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Abstract
1. Speciesspecificdiversificationrates, or “tip rates’can be computeduickly from

phylogeniesandarewidely used to studdiversification rate variatiom relation to

geographyecology, and phenotypes. These tip rates provide a number of theoretical and

practicaladvantages, such as the relaxation of assumptions of rate homogeneity in trait-

dependentliversification studiesHowever, therés substantiatonfusion in the literature

regarding whether theseetrics estimate speciation or net diversificatiates.

Additionally, no study has yebmpared the relative performance and accuracy of tip rate

metriesacross simulated diversification scenarios
2. We compared the statistical performance of timeeelfreerate metrics (inverse

terminal branch lengths; node density metric; DR statistic) and a +hadetl approach
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(BAMM). We applied each method to a large set of simulated phylogenies thbééa
generated under differediversification processe¥Ve summarized performance in
relation to the type of rate variation, the magnitude of rate heterogeneity and rate regime
size. We_also compared the ability of the metrics to estimate both speciation and net
diversification rates.

3. We show decisively thahodelfree tip rate metrics provide a betestimateof the rate
of speciation than afetdiversification.Errorin net diversification rate estimates
increases as a function of the relative extinction fateontrast, error in speciation rate
estimates is low and relatively insensitive to extinctOwerall, and in particular when
relativesextinction was high, BAMM inferred the most accurate tip rates and exhibited
lower error than non-moddélased appro&es.DR was highly correlated wittrue
speciation rates but exhibited highrorvariance, and was the best metric for very small
rate regimes.

4. We found thatof the metrics teste@R and BAMM arethe mosuseful metrics for
studying speciation ratdynamics and traitlependent diversification. Although BAMM
was'maere accurate than @Rerall the two approachdsve complementary strengths.
Because tipate metrics are more reliable estimatairspeciatiorrate we recommend
that-empirical studiegsing these metrics exercisaution when drawing biological
interpretations in any situation where the distinction between speciation and net

diversification is important.

Keywords:tipsrates, diversificatiorterminal branch length, node densibR, BAMM, trait-

dependentliversification

Introduction

Ratesof speciation and extinctiorary throughtime andamonglineagegNee Mooers &
Harvey1992 Sanderso& Donoghue 1996Etienne& Haegemar2012 Jetz et al. 201,2Moen
& Morlon 2014 Alfaro et al.2018), contributing talramatic heterogeneity in species richness
across the tree of lif@dlfaro et al. 2009Jetz et al. 201, Barker et al. 2013 By characterizing

variationin rates of speciation and extinctjame canbetter understand the dynamics of
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biological diversity through timeacross geographic and environmental gradients (ZKilréka

& Barber2004;Ricklefs 2006 Mittelbach et al. 20073ilvestrq Schnitzler & Zizka 2011;

Rabosky Title & Huang2015), andn relation to traits and key innovations (FitzJohn, Maddison
& Otto 2009; Near et al. 201Beaulieu& O’Meara 2016). Consequentiyrere has been great
interest in statisticahethoddor inferring rates of speciation and extinction from molecular
phylogenies.

Although rates of diversification have traditionally been quantified for cldide® has
been a growingnterest in estimating specispecific rates ofliversificatian, which we refer to
here astip rates. Tip rates are increasingly used to describe patterns of geographiciand tra
associatedsvariation in diversificatiolRréckleton Phillimore & PageP008;Jetz et al2012;
Kennedy et‘al2016;Harvey& Rabosky 2017; Quinter& Jetz 2018; Rabosky et al. 201R).
may seenstrangeto view evolutionary rates as a property of individual lineagessumit rates
emerge naturally frorthe birthdeath model wéypically use to conceptualize the diversification
procesgNee Mooers & Harveyl992;Nee May & Harvey 1994). Under the birtteath
process, individuals (species) are characterized binaagerates of species origination
(speciation).)‘and extinction ). For the purposes of inferendbese rates are typically
assumed‘te.be constant among contemporaneous membdosalf dade However, tiprates
can be viewed as our best estimate of the pratagntate of speciation or extinctifor an
individual lineage, conditional on pgsisually reent) evolutionary history. As such, they
provide infermation about thexpected amount of time thatll elapse before a lineage splits or
bemmes extinet.

A number of approaches haveshe@ised to estimate tip rates, including both mduieded
and non-modebased approachése., models that are parameterized with speciation and
extinction rates; vs metrics that simply rely on branch lengths and splitting evdrasg
approaches.vary in terms of how much mifation they derive from a focapecieqi.e., a
terminal branchjelative to the amount of information they incorporate from other regions of the
phylogeny-©On one end of the spectrum, trgiele estimatesgi.e., one rate for the entire
phylogeny)of speciation and extinction rates under a conststbirthdeath (CRBD) model
providetip rates that are maximally autorrelatedidentical)across species in the clade; such
rates for any given species arat independent of rates for any other species in the group of

interest.Onthe other end of the spectrutarminal branch lengdtan be used to derive a
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censored estimate of the rate of speciation that is minimally autocorrelated with rates for other
species in the focal clad&éerminal branch lengths are largely unique to each sp@ates

might beidenticalonly for sister taxa)but provide a noisy measure of speciation, due to the
stochasticity iherent in the diversification proced$eg May & Harvey1994), and they have
been employeds a summary statistic in assessing model adeq&acgnham, Hua & Cardillo
2016; Gomes, Sorenson & Cardoso 2016 xdntrast to single (terminal) branch estimates; tree
wide estimateshould be less susceptible to stochastic noise, because they incorporate
information from the entirety of the trée.g., multiple branches are used in the estimaiés)
coursethe treewide estimate necessarigsumes that all tips share a common underlying
diversificationsprocesther tip rate metrics fall somewhere between these two extremes
incorporating som treewide information but relaxing the assumption of homogeneous rates
across all lineagesodedensity metric: Freckleton, Phillimore & Pagel 2008; DR: Jetz.et al
2012).The estimation of tispecific rates thus entails a tradeoff between thegoa of

individual estimatesnd thestochastierror associated with those estimates.

BAMM=«(Bayesian Analysis of Macroevolutionary Mixtures, Rabosky 2@44)model
based approaeh that caoccommodatbeterogeneity in the rate of diversification thghuime
and among,lineageBAMM simulatesa posteior distributionof macroevolutionary rate shift
configurations given a phylogeny of interest; marginal rafepeciation and extinctidior
individual taxacan then be extracted from this distribution. In this framework, the correlation in
rates between any paif species is a function of the posterior probability that they share a
common macreevolutionary rate regifiabosky et al2014).If the treewide posterior
probability‘efsrate variation is lovthe marginaratesestimates for individual species will be
similar across the entire tree, as und&@RBD modelLikewise, any pair of taxa that are
consistently assigned to the same macroevolutioeyregime will necessarily haigentical
tip rates.

Tip.rates ardest suited to a host of questions and hypotheses where the diversification
dynamics_over the evolutionary history of a group are either less relevaontnwore relevant,
than the rates,of diversification closer to the presentkt@yexamplemanyhypotheses
involving trat-dependent diversificatiomplicitly assume a timdhomogeneous, or constant
throughtime, effect of the trait on diversification rai€oyne & Orr 2004Kay et al. 2006;
Jablonski 2008; FitzJohn 2010; Claramunt et al. 2(HAa)vey& Rabosky (2017) founthat he
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use of tip rates for assessing correlations betwertinuoudraits and diversificatiohas good
performancecross a range of diversification scenarfasthermore, hypotheses pertaining to
non-historicalgeographic patterns of diversity are also better addressed with recent rates of
diversification.For example, many hypotheses for the latitudinal diversagignt propose time-
homogeneous, effects of particular environmental factors (temperature, energy, geographic area)
on rates of. diversification (Mittelbadt al. 2007; Kennedy et al. 2014; Rabgskifle & Huang

2015; Schiuter2016; Rabosky et al. 20ER)t simply, if such timdhomogeneous processes

have shaped-the latitudinal diversity gradient (e.g., correlation betwesatspeand

temperature: Rohde 1992), then the effect should be manifest in the distribution of gagsent-
evolutionary rates.

At present, there isubstantiatonfusion in the literature over what quantity various tip
rate metrics actually measufiéhe DR statisti¢Jetz et al2012)was originally described as a
measure ofhe" speciedevel lineage diversification rateWhile suplemental analyses and
subsequent work suggested that DR was a better measure of speciation rate than net
diversification=(Jetz et al. 2012, Belmaker & Jetz 2015, Quintero & Jetz 2018), mdmgsst
have nonetheless continued to describe DR as an estimate of the lenedget diversification
rate (Marin.& Hedges 2016; Oliveira et al. 2016; Cai et al. 2017; and many oftherapde
density metric ofFreckleton, Phillimore & Pagel (2008) has also been described as a measure of
net diversificationWhether these metrics more accurately measure speciation or net
diversification is critically important fanterpreting biodiversity patterns (e.g., two regions
might differdramatically in speciation rate, but net diversification rates in each might
noretheless:be zeroln objective of our study is thus tompare the ability of DR, node
density, and other metri¢s estimatespeciation and net diversification rates.

Despite the potential utility dfp ratesin geographic and traltased aalyses of
speciation rate heterogene{fietz et al. 201Belmaker& Jetz 20150liveira et al. 206;
Quintero& Jetz'2018)therehas yet been no comprehensbeenparative assessment of the
accuray andiprecision ahe estimatesavefor supplemental analysesJdetz et al. (2012) and
Quintero &Jetz (2018BAMM haslow power to infersmall rate regimefRabosky Mitchell &
Chang 2017Meyer& Wiens 2017), leading to the possibility that other approaches might
perform better for smaller phylogeniesvanen the variation in rates among cladesuistle.

However,DR and relateanethods will always identify variation in tip rates, even when none
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154  exists provided there is stochastic variation in branch lengths. A goal of this studyeifotben
155 evaluate the tradeff between the stochastic noise inherent in non-mbdsédapproaches, and
156 the conservative but less noisy estimates from rbastd metricdVe compare the

157 performance of thesmetrics across a range of simulation scenavitsch include both discret
158 and continueus variation in rates.

159

160 Methods

161 Tip rate metrics

162 We assessed the accuracy of four tip rate metrics in this atuphantifying rates of

163 speciationAsawe demonstrateelow(see als@Gupplementary Figure 5 in Jetz et al. 2012;

164 extended Figur® in Quintero & Jetz 201&8elmaker& Jetz 2015)these metrics are estimators
165 of speciation rate and nogt diversification rate, and we refer to them as shidbughoutThe

166 first metricis the inversef theequal splitsneasurgRedding and Mooers 200&)so called the

167 DRdatistic,(Jetz et al. 2012pivRate (Belmaker& Jetz 20150liveira et al. 208), ES (Harvey

168 & Rabosky2017pr tip DR (Quintero& Jetz 2018)which we denotén this study ad.pr. This

169 speciesspecifie’'measuracorporates the number of splitting events and the internode distances
170 along thereoto-tip pathof a phylogeny, while giving greater weightianches closer to the

171 preseni{Redding& Mooers 2006; Jetz et al. 2012}k is computed as:

N;
1
Apr; = Z bj 5=
=1

172 wheredpg, is the tip rate for speciesN; is the number of branches between specaesl the

173 root,b; is theslength of brangh starting at the terminal brangh=1) and ending with the root.
174  Jetz et alw(2012) demonstrated that, for trees deriving from a Yule processtrantlav

175 extinction,;the mearkpr across tips converges on tinge speciation rate.

176 We also considered a simpler metric, node denBitgckleton, Phillimore & Pagel 2008
177 denotedby Anp)¥ This issimply thenumber of splitting events along the path between the root
178 and tip of'asphylogeny, divided by thge of the phylogenyhile Apr downweights the

179 contribution of branch lengths that are closer to the tq@t,equally weights the contributions

180 of all branches along a particulaot-to-tip path, regardless of where they occur in time. Under a
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181 purebirth model (1 = 0), othApr andinp should yieldunbiased estimates of the rate of

182 speciation

183 The third measure we consideredhis inverse of the terminal branch lengthss|.

184 Rapid speciation rates near the present should be associated with proportghwatehterminal

185 branchessmaller values of rg should thugharacterize species with faster rates of speciation.
186 This measureshassrecently bemed as a summary statistic to assess model adequacy-in trait
187 dependent diversification studieBromham Hua & Cardillo2016;Gomes Sorenson & Cardoso

188 2016;Harvey& Rabosky 201y Following Steel& Mooers (2010), we noténat the terminal

189 branch lengths/can be used to derive an estimate of the speciatiahisdtalows from the fact

190 that interigr and terminal branches have the same expected value under the Yule procéss (Steel
191 Mooers 2010)The correspondingstimatorfor thei'th tip, A1g is approximately 1 /l2whereb

192 is the length of a given terminal branch (Steel & Mooers 2010). To our knowlegigeas not

193 been useditorexplicitly estimate tip rates as we do here, but given its utility as a summary statistic
194 andgeneraltheoretical properties (St&dWlooers 2010), we see value in comparing the

195 performance of this metric to others currently in use.

196 Finally, we considered Bayesianmodelbased pproach to estimating tip ratdc3AMM

197 (Rabosky 2024assumes that phylogenies are generated by set of discrete diversification

198 regimesUsing.MCMC, the program simulates a posterior distributiorate shift regimesrom

199 which marginal posteriaratedistributions can bextracted for each tip in thghylogeny Priors

200 for BAMM-analyses were set using default settings from the setBAMMgpfimrction from

201 BAMMtools (Rabosky et al. 2014). The prior parameterizations specified by this function ensure
202 that the prior density on relative rate changes across the tree is invariant to the sedleef th

203 (e.g., multiplying branch lengths by®@ill not change inferences about relative rates across the
204 tree).We.denote BAMM tipspeciation ratefmean of the marginal posteri@3igamm . AS

205 BAMM also estimates extinction rates for each regimealsecalculated tipspecific net

206 diversification rateasigavm - Usamm, denoted asgamm -

207

208 Tip rate metrics estimate speciation, not net diversification

209 As suggested previously (Belmaké&rdetz2015;supplemental analyses in Jetz et al.
210 2012), DR and presumably other bpsed measuremenisore accurately estimate the rate of

211 speciation than the rate of net diversificatiblowever, numerous studies continue to refer to DR
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212 as a measure of netwdrsification(Marin & Hedges 2016liveira et al. 2016Cai et al. 2017;
213 Quintero& Jetz 2018; and many otherghis is incorrect and it is straightforward to

214 demonstrate thatrs, Anp andipr aremore reliablaneasures of speciation ratand not net
215 diversificationrates at least when extinction is moderate to high

216 To illustrate this property of the metrics, we appliecappproacheso constantate birth
217 death phylegenies simulated across a range of extinfcéiotions(e = u /A) , including pure-
218 birth trees£ = 0) as well as trees exhibiting very high turnower {). To evaluate accuracy of
219 speciation estimates as a functiorz,ofve generated 10Qthylogenies with 100 tips eackhere
220 X ande were,drawn from uniform distribution:([0.05, 0.3]; : [0, 1]). Importantlywhena is
221 sampled uniformly with respect tp the distribution of is not uniform: the mean, range and
222 variance insdeerease dramatically asncreases. To evaluate the accuracy a$ a function of
223 &, we thussgenerated a second set of trees by sam@imdg from uniform distributionsr¢

224 [0.05, 0.3],¢ [0, 1]). As a result) has constant mean amdriancewith respect t@ in the first
225 set of simulations, and the same is truer forthe secondet of simulationsKigure S1). Al

226  phylogeny simulations were conducted with the TreeSim package in R (Stadler 2011)
227 We compared tip rate metrics to true speciation faggs (with the first simulation set)
228 and to true_ net diversification rategue (with the second simulation set). We evaluateshn

229 pertip accuracy of the tip rate metrics witlreemeasures of error:

230 mean absolute errer Y1 |A; — Argyg,|/N

231 RMSE = \/ i1 = Arrop)?/N

N; li—lTRUEi/N
=1 Argrue;

232 mean proportional errce ),
233 wherel,;is thesestimated tip rate for species i out of N total species, Atrye is the true tip rate.

234 Mean absolute error and root mean square error capture the magnitude in errotes,tgnch

235 mean proportional error quantifigge bias in tip rates, as a function of the true tip rates

236 (Rabosky et al. 2014hn analyses below, all error summaries yield generally congruent results;
237 results for mean absolute error are presented in the main text, and others imeopple

238

239 Assessment of tip rate metrics
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We tested the performance of the methgscompiling publiclyavailable datasets from a
number of simulation-based stud{@sble 1).By focusing on simulations from previously-
published work, we thus ensured that the simulation process itself was effelolivegd to the
objectives of the present study. We further notedhatrial datasets includesbveral studies
that werecritical of BAMM (Moore et al 2016, Meyer & Wiens 2017These simulated trees
includerate heteogeneity in time and across lineagésgether, these phylogenies present a
wide range ofitree sizes and diversification rate shpftsyiding an ideatomparativedataset for
our purposesro'more easily distinguish between these tree typtee texf we refer to the
BAMM -type, multiregime timeconstant phylogenies simply as “muiéigime”, and the muki
regime diversitydependent phylogenies simply as “diversity-dependent”, even tlthsigiete
rate shifts are present in both types of treeaddtion to discreteshift scenarios (e.g., BAMM-
type process), weimulated phylogenies under avblving rate$ model of diversification
(Rabosky 2010ascorrected irBeaulieu& O’Meara 2015})0 explore performance ¢ip rate
metricswhen diversification rates change continuously and independently along branches, as
might occurif-diversification rates arercelated with an underlying continuous trait (FitzJohn
2010).In theserssimulationsve allowed the logarithm df to evolve across the tree under a
Brownian"metion process, while holdiagonstant. The magnitude i@teheterogeneitamong
branches’is controlled by the diffusiparameters, where greater values lead to greater
heterogeneity in speciation ratédthough published phylogeniedgth rate data were
unavailablesfor.thisimulation scenariove used simulation code and parametsten directly
from Beaulieu& O'Meara (201pto generate trees with similar statistical propetiethose in
their study Simulations were performed with the following parameters:0.078, 0.103, 0.145,
0.249 and:.= 0.0, 0.25, 0.50, 0.75. We simulated 100 phylogenies for @ac) pair, and for
three values.eé (c = 0.03, 0.06, 0.12)/Ve evaluated tip rate accuraby comparing estimated
to true tip rates, using the absolute and proportional error metrics describedvébalso
examined the correlation between true and estimated tip catabjningtip ratesfrom all
phylogenieggenerated under tlsame class aliversification processand visualizing these data
as density scatterpmtgenerated with the LSD package in R (Schwalb et al. 2018), where colors
indicate the density of points.

Size ofdiversification rate regimes might be an important factor in a tip rate metric’s

ability to accurately estimate rates. For example, BAMM'’s statistical power in detedmifty a
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to a new rate regime &sfunction of theaumber of taxa in that rate regime, and tip rates for taxa
from small regimes will more likely be parameterized according to the larger parent m¥gime

the treewide average rat@Rabosky, Mitchell & Chang 2017); this is the expected behavior

when BAMM falils to identify a rate shifHowever, non-moddbased approaches such as those
examined Iin.this study might be more accurate for small regimes. To explore how rate regime
size influences/the accuracy of tip rate metrics, we calculated the mean tip rate for each true rate
regime from-all'multregime phylogenies (sination datasets from Moore et al. 2016; Rabosky,
Mitchell & Chang2017;Meyer& Wiens 2017Mitchell, Etienne & Rabosky 2018). We then
calculated the Pearson correlation coefficient and the slope of a linear model between true and
estimated /mean regime rat®¥ge explored theerformance of all metrics with respect to regime
sample size, as iRabosky Mitchell & Chang(2017: Figure 13). For comparison, we repeated

all performance.summaries tp rates estimatedy applying asimple constantate birthdeath
(CRBD) processo each simulated phylogerihis exercise is an important control, because it
indicates how much error we would expect for each simulated phylogeny undenptigy/sig

(incorrect)sassumption that rateg @onstant among lineages and through foneach dataset

Results

Speciationsor net diversification?

As expectedthetip rate metrics examined in this stuale more accuratstimators of
the rate of speciatiofi.) and not the net rate of specaigersification(r). Mean absoluterror
increasedexponentiallyith respect to the extinctidnactione (Figure 1) However,mean
absolute errorin speciation rate was largely invariant with respe¢0t85 quantile of-based
andA-based mean absolute error ig)r: 2.28 and 0.17, respectivelWearly identical patterns
were found.withh RMSE (Figure S2)lote thatr andA for these simulations were drawn from
identical uniform distributions, and absolute error in the rates is tmparableProportional
error generally exhibited the same pattemmdin terms ofs versus, differences irspeciation
based error varied acrosgFigure S3).There wasa weak but significant trend towards
progressively greater underestimatiorspéciation rates with increasing values of relative
extinction(linear modeklopes: -0.08, -0.014, -0.011 fotp, Apr @andAisamm, respectively)

Overall,errorwas highest fok g by anorde of magnitue (FigureS4), and decreased
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progressively withhnp andApg, with the lowest overakrror inAgaum . BAMM estimates of net

diversification rate were relatively accurate, except at the highest vala€Bigliresl, S2 S3).

Tip rate accuracgcross rateariable phylogenies

Tip rates estimated witBAMM were consistently more accurate than those obtained
using the other methods across all diversification scenarios considered, inchudlifgegime
diversity-dependent and evolving ratieees(Figure?2). Apr Was the seconthost accurate
metric, although its relationship with true rates was substantially wdek®kgavv . Anp and
A1s Werecaorrelated with true rates bperformedrelatively poorlyoverall. Howeveri g
performed better thakyp, and just as well aspr at estimating speciation rates for diversity
dependent treesigure2, S5).All metrics performed best for multegimetrees, followed by
evolving rates.and diversityependent trees, respectivehpr diversitydependent tree&np
rates areffectively uncorelated with the true rates (Figuze Additionally, the performance of
the different tip rate metrics for mulégimephylogenies is naensitive to theource of the
simulated phylogenie@igure S6). We found thaBAMM substantiallyoutperformed all other
metricson.datasets fronstudies that independently assessed BAMM's performéa&ingeré S6
Moore et al 2016; Meyer & Wiens 2017).if rates were also generally but more weakly
correlated'with'true net diversification ratesth the exception ofnp, which was unorrelated
with true ratedor diversity-dependent trees, presumably because this metric equally weights the
full depth of the treeHigure S7).

In terms ofmean petip error,Agamm cOnNsistently outperfoned the other metrider
multi-regimesdiversity-dependeragndevolving rates tree@-igures 3, S8)Error inAgamm
increase@sra-function ofate heterogeneity favolving rate phylogenies, but was largely
independent of the magnitude of raeterogeneity for the other scenaribgg generally
exhibited greater error tharsammv , and this error increased as a function of the level of
heterogeneityor both the evolving rates and muléigime treesError inipr was generally
invariant testhe nonber of rate regimes for the diversdgpendent scenariddowever Apr
tended to have greater error thgmestimategrom a simple model that assumeao variation in
rates through time or among lineagksrgp; all tips assigned the treeide CRBDrate) Anp

performed somewhat similarly #gr for constantrate and evolving rasetrees, but worse for
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331 diversity-dependent tree&rror inAtg increased with increasing rate heterogeneity for constant
332 rate and evolving rasdrees, but was relatively unaffected by rate heterogeneity in diversity
333 dependent tree$igureS9).However, errofor this metric was far greaténan forall other tip

334 metrics.

335

336 Effects of regimssizeon performance

337 Both 'metrics of performance assesnt— the Pearson correlation and OLS slope —

338 generallyincreased with increasing regime s{gggure4). This was found to be true for all tip
339 rate metricsalthoughi g andinp never achieved high performanégg tended tgerform

340 better thap“other metrics when small rate regimes were included (e.g., 10 tips or fewer);
341 howeverthe slope between estimated and true rates was greater than 1 acrogsrityeaina

342 minimum regime sizes, indicating tHatr overestimates speciatioates(see also Figure3.

343 Similar patterns were observed for net diversification natésipr, but the magnitude of the
344 overestimationswas greater than for speciatiéigure S10).Agamm , IN contrastapproachea

345 slope of 1'when estimating speciation rated slightly underestimatetkt diversification rates
346 (regimes with > 30 tips: OLS slope096 fori, 0.87 forr).

347 Absolute error in regime mean tigtes was lowest fotpr andAsavm , regardless of the
348 sizeof thewratesregime (Figur®. BAMM'’s ability to accurately estimate tip rates improved with
349 regime size, whereas absolute error was relatively consistent across regime aigg$dior

350 regimes greater than 10 spechM& also found thatpr slightly ouperformedigamm for small

351 rate regimes

352 Notesthat, in Figures 4 and 5, each rate regime is treated as a single data point. Rate
353 regimessofsizes 1000, 100, and 1 tip are equivalent under this method of error assessment.
354 Figure 47assesses how well thesehmds estimate rates for individual regimes, regardless of the
355 size of those regimes. In contrast, Figurésaskhow wellthesemethods perform at estimating
356 rates for a given tip

357

358 Discussion

359 We assessed sevetigl rate metricand confirmed that these are more accurate

360 estimators of the rate of speciatioather thamet diversificationFiguresl, 4, S7, S10)This

361 distinction was especially pronounced at high extindtiactions where the rate dineage
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turnover is highandrates ofspeciation and net diversification have the potential tmdve
divergent.These results are consistent wstipplemental analyses performed in Jetz et al. 2012.
It is also important to note that recent extinction will have a much gredtegnoé on these
metrics than extinction events deeper in t{@eental & Marshall 2011)N\et diversification rate
is a critical determinant of species richness, yet this quantity is pdiiemdependent of the
underlyingrate‘of speciation. Misinterpretation of tip rate metrics cbeldtore lead to highly
misleading perspectives on largeale diversity dynamic&s we demonstrate (Riges 1, S2,
S3), tip rate metricsXnp, Apr) providerelativelylittle information about net diversificatipand
high values of these metrics are fully consistent with equilibrial models of speciation where the
true net diversification rate is zerbhus,Apr andinp should not be used to support claims
about the dynamics of species richneiseet diversificatiomper se without independent
evidence bearing on plausible levels of extinction.

In termsoef accuracywe found that BAMM performed better than nmiodelbased
metricsacross.altlatasets we consideresstimated tip rates were most higlugrrelated with
true tp rates, andnean petip error in rates walower across a range of ratariable simulation
scenariosThisperformanceis likely to beat least partially due to the inclusion of extinction in
the BAMMrinferencemodel.BAMM is expected tgerform well for phylogenies with discrete
shifts in.diversification rateas this type of rate variation is most consistent with BAMM's
assumptions (Rabosky 20IMitchell & Rabosky 2016; Raboskiitchell & Chang2017;
Mitchell, Etienne & Rabosky 2018yowever,BAMM performedsurprisingly wellfor the
evolving ratephylogenieswhich conform poorly to the assumptions of itiference modeIn
these trees;the rate of speciation changes continuously under a diffusi@s paodeas a result,
the phylogeny exhibits rate heterogeneity withaliscrete rate shifts.

Oneevolving rates phylogenigssaum performed better thabpg (Figure2; Spearman’s
p for Asavi™="0:83,p for Apr = 0.62), despite the fact thagr does not rely on the detection of
distinct rate'regimes to estimate tip ralegure5). Agamm also exhibitedhe bweg mean per
tip erroracross varying levels ote heterogeneity (Fige 3).

Why do¥savm andipgr exhibit such striking differences in performance across the
simulation scenarios considered here? To illustrate the differences between inference under these
metrics, wecomparedrue tip rates td.gavv and todpg on asimulatedbirth-death tree with a

single rate shiffFigure6), as well as on one evolving rates tree simulated for this studyréFig
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7). It is clear thatf BAMM has the statistical power to detect true rate shifts, then it will perform
well under rate shift scenarids. contrastipr tracks true rate shifts bakhibits high sample
variance With an evolving rates trggigure 7), the simulation model is very different from the
inference modeh BAMM . However, itconservativelyplaces rate shifts in order to
accommodaite,rate heterogeneity that is spread across the phylogenw rather different
model of rate.variatiaripr also broadly tracks the overall pattern of the true rateshbut
variance in the corresponding estte®s so high that performance is negatively affectiede
calculate meafabsolutepertip error inAgavm andipg the error is relatively similar between
Aeamm andipgr,but thevariancein periip error foripg is higher.Overall, BAMM exhibited
substantially/lower error tharr under precisely this scenario (Figuse

Thus, althougiBAMM is conservative in thestimation of tip rates relative igg, the
methodexhibits'bwer overall errorlt appears thatpr can recover more subtle rate
heterogeneityelative toBAMM (see Raboskywiitchell & Chang2017 for discussion of power
in BAMM ), butthis apparent power advantagenes at the cost of increased variafereor)in
the resulting estimateRemarkably, on pertip basis, we find that a simple constaate birth
death precess.erep) frequently yields tip estimates with lower median error and less error
variance than.those obtained witpr (Figure 3), despite the simplifying (and incorrect)
assumption thatates are identical across all tips in a given tree. For example, across all multi
regime simulations (Figure 3)crep point estimates were more accurate than the corresponding
Apr point estimates for 84% of trees in the simulationsjfakv , thekcrep €stimates were
more accurate for a much smaller fraction of the total (36%). Similar results were noted for
diversity-dependent)(crsp more accurate than 98% ofr estimates, versus 15% ofamm
estimates) and evolving rates trekssgp more accurate than 93% ofr estimates, versus 36%
of Asamm €Stimates)Given thatlpr can and does track true heterogeneity in speciation rate
(Figures6, 7), this pattern suggests that the metric is especially sensitive to the stochastic
variation insanch lengths that can emerge even when all tips have the same underlying
speciation“rate.

Regardless of the performance summaries presented in this artpbetantquestions
remain with respect to how well tip rate metrics can estimate the trud sggeciation from

empirical phylogenieslhe phylogenies analyzed in this study were simulated under idealized
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processes anteglectpotentialbiases and sources of uncertainty that are present in real datasets.
For example, if the process of speciatiakes time to completas is generally believed to be
the casdi.e.,the protracted speciatigprocess; Rosindell et al. 2010; Etienne and Rosindell
2012), then the most recent speciation everagstill be orgoing at the preseiind typical
speciedevel.molecular phylogenies may fail to recognize these evéhts will lead to an
overestimation/of terminal branch lengths some terminal branches potentially include
incipient speciesA related bias might arise due to incomplete taxon sampling, which
disproportionately affects the length of terminal (or otherwise recentgibtangths (Pybus &
Harvey 2000)Likewise variation in taxonomic practice across a phylogeny might lead to
spuiious rate yariationparticularly if different species concepts are used, or if some clades in the
phylogeny=but not others — have been subject to population genetic analysis or screens for
cryptic speciesliversity. Additionally, it has been shown that BAMM and other methods may
fail to infer accurate speciation rate dynamics if the phylogeny is in diversity de¢haéis,
when extinction ratemcrease towards the present and ultimagelyeed speciation rates
(Quental&sMarshall2011 Burin et al. 2018). A major, if obvious, caveat in the interpretation of
tip rates is‘that'they apply to recent speciation rates and are necessarily limited with respect to
inferences.about historical variation in speciation rate.

The-greater the importance of the terminal branches in tip rate metrics, the greater the
impactthesebiaseanight have on tip rate estimat€n one end of the spectrumetncs such as
At Will be very sensitive to such biases as they rely exclusively on terminal branch lengths
Suchappreaches may retain utility as summary statistics (e.g., Bronthaan& Cardillo 2016),
but we foundhati g exhibited the greatest amount of eliroestimating speciation ratedn
the other enadf the spectruma metric likeinp would be minimally impacted as this metisc
attempting to capture an average speciation rateawventire roote-tip pathand does not
upweight theseontribution of recent branch lengths is likely somewhere in the middle of this
spectrum,as-itiges decreasing weight to branches towards the xg@@aw iS potentially
sensitiverto such issuas well, although it may be possible to analytically correct for some
biases in the mechanics of the model itself (Rgsindell et al. 201Etienneand Rosindell
2012).

Potential empirical biases aside, tgtespresent a number of practical advantaigethe

study of diversification rate variatioRirst, tip rates can be summarized and compared across
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454  non-imonophyletic assemblages of species (Jetz 80aR; Kennedy et al. 201Bglmaker&

455 Jetz 2015Qliveira et al. 20@&; Quintero& Jetz 2018; Rbosky et al2018), making it possible to
456 summarize rate characteristics of entire communities or regional assemblages of species. Second,
457  estimation of rate at the present should be more robust to the influence of extinction, as

458 extinction can.erase the history of lineage splitting deeper in the phylogeagt(al. 1994;

459 Nee, May & Harveyl994; Raboskg Lovette 2008). Third, tigpecific rates can k@aired with

460 speciesspecific'trait values or geographic attributes in order to test potentiabtrggeography

461 dependentspeciation rates (Freckleton, Phillimore & Pagel 2888t al. 2012, Rabosk¥

462 Goldberg2017Harvey & Rabosky 2017Yip ratesmake it possible to relax strong assumptions
463 of rate homogeneity within character statghich are inherent to certain traiépendent models,
464 includingBiSSEandGeoSSHMaddison, Midford & Otto 2007; Goldbergancaster & Ree

465 2011 Ng & Smith 2014). Recent work has provided a conceptually rich and robust interpretive
466 framework for SSE modethat does not assume rai@astancy within character sta{@seaulieu
467 & O'Meara 2016Caetano, O'Meara & Beaulie2018), butip ratesnonethelessan providean

468 important eheek on results obtained wB8Emodelsby providinga direct means of visualizing
469 the relationship between branch lengths and charactes @adenham Hua & Cardillo 2016;

470 Hua& Bremham 2016; Harvey & Rabosky 2Q1Yisual inspection of data in this fashion has
471 the potential'to reduce false positil®scalling attention tgotential outliers and other sources
472 of model inadequacy (Maddison & FitzJohn 2014; Rabosky & Goldberg 2815)al

473 advantage.for non-modbhksed tip rates, especiallyg, is that they can profitably be applied to
474  extremelydarge phylogenies: there are few computational limits to using them on phylogenies
475  with tens ofithousands of tips or more, in contrast to formal muakdd approachésr which

476 BAMM, HISSE(Hidden SateSpeciation and Extinction; Beaulieu & O’Meara 2016), and other
477 methods are poorly suitedihis computational efficiency also lends itselihtore readily

478 accounting.forphylogenetic uncertainbecause tip rate metrics can rapidly be computed across
479 posterior distributions of phylogenies and averad@@dexample, see Jetz et al. 2012; Rabosky et
480 al. 2018).

481 In summary,ip rates offer a number of theoretical and practiclklantagesarticularly

482 in the study of associations between traits and diversification. We fouricspiat

483 outperformed other metrics evaluated in this study and proved to be relativelytaeen

484  under diversification scenarios that depart from the BAMM inference mioglel.
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underperformed in comparisoni@auwm , but in many cases still did reasonably wedrticularly
for small rate regime®espite our performancesults A pr is likely to remain aiseful tool in
the study of traitand geographdependent diversification (Rabos&yGoldberg 2017Harvey
& Rabosky 2017).
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Figures/Captions

Table 1. Summary of simulated phylogenies used in this study.

number regime

simulation model of trees  tree size number  source
single-regime, constant-rate birth-death 100 100 1 Mitchell & Rabosky 2016
single- and multi=réegime, constant-rate
birth-death 100 51-148 1-6 Moore et al. 2016
single- and multi-regime, constant-rate
birth-death 400 10-4296 1-67 Rabosky, Mitchell & Chang 2017
multi-regime, constant-rate birth-death 20 939-3708 11 Meyer & Wiens 2017
single- and multi-regime, constant-rate
birth-death 188 4-3955 1-73 Mitchell, Etienne & Rabosky 2018
single-regime, constant-rate birth-
death, lambda uniform 1000 100 1 this study
single-regime, constant-rate birth-
death, net diversification uniform 1000 100 1 this study
pure birth root regime, 1-4 discrete Rabosky 2014; Mitchell &
shifts to diversity-dependent regimes 1200 54-882 1-5 Rabosky 2016

Rabosky 2010; Beaulieu &
speciation rate.evolves via diffusion O'Meara 2015; Rabosky 2016;
process 1200 25-1208 1 this study
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Figure 1. Mean absolute error i (top) andr (bottom) for three different tip rate metrics, across
a range of relative extinction ratér BAMM, the estimatedpeciation andet diversification
ratesarepresentedn the top and bottom panels, respectivelgsdlute error of zeromplies

perfect accuracyinset plotsshow error i with truncated yaxis scale to facilate comparison
amongmetrics. All tip rate metrics tracik more accurately than they trackSeeFigure S4for

A1s, Whichsperformed much worse than the other metrics.
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694 Figure 2. True tip rategitrue) in relation to estimated tip rat€Bp rates were compared

695 separatelyfordifferent major categories of phylogeny simulations Y@wgsare plotted

696 separately byinference method (columidptting regionis restricted to th@9th percentile of

697 true rates, bubpearman correlatisribetween true and estimated rates (lower right of each figure
698 panel) ardbased on the full range of the data. Colors indicate the density of points in the scatter
699 plots.Theharizental gaps iinp for diversitydependent trees are an artefact of all trees having
700 the same'erown agkgavm €xhibited the strongest correlation with true rates for all simulation

701 categories.
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702
703 Figure 3. Meanpertip absolute error in speciation rates as a functidh@fnagnitude of rate

704 heterogeneityn each simulateghylogeny Results are presented separately for different

705 categories of rate variation (Table Bft column showgstimates from a constargte birth

706 death model.for, reference. The boxes and whiskers represent the 0.25 — 0.75, and the 0.05 — 0.95
707 quantile ranges; respectively some caseé,np andipr had more error than a simpgldRBD

708 model with no variation in tip ratesgamm had the least amount of error across all amounts of

709 rate heterogeneity. Segbre S9for A1g.
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Figure 4. Performance of tip rate metsi@as a function of regime size, including Pearson
correlation &) and OLS regression slopg {br mean ratewith respect tG.true. Apr and

Asamm outperform the other metrics when summarized in this fashion, althgrgiends to
overestimate the rate of speciation. Thaxis denotes the minimum regime size across which
performanceswas summarizéthr example, x = 20 corresponds to the correlations and slopes
computed for all regimes with 20 or more tips; a value of x = 1 is the correspondingfasults

all regimes.The OLS slope foktg is not visible as it ranges betweeanti9.
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Figure 6. Relationship betweehrrug, Asavm , @andApr for asimulated phylogeny containing a
single rate shifty(orange circle§ubplots to the right of the tree illustrate true and estimated rates
for each tip (feft) and corresponding absolute error (ridtdderisksat the bottondenotemean

pertip errar in tip rate metricdviean pettip error isrelatively lowand similar betweehpr and
Aeamm , but.thesamplevariance in\pr tip rates is hig. In this example, theariance inabsolute
pertip error inApr is 0.002 versus 0.0008r Agavmm - Onaverageipr tends to either

overestimate or undestimate rates relative tosavm , €ven if the mean peip error is relatively

low for both metrics.
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Figure 7. Relationship betweekpg, Asavm , andipr for aphylogeny simulated under an
“evolving rate§model, such that the speciation rate itself varies under a diffusion nsgel.
Figure 6 for additional details. Neither metric is particularly well equipped to infer the true rate
variation_in this:,caseHoweverigavnv 'S cOnservative estimates are stilbra accurate relative to
ApRr, WhichFisTnegatively impacted by high variance in tip rat&se, variance in absolute per-

tip error inXpRis 0.012 versus 0.003 fagamwm -
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