR	tended	to	perform	better	than	other	metrics	when	small	rate	
regimes	were	included	(e.g.	10	tips	or	fewer);	however,	the	slope	
between	 estimated	 and	 true	 rates	 was	 greater	 than	 1	 across	
the	majority	of	minimum	regime	sizes,	 indicating	that	λDR over-
estimates	speciation	rates	 (see	also	Figure	S3).	Similar	patterns	
were	 observed	 for	 net	 diversification	 rates	 with	 λDR,	 but	 the	
magnitude	of	the	overestimation	was	greater	than	for	speciation	
(Figure	S10).	λBAMM,	 in	 contrast,	 approached	a	 slope	of	1	when	
estimating	 speciation	 rates	 and	 slightly	 underestimated	net	 di-
versification	 rates	 (regimes	with	>30	 tips:	OLS	slope	=	0.96	 for	
λ,	0.87	for	r).

Absolute	error	in	regime	mean	tip	rates	was	lowest	for	λDR and 
λBAMM,	regardless	of	the	size	of	the	rate	regime	(Figure	5).	BAMM's	
ability	 to	 accurately	 estimate	 tip	 rates	 improved	with	 regime	 size,	
whereas	absolute	error	was	relatively	consistent	across	regime	sizes	

F IGURE  1 Mean	absolute	error	in	λ	(top)	and	r	(bottom)	for	three	different	tip	rate	metrics,	across	a	range	of	relative	extinction	rates.	
For	BAMM,	the	estimated	speciation	and	net	diversification	rates	are	presented	in	the	top	and	bottom	panels	respectively.	Absolute	error	
of	zero	implies	perfect	accuracy.	Inset	plots	show	error	in	λ	with	truncated	y-	axis	scale	to	facilitate	comparison	among	metrics.	All	tip	rate	
metrics	track	λ	more	accurately	than	they	track	r.	See	Figure	S4	for	λTB,	which	performed	much	worse	than	the	other	metrics
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for	λDR	for	regimes	greater	than	10	species.	We	also	found	that	λDR 
slightly	outperformed	λBAMM	for	small	rate	regimes.

Note	 that,	 in	 Figures	4	 and	 5,	 each	 rate	 regime	 is	 treated	 as	
a	 single	 data	 point.	 Rate	 regimes	 of	 sizes	 1,000,	 100	 and	 1	 tip	
are	 equivalent	 under	 this	 method	 of	 error	 assessment.	 Figure	4	
assesses	 how	 well	 these	 methods	 estimate	 rates	 for	 individ-
ual	 regimes,	 regardless	of	 the	 size	of	 those	 regimes.	 In	contrast,	
Figures	1–3	 ask	 how	 well	 these	 methods	 perform	 at	 estimating	
rates	for	a	given	tip.

4  | DISCUSSION

We	assessed	several	tip	rate	metrics	and	confirmed	that	these	are	
more	accurate	estimators	of	the	rate	of	speciation,	rather	than	net	
diversification	 (Figures	1,	 4,	 S7	 and	 S10).	 This	 distinction	 was	 es-
pecially	pronounced	at	high	extinction	fractions,	where	the	rate	of	
lineage	turnover	is	high,	and	rates	of	speciation	and	net	diversifica-
tion	have	the	potential	to	be	more	divergent.	These	results	are	con-
sistent	with	supplemental	analyses	performed	 in	Jetz	et	al.	 (2012).	

F IGURE  2 True	tip	rates	(λTRUE)	in	relation	to	estimated	tip	rates.	Tip	rates	were	compared	separately	for	different	major	categories	of	
phylogeny	simulations	(rows)	and	are	plotted	separately	by	inference	method	(columns).	Plotting	region	is	restricted	to	the	99th	percentile	of	
true	rates,	but	Spearman	correlations	between	true	and	estimated	rates	(lower	right	of	each	figure	panel)	are	based	on	the	full	range	of	the	
data.	Colours	indicate	the	density	of	points	in	the	scatter	plots.	The	horizontal	gaps	in	λND	for	diversity-	dependent	trees	are	an	artefact	of	all	
trees	having	the	same	crown	age.	λBAMM	exhibited	the	strongest	correlation	with	true	rates	for	all	simulation	categories
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F IGURE  3 Mean	per-	tip	absolute	error	in	speciation	rates	as	a	function	of	the	magnitude	of	rate	heterogeneity	in	each	simulated	
phylogeny.	Results	are	presented	separately	for	different	categories	of	rate	variation	(Table	1);	left	column	shows	estimates	from	a	constant-	
rate	birth–death	model	for	reference.	The	boxes	and	whiskers	represent	the	0.25–0.75,	and	the	0.05–0.95	quantile	ranges	respectively.	In	
some	cases,	λND and λDR	had	more	error	than	a	simple	CRBD	model	with	no	variation	in	tip	rates.	λBAMM	had	the	least	amount	of	error	across	
all	amounts	of	rate	heterogeneity.	See	Figure	S9	for	λTB
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It	is	also	important	to	note	that	recent	extinction	will	have	a	much	
greater	influence	on	these	metrics	than	extinction	events	deeper	in	
time	(Quental	&	Marshall,	2011).	Net	diversification	rate	is	a	critical	
determinant	of	species	richness,	yet	this	quantity	is	potentially	inde-
pendent	of	the	underlying	rate	of	speciation.	Misinterpretation	of	tip	
rate	metrics	could	therefore	lead	to	highly	misleading	perspectives	
on	large-	scale	diversity	dynamics.	As	we	demonstrate	(Figures	1,	S2	
and	S3),	tip	rate	metrics	(λND,	λDR)	provide	relatively	little	information	
about	net	diversification,	and	high	values	of	these	metrics	are	fully	
consistent	with	equilibrial	models	of	speciation	where	the	true	net	
diversification	rate	is	zero.	Thus,	λDR and λND	should	not	be	used	to	
support	claims	about	the	dynamics	of	species	richness	or	net	diver-
sification	per se	without	independent	evidence	bearing	on	plausible	
levels	of	extinction.

In	 terms	 of	 accuracy,	we	 found	 that	 BAMM	performed	 better	
than	 non-	model-	based	metrics	 across	 all	 datasets	 we	 considered:	
estimated	tip	rates	were	most	highly	correlated	with	true	tip	rates,	
and	mean	 per-	tip	 error	 in	 rates	was	 lower	 across	 a	 range	 of	 rate-	
variable	simulation	scenarios.	This	performance	is	likely	to	be	at	least	
partially	due	to	the	inclusion	of	extinction	in	the	BAMM	inference	
model.	 BAMM	 is	 expected	 to	 perform	 well	 for	 phylogenies	 with	
discrete	shifts	 in	diversification	rates	as	 this	 type	of	 rate	variation	
is	most	consistent	with	BAMM's	assumptions	(Mitchell	&	Rabosky,	
2016;	Mitchell	 et	al.,	 2018;	 Rabosky,	 2014;	 Rabosky	 et	al.,	 2017).	
However,	BAMM	performed	surprisingly	well	for	the	evolving	rates	
phylogenies,	 which	 conform	 poorly	 to	 the	 assumptions	 of	 the	 in-
ference	model.	 In	 these	 trees,	 the	 rate	of	speciation	changes	con-
tinuously	under	a	diffusion	process,	and	as	a	result,	the	phylogeny	
exhibits	rate	heterogeneity	without	discrete	rate	shifts.

On	evolving	rates	phylogenies,	λBAMM	performed	better	than	λDR 
(Figure	2;	Spearman's	ρ	 for	λBAMM	=	0.83,	ρ	 for	λDR	=	0.62),	despite	
the	fact	that	λDR	does	not	rely	on	the	detection	of	distinct	rate	re-
gimes	to	estimate	tip	rates	(Figure	5).	λBAMM	also	exhibited	the	low-
est	mean	 per-	tip	 error	 across	 varying	 levels	 of	 rate	 heterogeneity	
(Figure	3).

Why	do	λBAMM and λDR	exhibit	such	striking	differences	in	per-
formance	across	the	simulation	scenarios	considered	here?	To	illus-
trate	 the	 differences	 between	 inference	 under	 these	 metrics,	 we	
compared	true	tip	rates	to	λBAMM	and	to	λDR	on	a	simulated	birth–
death	tree	with	a	single	rate	shift	(Figure	6),	as	well	as	on	one	evolv-
ing	 rates	 tree	 simulated	 for	 this	 study	 (Figure	7).	 It	 is	 clear	 that	 if	
BAMM	has	the	statistical	power	to	detect	true	rate	shifts,	then	it	will	
perform	well	under	rate	shift	scenarios.	In	contrast,	λDR	tracks	true	
rate	shifts	but	exhibits	high	sample	variance.	With	an	evolving	rates	
tree	(Figure	7),	the	simulation	model	is	very	different	from	the	infer-
ence	model	in	BAMM.	However,	it	conservatively	places	rate	shifts	
in	order	 to	accommodate	 rate	heterogeneity	 that	 is	 spread	across	
the	phylogeny	under	a	rather	different	model	of	rate	variation.	λDR 
also	broadly	tracks	the	overall	pattern	of	the	true	rates,	but	the	vari-
ance	in	the	corresponding	estimates	is	so	high	that	performance	is	
negatively	affected.	If	we	calculate	mean	(absolute)	per-	tip	error	in	
λBAMM and λDR,	the	error	is	relatively	similar	between	λBAMM and λDR,	
but	 the	 variance	 in	 per-	tip	 error	 for	 λDR	 is	 higher.	Overall,	 BAMM	
exhibited	substantially	lower	error	than	λDR	under	precisely	this	sce-
nario	(Figure	3).

Thus,	although	BAMM	is	conservative	in	the	estimation	of	tip	rates	
relative	to	λDR,	the	method	exhibits	lower	overall	error.	It	appears	that	
λDR	 can	 recover	more	 subtle	 rate	 heterogeneity	 relative	 to	 BAMM	
(see	Rabosky	et	al.,	2017	for	discussion	of	power	in	BAMM),	but	this	
apparent	power	advantage	comes	at	 the	cost	of	 increased	variance	
(error)	 in	the	resulting	estimates.	Remarkably,	on	a	per-	tip	basis,	we	
find	that	a	simple	constant-	rate	birth–death	process	(λCRBD)	frequently	
yields	tip	estimates	with	 lower	median	error	and	less	error	variance	
than	those	obtained	with	λDR	(Figure	3),	despite	the	simplifying	(and	
incorrect)	assumption	that	rates	are	identical	across	all	tips	in	a	given	
tree.	For	example	across	all	multi-	regime	simulations	(Figure	3),	λCRBD 
point	estimates	were	more	accurate	than	the	corresponding	λDR	point	
estimates	 for	84%	of	 trees	 in	 the	 simulations;	 for	λBAMM,	 the	λCRBD 
estimates	were	more	accurate	for	a	much	smaller	fraction	of	the	total	
(36%).	Similar	results	were	noted	for	diversity-	dependent	(λCRBD more 

F IGURE  5 Mean	per-	regime	absolute	error	in	relation	to	true	rate	regime	size,	as	binned	into	10	size	categories.	The	boxes	and	whiskers	
represent	the	0.25–0.75,	and	the	0.05–0.95	quantile	ranges	respectively.	Perfectly	estimated	rates	have	an	error	of	zero.	λDR and λBAMM 
exhibit	the	least	error	when	averaged	by	regimes,	and	λDR	does	slightly	better	for	small	clades	(10-	clade	median	error	0.07	for	λDR,	and	0.08	
for	λBAMM)
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accurate	than	98%	of	λDR	estimates,	vs.	15%	of	λBAMM	estimates)	and	
evolving	rates	trees	(λCRBD	more	accurate	than	93%	of	λDR	estimates,	
vs.	36%	of	λBAMM	estimates).	Given	that	λDR	can	and	does	track	true	
heterogeneity	 in	 speciation	 rate	 (Figures	6	and	7),	 this	pattern	 sug-
gests	that	the	metric	is	especially	sensitive	to	the	stochastic	variation	
in	branch	lengths	that	can	emerge	even	when	all	tips	have	the	same	
underlying	speciation	rate.

Regardless	of	the	performance	summaries	presented	in	this	article,	
important	questions	remain	with	respect	to	how	well	tip	rate	metrics	
can	estimate	the	true	rate	of	speciation	from	empirical	phylogenies.	
The	phylogenies	analysed	in	this	study	were	simulated	under	idealized	
processes	and	neglect	potential	biases	and	sources	of	uncertainty	that	
are	present	in	real	datasets.	For	example	if	the	process	of	speciation	
takes	time	to	complete,	as	is	generally	believed	to	be	the	case	(i.e.	the	
protracted	speciation	process;	Rosindell,	Cornell,	Hubbell,	&	Etienne,	
2010;	 Etienne	 &	 Rosindell,	 2012),	 then	 the	most	 recent	 speciation	
events	may	still	be	on-	going	at	the	present	and	typical	species-	level	
molecular	 phylogenies	may	 fail	 to	 recognize	 these	 events.	 This	will	
lead	to	an	overestimation	of	terminal	branch	lengths,	as	some	termi-
nal	branches	potentially	include	incipient	species.	A	related	bias	might	

arise	 due	 to	 incomplete	 taxon	 sampling,	 which	 disproportionately	
affects	 the	 length	 of	 terminal	 (or	 otherwise	 recent)	 branch	 lengths	
(Pybus	 &	 Harvey,	 2000).	 Likewise,	 variation	 in	 taxonomic	 practice	
across	a	phylogeny	might	lead	to	spurious	rate	variation,	particularly	if	
different	species	concepts	are	used,	or	if	some	clades	in	the	phylogeny	
–	but	not	others	–	have	been	subject	to	population	genetic	analysis	or	
screens	for	cryptic	species	diversity.	Additionally,	it	has	been	shown	
that	BAMM	and	other	methods	may	fail	to	infer	accurate	speciation	
rate	dynamics	if	the	phylogeny	is	in	diversity	decline	–	that	is	when	ex-
tinction	rates	increase	towards	the	present	and	ultimately	exceed	spe-
ciation	rates	(Burin,	Alencar,	Chang,	Alfaro,	&	Quental,	2018;	Quental	
&	Marshall,	2011).	A	major,	if	obvious,	caveat	in	the	interpretation	of	
tip	rates	is	that	they	apply	to	recent	speciation	rates	and	are	neces-
sarily	 limited	with	respect	to	 inferences	about	historical	variation	 in	
speciation	rate.

The	greater	the	importance	of	the	terminal	branches	in	tip	rate	
metrics,	the	greater	the	impact	these	biases	might	have	on	tip	rate	es-
timates.	On	one	end	of	the	spectrum,	metrics	such	as	λTB will be very 
sensitive	to	such	biases	as	they	rely	exclusively	on	terminal	branch	
lengths.	 Such	 approaches	 may	 retain	 utility	 as	 summary	 statistics	

F IGURE  6 Relationship	between	λTRUE,	
λBAMM,	and	λDR	for	a	simulated	phylogeny	
containing	a	single	rate	shift	(orange	
circle).	Subplots	to	the	right	of	the	tree	
illustrate	true	and	estimated	rates	for	each	
tip	(left)	and	corresponding	absolute	error	
(right).	Asterisks	at	the	bottom	denote	
mean	per-	tip	error	in	tip	rate	metrics.	
Mean	per-	tip	error	is	relatively	low	and	
similar	between	λDR and λBAMM,	but	the	
sample	variance	in	λDR	tip	rates	is	high.	
In	this	example,	the	variance	in	absolute	
per-	tip	error	in	λDR	is	0.002	vs.	0.0003	for	
λBAMM.	On	average,	λDR	tends	to	either	
overestimate	or	underestimate	rates	
relative	to	λBAMM,	even	if	the	mean	per-	tip	
error	is	relatively	low	for	both	metrics
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(e.g.	Bromham	et	al.,	2016),	but	we	found	that	λTB	exhibited	the	great-
est	amount	of	error	in	estimating	speciation	rates.	On	the	other	end	
of	 the	spectrum,	a	metric	 like	λND	would	be	minimally	 impacted	as	
this	metric	is	attempting	to	capture	an	average	speciation	rate	over	
an	entire	root-	to-	tip	path	and	does	not	upweight	the	contribution	of	
recent	branch	lengths.	λDR	is	likely	somewhere	in	the	middle	of	this	
spectrum,	as	it	gives	decreasing	weight	to	branches	towards	the	root.	
λBAMM	is	potentially	sensitive	to	such	issues	as	well,	although	it	may	
be	possible	to	analytically	correct	for	some	biases	in	the	mechanics	
of	 the	model	 itself	 (e.g.	Etienne	&	Rosindell,	 2012;	Rosindell	 et	al.,	
2010).

Potential	 empirical	 biases	 aside,	 tip	 rates	 present	 a	 number	
of	 practical	 advantages	 in	 the	 study	 of	 diversification	 rate	 varia-
tion.	First,	 tip	 rates	can	be	summarized	and	compared	across	non-	
monophyletic	assemblages	of	species	 (Belmaker	&	Jetz,	2015;	Jetz	
et	al.,	2012;	Kennedy	et	al.,	2016;	Oliveira	et	al.,	2016;	Quintero	&	
Jetz,	 2018;	 Rabosky	 et	al.,	 2018),	making	 it	 possible	 to	 summarize	
rate	characteristics	of	entire	communities	or	regional	assemblages	of	
species.	Second,	estimation	of	rates	at	the	present	should	be	more	
robust	 to	 the	 influence	 of	 extinction,	 as	 extinction	 can	 erase	 the	

history	of	lineage	splitting	deeper	in	the	phylogeny	(Nee,	May,	et	al.,	
1994;	Nee,	Holmes,	May,	&	Harvey	et	al.,	1994;	Rabosky	&	Lovette,	
2008).	 Third,	 tip-	specific	 rates	 can	 be	 paired	with	 species-	specific	
trait	values	or	geographic	attributes	in	order	to	test	potential	trait-		
or	 geography-	dependent	 speciation	 rates	 (Freckleton	 et	al.,	 2008;	
Harvey	 &	 Rabosky,	 2017;	 Jetz	 et	al.,	 2012;	 Rabosky	 &	 Goldberg,	
2017).	Tip	rates	make	it	possible	to	relax	strong	assumptions	of	rate	
homogeneity	within	character	states,	which	are	inherent	to	certain	
trait-	dependent	 models,	 including	 BiSSE	 and	 GeoSSE	 (Goldberg,	
Lancaster,	 &	 Ree,	 2011;	 Maddison,	 Midford,	 &	 Otto,	 2007;	 Ng	 &	
Smith,	2014).	Recent	work	has	provided	a	conceptually	rich	and	ro-
bust	 interpretive	 framework	 for	SSE	models	 that	does	not	assume	
rate-	constancy	within	character	states	(Beaulieu	&	O'Meara,	2016;	
Caetano,	O'Meara,	&	Beaulieu,	2018),	but	tip	rates	nonetheless	can	
provide	 an	 important	 check	 on	 results	 obtained	 with	 SSE	models	
by	providing	a	direct	means	of	visualizing	the	relationship	between	
branch	lengths	and	character	states	(Bromham	et	al.,	2016;	Harvey	&	
Rabosky,	2017;	Hua	&	Bromham,	2016).	Visual	inspection	of	data	in	
this	fashion	has	the	potential	to	reduce	false	positives	by	calling	at-
tention	to	potential	outliers	and	other	sources	of	model	inadequacy	

F IGURE  7 Relationship	between	
λTRUE,	λBAMM,	and	λDR	for	a	phylogeny	
simulated	under	an	‘evolving	rates’	model,	
such	that	the	speciation	rate	itself	varies	
under	a	diffusion	model.	See	Figure	6	
for	additional	details.	Neither	metric	is	
particularly	well	equipped	to	infer	the	
true	rate	variation	in	this	case.	However,	
λBAMM's	conservative	estimates	are	still	
more	accurate	relative	to	λDR,	which	is	
negatively	impacted	by	high	variance	in	
tip	rates.	Here,	variance	in	absolute	per-	tip	
error in λDR	is	0.012	vs.	0.003	for	λBAMM
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(Maddison	&	FitzJohn,	2014;	Rabosky	&	Goldberg,	2015).	A	final	ad-
vantage	for	non-	model-	based	tip	rates,	especially	λDR,	is	that	they	can	
profitably	be	applied	to	extremely	large	phylogenies:	there	are	few	
computational	limits	to	using	them	on	phylogenies	with	tens	of	thou-
sands	of	tips	or	more,	in	contrast	to	formal	model-	based	approaches	
for	which	BAMM,	HiSSE	 (Hidden	 State	 Speciation	 and	 Extinction;	
Beaulieu	&	O'Meara,	 2016),	 and	 other	methods	 are	 poorly	 suited.	
This	 computational	 efficiency	 also	 lends	 itself	 to	more	 readily	 ac-
counting	for	phylogenetic	uncertainty,	because	tip	rate	metrics	can	
rapidly	 be	 computed	 across	 posterior	 distributions	 of	 phylogenies	
and	averaged	(e.g.	see	Jetz	et	al.,	2012;	Rabosky	et	al.,	2018).

In	summary,	tip	rates	offer	a	number	of	theoretical	and	practi-
cal	advantages,	particularly	in	the	study	of	associations	between	
traits	 and	 diversification.	 We	 found	 that	 λBAMM	 outperformed	
other	metrics	evaluated	in	this	study	and	proved	to	be	relatively	
accurate,	 even	 under	 diversification	 scenarios	 that	 depart	 from	
the	BAMM	inference	model.	λDR	underperformed	in	comparison	
to	λBAMM,	but	in	many	cases	still	did	reasonably	well,	particularly	
for	 small	 rate	 regimes.	 Despite	 our	 performance	 results,	 λDR	 is	
likely	to	remain	a	useful	tool	in	the	study	of	trait-		and	geography-	
dependent	diversification	 (Harvey	&	Rabosky,	2017;	Rabosky	&	
Goldberg,	2017).
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